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SCATTERED DATA APPROXIMATION
BY POSITIVE DEFINITE KERNEL FUNCTIONS

Abstract. Kernel functions are suitable tools for scattered data interpolation and approxi-
mation. We first review basic features of kernel-based multivariate interpolation, before we
turn to the construction and the characterization of positive definite kernels and their asso-
ciated reproducing kernel Hilbert spaces. The optimality of the resulting kernel-based in-
terpolation scheme is shown. Moreover, we analyze the conditioning of the reconstruction
problem, before we prove stability estimates for the proposed interpolation method. We fi-
nally discuss kernel-based penalized least squares approximation, where we provide more
recent results concerning the stability and the convergence of the approximation method.

1. Introduction

This contribution gives an introduction to selected aspects of multivariate scattered
data approximation by positive definite kernel functions. For the convenience of the
reader, we keep the presentation widely self-contained, where we first review basic
features of kernel-based Lagrange interpolation, before we discuss more advanced top-
ics of kernel-based interpolation and approximation. Relevant aspects of the subject
are covered in five sections:

Lagrange interpolation from scattered data. We explain the problem of mul-
tivariate Lagrange interpolation. This leads us to positive definite functions, whose
suitability for scattered data interpolation is demonstrated.

Native reproducing kernel Hilbert space. We introduce a native Hilbert space,
whose reproducing kernel is given by the positive definite function of the interpolation
scheme. We analyze the properties of the native space.

Optimality of the reconstruction scheme. We show that interpolation by positive
definite kernels is optimal w.r.t. (a) energy minimization; (b) best approximation; (c)
norm minimization of the pointwise error functionals.

Stability of the reconstruction scheme. We analyze the conditioning of the in-
terpolation problem and we provide bounds on the associated Lebesgue constant. We
prove useful stability estimates for the interpolation method.

Penalized least squares approximation. We discuss penalized least squares ap-
proximation by positive definite kernels. Recent results concerning the well-posedness,
the stability, and the convergence of the approximation method are proven.

∗This contribution is based on a Lezione Lagrangiana given in Turin on 23rd February 2011.
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2. Lagrange Interpolation from Scattered Data

2.1. Discussion of the Interpolation Problem

To explain Lagrange interpolation from multivariate scattered data, suppose that a vec-
tor

fX = ( f (x1), . . . , f (xn))T ∈ Rn

of discrete function values, sampled from an unknown function f : Rd → R at a finite
point set X = {x1, . . . ,xn}⊂Rd , d≥ 1, is given. Since we do not make any assumptions
on the distribution of the points in X , we say that the given data fX is scattered.

Lagrange interpolation from scattered data requires computing a suitable inter-
polant s : Rd → R satisfying sX = fX , i.e.,

(1) s(x j) = f (x j), for all 1≤ j ≤ n.

A standard approach for doing so is to assume that s lies in a fixed finite dimensional
linear function space

S = span{s1, . . . ,sn},

with basis B = {s1, . . . ,sn}, so that s can be represented as a unique linear combination

(2) s =
n

∑
j=1

c js j

of the basis functions s1, . . . ,sn.
In this case, solving the interpolation problem (1) requires solving the linear

system
VB,X · c = fX

for the unknown coefficients c = (c1, . . . ,cn)T ∈ Rn of s in (2), where

VB,X = (s j(xk))1≤ j,k≤n ∈ Rn×n

denotes the Vandermonde matrix for the basis B .
It is desirable to select a basis B , and thus a function space S , such that the

interpolation problem (1) has for any choice of scattered interpolation points X a unique
solution. In other words, we require that the Vandermonde matrix VB,X is regular for
any finite point set X . This leads us to the following observation.

THEOREM 1. Let S denote a finite dimensional linear function space with basis
B = {s1, . . . ,sn}. Moreover, let X = {x1, . . . ,xn} ⊂ Rd be a finite point set. Then the
following properties are equivalent.

(a) The Vandermonde matrix VB,X is regular.

(b) If s ∈ S vanishes on X, i.e, sX = 0, then s≡ 0.

(c) The interpolation problem sX = fX has a unique solution s ∈ S .
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Proof. The linear map LX : S → Rn, defined by

LX (s) = sX for s ∈ S

is, w.r.t. basis B , represented by the Vandermonde matrix VB,X . Note that the above
properties (a)-(c) can be reformulated as three equivalent statements: (a) LX is bijective;
(b) LX is injective; (c) LX is surjective.

DEFINITION 1. A linear function space S satisfying the conditions (b),(c) of
Theorem 1 for any finite point set X ⊂ Rd is said to be a Haar space. In this case,
any basis B of S is called a Chebyshev system on Rd .

In the case of multivariate interpolation, however, the basis B should depend on
X , i.e., B ≡ B(X). This is due to the classical Mairhuber-Curtis theorem, named after
J. Mairhuber and P.C. Curtis, as independently proven in their works [18] (in 1956)
and [7] (in 1959).

THEOREM 2 (Mairhuber-Curtis). For d ≥ 2 and n ≥ 2 there is no Chebyshev
system B = {s1, . . . ,sn} on Rd , i.e., there is X = {x1, . . . ,xn} ⊂ Rd , such that the Van-
dermonde matrix VB,X is singular.

Proof. Suppose B = {s1, . . . ,sn}, n≥ 2, is for d ≥ 2 a Chebyshev system on Rd . More-
over, let X1 = (x1,x2,x3, . . . ,xn) contain n pairwise distinct points in Rd . Then there is
a closed continuous curve γ : [0,1]→ Rd whose path Γ = {γ(t) : t ∈ [0,1]} contains x1
and x2, but no other point from the set {x3, . . . ,xn}, i.e., x1,x2 ∈ Γ and x j 6∈ Γ for all
3≤ j ≤ n.

Now we can exchange the positions of x1 and x2 in X1 by (continuously) moving
the points x1,x2 along the path Γ, without any coincidence between x1 and x2. This
exchange yields X2 = (x2,x1,x3, . . . ,xn). Note that det(VB,X1) =−det(VB,X2), since by
the exchange of x1 and x2 the first two columns in VB,X1 are swapped.

Therefore, there is one point set X0 = {γ(t1),γ(t2),x3, . . . ,xn}⊂Rd , t1, t2 ∈ [0,1],
of pairwise distinct points, γ(t1) 6= γ2(t2), satisfying det(VB,X0) = 0, due to the continu-
ity of the determinant. But this is, for B = {s1, . . . ,sn}, in contradiction to property (a)
of Theorem 1.

In conclusion, to ensure unique interpolation, the basis B = {s1, . . . ,sn} must
necessarily depend on the interpolation points X , due to the Mairhuber-Curtis theorem.
A straightforward approach for doing so is to let the j-th basis function s j depend on
the j-th interpolation point x j, 1≤ j ≤ n, i.e., we assume

s j ≡ K(·,x j) for 1≤ j ≤ n

for some continuous function K : Rd×Rd → R.
This leads us to the linear reconstruction space

SX = span{K(·,x j) :1≤ j ≤ n} for X = {x1, . . . ,xn},
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where in a modified ansatz for solving sX = fX we now assume

(3) s(x) =
n

∑
j=1

c jK(x,x j)

for the form of the interpolant s. Therefore, solving sX = fX with assuming (3) boils
down to solving the linear system

AX · c = fX

for c = (c1, . . . ,cn)T ∈ Rn, with a Vandermonde matrix

AX = (K(x j,xk))1≤ j,k≤n ∈ Rn×n,

whose basis B = {K(·,x j) :1≤ j ≤ n} does now depend on X .

2.2. Lagrange Interpolation by Positive Definite Functions

For the sake of unique interpolation, the matrix AX must be regular for all possible
choices of X , according to Theorem 1. To this end, it is sufficient to require that AX is
symmetric and positive definite for any X . To guarantee symmetry for AX , the function
K must be symmetric, i.e., K(x,y) = K(y,x) for all x,y ∈ Rd . To ensure that AX is
positive definite for any X , we moreover require that K is a positive definite function.

DEFINITION 2. A symmetric function K : Rd×Rd→R is said to be positive
definite on Rd , K ∈ PDd , iff the matrix AX = (K(x j,xk))1≤ j,k≤n is positive definite
for all possible choices of finite point sets X ⊂ Rd .

We conclude the above discussion as follows.

THEOREM 3. Let K ∈ PDd . Then, for any finite point set X ⊂Rd , the following
statements are true.

(a) The matrix AX is positive definite.

(b) If s ∈ SX vanishes on X, i.e, sX = 0, then s = 0.

(c) The interpolation problem fX = sX has a unique solution

s(x) =
n

∑
j=1

c jK(x,x j) ∈ SX ,

whose coefficient vector c = (c1, . . . ,cn)T ∈Rn is the solution of the linear system

AX · c = fX .
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Relying on the above theorem, we can further conclude that – due to the well-
posedness of the interpolation scheme – there is for any point set X = {x1, . . . ,xn}⊂Rd

a unique Lagrange basis {`1, . . . , `n} ⊂ SX satisfying

` j(xk) = δ jk =
{

1 for j = k
0 for j 6= k for all 1≤ j,k ≤ n.

PROPOSITION 1. The Lagrange basis is uniquely given by the linear system

(4) AX`(x) = R(x) for x ∈ Rd

where we let

`(x) = (`1(x), . . . , `n(x))T ∈ Rn and R(x) = (K(x,x1), . . . ,K(x,xn))T ∈ Rn.

The unique interpolant s ∈ SX satisfying sX = fX can be represented as

(5) s(x) = 〈 fX , `(x)〉,

where 〈·, ·〉 denotes the inner product of the Euclidean space Rn.

Proof. Note that for any x = x j, 1 ≤ j ≤ n, the right hand side R(x j) in (4) coincides
with the j-th column of AX , and so `(x j) = e j ∈ Rn is the j-th unit vector in Rn.
Moreover, by `(x) = A−1

X R(x) any Lagrange basis function

(6) ` j(x) = eT
j A−1

X R(x) for 1≤ j ≤ n

can be represented as a unique linear combination of the functions K(x,x1), . . . ,K(x,xn)
in R(x), and so ` j ∈ SX for all 1≤ j ≤ n.

From property (c) in Theorem 3, the Lagrange representation of s in (5) can be
obtained by

s(x) = 〈c,R(x)〉= 〈A−1
X fX ,R(x)〉= 〈 fX ,A−1

X R(x)〉= 〈 fX , `(x)〉.

2.3. Basic Constructions of Positive Definite Functions

In this subsection, we discuss the construction of positive definite functions. But let
us first list some of their elementary properties. To this end, let K ∈ PDd and X = {x}
for some x ∈ Rd . Then, the (diagonal) entry in AX ∈ R1×1 is positive, i.e., K(x,x) > 0.
Next, if we let X = {x,y} for some x,y ∈ Rd , x 6= y, then det(AX ) > 0, which implies
K(x,y)2 < K(x,x)K(y,y).

In our subsequent construction of positive definite functions we assume

K(x,y) := Φ(x− y) for x,y ∈ Rd

for an even function Φ : Rd → R. Moreover, we say that Φ is positive definite, i.e.,
Φ ∈ PDd , iff K ∈ PDd . We express the above properties for K ∈ PDd as follows.
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REMARK 1. Let Φ : Rd→R be even and positive definite, i.e., Φ∈ PDd . Then,

(a) Φ(0) > 0;

(b) |Φ(x)|< Φ(0) for all x ∈ Rd \{0}.

In the subsequent discussion, we apply the normalization Φ(0) = 1.

Now let us discuss the construction of positive definite functions. This is done
by using the Fourier transform, here written in the unsymmetric form

f̂ (ω) :=
∫

Rd
f (x)e−i〈x,ω〉 dx for f ∈ L1(Rd).

The following basic result relies on the classical Bochner theorem, dating back to the
1932 lecture notes [5] of Salomon Bochner, a somewhat modified variant of which is
as follows.

THEOREM 4 (Bochner). Suppose that Φ : Rd → R is even and continuous.
Moreover, assume that Φ has a continuous Fourier transform Φ̂ satisfying the Fourier
inversion formula

Φ(x) = (2π)−d
∫

Rd
Φ̂(ω)ei〈x,ω〉 dω.

If Φ̂ 6≡ 0 is non-negative on Rd , then K(x,y) = Φ(x− y) is positive definite.

Proof. Suppose that Φ̂ ∈ C (Rd)\{0} is non-negative on Rd .
In this case, the quadratic form

cT AX c =
n

∑
j,k=1

c jckΦ(x j− xk) = (2π)−d
∫

Rd

∣∣∣∣∣ n

∑
j=1

c jei〈x j ,ω〉

∣∣∣∣∣
2

Φ̂(ω)dω

is, for any c = (c1, . . . ,cn)T ∈ Rn and any X = {x1, . . . ,xn} ⊂ Rd , non-negative, i.e.,
cT AX c≥ 0. If cT AX c = 0, then the (analytic) symbol function

S(ω)≡ Sc,X (ω) =
n

∑
j=1

c jei〈x j ,ω〉 for ω ∈ Rd

must vanish identically on Rd , due to the non-negativity of the continuous Fourier
transform Φ̂ 6≡ 0. But S≡ 0 implies c = 0, which completes our proof.

Now let us make three relevant examples for positive definite radial functions
Φ, whose positive definiteness can be shown by using Bochner’s characterization of
Theorem 4.

EXAMPLE 1. The Gaussian function

Φ(x) = e−‖x‖
2
2 for x ∈ Rd

is for any d ≥ 1 positive definite on Rd . In this case, Φ̂(ω) = e−‖ω‖
2
2/4 > 0, and so

K(x,y) = Φ(−‖x− y‖2
2) ∈ PDd , where ‖ · ‖2 is the Euclidean norm on Rd .



Scattered Data Approximation by Positive Definite Kernels 7

EXAMPLE 2. The inverse multiquadric

Φ(x) =
(
1+‖x‖2

2
)−1/2

is for any d ≥ 1 positive definite on Rd . In this case,

Φ̂(s) = I(d−1)/2(s) · s−(d−1)/2 > 0 for s = ‖ω‖2,

where

Iν(z) =
∞

∑
j=0

(z/2)ν+2 j

j!Γ(ν+ j +1)
for z ∈ C\{0}

denotes the modified Bessel function of the third kind. For relevant properties of Iν, we
refer to [1].

EXAMPLE 3. The radial characteristic functions [3]

Φ(x) = (1−‖x‖2)
β

+ =
{

(1−‖x‖2)β for ‖x‖2 < 1
0 for ‖x‖2 ≥ 1

are for d ≥ 2 positive definite on Rd , provided that β ≥ (d + 1)/2. In this case, the
Fourier transform Φ̂ of Φ can (up to some positive constant) be represented as

Φ̂(s) = s−(d/2+β+1)
∫ s

0
(s− t)βtd/2J(d−2)/2(t)dt > 0 for s = ‖ω‖2,

where

Jν(z) =
∞

∑
j=0

(−1) j(z/2)ν+2 j

j!Γ(ν+ j +1)
for z ∈ C\{0}

is the usual Bessel function of the first kind. More details on these earlier examples for
compactly supported multivariate positive definite functions can be found in [11].

Now that we have provided three explicit examples for positive definite (ra-
dial) functions, we remark that the characterization of Bochner’s theorem allows us
to construct even larger classes of positive definite functions. This is done by using
convolutions. Recall that for any pair f ,g ∈ L1(Rd) of functions, the Fourier transform
maps the convolution product f ∗g ∈ L1(Rd),

( f ∗g)(x) =
∫

Rd
f (x− y)g(y)dy for f ,g ∈ L1(Rd),

of f and g onto the product of their Fourier transforms, i.e.,

f̂ ∗g = f̂ · ĝ for f ,g ∈ L1(Rd).

If we let g(x) = f ∗(x) = f (−x), this yields

f̂ ∗ f ∗ = f̂ · f̂ = | f̂ |2 for f ∈ L1(Rd),

which is a simple method to construct positive definite functions.
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COROLLARY 1. For any function Ψ ∈ L1(Rd)\{0} its autocorrelation

Φ(x) = (Ψ∗Ψ
∗)(x) =

∫
Rd

Ψ(x− y)Ψ(−y)dy

is positive definite.

Proof. For Ψ ∈ L1(Rd) \ {0}, we have Φ ∈ L1(Rd) \ {0}, and so Φ̂ ∈ C (Rd) \ {0}.
Moreover, the (continuous) Fourier transform Φ̂ = |Ψ̂|2 ≥ 0 of the (continuous) auto-
correlation Φ = Ψ ∗Ψ∗ is non-negative, so that Φ is positive definite by Bochner’s
theorem.

The practical value of this construction, however, is rather limited. This is be-
cause the autocorrelations Ψ ∗Ψ∗ are rather awkward to evaluate. Instead, one would
prefer to work with explicit analytic expressions for the functions Φ = Ψ∗Ψ∗.

We remark that the basic idea of Corollary 1 has led to the construction of com-
pactly supported positive definite (radial) functions, dating back to earlier Göttingen
works of Schaback & Wendland [21] (in 1993), Wu [25] (in 1994), and Wendland [22]
(in 1995). In their constructions, explicit formulae were given for autocorrelations
Φ = Ψ ∗Ψ∗, whose generators Ψ(x) = ψ(‖x‖2), x ∈ Rd , are specific radially sym-
metric and compactly supported ansatz functions ψ : [0,∞)→ R. This has provided
a large family of continuous, radially symmetric, and compactly supported functions
Φ = Ψ ∗Ψ∗, as they were later popularized by Wendland [22], who used the radial
characteristic functions of Example 3 for Ψ to obtain piecewise polynomial positive
definite compactly supported radial functions of minimal degree. For further details
concerning the construction of compactly supported positive definite radial functions,
we refer to the survey [20] of Schaback.

3. Native Reproducing Kernel Hilbert Spaces

The discussion of this section is concerning reproducing kernel Hilbert spaces F which
are generated by positive definite functions K. In particular, for any fixed K ∈ PDd , the
positive definite function K is shown to be the reproducing kernel of its associated
Hilbert space F ≡ FK , whose structure is entirely determined by the properties of K.
Therefore, F is also referred to as the native space of K.

To introduce F , we first define, for a fixed positive definite K ∈ PDd , the recon-
struction space

S = {s ∈ SX :X ⊂ Rd , |X |< ∞}

containing all (potential) interpolants of the form

(7) s(x) =
n

∑
j=1

c jK(x,x j)

for some c = (c1, . . . ,cn)T ∈ Rn and X = {x1, . . . ,xn} ⊂ Rd .
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Note that any s ∈ S in (7) can be rewritten as

(8) s(x)≡ sλ(x) := λ
yK(x,y) for λ =

n

∑
j=1

c jδx j

where δx is the usual Dirac δ-functional, defined by δx( f ) = f (x), and λy in (8) denotes
action of the linear functional λ on variable y.

This gives rise to define the dual space

L =

{
λ =

n

∑
j=1

c jδx j :c = (c1, . . . ,cn)T ∈ Rn and X = {x1, . . . ,xn} ⊂ Rd

}

containing all finite linear combinations of δ-functionals.

3.1. Topology of the Reconstruction Space and Duality Relation

Now the dual space L can be equipped with the inner product

(λ,µ)K := λ
xµyK(x,y) =

nλ

∑
j=1

nµ

∑
k=1

c jdkK(x j,yk) for λ,µ ∈ L ,

where

λ =
nλ

∑
j=1

c jδx j ∈ L and µ =
nµ

∑
k=1

dkδyk ∈ L .

By ‖ · ‖K := (·, ·)1/2
K , L is a normed linear space. Likewise, via the duality relation in

(8), we can equip S with the inner product

(sλ,sµ)K := (λ,µ)K for sλ,sµ ∈ S

and norm ‖ · ‖K = (·, ·)1/2
K . Note that the normed linear spaces S and L are isometric

isomorphic, S ∼= L , via the linear bijection λ 7→ sλ, and by

‖λ‖K = ‖sλ‖K for all λ ∈ L .

Now let us make a few examples for inner products and norms in L and S .

EXAMPLE 4. For any pair of point evaluation functionals δz1 ,δz2 ∈ L , with
z1,z2 ∈ Rd , their inner product is given by

(δz1 ,δz2)K = δ
x
z2

δ
y
z1

K(x,y) = K(z2,z1) = Φ(z2− z1).

Moreover, for the norm of any δz ∈ L , z ∈ Rd , we obtain

‖δz‖2
K = (δz,δz)K = δ

x
zδ

y
zK(x,y) = K(z,z) = Φ(0) = 1.
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Likewise,

(K(·,z1),K(·,z2))K = K(z2,z1) = Φ(z2− z1) for all z1,z2 ∈ Rd

and
‖K(·,z)‖K = ‖δz‖K = 1 for all z ∈ Rd .

To extend this elementary example, we regard, for fixed X = {x1, . . . ,xn} ⊂Rd ,
the linear bijection operator G : Rn→ SX , defined as

(9) G(c) =
n

∑
j=1

c jK(·,x j) for c = (c1, . . . ,cn)T ∈ Rn.

PROPOSITION 2. For any X = {x1, . . . ,xn} ⊂ Rd , we have

(G(c),G(d))K = 〈c,d〉AX for all c,d ∈ Rn,

where
〈c,d〉AX := cT AX d for c,d ∈ Rn

is the inner product generated by the positive definite matrix AX . In particular, G is an
isometry by

‖G(c)‖K = ‖c‖AX for all c ∈ Rn,

where ‖ · ‖AX := 〈·, ·〉1/2
AX

.

Proof. Note that

(G(c),G(d))K =
n

∑
j,k=1

c jdk(K(·,x j),K(·,xk))K = cT AX d = 〈c,d〉AX

holds for all c = (c1, . . . ,cn)T ∈ Rn and d = (d1, . . . ,dn)T ∈ Rn.

The above result gives rise to study the dual operator G∗ : SX → Rn of G.

PROPOSITION 3. The dual operator G∗ : SX → Rn of G in (9), satisfying

(10) (G(c),s)K = 〈c,G∗(s)〉 for all c ∈ Rn and all s ∈ SX

is given by
G∗(s) = sX for s ∈ SX .

Proof. Note that for any s ∈ SX , there is a unique d ∈ Rn satisfying G(d) = s, so that

(G(c),s)K = (G(c),G(d))K = 〈c,d〉AX = 〈c,AX d〉= 〈c,sX 〉 for all c ∈ Rn,

in which case our assertion follows from (10).
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Another important example is concerning inner products and norms of Lagrange
basis functions.

PROPOSITION 4. For X = {x1, . . . ,xn} ⊂Rd , the inner product of the Lagrange
basis functions ` j ∈ SX , satisfying ` j(xk) = δ jk for all 1≤ j,k ≤ n, is given as

(` j, `k)K = a−1
jk for all 1≤ j,k ≤ n,

where A−1
X = (a−1

jk )1≤ j,k≤n ∈ Rn×n. In particular, the norm of ` j ∈ SX is given as

‖` j‖2
K = a−1

j j for all 1≤ j ≤ n.

Proof. Recalling the representation of the Lagrange basis functions ` j in (6), we obtain

(` j, `k)K = eT
j A−1

X AX A−1
X ek = eT

j A−1
X ek = a−1

jk for 1≤ j,k ≤ n.

From Example 4 and Proposition 4 we see that

AX = ((δx j ,δxk)K)1≤ j,k≤n ∈ Rn×n and A−1
X = ((` j, `k)K)1≤ j,k≤n ∈ Rn×n

are Gramian matrices.
Next we discuss the construction of orthonormal bases.

PROPOSITION 5. For any X = {x1, . . . ,xn} ⊂ Rd , let

AX = QT DQ

denote the eigendecomposition of the symmetric matrix AX ∈ Rn×n with orthogonal
factor Q ∈ Rn×n and diagonal D = diag(σ1, . . . ,σn) ∈ Rn×n, containing the positive
eigenvalues σ1 > σ2 > .. . > σn > 0 of AX . Then, the functions

(11) ϕ j(x) = eT
j D−1/2Q ·R(x) for 1≤ j ≤ n

are an orthonormal basis of SX .

Proof. Due to their representation in (11), where R(x) = (K(x,x1), . . . ,K(x,xn))T , any
ϕ j is a linear combination of the basis functions {K(·,x j)}n

j=1, and so ϕ j ∈ SX . More-
over, from Proposition 2 we obtain

(ϕ j,ϕk)K = eT
j D−1/2QAX QT D−1/2ek = 〈e j,ek〉= δ jk for all 1≤ j,k ≤ n.
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Let us finally express the inner product between functions s, s̃ ∈ SX in a dif-
ferent way (other than in Proposition 2). To this end, we work with their Lagrange
representations

s =
n

∑
j=1

s(x j)` j and s̃ =
n

∑
k=1

s̃(xk)`k.

Moreover, we define the inner product

〈c,d〉A−1
X

:= cT A−1
X d for c,d ∈ Rn

and norm ‖ · ‖A−1
X

= 〈·, ·〉1/2
A−1

X
, generated by the positive definite matrix A−1

X .

EXAMPLE 5. For X = {x1, . . . ,xn} ⊂ Rd , the inner product between any pair
s, s̃ ∈ SX can be expressed as

(s, s̃)K = 〈sX , s̃X 〉A−1 ,

Indeed, from Proposition 4 we obtain

(s, s̃)K =
n

∑
j,k=1

s(x j)s̃(xk)(` j(x), `k(x))K =
n

∑
j,k=1

s(x j)s̃(xk)a−1
jk = sT

X A−1s̃X = 〈sX , s̃X 〉A−1 .

In particular, we have

‖s‖K = ‖sX‖A−1
X

for all s ∈ SX .

3.2. Construction of the Reproducing Kernel Hilbert Space

By completion of the inner product spaces L and S w.r.t. their norms ‖ · ‖K , we obtain
the Hilbert spaces

D := L and F := S .

We extend the linear bijection λ 7→ sλ to D and F , which immediately yields

PROPOSITION 6. The Hilbert spaces D and F are isometric isomorphic,

D ∼= F ,

via the bijection λ 7→ sλ and by

‖λ‖K = ‖sλ‖K for all λ ∈D.
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REMARK 2. Any functional µ ∈D is continuous on the Hilbert space F by the
Cauchy-Schwarz inequality

|µ(sλ)|= |µx
λ

yK(x,y)|= |(µ,λ)K | ≤ ‖µ‖K · ‖λ‖K = ‖µ‖K · ‖sλ‖K .

In particular, any point evaluation functional δx ∈ L , x ∈ Rd , is continuous on F , i.e.,

|δx( f )| ≤ ‖δx‖K · ‖ f‖K = ‖ f‖K for all f ∈ F .

Resorting to basic functional analysis, we see that F is a reproducing kernel
Hilbert space. But let us first recall some facts about reproducing kernels [2].

DEFINITION 3. Let H denote a Hilbert space of functions f : Rd→R. Then, a
function K : Rd×Rd→R is said to be a reproducing kernel for H , iff K(·,x)∈H ,
for all x ∈ Rd , and

(K(·,x), f )H = f (x) for all f ∈H and all x ∈ Rd .

Next we show a well-known result from functional analysis.

THEOREM 5. A Hilbert space H of functions has a reproducing kernel, iff all
point evaluation functionals are continuous on H .

Proof. Suppose K is a reproducing kernel for H . Then, by

|δx( f )|= | f (x)|= |(K(·,x), f )H | ≤ ‖K(·,x)‖H · ‖ f‖H for x ∈ Rd

any point evaluation functional δx is continuous on H .
As for the converse, suppose that all point evaluation functionals δx are contin-

uous on H . Then, due to the Riesz representation theorem, there is, for any x ∈ Rd ,
one function kx ∈H satisfying

f (x) = δx( f ) = (kx, f )H for all f ∈H

and so K(·,x) = kx is a reproducing kernel for H .

REMARK 3. A reproducing kernel K for H is unique. Indeed, if K̃ is another
reproducing kernel for H , then by

(K̃(·,x), f )K = f (x) for all f ∈H

we obtain
(kx− k̃x, f )K = 0 for all f ∈H ,

where we let kx := K(·,x) and k̃x := K̃(·,x). But this implies kx ≡ k̃x and so K ≡ K̃.
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3.3. The Madych-Nelson Theorem

Now we are in a position where we can show that the positive definite function K is the
(unique) reproducing kernel for the Hilbert space F ≡ FK . To this end, we apply the
variational theory from the seminal papers by Madych and Nelson [15, 16, 17], whose
central result relies on the representation

(12) (λyK(·,y),sµ)K = (sλ,sµ)K = (λ,µ)K = λ
xµyK(x,y) = λ(sµ)

for λ∈L and sµ ∈ S . By continuous extension to λ∈D and sµ ∈F in (12), we already
obtain the important Madych-Nelson theorem.

THEOREM 6 (Madych-Nelson). For any λ ∈D and f ∈ F we have

(λyK(·,y), f )K = λ( f ).

This allows us to show the stated result.

COROLLARY 2. The positive definite function K is the unique reproducing ker-
nel of the Hilbert space F .

Proof. On the one hand, for δx ∈ L , x ∈ Rd , we find

δ
y
xK(·,y) = K(·,x) ∈ F for all x ∈ Rd ,

on the other hand, letting λ = δx ∈ L in the Madych-Nelson theorem, we obtain

(K(·,x), f )K = f (x) for all f ∈ F and all x ∈ Rd .

Another useful consequence of the Madych-Nelson theorem is as follows.

COROLLARY 3. Every function f ∈ F is continuous on Rd , i.e., F ⊂ C (Rd).

Proof. Recall that we assume continuity for K. Then, by

| f (x)− f (y)|= |(K(·,x)−K(·,y), f )K | ≤ ‖ f‖K · ‖K(·,x)−K(·,y)‖K

and

‖K(·,x)−K(·,y)‖2
K

= (K(·,x),K(·,x))K−2(K(·,x),K(·,y))K +(K(·,y),K(·,y))K

= K(x,x)−2K(x,y)+K(y,y)

any f ∈ F is a continuous function.



Scattered Data Approximation by Positive Definite Kernels 15

4. Optimality of the Reconstruction Scheme

In this section, we discuss some approximation properties of the proposed scattered
data reconstruction method. To this end, we prove a sequence of corollaries from the
Madych-Nelson theorem to show that the kernel-based Lagrange interpolation scheme
is optimal in three different senses.

4.1. Variational Property

The first optimality result relies on the Pythagoras theorem, here stated as follows.

COROLLARY 4. For X = {x1, . . . ,xn} ⊂ Rd , let s ∈ SX denote the unique inter-
polant to f ∈ F satisfying sX = fX . Then, the Pythagoras theorem

‖ f‖2
K = ‖s‖2

K +‖ f − s‖2
K

holds.

Proof. Recall that s ∈ SX can be represented as s = λyK(·,y), with a functional λ ∈ L
supported on X , i.e., supp(λ) = X . Moreover, by the Madych-Nelson theorem we find

(s,g)K = 0 for all g ∈ F with λ(g) = 0,

i.e., s is orthogonal to the kernel of λ ∈ L . But this implies

(s, f − s)K = 0,

since fX − sX = 0 and supp(λ) = X . Therefore, we have

‖ f‖2
K = ‖ f − s+ s‖2

K = ‖ f − s‖2
K +2( f − s,s)K +‖s‖2

K = ‖ f − s‖2
K +‖s‖2

K

which completes our proof.

The result of Corollary 4 immediately yields the following variational property
of the interpolation scheme.

COROLLARY 5. For X = {x1, . . . ,xn} ⊂Rd and fX ∈Rn, the interpolant s∈ SX
satisfying sX = fX is the unique minimizer of the energy functional ‖ · ‖K among all
interpolants from F to the data fX , i.e.,

‖s‖K ≤ ‖g‖K for all g ∈ F with gX = fX .

Now we are in a position where we can compute the native space norm

‖IX ( f )‖K := sup
f∈F \{0}

‖IX ( f )‖K

‖ f‖K

of the interpolation operator IX : F → SX , which returns on any argument f ∈ F its
unique interpolant s ∈ SX satisfying sX = fX .
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THEOREM 7. For X = {x1, . . . ,xn} ⊂ Rd , the norm ‖IX‖K of the interpolation
operator IX : F → SX is one, i.e.,

‖IX‖K = 1.

Proof. The variational property in Corollary 5 implies

‖IX ( f )‖K ≤ ‖ f‖K for all f ∈ F ,

and so ‖IX‖K ≤ 1. Due to the projection property IX (s) = s, for all s ∈ SX , equality is
attained by any s ∈ SX , i.e.,

‖IX (s)‖K = ‖s‖K for all f ∈ SX ,

and therefore ‖IX‖K = 1.

The above result allows us to conclude that Lagrange interpolation w.r.t. the
native space norm ‖ · ‖K is well-conditioned.

4.2. Orthogonality and Best Approximation

Our next result shows that the proposed interpolation scheme provides, on input fX ,
the unique best approximation to f according to the following definition.

DEFINITION 4. A function s∗ ∈ SX is said to be the best approximation to
f ∈ F from SX w.r.t. ‖ · ‖K , iff

‖s∗− f‖K < ‖s− f‖K for all s ∈ SX \{s∗}.

Now we can show the following properties of the interpolation scheme.

COROLLARY 6. Let X = {x1, . . . ,xn} ⊂ Rd and f ∈ F . Then, the interpolant
s∗ ∈ SX satisfying s∗X = fX is

(a) the unique orthogonal projection of f ∈ F onto SX ;

(b) the unique best approximation to f ∈ F from SX w.r.t. ‖ · ‖K .

Proof. We first show property (a), i.e., s∗− f ⊥ SX , which is equivalent to

(K(·,x j),s∗− f )K = 0 for all 1≤ j ≤ n,

or, by using the Madych-Nelson theorem, equivalent to

s∗(x j) = (K(·,x j),s∗)K = (K(·,x j), f )K = f (x j) for all 1≤ j ≤ n,

i.e., s∗X = fX , as covered by our assumption on s∗ ∈ S .
To prove (b), let s ∈ SX . Then (s∗− s,s∗− f )K = 0, due to (a), and so

‖s− f‖2
K = ‖s− s∗+ s∗− f‖2

K = ‖s− s∗‖2
K +‖s∗− f‖2

K .
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But this already implies

‖s∗− f‖K < ‖s− f‖K for s 6= s∗.

4.3. Norm Minimality of the Pointwise Error Functional

Our next optimality result is concerning pointwise error estimates. To this end, we
regard, for any fixed x ∈ Rd , the pointwise error

(13) εx( f ) = f (x)− s(x)

between f ∈ F and the interpolant s ∈ SX , satisfying sX = fX .
Due to the Lagrange representation of s in (5) the error functional εx in (13) is

given as

(14) εx = δx− `(x)T
δX ∈ L where δX = (δx1 , . . . ,δxn)

T .

Moreover, by the Madych-Nelson theorem, we obtain the representation

(15) εx( f ) = (εy
xK(·,y), f )K for f ∈ F ,

which in turn allows us to bound the pointwise error εx( f ) as follows.

COROLLARY 7. Let s ∈ SX satisfy sX = fX . Then, the pointwise error εx( f )
satisfies the estimate

(16) | f (x)− s(x)|= |εx( f )| ≤ ‖εx‖K · ‖ f‖K ,

where the norm of the error functional can be represented as

‖εx‖2
K = 1− `(x)T AX`(x) = 1−‖`(x)‖2

AX
,

so that

(17) 0≤ ‖εx‖K ≤ 1 for all x ∈ Rd .

The error bound in (16) is sharp, where equality is attained for the function

fx = ε
y
xK(·,y) ∈ F .

Proof. The pointwise error bound for |εx( f )| in (16) follows directly from the repre-
sentation (15) in combination with the Cauchy-Schwarz inequality.

The norm of the error functional εx can be computed by

‖εx‖2
K = (εx,εx)K = (δx− `(x)T

δX ,δx− `(x)T
δX )K

= 1−2`(x)T R(x)+ `(x)T AX`(x) = 1− `(x)T AX`(x),
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where we have used (4) and K(x,x) = Φ(0) = 1. The bound on ‖εx‖K in (17) follows
then from the positive definiteness of AX .

To show sharpness for (16), consider the function fx = ε
y
xK(·,y), for which, by

the Madych-Nelson theorem, equality is attained:

|εx( fx)|= |(εy
xK(·,y), fx)K |= ( fx, fx)K = (εx,εx)K = ‖εx‖K · ‖ fx‖K .

Now let us finally turn to the pointwise optimality of the interpolation scheme.
To this end, we consider, for fixed x ∈ Rd , the variation of the coefficients `≡ `(x) for
the quasi interpolants

s = `T fX =
n

∑
j=1

` j f (x j) for ` = (`1, . . . , `n)T ∈ Rn

to show the norm minimality of the error functional εx in (14). This immediately leads
us to the unconstrained optimization problem

1−2`T R(x)+ `T AX`−→ min
`∈Rn

whose unique solution is given by the solution of the system AX` = R(x).

COROLLARY 8. For any x ∈ Rd , the error functional εx ≡ εx(s) in (14) is the
unique norm minimizer among all error functionals of the form

ε
(`)
x ( f ) = δx− `T

δX ∈ L for ` ∈ Rn,

i.e.,
‖εx‖K < ‖ε(`)

x ‖K for all ` ∈ Rn with AX` 6= R(x).

5. Stability of the Reconstruction Scheme

The discussion of this section is devoted to the stability of the Lagrange interpolation
scheme. To this end, we first provide some basic Riesz stability estimates, before we
analyze the conditioning of the interpolation problem.

5.1. Riesz Bases and Basic Stability Estimates

In this section, we follow along the lines of basic wavelet analysis, where, for the sake
of stability, the construction of Riesz bases is of vital importance. It is rather straight-
forward to show that, for any point set X = {x1, . . . ,xn} ⊂ Rd , the basis functions
B = {K(·,x j)}n

j=1 are a Riesz basis of SX , so that the stability estimate

(18) A‖c‖2
2 ≤

∥∥∥∥∥ n

∑
j=1

c jK(·,x j)

∥∥∥∥∥
2

K

≤ B‖c‖2
2 for all c = (c1, . . . ,cn)T ∈ Rn
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is satisfied with Riesz constants 0 < A≤ B < ∞.
To be more precise on this, we provide the following theorem.

THEOREM 8. For X = {x1, . . . ,xn} ⊂Rd , the functions B = {K(·,x j)}n
j=1 are a

Riesz basis of SX , i.e., the Riesz stability estimate (18) holds, where the Riesz constants
in (18) are given by the smallest eigenvalue A = σmin(AX ) and the largest eigenvalue
B = σmax(AX ) of the matrix AX .

Proof. Recall the linear bijection operator G : Rn→ SX from Proposition 2, where

‖G(c)‖2
K = ‖c‖2

AX
= cT AX c for all c ∈ Rn

which implies (18) with optimal constants A = σmin(AX ) and B = σmax(AX ).

Next we recall that any Riesz basis B has a unique dual Riesz basis B̃ , satisfying
a biorthonormality relation, where the Riesz constants of B̃ are given by the reciprocal
values of the Riesz constants for B . In our particular situation, the dual Riesz basis of
B in Theorem 8 is given by the Lagrange basis of the interpolation scheme.

THEOREM 9. For X = {x1, . . . ,xn} ⊂ Rd , the Lagrange functions B̃ = {` j}n
j=1

are the unique dual Riesz basis of B = {K(·,x j)}n
j=1, satisfying the biorthonormality

relation

(19) (K(·,x j), `k)K = δ jk for all 1≤ j,k ≤ n.

Moreover, the stability estimate

(20)
1
B
‖ fX‖2

2 ≤

∥∥∥∥∥ n

∑
j=1

f (x j)` j

∥∥∥∥∥
2

K

≤ 1
A
‖ fX‖2

2 for all fX ∈ Rn

holds with Riesz constants 0 < 1/B≤ 1/A < ∞, where A = σmin(AX ) and B = σmax(AX ).

Proof. The biorthonormality (19) follows from the Madych-Nelson theorem,

(K(·,x j), `k)K = `k(x j) = δ jk for all 1≤ j,k ≤ n.

Moreover, the stability estimate in (20) is due the representation∥∥∥∥∥ n

∑
j=1

f (x j)` j

∥∥∥∥∥
2

K

= ‖ fX‖2
A−1

X
= f T

X A−1
X fX for all fX ∈ Rn,

in combination with the bounds

σmin(A−1
X )‖ fX‖2

2 ≤ f T
X A−1

X fX ≤ σmax(A−1
X )‖ fX‖2

2 for all fX ∈ Rn,

so that (20) holds with

1/B = σ
−1
max(AX ) = σmin(A−1

X ) and 1/A = σ
−1
min(AX ) = σmax(A−1

X ).
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The above result implies the following dual stability estimate to (18).

COROLLARY 9. For X = {x1, . . . ,xn} ⊂ Rd , the stability estimate

A‖s‖2
K ≤ ‖sX‖2

2 ≤ B‖s‖2
K for all s ∈ SX

holds with A = σmin(AX ) and B = σmax(AX ).

Proof. Letting f = s ∈ SX in the stability estimate (20), we obtain

1
B
‖sX‖2

2 ≤ ‖s‖2
K =

∥∥∥∥∥ n

∑
j=1

s(x j)` j

∥∥∥∥∥
2

K

≤ 1
A
‖sX‖2

2 for all f ∈ SX ,

with A = σmin(AX ) and B = σmax(AX ), or, in other words,

1
B
‖G∗(s)‖2

2 ≤ ‖s‖2
K ≤

1
A
‖G∗(s)‖2

2 for all f ∈ SX ,

where G∗ : SX → Rn, s 7→ sX , is the dual operator of G in (9), see Proposition 3.

REMARK 4. Due to the duality of the Riesz basis B = {K(·,x j)}n
j=1 and the

Riesz basis B̃ = {` j}n
j=1 in SX , any f ∈ SX can uniquely be represented w.r.t. B and B̃

as

f =
n

∑
j=1

( f ,K(·,x j))K` j =
n

∑
j=1

( f , ` j)KK(·,x j) for all f ∈ SX .

We can immediately see this by the two relations ( f ,K(·,x j))K = f (x j) and

( f , ` j)K = eT
j A−1

X fX = 〈e j,c〉= c j for all 1≤ j ≤ n.

5.2. Absolute Condition Number and Lebesgue Constant

In this section we discuss, for some closed domain Ω ⊂ Rd , the conditioning of the
interpolation problem w.r.t. the L∞-topology of the continuous functions C (Ω). To this
end, let for any finite set X = {x1, . . . ,xn} ⊂Ω of interpolation points, IX : C (Ω)→ SX
denote the interpolation operator, which returns on any argument f ∈ C (Ω) its unique
interpolant s ∈ SX satisfying sX = fX .

Recall that the absolute condition number of the interpolation problem is given
by the smallest number κ∞ ≡ κ∞,X satisfying

‖IX f‖L∞(Ω) ≤ κ∞ · ‖ f‖L∞(Ω) for all f ∈ C (Ω).

Therefore, κ∞ is the operator norm ‖IX‖∞ of IX w.r.t. the norm ‖ ·‖L∞(Ω) on C (Ω), i.e.,
κ∞ = ‖IX‖∞. Now, the operator norm ‖IX‖∞, and so the absolute condition number κ∞,
can be computed as follows.
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THEOREM 10. For X = {x1, . . . ,xn} ⊂ Ω, the norm ‖IX‖∞ of the interpolation
operator IX : C (Ω)→ SX is given by the Lebesgue constant

(21) Λ∞ := max
x∈Ω

n

∑
j=1
|` j(x)|= max

x∈Ω

‖`(x)‖1.

Proof. For any f ∈ C (Ω), let s = IX ( f ) ∈ SX ⊂ C (Ω) denote the unique interpolant to
f on X satisfying fX = sX . Using the Lagrange representation of s in (5), we obtain the
estimate

‖IX ( f )‖L∞(Ω) = ‖s‖L∞(Ω) ≤max
x∈Ω

n

∑
j=1
|` j(x)| · | f (x j)| ≤ Λ∞ · ‖ f‖L∞(Ω),

and therefore ‖IX‖∞ ≤ Λ∞.
In order to see that ‖IX‖∞ ≥ Λ∞, suppose that the maximum of Λ∞ in (21) is at-

tained at x∗ ∈Ω. Moreover, let g∈C (Ω) be a function satisfying g(x j) = sign(` j(x∗)),
for all 1≤ j ≤ n, and ‖g‖L∞(Ω) = 1. Then,

‖IX (g)‖L∞(Ω) ≥ (IX (g))(x∗) =
n

∑
j=1

` j(x∗)g(x j) =
n

∑
j=1
|` j(x∗)|= Λ∞

and so ‖IX (g)‖L∞(Ω) ≥ Λ∞, which implies ‖IX‖∞ ≥ Λ∞. Altogether, ‖IX‖∞ = Λ∞.

Now let us compute an upper bound for the Lebesgue constant Λ∞.

THEOREM 11. For X = {x1, . . . ,xn}⊂Ω, the Lebesgue constant Λ∞ is bounded
above by

Λ∞ ≤
n

∑
j=1

√
a−1

j j ,

where a−1
j j > 0 is the j-th diagonal element of the matrix A−1

X , for 1≤ j ≤ n.

Proof. Suppose that the maximum of Λ∞ in (21) is attained at x∗ ∈Ω. Then, by using
Example 4 and Proposition 4, we obtain

Λ∞ =
n

∑
j=1
|` j(x∗)|=

n

∑
j=1
|δx∗(` j)| ≤

n

∑
j=1
‖δx∗‖K · ‖` j‖K =

n

∑
j=1
‖` j‖K =

n

∑
j=1

√
a−1

j j .

REMARK 5. Note that by

1 = |δx j(` j)| ≤ ‖δx j‖K · ‖` j‖K = ‖` j‖K =
√

a−1
j j for 1≤ j ≤ n

we have a−1
j j ≥ 1, for all 1≤ j ≤ n, which implies

Λ∞ ≤
n

∑
j=1

√
a−1

j j ≤
n

∑
j=1

a−1
j j = trace(A−1

X )≤ n ·σmax(A−1
X ).
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To compute a lower bound for Λ∞, we use the estimate

‖`(x)‖2
2 ≥ σ

−1
max(AX )`(x)T AX`(x) = σmin(A−1

X )`(x)T AX`(x)
= σmin(A−1

X )R(x)T A−1
X R(x)≥ σ

2
min(A

−1
X )‖R(x)‖2

2,

which, in combination with ‖`(x)‖1 ≥ ‖`(x)‖2, yields

Λ∞ = max
x∈Ω

‖`(x)‖1 ≥max
x∈Ω

‖`(x)‖2 ≥ σmin(A−1
X )max

x∈Ω

‖R(x)‖2 ≥ σmin(A−1
X ),

where we used
max
x∈Ω

‖R(x)‖2 ≥ max
1≤ j≤n

‖R(x j)‖2 ≥ 1.

We conclude this section as follows.

THEOREM 12. For X = {x1, . . . ,xn}⊂Ω, the Lebesgue constant Λ∞ is bounded
below by

Λ∞ ≥ σmin(A−1
X ) = σ

−1
max(AX ).

We finally remark that the bounds in Remark 5 and Theorem 12 are rather
coarse. But the purpose of our basic discussion is to relate the range of the Lebesgue
constant Λ∞ to the spectrum of the matrix AX .

6. Penalized Least Squares Approximation

This section is devoted to penalized least squares approximation (PLSA), an alterna-
tive approach for scattered data fitting other than Lagrange interpolation. PLSA makes
sense especially in situations where the given data is contaminated with noise, or, when
the given data is very large. We first prove the well-posedness of the PLSA problem,
before we characterize its solution. Then, we turn to the sensitivity of PLSA, and,
moreover, we prove the convergence of the PLSA solution to the solution of the classi-
cal least squares approximation (LSA) problem. For a more general account to PLSA
problems, we refer to [10].

6.1. Problem Formulation and Characterization of the Solution

To explain PLSA, let a finite point set X = {x1, . . . ,xN} ⊂ Rd be given. Moreover,
suppose that Y = {y1, . . . ,yn} is a subset of X , Y ⊂ X , whose size |Y | = n is much
smaller than the size |X | = N of X , i.e., n� N. Then, our aim is to reconstruct an
unknown function f ∈ F from its values fX ∈RN by solving the following problem of
penalized least squares approximation.

Problem (Pα). On given function values fX ∈RN and for α≥ 0, find sα ∈ SY satisfying

(22)
1
N
‖( f − sα)X‖2

2 +α‖sα‖2
K = min

s∈SY

(
1
N
‖( f − s)X‖2

2 +α‖s‖2
K

)
.
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Before we discuss the well-posedness of problem (Pα), let us first provide some
comments. Note that the first term in the cost functional (22),

EX ( f ,s) =
1
N
‖( f − s)X‖2

2 =
1
N

N

∑
k=1
| f (xk)− s(xk)|2 for s ∈ SY

is the usual mean square error between f and s on X . Moreover, the energy functional

J(s) = ‖s‖2
K for s ∈ SY

in (22) measures the smoothness of s. Therefore, the penalty parameter α ≥ 0 in (22)
serves to balance between the smoothness of the solution sα and its mean square error
to f on X .

In fact, note that for α = 0, the corresponding optimization problem (P0) coin-
cides with the classical problem of linear least squares approximation (LSA) [4, 14].
In contrast, for large α, the smoothing term J(s) will dominate over the mean square
error EX ( f ,s). In particular, for α→ ∞, the solution sα in (22) tends to zero.

Now let us show that the problem (Pα) has a unique solution. To this end, we
first rewrite the mean square error as

(23) EX ( f ,s) =
1
N
‖ fX −AX ,Y c‖2

2 for s ∈ SY ,

where
AX ,Y = (K(xk,y j))1≤k≤N;1≤ j≤n ∈ RN×n,

and where c = (c1, . . . ,cn)T ∈ Rn are the coefficients of

(24) s =
n

∑
j=1

c jK(·,y j) ∈ SY .

The representation of EX ( f ,s) in (23), in combination with the representation
J(s) = cT AY c of the energy functional, allows us to rewrite the cost functional in (22)
as

(25) EX ( f ,s)+αJ(s) =
1
N
‖ fX −AX ,Y c‖2

2 +αcT AY c for s ∈ SY .

Now we see that the problem (Pα) is well-posed.

THEOREM 13. For any α≥ 0, the penalized least squares approximation prob-
lem (Pα) has a unique solution sα ∈ SY of the form (24), where the coefficients cα ∈Rn

of sα are given by the unique solution of the normal equations

(26)
[

1
N

AT
X ,Y AX ,Y +αAY

]
cα =

1
N

AT
X ,Y fX .
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Proof. Requiring a vanishing gradient of the cost functional in (25), this immediately
leads us to the normal equations (26), whose coefficient matrix is, for any α≥ 0, posi-
tive definite. Therefore, problem (Pα) has a unique solution.

An alternative characterization for the unique solution sα to the optimization
problem (22) relies on classical approximation theory.

THEOREM 14. For any α ≥ 0, the solution sα ≡ sα( f ) ∈ SY of problem (Pα)
can be characterized by the conditions

(27)
1
N
〈( f − sα)X ,sX 〉= α(sα,s)K for all s ∈ SY .

Proof. We introduce a semi-inner product [·, ·]α on F ×F by

[( f ,g),( f̃ , g̃)]α :=
1
N
〈 fX , f̃X 〉+α(g, g̃)K for f ,g, f̃ , g̃ ∈ F ,

which yields the semi-norm ‖ · ‖α on F ×F by

‖( f ,g)‖2
α =

1
N
‖ fX‖2

2 +α‖g‖2
K for f ,g ∈ F .

Note that problem (Pα) is equivalent to finding a best approximation s∗α ∈ SY
satisfying

‖( f ,0)− (s∗α,s∗α)‖2
α = inf

s∈SY
‖( f ,0)− (s,s)‖2

α.

Resorting to standard approximation theory in Euclidean spaces, and since SY is
a Hilbert space w.r.t. [·, ·]α, the unique best approximation s∗α ∈ SY can be characterized
by the orthogonality relations

[( f ,0)− (s∗α,s∗α),(s,s)]α = 0 for all s ∈ SY ,

which are equivalent to the conditions in (27) for s∗α = sα.

Note that the characterizations in Theorems 13 and 14 are equivalent. Indeed,
with replacing s ∈ SY in (27) by the basis functions K(·,yk) ∈ SY , for 1 ≤ k ≤ n, the
conditions in (27) can be rewritten as

(28)
1
N
〈( f − sα)X ,R(yk)〉= α(sα,K(·,yk))K for all 1≤ k ≤ n,

where
RT (yk) = (K(x1,yk), . . . ,K(xN ,yk)) = eT

k AT
X ,Y .

Assuming (24) for the form of sα, with coefficients cα ∈ Rn, we have

(sα)X = AX ,Y cα ∈ RN ,
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and so we can derive the normal equations from (28): On the one hand, the left hand
side in (28) can be rewritten as

1
N
〈( f − sα)X ,R(yk)〉 =

1
N

[
RT (yk) fX −RT (yk)AX ,Y cα

]
=

1
N

[
eT

k AT
X ,Y fX − eT

k AT
X ,Y AX ,Y cα

]
.

On the other hand, the right hand side in (28) can be rewritten as

α(sα,K(·,yk))K = αsα(yk) = αeT
k AY cα,

where we used the identity (sα,K(·,yk))K = sα(yk) from the Madych-Nelson theorem.

6.2. Stability, Sensitivity, Error Bounds, and Convergence

Let us turn to the stability of penalized least squares approximation. To this end, we
bound the minimizer sα of the cost functional in (22) as follows.

THEOREM 15. For any α ≥ 0, the solution sα ≡ sα( f ) ∈ SY of problem (Pα)
satisfies the stability estimate

1
N
‖(sα− f )X‖2

2 +α‖sα‖2
K ≤ (1+α)‖ f‖2

K .

Proof. Let s f ∈ SY denote the (unique) interpolant to f at Y satisfying (s f − f )Y = 0.
Recall ‖s f ‖K ≤ ‖ f‖K from Corollary 5. Then,

1
N
‖(sα− f )X‖2

2 +α‖sα‖2
K =

1
N

N

∑
k=1
|sα(xk)− f (xk)|2 +α‖sα‖2

K

≤ 1
N

N

∑
k=1
|s f (xk)− f (xk)|2 +α‖s f ‖2

K

≤ 1
N ∑

x∈X\Y
‖εx‖2

K · ‖ f‖2
K +α‖ f‖2

K

=

(
1
N ∑

x∈X\Y
‖εx‖2

K +α

)
‖ f‖2

K

≤
(

N−n
N

+α

)
‖ f‖2

K ≤ (1+α)‖ f‖2
K ,

where we have used the pointwise error estimate (16) from Subsection 4.3 and the
uniform bound ‖εx‖K ≤ 1 in (17).

Next we analyze the sensitivity of problem (Pα) under the variation of the
smoothing parameter α≥ 0. To this end, we first observe that the solution sα ≡ sα( f )
of problem (Pα) coincides with that for the target function s0, i.e., sα(s0) = sα( f ).
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LEMMA 1. For any α≥ 0, the solution sα ≡ sα( f ) of problem (Pα) satisfies

(a) the Pythagoras theorem,

‖( f − sα)X‖2
2 = ‖( f − s0)X‖2

2 +‖(s0− sα)X‖2
2,

(b) the best approximation property,

‖(s0− sα)X‖2
2 +α‖sα‖2

K = min
s∈SY
‖(s0− s)X‖2

2 +α‖s‖2
K ,

i.e., sα(s0) = sα( f ).

Proof. Recall that the solution sα( f ) to (Pα) is characterized by the conditions (27) in
Theorem 14, where for α = 0 we obtain the characterization

(29)
1
N
〈( f − s0)X ,sX 〉= 0 for all s ∈ SY .

This implies, for any s ∈ SY , the relation

‖( f − s)X‖2
2 = 〈( f − s0 + s0− s)X ,( f − s0 + s0− s)X 〉

= ‖( f − s0)X‖2
2 +2〈( f − s0)X ,(s0− s)X 〉+‖(s0− s)X‖2

2

= ‖( f − s0)X‖2
2 +‖(s0− s)X‖2

2,

and so in particular, with letting s = sα, (a) is proven.

As regards property (b), we subtract (29) from (27) to obtain by

(30)
1
N
〈(s0− sα)X ,sX 〉= α(sα,s)K for all s ∈ SY

the characterization (27) for the solution sα(s0) of (Pα) from Theorem 14.

Next we aim to analyze the convergence of {sα}α for α↘ 0. To this end, we
first prove a stability estimate for sα and an error bound for sα− s0.

THEOREM 16. Let f ∈ F and α≥ 0. Then, the solution sα ≡ sα( f ) of problem
(Pα) and the solution s0 ≡ s0( f ) of problem (P0) satisfy

(a) the stability estimate
‖sα‖K ≤ ‖s0‖K ,

(b) the error bound
1
N
‖(sα− s0)X‖2

2 ≤ α‖s0‖2
K .
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Proof. Letting s = s0− sα in (30), we obtain

(31)
1
N
‖(s0− sα)X‖2

2 +α‖sα‖2
K = α(sα,s0)K .

Using the Cauchy-Schwarz inequality, this yields

1
N
‖(s0− sα)X‖2

2 +α‖sα‖2
K ≤ α‖sα‖K · ‖s0‖K ,

which immediately implies properties (a) and (b).

Let us finally show the convergence of sα to s0 for α↘ 0.

THEOREM 17. For α↘ 0, the solution sα of problem (Pα) converges to the
solution s0 of problem (P0) at the following asymptotic convergence rates.

(a) Convergence in the native space norm,

‖sα− s0‖2
K = O(α) for α↘ 0,

(b) convergence of the mean square error,

1
N
‖(sα− s0)X‖2

2 = o(α) for α↘ 0.

Proof. To prove (a), first note that

‖s‖X := ‖sX‖2 for s ∈ SY

is a norm on SY . To see the definiteness of ‖ · ‖X on SY , note that ‖s‖X = 0 implies
sX = 0, in particular sY = 0, since Y ⊂ X , in which case s = 0.

Moreover, since SY has finite dimension, the norms ‖ · ‖X and ‖ · ‖K are equiva-
lent on SY , so that there exists a constant C > 0 satisfying

‖s‖K ≤C‖s‖X for all s ∈ SY .

This, in combination with part (b) of Theorem 16, implies property (a) by

‖sα− s0‖2
K ≤C2‖(sα− s0)X‖2

2 ≤C2Nα‖s0‖2
K .

To prove (b), we first recall (31) to obtain

(sα,s0)K =
1
α

[
1
N
‖(s0− sα)X‖2

2 +α‖sα‖2
K

]
for α > 0.

This in turn implies the identity

(32) ‖sα− s0‖2
K = ‖s0‖2

K−‖sα‖2
K−

2
αN
‖(s0− sα)X‖2

2
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by

‖sα− s0‖2
K = ‖sα‖2

K−2(sα,s0)K +‖s0‖2
K

= ‖sα‖2
K +‖s0‖2

K−
2
α

[
1
N
‖(s0− sα)X‖2

2 +α‖sα‖2
K

]
= ‖s0‖2

K−‖sα‖2
K−

2
αN
‖(s0− sα)X‖2

2.

To conclude our proof, note that, by property (a), the left hand side in (32) tends
to zero as α↘ 0, and so does the right hand side in (32) tend to zero. By the stability
estimate in Theorem 16 (a), we find

0≤ ‖s0‖K−‖sα‖K ≤ ‖sα− s0‖K −→ 0 for α↘ 0,

so that ‖sα‖K −→ ‖s0‖K for α↘ 0. Therefore,

2
αN
‖(s0− sα)X‖2

2 −→ 0 for α↘ 0,

which completes our proof for (b).

7. Conclusions and Final Remarks

We have introduced the reader to selected aspects of kernel-based scattered data approxi-
mation. To this end, we have explained basic principles of multivariate Lagrange inter-
polation by positive definite kernels. This includes the construction and characteriza-
tion of their associated native reproducing kernel Hilbert spaces, along with a discus-
sion concerning the optimality and the stability of the recovery method. Moreover, we
have explained the solution of penalized least squares approximation problems, where
we have placed special emphasis on the stability and the convergence of the proposed
kernel-based approximation method.

For the sake of simplicity, and in order to keep the presentation within rea-
sonable page limits, we have restricted ourselves to approximation methods by pos-
itive definite kernels. For a comprehensive discussion on scattered data approxima-
tion by conditionally positive definite (radial) kernels and their applications to mesh-
free approximation methods, we refer the interested reader to the research mono-
graphs [6, 8, 13, 23].

Further directions for possible extensions and generalizations are concerning
kernel-based approximation from scattered Hermite-Birkhoff data [12, 24] (rather than
from plain Lagrange data), reconstruction methods for vector-valued functions (rather
than for scalar-valued functions) via matrix-valued kernels [19], as well as kernel-based
multiscale methods [9, 13], to mention but a few. For a general account to (penalized)
least squares approximation problems, we refer the reader to [4, 10, 14].
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