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Abstract

In this paper, we investigate a mixed finite element approximation of convection diffusion
optimal control problem without constraints. Under some assumptions about regularity and
mesh we prove a second order convergence results for state variable y, adjoint state variable
p and control variable u with piecewise linear polynomial approximations. Finally, numerical
examples are presented to verify the theoretical findings.
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1 Introduction

Optimal control of convection diffusion equations plays an important role in many practical
applications, such as air pollution([7]) and hydraulic pollution([9]) control problems. Taking air
pollution control problem as an example, in this process we aim at controlling the emissions of
pollutant in order to keep the concentration of pollutant below a certain level over an observation
area. In this case the control function is a source term, while the pollutant concentration is
described by convection diffusion equations.

Recently, extensive researches have been carried out in this field. In [1], Becker and Vexler apply
local projection stabilization method to solve numerically optimal control of convection diffusion
equations. A priori error estimates are proved for both unconstrained and constrained problems in
[1], while a priori error estimate for a edge stabilization finite element approximation of convection
diffusion optimal control problems with constraints is obtained by the second and the third authors
in [4]. In [3] and [6] a priori error estimates for streamline diffusion finite element approximations of
optimal control problem of convection diffusion equations without constraints and with constraints
are investigated, respectively. In [12] the authors discuss variational discretization [8] for optimal
control governed by convection dominated diffusion equations. For more numerical methods the
reader may refer to the references cited therein.

So far the error estimates in the work cited above only contain O(h3/2) convergence results
with piecewise linear polynomial approximation.

In the present work, we propose a new mixed finite element method to solve numerically the
convection diffusion optimal control problems with and without constraints on the control.

Firstly, for one-dimensional unconstrained control problems we obtain a priori error estimate
for state y, adjoint state p and control u as follows

‖y − yh‖+ ‖p− ph‖+ ‖u− uh‖ � Ch2,
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where yh, ph and uh denote the discrete counterparts. For two-dimensional unconstrained control
problems we derive a priori error estimate for state y, adjoint state p and control u of the form

‖y − yh‖+ ‖p− ph‖+ ‖u− uh‖ �

⎧⎨
⎩

Ch, on a general mesh,

Ch2, on a uniform rectangular mesh.

Secondly, for two-dimensional constrained control problems we utilize the mixed finite element
method proposed in this paper to approximate the adjoint state variable, while a edge stabilization
Galerkin method is applied to solve the state variable. We derive a priori error estimates for the
adjoint p and the control u

‖p− ph‖+ ‖u− uh‖ �

⎧⎨
⎩

Ch, on a general mesh,

Ch2, on a uniform rectangular mesh.

For the state y we obtain the following estimates

‖ y − yh ‖∗�

⎧⎨
⎩

C(h+ h
3
2 + hε

1
2 ), on a general mesh,

C(h2 + h
3
2 + hε

1
2 ), on a uniform rectangular mesh.

Finally, numerical examples are carried out to verify the theoretical findings.
The paper is organized as follows. In section 2 we prove a priori error estimate for state y,

adjoint state p and control u for the unconstrained control problem. In section 3 we consider the
constrained control problems and derive the corresponding error estimates. Finally, in section 4
numerical examples are presented to illustrate our analytical findings.

2 Optimal control problem without constraints

2.1 One dimensional Case

In this section we consider the following one-dimensional convection diffusion optimal control
problems without constraints;

min
u∈U

J(y, u) =
1

2

∫
Ω

(y − z)2dx+ α

2

∫
Ω

u2dx (2.1)

subject to

−εy′′ + y′ = f + u, in Ω, (2.2)

y = 0, on ∂Ω. (2.3)

Here Ω = (a, b) ⊂ R is a one-dimensional bounded domain, and α is a positive constant. f and z
are given functions. U = L2(Ω), and ε > 0 denotes the diffusion coefficient.

Now we are in a position to approximate the convection diffusion optimal control problems
(2.1)-(2.3). Here we propose a mixed finite element method to solve numerically the optimal
control problems (2.1)-(2.3).

By standard argument we derive the following first order optimality conditions for optimal
control problems (2.1)-(2.3);

−εy′′ + y′ = f + u, x ∈ Ω, (2.4)

−εp′′ − p′ = y − z, x ∈ Ω, (2.5)

u+
p

α
= 0, x ∈ Ω, (2.6)
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y = 0, p = 0, x ∈ ∂Ω. (2.7)

Substituting (2.6) into (2.4) leads to

−εy′′ + y′ = f − p

α
,

which implies

p = αf + αεy′′ − αy′.

Inserting the expression of p into the adjoint state equation (2.5) yields

−αε2y(4) + αy′′ − y = αεf ′′ + αf ′ − z � −F1, (2.8)

where y(4) = d4y
dx4 .

To define mixed finite element discrete scheme we introduce w =
√
αεy′′ and split (2.8) into

the following systems

w −√αεy′′ = 0, (2.9)√
αεw′′ − αy′′ + y = F1. (2.10)

For the boundary condition we have

y = 0, y′ = f +
w√
α
, on ∂Ω. (2.11)

The latter equation implies

p = αf +
√
αw − αy′ = 0, on ∂Ω.

For the discretization of problems (2.9)-(2.10) we consider a shape regular mesh Th that parti-
tion the computational domain Ω into intervals Ii = [xi, xi+1]. Let hi denote the length of interval
Ii and h = max

i
{hi}. Moreover, we define

(v, λ) =

∫ b

a

v · λdx, < v, ω >= (v · λ)|ba. (2.12)

Multiplying (2.9) and (2.10) by ψ ∈ H1(Ω) and ϕ ∈ H1
0 (Ω) leads to the weak formulation of

(2.9) and (2.10);

−√αε(w′, ϕ′) + (αy′, ϕ′) + (y, ϕ) = (F1, ϕ), (2.13)

(w,ψ) +
√
αε(y′, ψ′)− <

√
αεy′, ψ > = 0. (2.14)

Note that y′ = f + w√
α
on the boundary. We can rewrite (2.13)-(2.14) as follows

−√αε(w′, ϕ′) + (αy′, ϕ′) + (y, ϕ) = (F1, ϕ), ∀ϕ ∈ H1
0 (Ω), (2.15)

(w,ψ) +
√
αε(y′, ψ′)− < εw, ψ > = <

√
αεf, ψ >, ∀ψ ∈ H1(Ω). (2.16)

Let Vh ⊂ H1(Ω) be a finite element space consisting of piecewise linear polynomials. Set
V 0
h = Vh ∩H1

0 (Ω).
Then the mixed finite element approximation of (2.9)-(2.10) is given by

−√αε(w′h, ϕ′h) + (αy′h, ϕ
′
h) + (yh, ϕh) = (F1, ϕh), ∀ϕh ∈ V 0

h , (2.17)

(wh, ψh) +
√
αε(y′h, ψ

′
h)− < εwh, ψh > = <

√
αεf, ψh >, ∀ψh ∈ Vh. (2.18)
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In the following, let us investigate the error estimates of y − yh and w − wh.
Firstly, Testing (2.15) with ϕh, (2.16) with ψh and subtracting (2.17)-(2.18) from the resulting

equations leads to the following error equations:

−√αε(w′ − w′h, ϕ′h) + (α(y′ − y′h), ϕ′h) + (y − yh, ϕh) = 0, ∀ϕh ∈ V 0
h , (2.19)

(w − wh, ψh) +
√
αε(y′ − y′h, ψ′h)− < ε(w − wh), ψh > = 0, ∀ψh ∈ Vh. (2.20)

Let yI and wI denote the Lagrange interpolation of y and w, respectively. Then we can decompose
the errors y − yh and w − wh as

y − yh = y − yI − (yh − yI) = ηy − ξy,
w − wh = w − wI − (wh − wI) = ηw − ξw.

Then the error equations (2.19)-(2.20) can be expressed as follows

−√αε(ξ′w, ϕ′h) + (αξ′y , ϕ
′
h) + (ξy , ϕh) = −√αε(η′w, ϕ′h) + (αη′y , ϕ

′
h) + (ηy, ϕh), (2.21)

(ξw, ψh) +
√
αε(ξ′y, ψ

′
h) = (ηw, ψh) +

√
αε(η′y, ψ

′
h)− < ε(ηw − ξw), ψh > .(2.22)

Choosing ϕh = ξy and ψh = ξw in (2.21) and (2.22), respectively, and adding the resulting equations
together yields

‖ξy‖2 + ‖ξw‖2 + α‖ξ′y‖2 = −√αε(η′w, ξ′y) + (αη′y , ξ
′
y) + (ηy, ξy),

+ (ηw , ξw) +
√
αε(η′y, ξ

′
w)− < ε(ηw − ξw), ξw >,

=

6∑
i=1

Ai. (2.23)

Next let us discuss the estimates of the related terms on the right hand of (2.23), i.e., A1 ∼ A6.
Using the Cauchy-Schwartz inequality we obtain

A3 � 1

2
‖ηy‖2 +

1

2
‖ξy‖2,

and

A4 � 1

2
‖ηw‖2 +

1

2
‖ξw‖2.

Note that ξy ∈ V 0
h and ξw ∈ Vh. Together with the definition of Lagrange interpolation we have

A1 = 0, A2 = 0, A5 = 0.

For the last term A6 we have

A6 = − < ε(ηw − ξw), ξw >

= < εξw, ξw >

=

∫
Ω

ε(ξ2w)
′dx

= 2

∫
Ω

εξwξ
′
wdx

� 2ε‖ξw‖ · ‖ξ′w‖

� 2ε

√
12

h
‖ξw‖2, (2.24)
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where we have used the inverse estimate

|ψh|21 �
12

h2
‖ψh‖2,

with h = min
i
{hi}. Inserting the estimates of A1 ∼ A6 into (2.23) we have

1

2
‖ξy‖2 +

1

2
‖ξw‖2 + α‖ξ′y‖2 � 1

2
‖ηy‖2 +

1

2
‖ηw‖2 + 2ε

√
12

h
‖ξw‖2.

Assume that 2ε
√
12
h � 1/2− δ for a small positive constant δ, i.e., ε < h

8
√
3
. Then we have

1

2
‖ξy‖2 + δ‖ξw‖2 + α‖ξ′y‖2 � 1

2
‖ηy‖2 +

1

2
‖ηw‖2

� C(‖y‖22 + ‖w‖22)h4. (2.25)

Utilizing (2.25) and the estimate of Lagrange interpolation we deduce the final error estimates,
which can be stated as

Theorem 2.1. Let (y, w) and (yh, wh) be the solutions of (2.15)-(2.16) and (2.17)-(2.18), re-

spectively. Assume that ε < h

8
√
3
. Then, there exists a constant C independent of h and ε such

that

‖y − yh‖+ ‖w − wh‖ � C(‖y‖2 + ‖w‖2)h2,

‖y′ − y′h‖ � C
h2√
α
(‖y‖2 + ‖w‖2) + Ch‖y‖2.

Proceeding similarly as the treatment to state variable y we deduce the following equation for
adjoint state variable p

−αε2p(4) + αp′′ − p = −αεz′′ + αz′ − αf � −G1. (2.26)

By introducing ϑ =
√
αεp′′ we can rewrite (2.26) as the following systems

ϑ−√αεp′′ = 0, (2.27)√
αεϑ′′ − αp′′ + p = G1. (2.28)

On the boundary we have

p = 0, p′ = z − ϑ√
α
, on ∂Ω. (2.29)

The latter equation implies
y = 0, on ∂Ω.

Then the weak formulation for adjoint state variable state p is given by

−√αε(ϑ′, ϕ′) + (αp′, ϕ′) + (p, ϕ) = (G1, ϕ), ∀ϕ ∈ H1
0 (Ω), (2.30)

(ϑ, ψ) +
√
αε(p′, ψ′)+ < εϑ, ψ > = <

√
αεz, ψ >, ∀ψ ∈ H1(Ω). (2.31)

The mixed finite element approximation of p is to find (ph, ϑh) ∈ Vh × V 0
h satisfying

−√αε(ϑ′h, ϕ′h) + (αp′h, ϕ
′
h) + (ph, ϕh) = (G1, ϕh), ∀ϕh ∈ V 0

h , (2.32)

(ϑh, ψh) +
√
αε(p′h, ψ

′
h)+ < εϑh, ψh > = <

√
αεz, ψh >, ∀ψh ∈ Vh. (2.33)

For the adjoint variable p, ϑ and their approximations ph, ϑh we have the following results.
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Theorem 2.2. Let (p, ϑ) and (ph, ϑh) be the solutions of (2.30)-(2.31) and (2.32)-(2.33), respec-

tively. Assume that ε < h

8
√
3
. Then, there exists a constant C independent of h and ε such that

‖p− ph‖+ ‖ϑ− ϑh‖ � Ch2(‖p‖2 + ‖ϑ‖2),

‖p′ − p′h‖ � C
h2√
α
(‖p‖2 + ‖ϑ‖2) + Ch‖p‖2.

Proof. The proof of this theorem is along the lines of the proof of Theorem 2.1 and therefore
omitted.

2.2 Two dimensional Case

In this section we consider the following two dimensional convection diffusion optimal control
problems without constraints;

min
u∈U

J(y, u) =
1

2

∫
Ω

(y − z)2dx+ α

2

∫
Ω

u2dx (2.34)

subject to

−εΔy + β · ∇y = f + u, in Ω, (2.35)

y = 0, on ∂Ω. (2.36)

Here Ω ⊂ R2 is a bounded domain, and α is a positive constant. f and z are given functions.
U = L2(Ω). β is constant vector, and ε > 0 denotes the diffusion coefficient.

Again by standard argument we have the following first order optimality conditions for optimal
control problems (2.34)-(2.36);

−εΔy + β · ∇y = f + u, x ∈ Ω, (2.37)

−εΔp− β · ∇p = y − z, x ∈ Ω, (2.38)

u = − p
α , x ∈ Ω, (2.39)

y = 0, p = 0, x ∈ ∂Ω. (2.40)

Proceeding similarly as in the one-dimensional problem we apply a mixed finite element method to
solve numerically the optimal control problems (2.34)-(2.36). Substituting (2.39) into (2.37) leads
to

−εΔy + β · ∇y = f − p

α
,

which implies in turn

p = αf + αεΔy − αβ · ∇y.

Inserting the above equality into the adjoint state equation (2.38) yields

−αε2Δ2y + αβ · ∇(β · ∇y)− y = αεΔf + αβ · ∇f − z � −F2. (2.41)

Similarly as in one-dimensional problem we introduce w =
√
αεΔy and decompose (2.41) into the

following systems

w −√αεΔy = 0, (2.42)√
αεΔw − αβ · ∇(β · ∇y) + y = F2. (2.43)
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For the boundary condition we have

y = 0, β · ∇y = f +
w√
α
, on ∂Ω. (2.44)

The latter equation implies

p = αf +
√
αw − αβ · ∇y = 0, on ∂Ω.

Let n denote the unit outward normal vector and τ denote the unit tangent vector. Then β can
be expressed as

β = (β · n)n+ (β · τ )τ .
Set

Γ1 = {x ∈ ∂Ω;β · n(x) = 0},
and

Γ2 = ∂Ω\Γ1.
Further we have

β · ∇y = (β · τ )τ · ∇y = (β · τ ) ∂y
∂τ

= 0, on Γ1,

and

β · ∇y = (β · n)n · ∇y + (β · τ )τ · ∇y = (β · n) ∂y
∂n

+ (β · τ ) ∂y
∂τ

= (β · n) ∂y
∂n

, on Γ2.

Summarizing, the second equality of (3.11) can be rewritten as

w = −√αf, on Γ1, (2.45)

and

∂y

∂n
=

1

(β · n) (f +
w√
α
), on Γ2. (2.46)

In this paper, we assume that minx∈Γ2(β · n) � c > 0.
For the discretization of problems (2.42)-(2.43) we consider a shape regular mesh Th = {K}

which subdivides the computational domain Ω into triangles or parallelograms. The diameter of an
element K and the length of an edge e are denoted by hK and he, respectively. Let h = max

K
{hK},

h = min
K
{hK} and Ĥ1

0 (Ω) = {v ∈ H1(Ω); v|Γ1 = 0}. Moreover, we define

(v, ω) =

∫
Ω

v · ωdx, < v, ω >=

∫
Γ

v · ωds, (2.47)

where Γ = ∂Ω or a part of ∂Ω.
Multiplying (2.42) and (2.43) by ϕ ∈ H1

0 (Ω) and ψ ∈ Ĥ1
0 (Ω), respectively, results in the

following weak formulation

−√αε(∇w,∇ϕ) + α(β · ∇y,β · ∇ϕ) + (y, ϕ) = (F2, ϕ), (2.48)

(w,ψ) +
√
αε(∇y,∇ψ)− ε < 1

β · nw,ψ >Γ2 =
√
αε <

1

β · nf, ψ >Γ2 . (2.49)

Let Vh ⊂ H1(Ω) be a finite element space consisting of piecewise linear polynomials. Set V 0
h =

Vh∩H1
0 (Ω) and V̂

0
h = Vh∩Ĥ1

0 (Ω). Therefore the mixed finite element approximation of (2.42)-(2.43)

is to find (yh, wh) ∈ V 0
h × V̂ 0

h such that

−√αε(∇wh,∇ϕh) + α(β · ∇yh,β · ∇ϕh) + (yh, ϕh) = (F2, ϕh), (2.50)
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(wh, ψh) +
√
αε(∇yh,∇ψh)− ε <

1

β · nwh, ψh >Γ2 =
√
αε <

1

β · nf, ψh >Γ2 . (2.51)

In the following, let us consider the error estimates of y− yh and w −wh. Testing (2.48) with ϕh,
(2.49) with ψh and subtracting (2.50)-(2.51) from the resulting equations yields the following error
equations:

−√αε(∇(w − wh),∇ϕh) + α(β · ∇(y − yh),β · ∇ϕh) + (y − yh, ϕh) = 0, (2.52)

(w − wh, ψh) +
√
αε(∇(y − yh),∇ψh)− ε <

1

β · n (w − wh), ψh >Γ2 = 0. (2.53)

Let yI and wI denote the Lagrange interpolation of y and w, respectively. We rewrite the error
y − yh and w − wh as

y − yh = y − yI − (yh − yI) = ρy − θy,
w − wh = w − wI − (wh − wI) = ρw − θw.

Then the error equation (2.52)-(2.53) can be rewritten as

−√αε(∇θw,∇ϕh) + α(β · ∇θy,β · ∇ϕh) + (θy , ϕh) = −√αε(∇ρw,∇ϕh) + α(β · ∇ρy,β · ∇ϕh)

+ (ρy , ϕh), (2.54)

(θw, ψh) +
√
αε(∇θy,∇ψh)− ε <

1

β · nθw, ψh >Γ2 = (ρw, ψh) +
√
αε(∇ρy,∇ψh)

− ε <
1

β · nρw, ψh >Γ2 . (2.55)

Choosing ϕh = θy and ψh = θw in (2.54) and (2.55), respectively, and adding the resulting
equations yields

‖θy‖2 + ‖θw‖2 + α‖β · ∇θy‖2
= −√αε(∇ρw,∇θy) + α(β · ∇ρy,β · ∇θy) + (ρy, θy),

+ (ρw, θw) +
√
αε(∇ρy,∇θw) + ε <

1

β · nθw, θw >Γ2 −ε <
1

β · nρw, θw >Γ2 ,

=

7∑
i=1

Ti. (2.56)

Using Cauchy-Schwartz inequality together with an inverse inequality we obtain

T2 � α

2
‖β · ∇ρy‖2 +

α

2
‖β · ∇θy‖2,

T3 � 1

2
‖ρy‖2 +

1

2
‖θy‖2,

T4 � 1

2
‖ρw‖2 +

1

2
‖θw‖2,

T6 � C
εh−1

min(|β · n|)‖θw‖
2,

T7 � C
εh−1

min(|β · n|)‖θw‖
2 + C

ε

min(|β · n|)‖ρw‖
2
0,Γ2

.

On general meshes a further application of an inverse inequality and the Cauchy-Schwartz inequal-
ity gives

T1 � Cαε2h−2‖∇ρw‖2 + δ‖θy‖2,
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T5 � Cαε2h−2‖∇ρy‖2 + δ‖θw‖2.

Inserting the estimates of T1 ∼ T7 into (2.56) leads to

1

2
‖θy‖2 +

1

2
‖θw‖2 +

α

2
‖β · ∇θy‖2

� 1

2
‖ρy‖2 +

1

2
‖ρw‖2 + C

εh−1

min(|β · n|)‖θw‖
2

+ C
ε

min(|β · n|)‖ρw‖
2
0,Γ2

+
α

2
‖β · ∇ρy‖2

+ Cαε2h−2‖∇ρw‖2 + Cαε2h−2‖∇ρy‖2.

Suppose that ε < γh for a sufficiently small constant γ. Then we have

1

2
‖θy‖2 + δ‖θw‖2 +

α

2
‖β · ∇θy‖2 � Ch2(‖y‖22 + ‖w‖22). (2.57)

Using (2.57) and the estimates of Lagrange interpolation we arrive at

Theorem 2.3. Let (y, w) and (yh, wh) be the solutions of (2.48)-(2.49) and (2.50)-(2.51), re-
spectively. Assume that ε < γh. Then, there exists a constant C independent of h and ε such
that

‖y − yh‖+ ‖w − wh‖ � Ch(‖y‖2 + ‖w‖2),

‖β · ∇(y − yh)‖ � C
h√
α
(‖y‖2 + ‖w‖2) + Ch‖y‖2.

According to [10] ifthe mesh Th is rectangular, we have∫
Ω

∇(ψ − ψI)∇vhdx � Ch2|ψ|3|vh|1, ∀ψ ∈ H3(Ω), vh ∈ Vh. (2.58)

Utilizing (2.58) we then deduce

T1 � C
√
αεh2‖w‖3‖θy‖1

� C
√
αεh‖w‖3‖θy‖, (2.59)

and

T5 � C
√
αεh2‖y‖3‖θw‖1

� C
√
αεh‖y‖3‖θw‖. (2.60)

Moreover, if the mesh is uniform rectangular([10]), it can be proven that

∫
Ω

2∑
i=1

αij∂i(ψ − ψI)∂jvhdx � Ch2|ψ|4‖vh‖, ∀ψ ∈ H4(Ω), vh ∈ Vh. (2.61)

Then the term T2 can be bounded as

T2 � Cαh2‖y‖4‖θy‖. (2.62)

Therefore, it follows form (2.59), (2.62) and (2.60) together with the estimates of T3, T4, T6, T7 that

1

2
‖θy‖2 +

1

2
‖θw‖2 +

α

2
‖β · ∇θy‖2 � 1

2
‖ρy‖2 +

1

2
‖ρw‖2 + C

εh−1

min(|β · n|)‖θw‖
2
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+ C
ε

min(|β · n|)‖ρw‖
2
0,Γ2

+ Cα2h4‖y‖24

+ Cαε2h2‖w‖23 + Cαε2h2‖y‖23 + δ(‖θy‖2 + ‖θw‖2).
Again, suppose that ε < γh for a sufficiently small constant γ. Then we derive

‖θy‖2 + ‖θw‖2 + α‖β · ∇θy‖2 � Ch4(‖y‖22 + ‖w‖22) + Ch4(‖y‖24 + ‖w‖23 + ‖y‖23). (2.63)

By (2.63) we have the following theorem.

Theorem 2.4. Let (y, w) and (yh, wh) be the solutions of (2.48)-(2.49) and (2.50)-(2.51), respec-
tively. Assume that ε < γh and that the mesh is uniform rectangular. Then there exists a constant
C independent of h and ε such that

‖y − yh‖+ ‖w − wh‖ � Ch2(‖y‖4 + ‖w‖3),

‖β · ∇(y − yh)‖ � C
h2√
α
(‖y‖4 + ‖w‖3) + Ch‖y‖2.

Similar to one-dimensional problem, we derive the following governing equation for the adjoint
state variable p in the two dimensional case:

−αε2Δ2p+ αβ · ∇(β · ∇p)− p = −αεΔz + αβ · ∇z − αf � −G2. (2.64)

Defining ϑ =
√
αεΔp leads to

ϑ−√αεΔp = 0, (2.65)√
αεΔϑ− αβ · ∇(β · ∇p) + p = G2. (2.66)

On the boundary we have

p = 0, on ∂Ω, ϑ =
√
αz, on Γ1, (2.67)

and

∂p

∂n
=

1

(β · n) (z −
ϑ√
α
), on Γ2, (2.68)

where Γ1 and Γ2 are defined before.
Multiplying (2.65) and (2.66) by ϕ ∈ H1

0 (Ω) and ψ ∈ Ĥ1
0 (Ω), respectively, yields

−√αε(∇ϑ,∇ϕ) + α(β · ∇p,β · ∇ϕ) + (p, ϕ) = (G2, ϕ), (2.69)

(ϑ, ψ) +
√
αε(∇p,∇ψ) + ε <

1

β · nϑ, ψ >Γ2 =
√
αε <

1

β · nz, ψ >Γ2 . (2.70)

Using the variational form (2.69)-(2.70) we define the following discrete scheme for the adjoint
state variable p

−√αε(∇ϑh,∇ϕh) + α(β · ∇ph,β · ∇ϕh) + (ph, ϕh) = (G2, ϕh), (2.71)

(ϑh, ψh) +
√
αε(∇ph,∇ψh) + ε <

1

β · nϑh, ψh >Γ2 =
√
αε <

1

β · nz, ψh >Γ2 . (2.72)

By arguments similar to that used in Theorem 2.4 we can deduce the following theorem results for
the adjoint state variable p

Theorem 2.5. Let (p, ϑ) and (ph, ϑh) be the solutions of (2.69)-(2.70) and (2.71)-(2.72), respec-
tively. Assume that ε < γh. Then, there exists a constant C independent of h and ε such that

‖p− ph‖+ ‖ϑ− ϑh‖ � Ch(‖p‖2 + ‖ϑ‖2),

‖β · ∇(p− ph)‖ � C
h√
α
(‖p‖2 + ‖ϑ‖2) + Ch‖p‖2.
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Theorem 2.6. Let (p, ϑ) and (ph, ϑh) be the solutions of (2.69)-(2.70) and (2.71)-(2.72), respec-
tively. Assume that ε < γh and that the mesh is uniform rectangular. Then there exists a constant
C independent of h and ε such that

‖p− ph‖+ ‖ϑ− ϑh‖ � Ch2(‖p‖4 + ‖ϑ‖3),

‖β · ∇(p− ph)‖ � C
h2√
α
(‖p‖4 + ‖ϑ‖3) + Ch‖p‖2.

2.3 The discretization of control u

In this section, we consider the numerical approximation and corresponding error estimate for
control variable u.

According to the first order optimality conditions we have

u = − p
α
.

Then we set
uh = −

ph
α
.

Therefore the error of u− uh immediately follows from the estimates for p− ph.

Theorem 2.7. For one-dimensional problem suppose that ε < h

8
√
3
. Then, there exists a constant

C independent of h and ε such that

‖u− uh‖ � C(‖p‖2 + ‖ϑ‖2)
h2

α
.

Theorem 2.8. For two-dimensional problems assume that ε < γh for a sufficient small positive
constant γ. Then there exists a constant C independent of h and ε such that

‖u− uh‖ �

⎧⎨
⎩

C(‖p‖2 + ‖ϑ‖2) hα , on a general mesh,

C(‖p‖4 + ‖ϑ‖3)h
2

α , on a uniform rectangular mesh.

Moreover, we consider another different discretization for control variable u.
For the one dimensional case we get by (2.4)

u = −εy′′ + y′ − f
= − w√

α
+ y′ − f. (2.73)

We approximate the control variable u as follows

uh = − wh√
α
+ y′h − fI , (2.74)

where fI is the Lagrange interpolation of f .
Then by Theorem 2.1 we can deduce the following error estimate for u− uh

‖u− uh‖ � ‖w − wh√
α

‖+ ‖y′ − y′h‖+ ‖f − fI‖

� C
h2√
α
(‖y‖2 + ‖w‖2) + Ch‖y‖2 + Ch‖f‖1,

which can be stated in the following theorem.
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Theorem 2.9. Let (y, w) and (yh, wh) be the solutions of (2.15)-(2.16) and (2.17)-(2.18), re-

spectively. Assume that ε < h

8
√
3
. Then, there exists a constant C independent of h and ε such

that

‖u− uh‖ � C
h2√
α
(‖y‖2 + ‖w‖2) + Ch‖y‖2 + Ch‖f‖1.

Similarly to one dimensional problem we derive by (2.37)

u = −εΔy + β · ∇y − f
= − w√

α
+ β · ∇y − f. (2.75)

The control variable u can be approximated as follows

uh = − wh√
α
+ β · ∇yh − fI . (2.76)

Then we have the following error estimate for u− uh

‖u− uh‖ � ‖w − wh√
α

‖+ ‖β · (∇y −∇yh)‖+ ‖f − fI‖

� C
h2√
α
(‖y‖2 + ‖w‖2) + C

h√
α
(‖y‖2 + ‖w‖2) + Ch‖f‖1.

We thus have the following

Theorem 2.10. Let (y, w) and (yh, wh) be the solutions of (2.48)-(2.49) and (2.50)-(2.51), re-
spectively. Assume that ε < γh. Then, there exists a constant C independent of h and ε such
that

‖u− uh‖ � C
h√
α
(‖y‖2 + ‖w‖2) + Ch‖y‖2 + Ch‖f‖1.

3 Optimal control problem with constraints

In this section we only consider the following two dimensional convection diffusion optimal
control problems with control constraints;

min
u∈Uad

J(y, u) =
1

2

∫
Ω

(y − z)2dx + α

2

∫
Ω

u2dx (3.1)

subject to

−εΔy + β · ∇y + νy = f + u, in Ω, (3.2)

y = 0, on ∂Ω. (3.3)

Here Ω ⊂ R2 is a bounded domain, and α is a positive constant. f and z are given functions.
Uad = {v ∈ L2(Ω); v � 0}. β is constant vector, ν > 0 denotes the reaction coefficient and ε > 0
denotes the diffusion coefficient.

By standard argument we derive the following first order optimality conditions for optimal
control problems (3.1)-(3.3);

−εΔy + β · ∇y + νy = f + u, x ∈ Ω, (3.4)

−εΔp− β · ∇p+ νp = y − z, x ∈ Ω, (3.5)

12



u−max{0,− p
α
} = 0, x ∈ Ω, (3.6)

y = 0, p = 0, x ∈ ∂Ω. (3.7)

By (3.5) we have

y = z − εΔp− β · ∇p+ νp.

Inserting the above equality into the state equation (3.5) yields

ε2Δ2p− β · ∇(β · ∇p)− 2νεΔp+ ν2p−max{0,− p
α
} = f − β · ∇z − νz + εΔz �M. (3.8)

By introducing W = εΔp we can decompose (3.8) into the following systems

W − εΔp = 0, (3.9)

εΔW − β · ∇(β · ∇p)− 2νεΔp+ ν2p−max{0,− p
α
} = M. (3.10)

For the boundary condition we have

p = 0, β · ∇p = z −W , on ∂Ω.

Further we have

p = 0, on ∂Ω, W = z, on Γ1, (3.11)

and

∂p

∂n
=

1

(β · n) (z −W ), on Γ2, (3.12)

where Γ1 and Γ2 are defined before.
Multiplying (3.9) and (3.10) by ϕ ∈ H1

0 (Ω) and ψ ∈ Ĥ1
0 (Ω), respectively, yields

−ε(∇W ,∇ϕ) + (β · ∇p,β · ∇ϕ) + 2ε(ν∇p,∇ϕ)
+(ν2p, ϕ)− (max{0,− p

α
}, ϕ) = (M,ϕ), (3.13)

(W , ψ) + ε(∇p,∇ψ) + ε <
1

β · nW , ψ >Γ2= ε <
1

β · nz, ψ >Γ2 . (3.14)

The following discrete scheme for adjoint state variable p can be defined by using the variational
form (3.13)-(3.14)

−ε(∇Wh,∇ϕh) + (β · ∇ph,β · ∇ϕh) + 2ε(ν∇ph,∇ϕh)

+(ν2ph, ϕh)− (max{0,−ph
α
}, ϕh) = (M,ϕh), (3.15)

(Wh, ψh) + ε(∇ph,∇ψh) + ε <
1

β · nWh, ψh >Γ2= ε <
1

β · nz, ψh >Γ2 . (3.16)

In order to derive the error estimates according to [11] we introduce the following auxiliary problems

−ε(∇W̃h,∇ϕh) + (β · ∇p̃h,β · ∇ϕh) + 2ε(ν∇p̃h,∇ϕh)

+(ν2p̃h, ϕh)− (max{0,− p
α
}, ϕh) = (M,ϕh), (3.17)

(W̃h, ψh) + ε(∇p̃h,∇ψh) + ε <
1

β · nW̃h, ψh >Γ2= ε <
1

β · nz, ψh >Γ2 . (3.18)

By similar arguments as used in the unconstrained case we deduce the following error estimates.
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Theorem 3.1. Let (p,W ) and (p̃h, W̃h) be the solutions of (3.13)-(3.14) and (3.17)-(3.18), re-
spectively. Assume that ε < γh. Then, there exists a constant C independent of h and ε such
that

‖p− p̃h‖+ ‖W − W̃h‖ � Ch(‖p‖2 + ‖W ‖2),

‖β · ∇(p− p̃h)‖ � C
h2√
α
(‖p‖2 + ‖W ‖2) + Ch‖p‖2.

Theorem 3.2. Let (p,W ) and (p̃h, W̃h) be the solutions of (3.13)-(3.14) and (3.17)-(3.18), respec-
tively. Assume that ε < γh and that the mesh is uniform rectangular. Then there exists a constant
C independent of h and ε such that

‖p− p̃h‖+ ‖W − W̃h‖ � Ch2(‖p‖4 + ‖W ‖3),

‖β · ∇(p− p̃h)‖ � C
h2√
α
(‖p‖4 + ‖W ‖3) + Ch‖p‖2.

Utilizing (3.15)-(3.16) and (3.17)-(3.18) we have

−ε(∇(Wh − W̃h),∇ϕh) + (β · ∇(ph − p̃h),β · ∇ϕh) + 2ε(ν∇(ph − p̃h),∇ϕh)

+(ν2(ph − p̃h), ϕh)− (max{0,−ph
α
} −max{0,− p

α
}, ϕh) = 0, (3.19)

((Wh − W̃h), ψh) + ε(∇(ph − p̃h),∇ψh) + ε <
1

β · n (Wh − W̃h), ψh >Γ2= 0. (3.20)

Let ζ = Wh − W̃h and χ = ph − p̃h. Testing (3.19) with ϕh = ζ, (3.20) with ψh = χ and adding
the resulting equations together leads to

‖ζ‖2 + ‖β · ∇χ‖2 + 2εν‖∇χ‖2 + ‖νχ‖2

= (max{0,−ph
α
} −max{0,− p

α
}, χ)− ε < 1

β · nζ, ζ >Γ2 . (3.21)

Note that

(max{0,−ph
α
} −max{0,− p

α
}, ph − p̃h)

= α(max{0,−ph
α
} −max{0,− p

α
}, 1
α
ph −

1

α
p̃h)

= α(max{0,−ph
α
} −max{0,− p

α
}, 1
α
ph −

1

α
p+

1

α
p− 1

α
p̃h)

= α(max{0,−ph
α
} −max{0,− p

α
}, 1
α
ph −

1

α
p) + (max{0,−ph

α
} −max{0,− p

α
}, p− p̃h)

= α(max{0,−ph
α
} −max{0,− p

α
}, 1
α
ph +max{0,−ph

α
})

− α(max{0,−ph
α
} −max{0,− p

α
},max{0,−ph

α
} −max{0,− p

α
}) (3.22)

+ α(max{0,−ph
α
} −max{0,− p

α
},−max{0,− p

α
} − 1

α
p)

+ (max{0,−ph
α
} −max{0,− p

α
}, p− p̃h).

It is easy to prove that

α(max{0,−ph
α
} −max{0,− p

α
}, 1
α
ph +max{0,−ph

α
})
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+ α(max{0,−ph
α
} −max{0,− p

α
},−max{0,− p

α
} − 1

α
p)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, ph) + (0,−p), p � 0, ph � 0,

(ph, 0) +
1
α (ph, p), p � 0, ph < 0,

1
α (ph, p) +

1
α (p, 0), p < 0, ph � 0,

0, p < 0, ph < 0,

� 0. (3.23)

It follows from (3.21), (3.22) and (3.23) that

‖ζ‖2 + ‖β · ∇χ‖2 + 2εν‖∇χ‖2 + ‖νχ‖2 + α‖max{0,−ph
α
} −max{0,− p

α
}‖2

= (max{0,−ph
α
} −max{0,− p

α
}, p− p̃h)− ε <

1

β · nζ, ζ >Γ2

� C‖p− p̃h‖2 +
α

2
‖max{0,−ph

α
} −max{0,− p

α
}‖2 + C

εh−1

min(|β · n|)‖ζ‖
2 (3.24)

Suppose that ε < γh for a sufficiently small constant γ. Then we deduce

‖ζ‖2 + ‖β · ∇χ‖2 + 2εν‖∇χ‖2 + ‖νχ‖2 + α‖max{0,−ph
α
} −max{0,− p

α
}‖2

� C‖p− p̃h‖2. (3.25)

Combining (3.25) with Theorem 3.1 and 3.2 we arrive at

Theorem 3.3. Let (p,W ) and (ph,Wh) be the solutions of (3.13)-(3.14) and (3.15)-(3.16), re-
spectively. Assume that ε < γh. Then, there exists a constant C independent of h and ε such
that

‖p− ph‖+ ‖W −Wh‖ � Ch(‖p‖2 + ‖W ‖2),

‖β · ∇(p− ph)‖ � C
h2√
α
(‖p‖2 + ‖W ‖2) + Ch‖p‖2.

Theorem 3.4. Let (p,W ) and (ph,Wh) be the solutions of (3.13)-(3.14) and (3.15)-(3.16), respec-
tively. Assume that ε < γh and that the mesh is uniform rectangular. Then there exists a constant
C independent of h and ε such that

‖p− ph‖+ ‖W −Wh‖ � Ch2(‖p‖4 + ‖W ‖3),

‖β · ∇(p− ph)‖ � C
h2√
α
(‖p‖4 + ‖W ‖3) + Ch‖p‖2.

Using the first order optimality conditions we approximate the control variable according to [8]
as

uh = max
{
0,−ph

α

}
. (3.26)

Then it is easy to see that uh ∈ Uad. In general, uh is not a finite element function corresponding
to the mesh Th, especially on triangles containing the discrete free boundary. For the control
variable we have the following error estimate.

Theorem 3.5. Assume that ε < γh for a sufficiently small positive constant γ. Then there exists
a constant C independent of h and ε such that

‖u− uh‖ �

⎧⎨
⎩

C(‖p‖2 + ‖W ‖2) hα , on a general mesh,

C(‖p‖4 + ‖W ‖3)h
2

α , on a uniform rectangular mesh.

15



In constrained problem our method doesn’t work for the state variable. To discretize the state
variable we can adopt some stabilized finite element methods, such as the local projection stabilized
method([1]) and the edge stabilization Galerkin method([4]).

To our best knowledge utilizing such methods to discretize the state variable only leads to
O(h

3
2 ) errors with piecewise linear polynomials approximation.
Proceeding similar to [4] we apply the edge stabilization Galerkin method to discretize the state

equation. To control the convective derivative of the discrete solution sufficiently we introduce a
stabilization form ([13])

S(vh, wh) =
∑
e∈Eh

∫
e

κh2e[∇vh · n][∇wh · n]ds, (3.27)

where Eh denotes the collection of interior edges of the triangles in T h, he is the size of the edge
e, [q] denotes the jump of q across e for e ∈ Eh

[q(x)]x∈e = lim
s→0+

(
q(x+ sn)− q(x− sn)

)
,

n is the outward unit normal. κ is a constant independent of h and ε.
Using above stabilization forms, an edge stabilization Galerkin approximation of the state

equation (3.4) is as follows:

A(yh, wh) + S(yh, wh) = (f + uh, wh), ∀wh ∈ V 0
h , (3.28)

where A(·, ·) denotes the bilinear form given by

A(y, w) = (ε∇y,∇w) + (β · ∇y, w) + (νy, w), y, w ∈ H1
0 (Ω).

Theorem 3.6. Let (y, u) and (yh, uh) be the solutions of the equations (3.4)-(3.6) and (3.28)-
(3.26), respectively. Assume that all conditions of Theorem 3.5 are valid. Then we have the
following estimates

‖ y − yh ‖∗�

⎧⎨
⎩

C(h+ h3/2 + hε1/2), on a general mesh,

C(h2 + h3/2 + hε1/2), on a uniform rectangular mesh.

where
‖ wh ‖2∗= ε ‖ ∇wh ‖20,Ω + ‖ ν

1
2wh ‖20,Ω + ‖ h

1
2β · ∇wh ‖20,Ω +S(wh, wh).

Proof. Let ỹh be the solution of the following equation

A(ỹh, wh) + S(ỹh, wh) = (f + u,wh), ∀wh ∈ V 0
h .

We observe that ỹh is the edge stabilization Galerkin approximation of y, and by the stability
property of A(·, ·) + S(·, ·) (see,e.g.,[13]) we derive

‖ yh − ỹh ‖∗� C ‖ u− uh ‖ . (3.29)

Again proceeding similarly as in [13] leads to

‖ y − ỹh ‖∗� C(h3/2 + hε1/2). (3.30)

Then (3.29), (3.30) as well as the results of Theorem 3.5 imply that

‖ y − yh ‖∗,Ω
� C(h3/2 + hε1/2) + C ‖ u− uh ‖

�

⎧⎨
⎩

C(h+ h3/2 + hε1/2), on a general mesh,

C(h2 + h3/2 + hε1/2), on a uniform rectangular mesh.
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4 Numerical examples

The goal of this section is to carry out numerical examples to illustrate our analytical findings.
Consider the following control problem

min
u∈U

J(y, u) =
1

2

∫
Ω

(y − z)2dx + 1

2

∫
Ω

u2dx (4.1)

subject to

−εΔy + β · ∇y + νy = f + u, in Ω = [0, 1]× [0, 1], (4.2)

y = y0, on ∂Ω. (4.3)

Example 4.1. Let ε = 10−3, β = [1, 1]T and ν = 0 in (4.2). The exact solutions are chosen as

y = 16x1(1 − x1)x2(1 − x2)× (
1

2
+
1

π
arctan((

1

8
− 2(x1 − 0.5)2 − 2(x2 − 0.5)2)/

√
ε)),

p = sin(2πx1) sin(2πx2).

The corresponding desired state z, and desired righthand side f can be calculated from the exact
solutions and the governing equations.

Firstly we apply the mixed finite element method proposed in section 2 to solve numerically a
one-dimensional problem. The corresponding errors for y, w and p, ϑ are presented in Table 4.1,
which imply

‖y − yh‖+ ‖p− ph‖ = O(h2).

The figures for y and w are shown in Figure 4.1 and 4.2, respectively.

Table 4.1. Error of state y, w and adjoint state p , ϑ for the one-dimensional problem.

h ‖y − yh‖0,Ω order ‖w − wh‖0,Ω order ‖p− ph‖0,Ω order ‖ϑ− ϑh‖ order
1
60 0.0034 \ 0.0086 \ 3.0748e-4 \ 1.3370e-5 \
1
120 6.6531e-4 2.3534 0.0026 1.7258 7.6810e-5 2.0011 3.3452e-6 1.9988
1
240 1.6406e-4 2.0198 7.1743e-4 1.8576 1.9199e-5 2.0003 8.3648e-7 1.9997
1
480 4.0879e-5 2.0048 1.8334e-4 1.9683 4.7994e-6 2.0001 2.0913e-7 1.9999

0 0.2 0.4 0.6 0.8 1
0
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1

1.5

2
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yh
y

Figure 4.1. y together with yh.
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Figure 4.2. w together with wh.

Secondly, we utilize the mixed finite element method proposed in section 2 to solve numerically
a two-dimensional problem on uniform triangle mesh. Table 4.2 displays the errors of state y, w
and adjoint state p, ϑ, from which we observe that

‖y − yh‖+ ‖p− ph‖ = O(h2).

The figures of yh and wh are presented in Figure 4.3 and 4.4, respectively.

Table 4.2. Error of state y, w and adjoint state p , ϑ for the two-dimensional problem on
uniform triangle meshes.

h ‖y − yh‖0,Ω order ‖w − wh‖0,Ω order ‖p− ph‖0,Ω order ‖ϑ− ϑh‖ order
1
50 0.0019 \ 0.0089 \ 0.0011 \ 1.2698e-004 \
1
60 0.0013 2.0814 0.0062 1.9828 8.0058e-004 1.7427 8.7934e-005 2.0154
1
70 9.5902e-004 1.9734 0.0043 2.3739 5.9147e-004 1.9638 6.4557e-005 2.0048
1
80 7.3740e-004 1.9679 0.0032 2.2127 4.5575e-004 1.9521 4.9559e-005 1.9799

Figure 4.3. yh.
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Figure 4.3. wh.

Example 4.2. Let α = 0.1 in (4.1), ε = 10−3, β = [1, 1]T and ν = 1 in (4.2). The exact solutions
are chosen as

y =
2

π
(atan(100(−0.5x1 + x2 − 0.25))),

p = 16x1(1 − x1)x2(1 − x2)× (
1

2
+
1

π
arctan((

1

8
− 2(x1 − 0.5)2 − 2(x2 − 0.5)2)/

√
ε)),

u = max
{
− 5,min

{
− 2.5,− p

α

}}
.

The corresponding desired state z, and desired righthand side f can be calculated from the exact
solutions and the governing equations.

In this example we consider a control constrained problem. We use the mixed finite element method
proposed in this paper to solve numerically the adjoint state variable, while the edge stabilization
Galerkin method is applied to approximate the state variable. The errors for state y, adjoint state
p and control u are displayed in Table 4.3, respectively. The figures of discrete state y and control
u are shown in Figure 4.5 and 4.6.

Table 4.3. Error of state y, adjoint state p, ϑ and control u for the two-dimensional problem on
uniform triangle meshes.

h ‖y − yh‖ order ‖p− ph‖0,Ω order ‖ϑ− ϑh‖0,Ω order ‖u− uh‖ order
1
50 0.0115 \ 0.0018 \ 0.0088 \ 0.0085 \
1
60 0.0075 2.3445 0.0013 1.7849 0.0062 1.9208 0.0064 1.5564
1
70 0.0052 2.3759 9.4974e-004 2.0365 0.0043 2.3739 0.0047 2.0028
1
80 0.0038 2.3489 7.2985e-004 1.9722 0.0032 2.2127 0.0035 2.2077

From Table 4.3 we observe that

‖u− uh‖+ ‖p− ph‖ = O(h2),

which are in agreement with our theoretical analysis in section 3. Moreover, we find that

‖y − yh‖ = O(h2),

which is better than predicted by our theoretical analysis.
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Figure 4.5. yh.
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Figure 4.6. uh.

In summary, from a numerical point of view we conclude that for unconstrained problems
the mixed finite element method proposed in this paper has O(h2) convergence order for the state
variable y, the adjoint state variable p as well as the control variable u, and for constrained problems
this method has O(h2) convergence order for the adjoint state variable p and the control variable
u.
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[9] A. Mart́ınez, C. Rodŕıguez and M.E. Vázquez-Méndez, Theoretical and Numerical Analysis
of an Optimal Control Problem Related to Wastewater Treatment, SIAM J. Control Optim.,
38(5), 1534–1553, 2000.

[10] Q. Lin and N. Yan, Structure and analysis for efficient finite element methods. Baoding:
Publishers of Hebei University(in Chinese), 1996.

[11] L. Chang, W. Gong and N. Yan, Finite element method for a nonsmooth elliptic equation.
Front. Math. China 5(2), 191–209, 2010.

[12] M. Hinze, N. Yan and Z. Zhou, Variational discretization for optimal control governed by
convection dominated diffusion equations. J. Comput. Math., 27, 237-253, 2009.

[13] E. Burman, P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-
reaction problems, Comput. Methods Appl. Mech. Engrg., 193, 1437-1453, 2004.

21


