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zur Angewandten Mathematik

An asymptotic numerical analysis of Hopf periodic
traveling waves for a microscopic traffic problems

Bodo Werner

Nr. 2011-12
June 2011





An asymptotic numerical analysis of Hopf periodic traveling waves
for a microscopic traffic problems

Bodo Werner ∗

June 15, 2011

Abstract

We consider the simplest follow-the-leader microscopic traffic model with N cars on a circle of length L with an
optimal velocity function V due to [BHN+95]. Besides of N and L, this model has three system parameters, a, τ and
vmax, see (1). By several numerical experiments we study the dynamics of stable periodic solutions (periodic in headway
and speed) which exist due to Hopf bifurcations (see [GSW04]).

Being interested in an asymptotic analysis for N (and L) large enough we discovered a surprising result: For given
system parameters a, τ and vmax all periodic solutions have the same dynamical structure independent of L andN : Each
car drives either slowly with small headway hc and small speed vc (congestive dynamics) or with large headway hf and
large speed vf (non-congestive). Each part represents a stable quasi-stationary dynamics. The transient part where a car
accelerates or decelerates is almost independent of N and is hence negligible. The basic parameters hc and hf determine
the whole dynamics since all other quantities connected with a periodic solution can be analytically expressed through
these two “magic” parameters.

Particularly the jam speed σ does not depend on L and N , the period TN is proportional to N and does not depend
on L, see Theorem 1 which is not proved, but confirmed by numerical computations.

The traveling wave character of the periodic solutions is obvious from the macroscopic visualizations with a straight
line profile, see Fig. 2(b) (speed) and Fig. 2(c) (headway). This allows to compute “macroscopic” real functions v (speed)
and h (headway) implicitly defined by

ẋj(t) =: v((xj(t)− σt)modL), xj+1(t)− xj(t) =: h((xj(t)− σt)modL), j = 1, 2, ..., N.

They seem to have a universal structure, almost independent of N and L. They satisfy a differential-functional-system
with delay depending on the state which may have a heteroclinic connection, see Sec. 4.

Keywords: Microscopic traffic model, numerical bifurcation analysis, Hopf bifurcation, periodic solutions, traveling
waves

AMS subject classification: 37M20, 65L07, 65P30, 65P40

1 Introduction
We study the microscopicN -car traffic model on a circle of length Lwith identical drivers which was presented originally
by Bando et al [BHN+95]

ẍj(t) =
1

τ

(
V (xj+1(t)− xj(t))− ẋj(t)

)
, j = 1, ..., N, xN+1 = x1 + L (1)

with the optimal velocity function

V (y) = vmax
tanh a(y − 1) + tanh a

1 + tanh a
. (2)
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Figure 1: N = 20, a = 2, vMax = 1, τ = 1: Solution diagram for Hopf-periodic solutions

Various authors have studied this model and certain extensions (see [GSW04], [GW10], where bottlenecks are studied,
and the references therein).
This paper is based on model (1) and investigates the periodic solutions due to Hopf bifurcations as studied by [GSW04].
There exist very simple quasi-stationary solutions given by

x0j (t) = j
L

N
+ t V

( L
N

)
+ c, j = 1, ..., N. (3)

with constant velocities V ( LN ), constant headways L
N and an arbitrary constant c.

It is well-known that they are asymptotically stable if

V ′
( L
N

)
<

1

1 + cos 2π
N

(see [Hui02, GSW04]). Critical parameter values where Hopf bifurcations with respect to the circle length L occur, are
defined by V ′( LN ) = 1

1+cos 2π
N

.

We will focus on the dependence of the bifurcating Hopf-periodic solutions on the traffic density % = N
L (instead on L).

For fixed N , there exist two Hopf densities %HN,1 < %HN,2 depending on the number N of cars. Fig. 1 shows a typical
solution diagram, where we choose the average flow fN := %vN as characteristic number of the Hopf-periodic solutions
(in red) and of the quasi-stationary solutions (in black) (vN is the average speed).
The Hopf densities satisfy V ′(1/%HN,j) =

1
1+cos(2π/N) , j = 1, 2. For N →∞ they converge against the asymptotic Hopf

densities1 %H∞,1 < %H∞,2 which satisfy V ′(1/%H∞,j) =
1
2 , j = 1, 2. More important for our experiments are the two turning

points (red dots in Fig. 1) on the red path of periodic solutions with densities %Tj , j = 1, 2 which satisfy2

%T1 < %H1 < %H2 < %T2 .

1For a = 2, vmax = 1, τ = 1 we have %H∞,1 = 0.691 < %H∞,2 = 1.809
2For a = 2, vmax = 1, τ = 1 and N = 20 we compute %T1 = 0.618 and %T2 = 2.62.
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For all % with %T1 < % < %T2 there is a unique stable periodic solution3 – at least for the parameters in the caption of Fig. 1.

A typical (stable) periodic solution is a traveling wave with a dramatic jam as in Fig. 2 for N = 40 cars. Here Fig. 2(b)
and 2(c) show macroscopic visualizations of speed and headway, while Fig. 2(a) shows the speed and the headway of a
single car as function of time.

Since the isolines in Fig. 2(b) are straight lines with negative slope, one can conclude that the wave travels upstream4 with
constant speed. We call this speed the jam (congestion) speed σ which is negative for an upstream flow. The straight line
property can easily been shown and a formula for σ, see (5) in Sec. 2, is obtained which involves the time period T of the
Hopf-periodic solution being the time a single car travels between two jam events.

The most important quantities of Hopf-periodic solutions are the following ones (here c stands for congestion and f for
(congestion-) free traffic):

1. N,L and the density % = N
L

2. the reduced Hopf period T r := T
N , where T is the Hopf period

3. the jam speed σ

4. the minimal headway hc and the minimal speed vc

5. the maximal headway hf and the maximal speed vf

Observe that these numbers depend on the specific periodic solution and hence on N and on the density % = N
L which

has to satisfy %T1 < % < %T2 with the turning point densities %Tj , j = 1, 2 explained above. The periodic solutions are
numerically determined by computing the fixed points of a symmetry reduced Poincaré map, similar as in [GW10] and
[SGW09]. The jam speed σ is computed by formula (5).

The surprising result of our numerical experiments (see Sec. 3) is the following: All numbers above are asymptotic in
the sense that their limits for N → ∞ exist for fixed % = N

L and that the limits do not depend on %. Moreover, the two
limits for hc and hf (which we also call hc and hf ) determine all other asymptotic limits and hence the whole dynamics.
The limits can be analytically expressed by these two numbers which we therefore – following INGENUIN GASSER – call
“magic”:

vc = V (hc), vf = V (hf ), σ =
hcvf − hfvc
hc − hf

, T r =
hf − hc
vf − vc

,

see Sec. 2. These relations can be easily verified from numerical results. Hence, for sufficiently large N and for all
densities % (and for all circle lengths L) the numbers above are well approximated by their asymptotic limits as long as
the density % allows the existence of a stable periodic solution (%T1 < % < %T2 ). Roughly speaking, all numbers do not
depend on N and on L.

Moreover, the numerical results state that the Hopf periodic solutions essentially consist of three parts: The congestive
part with small identical headways hc and small speeds vc, the non-congestive part with large identical headways hf
and large speeds vf and some transient parts which seem to have a size independent of N and hence negligible for large
N , see Fig. 9. The first two parts correspond to two stable quasi-stationary solutions with headways hc and hf . The
corresponding densities %c := 1

hc
and %f := 1

hf
can be located in those parts of the solution diagram (as Fig. 1) where no

stable periodic solutions exist. We guess that %c and %f are the limits of the turning point densities %Tj , j = 1, 2 above for
N →∞, see Sec. 3.5. Two Hopf-periodic solutions only differ in the width Lc of the congestive and the width Lf of the
non-congestive parts. If % is small (large), so also the congestive part, see the asymptotic formula (8) in Theorem 1.

3The Hopf bifurcations seem to be obviously subcritical in contradiction to the supercriticality statement in [GSW04]. A more thorough computation
shows that the supercriticality is an almost unvisible phenomenon, it takes place only in a very small neighborhood of the Hopf bifurcation points.

4against the traffic direction

3



(a) Time-headway-speed functions

(b) Macroscopic visualization (color=speed) (c) Macroscopic visualization (color=headway)

Figure 2: N = 40, % = 0.769 (L = 52), a = 2, vmax = 1, τ = 1: Stable periodic solution
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(a) headway-speed function (b) Detail of Fig. 3(a)

Figure 3: N = 40, % = 0.769 (L = 52), a = 2, vmax = 1, τ = 1: Macroscopic speed- and headway functions v and h

From the straight line structure in the macroscopic view of speed (Fig. 2(b)) and of headway (Fig. 2(c)) we conclude that
there are macroscopic5 real functions v(ξ) (speed) and h(ξ) (headway) of space ξ which are L-periodic and implicitly
defined by

ẋj(t) =: v((xj(t)− σt)modL), xj+1(t)− xj(t) =: h((xj(t)− σt)modL), j = 1, 2, ..., N.

They can be computed as a by-product from the trajectories of the Hopf periodic solution (Sec. 3.4), see Fig. 3 for an
example. They seem to be smooth and to describe the whole dynamics in a transparent way.

It turns out that all such macroscopic functions have essentially the same shape, they only differ in the widths of the
valleys and of the mountains, not in the width of the transient parts. They can be obtained by a traveling wave Ansatz for
the infinite follow-the-leader-problem on an infinite line. The resulting equation is a complicated ODE-system with delay
depending on the state which may have a heteroclinic connection, see Sec. 4.

As a consequence we claim that our traveling wave solutions somehow survive on the infinite line (L→∞) if the average
density % satisfies %f < % = N

L < %c.

2 Some theory
Having identical cars, the Hopf-periodic solutions with period TN satisfy

vj(t+ TN/N) = vj+1(t)

for the speed vj(t) of car No. j at time t. An analogue relation holds for the headways hj(t), see [SGW09].

The statement that the speed isolines are straight can be formulated by the fact that the numbers

sN := xj(t+ TN/N)− xj+1(t) (4)

are independent of j and t. This can be easily been shown and we obtain6 the formula

σN =
N · sN
TN

(5)

5We choose this name because this type of functions would be encountered by a traveling wave solution of a PDE.
6Determine the slope of the isolines in Fig. 2(b).
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for the jam speed σN . Our numerical computation of σN in Sec. 3 is based on (5). Hence the jam travels upstream for
negative values of sN . Numerical results show that TN/N and σN are asymptotic.
Observe that TN is the time a single car spends between two jam events like entering or leaving the jam area.

For the following relations we assume that the observations, described in the introduction and confirmed by numerical ex-
periments in Sec. 3, hold. More precisely, we assume — neglecting the transition between congestion and non-congestion
— that each car either drives with minimal speed vc or with maximal speed vf , that headways are either minimal (hc)
(c=congestion) or maximal (hf (f=free)). Then

%c :=
1

hc
, %f :=

1

hf

can be interpreted as traffic densities in the jam area and non-jam area respectively.
For simplicity, we replace the index f by 1 and c by 2. Then h1 = hf > h2 = hc, v1 = vf > v2 = vc, %1 = %f <
%2 = %c. For fixed time, the whole circle of length L consists of a non-jam part with length L1 := L %2−%

%2−%1 and of a jam
part of length L2 := L %−%1

%2−%1 . Using a coordinate system which rotates with speed σ, the cars have the speeds v1 − σ
or v2 − σ. Obviously the time a car passes through the headway in these coordinates, is independent of the position and
equals T r = T

N . Hence
h1

v1 − σ
=

h2
v2 − σ

=
T

N
= T r. (6)

(6) is equivalent to

%1(v1 − σ) = %2(v2 − σ) =
1

T r

which is nothing else than the invariance of the relative flow, relative with respect to an observer who is sitting on the
wave.
By elementary calculations, we get the formulas

σ =
h1v2 − h2v1
h1 − h2

for the jam speed7 and

T r :=
T

N
=
h1 − h2
v1 − v2

for the reduced period.
For the times T1 resp. T2, a car needs to pass through the non-jam- resp. the jam area we have the simple expressions

T1
N

=
h− h2
h1 − h2

,
T2
N

=
h1 − h
h1 − h2

with h := L
N .

Our numerical results let us state the following

Theorem 1. Consider the ODE system (1) modeling the dynamics on N cars on a circle of length L with the optimal
velocity function (2) and system parameters τ, a, vmax. We assume that the solution diagram is like that in Fig. 1 with
Hopf densities %Hj and turning point densities %Tj , j = 1, 2 satisfying

%T1 < %H1 < %H2 < %T2 .

7Thanks to Ingenuin Gasser
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We further assume that the global density % := N
L satisfies %T1 < % < %T2 such that there is a unique stable periodic

solution. Let hc, hf , vc, vf , T r and σ be the characterizing quantities of the periodic solution as described above 8.
Define the densities9 %c :=

1
hc
, %f = 1

hf
.

Then – for large enoughN – the two “magic” headways hc and hf do not depend onN and determine all other quantities
by

vc = V (hc), vf = V (hf ),

σ =
hcvf − hfvc
hc − hf

, (7)

T r =
hf − hc
vf − vc

.

Moreover,

• The period TN of the periodic solution does not depend on L and satisfies TN = N · T r.

• For fixed time t, the car ensemble on the circle essentially consists of two parts, the congestive and the non-
congestive part. The congestive part contains cars with headways hc and speeds vc and the non-congestive part
contains cars with headways hf and speeds vf . The length Lc (resp. Lf ) of the congestive (resp. non-congestive)
part satisfies

Lc = L
%− %f
%c − %f

, Lf = L− Lc. (8)

• The smaller %− %f the smaller is the relative length Lc/L of the congestive part. The smaller %c − % the smaller is
the relative length Lf/L of the non-congestive part.

• The congestive part (the jam) (and also the non-congestive part) moves upstream (against the traffic direction) with
speed σ.

• The limit densities %c and %f are the limits of turning point parameters %Tj , j = 1, 2 for the solution diagram of
periodic solutions for fixed N when N tends to infinity.

• The infinite microscopic ODE-system possesses a traveling wave with speed σ connecting a congestive flow (with
speed vc and density %c) with a non-congestive flow (with speed vf and density %f ). The traveling wave can be
associated with a heteroclinic orbit of an ODE-delay equation.

For a = 2, vmax = 1, τ = 1 in the microscopic Bando traffic model we obtain the numerical values (see next Section)

hc = 0.1441, hf = 1.8559, %c = 6.9396, %f = 0.5388,

vc = 0.013829, vf = 0.96786, σ = −0.066485, T r = 1.79428.

For values for other parameters see Sec. 3.6.

3 Numerical results

3.1 Asymptotic numbers
We choose a = 2, vmax = 1, τ = 1 as in [GW10]. Table 1 contains the most important numbers of a periodic solution
for different values of N and L (resp. %) like jam speed σ, the minimal and maximal headways hc and hf (resp. speeds
vc and vf ) and the reduced period T r := T/N . There is no doubt about their asymptotic property, stated in Theorem 1,

8They can be easily computed once the periodic solutions is determined.
9of the corresponding quasi-stationary solutions
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independent of the way how L,N → ∞. The results for N = 100, % = 0.571 (fifth row) are less significant since the
density % = 0.571 is close to the turning point density %T1 = 0.559. The maximal absolute value of Floquet multipliers
which are not shown varies between 0.92 and 0.99.
The formulas in Theorem 1 can easily been checked.

Table 1: Jam speed, minimal and maximal headways and speeds, reduced period

N L % σ hc vc hf vf T r = T/N
20 26 0.769 -0.066495 0.146 0.01465 1.85584 0.96785 1.794221
40 60 0.667 -0.664852 0.1443374 0.01393 1.855892 0.96785 1.794279
40 50 0.800 -0.0664848 0.1441059 0.013829 1.855894 0.96786 1.794276
80 40 2.000 -0.0664846 0.1441050 0.013829 1.855897 0.96786 1.794280

100 175 0.571 -0.0665018 0.1468262 0.015002 1.855807 0.96784 1.794184
100 164 0.609 -0.0664847 0.1441072 0.01383 1.855894 0.96786 1.794279
100 150 0.667 -0.0664842 0.1441047 0.013829 1.855897 0.96786 1.794282
100 100 1.000 -0.0664847 0.1441053 0.013829 1.855895 0.96786 1.794279
100 70 1.429 -0.0664847 0.1441056 0.013829 1.855894 0.96786 1.794279
100 50 2.000 -0.0664845 0.1441033 0.013829 1.855896 0.96786 1.794280
100 30 3.333 -0.0664851 0.1441063 0.013829 1.855802 0.96781 1.794278
150 150 1.000 -0.0664847 0.1441039 0.013829 1.855896 0.96786 1.794279
200 280 0.7143 -0.0664846 0.1441054 0.013829 1.855895 0.96786 1.794280
200 200 1.000 -0.0664847 0.1441040 0.013829 1.855896 0.96786 1.794279
300 400 0.750 -0.0664852 0.1441057 0.013829 1.855894 0.96786 1.794277
300 100 3.000 -0.0664843 0.1441049 0.013829 1.855897 0.96786 1.794281

In the following subsections we visualize the Hopf-periodic traveling waves in three different ways as shown in Fig. 4 and
Fig. 5. More precisely, we visualize the dynamics of the speed v and the headway h first as functions of time, second by a
macroscopic view where the color is chosen according to the size of speed (choosing headway we would get qualitatively
the same result) and third as macroscopic functions of space and third .

3.2 Speed and headway as function of time
Fig. 6 shows for N = 100 and various densities % the speed v and the headway h as functions of time t from one period
interval [0, T ]. The results confirm our observations stated in Theorem 1. Observe that the jam area is very small for low
densities, but becomes for high densities as large as the non-jam area for low densities.

3.3 Macroscopic view of the speed
[GW10] contains many colorful views, not only of traveling waves, but more frequently of quasi-POMs arising in case of
bottlenecks instead of periodic solutions.
The introduction (Fig. 2(b) and Fig. 2(c)) contains an example of the macroscopic views of speed and headway). Other
examples are given in Fig. 4(b) and Fig. 5(b).
Here, in Fig. 7, we are showing the evolution of such speed views for fixed N = 100 by varying %, starting with small %
where the congestion width Lc is very small, and finally with large density %, where now the jam width Lc almost equals
L.
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(a) Headway and speed as functions of time (b) Macroscopic visualization (color=speed)

(c) Macroscopic headway and speed as functions of space

Figure 4: N = 100, L = 21 (% = 4.762): Periodic solution in different representations
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(a) Headway and speed as functions of time (b) Macroscopic visualization (color=speed)

(c) Macroscopic headway and speed as functions of space

Figure 5: N = 100, L = 75 (% = 1.3333): Periodic solution in different representations
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(a) % = 0.571 (L = 175) (b) % = 0.588 (L = 170) (c) % = 0.667 (L = 150)

(d) % = 0.769 (L = 130) (e) % = 1.000 (L = 100) (f) % = 1.429 (L = 70)

(g) % = 2.000 (L = 50) (h) % = 2.500 (L = 40) (i) % = 3.333 (L = 30)

(j) % = 4.762 (L = 21)

Figure 6: N = 100: Headway h (red) and speed v (black) as function of time
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(a) % = 0.571 (L = 175) (b) % = 0.588 (L = 170) (c) % = 0.667 (L = 150)

(d) % = 0.769 (L = 130) (e) % = 1.000 (L = 100) (f) % = 1.429 (L = 70)

(g) % = 2.000 (L = 50) (h) % = 2.500 (L = 40) (i) % = 3.333 (L = 30)

(j) % = 4.762 (L = 21)

Figure 7: N = 100: Macroscopic visualizations of speed with increasing density)
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(a) % = 0.6667 (L = 150)) (b) % = 0.8333 (L = 120) (c) % = 1.0000 (L = 100)

(d) % = 2.0000 (L = 50) (e) % = 3.3333 (L = 30)

Figure 8: N = 100: Macroscopic headway (red) and speed (black) functions

3.4 Macroscopic functions
In the introduction we introduced the important concept of macroscopic functions of space — the speed v(ξ) and the
headway h(ξ). Observe that for each time t for which we compute xj(t), ẋj(t), j = 1, 2, ..., N we obtain N points of the
graphs of v and of h by the implicit setting

ẋj(t) = v((xj(t)− σt)modL), xj+1(t)− xj(t) = h((xj(t)− σt)modL), j = 1, 2, ..., N.

If we simulate the ODE system for a while we will get sufficiently many points of the graphs to draw a “continuous”
picture. Fig. 3 shows some introductory example. Fig. 8 shows further pictures for N = 100 and various densities %. It
becomes obvious that the width of the jam area increases with increasing density %. Moreover, the functions seem to be
smooth, at least continuous.
When we investigate the transition area of our macroscopic functions we encounter the same shape for all sufficiently
large N . This is confirmed by Fig. 9.
To find out how many cars stay in the transition area at a fixed time, Fig. 10 tells us that the (small) number (about 3-5
cars) does asymptotically not depend on %.
From these calculations we may draw the following somehow speculative conclusion: For large enough N and L we
obtain smooth L-periodic macroscopic functions v and h which are composed by four parts, the congestive part v−, the
non-congestive part v+ and the two transient parts v−,+ (from v− to v+) and v+,− (from v+ to v−). They only differ by
variation of L and N in the widths of the (non-)congestive parts.
In Sec. 4 some possible analytical background is discussed.

3.5 Turning points
If our statement about the turning point densities %Tj , j = 12, is right, an upper (lower) bound for the lengths L where
periodic solutions exist are N · hf and N · hc. The corresponding densities are %c = 6.9396 and %f = 0.53028. Our
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(a) % = 0.6667 (L = 150) (b) % = 0.83333, (L = 120) (c) % = 1.0000 (L = 100)

(d) % = 2.0000 (L = 50) (e) % = 3.3333 (L = 30)

Figure 9: N = 100: Transition of macroscopic headway (h+,−) and speed functions (v+,−) from non-congestive to
congestive flow
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(a) L = 150 : v+,− (b) L = 150 : v−,+

]
(c)
L =
100 :
v+,−

(d) L = 100 : v−,+

]
(e)
L =
40 :
v+,−

(f) L = 40 : v−,+

´

Figure 10: N = 100: Distribution of cars at a fixed time in the transition between congestive and non-congestive area
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conjecture is that they are the limits of turning point densities %Tj , j = 1, 2 in our solution diagram10 for N → ∞.
Therefore we have computed the two turning points densities %T1 < %T2 for different N which is very time consuming for
large N :

Table 2: Turning point densities

N %T1 %T2
20 0.618 2.62
40 0.582 3.545

100 0.559 4.783
200 0.555 5.546
400 0.549 5.964
800 > 6.4

Our conjecture is based on the fact that the limit of periodic solutions for small (large) % is the quasi-stationary solution
with headway hf (hc). The convergence %T1 → %f and %T2 → %c for N → ∞ must be slow since the periodic solutions
at the turning points have still a very small jam or non-jam area. They are still rather far away from the corresponding
quasi-stationary solutions.

3.6 Remarks
The periodic solutions in the Bando-Model are not necessarely “physical” solutions with positive headways. This was the
starting point in [BJ08] where a special kind of overtaking is allowed. They choose the same model as in this section,
only vmax = 7 is chosen much higher.
Now it turns out that the positivity of the “magic” headway hc seems to guarantee that all periodic solutions are physical. It
might be interesting to investigate the dependence of hc on the Bando parameters vmax and a, see Table 3. It is remarkable
that the universal character of the headway hc is also true for non-physical solutions (row 3). The loss of physicality of
periodic solutions is accompanied by a decrease of the jam speed σ. Indeed: our analytical relation (7),

σ =
hcvf − hfvc
hc − hf

,

verifies this fact. Physicality of periodic solutions are characterized by an upstream jam!

Table 3:

vmax a hc hf σ T r

1 2 0.1441 1.8559 -0.0665 1.794
1.1 2 0.0511 1.9489 -0.0244 1.772
1.2 2 -0.0380 2.038 0.0186 1.753
1 2.2 0.1428 1.8572 -0.0700 1.773
1 1.8 0.1496 1.8500 -0.0637 1.818
0.8 2 0.3502 1.6498 -0.1474 1.852

The decrease of vmax (last row) changes the quality of the periodic solutions. The minimal headway hc is rather large,
the maximal speed is rather far away from vmax.

10see Fig. 1 for N = 20. For larger N the red path of periodic solutions will expand to the left and to the right.
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4 Differential-functional equation
Each periodic solution xj(t), j = 1, 2, ..., N, of our model (1) is associated with macroscopic real L-periodic functions v
and h, see Sec. 3.4. They are implicitly defined by

ẋj(t) =: v((xj(t)− σt)modL), xj+1(t)− xj(t) =: h((xj(t)− σt)modL), j = 1, 2, ..., N. (9)

Assuming differentiability, they fulfill11 the system

v′(ξ)(v(ξ)− σ) = V (h(ξ))− v(ξ), (10)
h′(ξ)(v(ξ)− σ) = v(ξ + h(ξ))− v(ξ). (11)

The first equation is an ODE, the second equation is a functional-differential equation with ξ-depending anti-delay. Ob-
serve that this system does not depend on N and not on L. It can also be obtained by considering infinite many cars
distributed somehow on the whole real line, where the dynamics is given by the infinite ODE system

ḣj(t) = vj+1(t)− vj(t),

v̇j(t) =
1

τ

(
V (hj(t))− vj(t)

)
, j ∈ ZZ.

The condition at time t = 0 defines the initial distribution (headways) of cars and their speeds. Looking for traveling
wave functions v and h for this infinite system we encounter the differential-delay system (10, 11) which seems to have a
large family of (L-periodic) solutions.
We believe that there is also a very special “heteroclinic” solution. Resuming the discussion in Sec. 3.4 we compose a
solution (v, h) by an infinite piece (v+, h+), the transient piece (v+,−, h+,−) and again an infinite piece (v−, h−), such
that

v(ξ)→ vf , h(ξ)→ hf for ξ → −∞,
v(ξ)→ vc, h(ξ)→ hc for ξ → +∞.

holds.

Somehow our headways hc and hf seem to be hidden in the system (10, 11).

5 Conclusion
Many numerical calculations combined with some analysis let us conjecture that the stable periodic solutions of the
simplest microscopic follow-the-leader-model have a very simple structure which can easily described by two numbers
only, the headways hc and hf which depend on the system parameters τ, a and vmax. All other numbers like jam speed,
period, jam length, etc can be analytically expressed by these quantities.
We introduce the concept of macroscopic real functions v (speed) and h (headway) which seem to have a universal struc-
ture and describe the dynamics for arbitrary (large)N (and L). Since there is still the hope that there is a macroscopic PDE
model for speed and headway which possesses similar traveling waves, our macroscopic functions offer the opportunity
for a quantitative comparison with the microscopic model.
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