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Abstract

We consider simulation based POD–MOR of integrated circuits in elec-
trical networks. The network is modeled by modified nodal analysis, while
the integrated circuits are modeled with the nonlinear drift-diffusion equa-
tions. The spatial discretization of the drift-diffusion equations with finite
elements gives rise to a high dimensional differential-algebraic equation sys-
tem. We show how proper orthogonal decomposition (POD) can be used to
reduce the dimension of the model. It turns out that the reduced model for a
semiconductor depends on the position of the semiconductor in the network.
We present numerical investigations for the reduction of a 4-diode rectifier
network, which clearly indicate this fact. Furthermore, we apply the Dis-
crete Empirical Interpolation Method (DEIM) of [11] for a further reduction
of the nonlinearity, yielding a further reduction of the overall computational
complexity. Moreover, we adapt to the present situation the Greedy sam-
pling approach of [36] to construct PODmodels which are valid over certain
parameter ranges. In a next step we combine the balancing-related model re-
duction PABTEC to reduce the dimension of the decoupled linear network
equations with POD-MOR for the semiconductor model. Finally, we present
numerical examples which demonstrate the performance of our approach.

1 Introduction
Computer simulations play an significant role in design and production of very
large integrated circuits or chips that have nowadays hundreds of millions of semi-
conductor devices placed on several layers and interconnected by wires. Caused
by the decreasing physical size and increasing packing density and operating fre-
quency, such devices cannot be modeled by lumped equivalent circuits any more.
Therefore, the need for new models reflecting the complex continuous processes
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in semiconductors in more details is growing. An approach for modeling the semi-
conductor devices in the circuit relies on the drift-diffusion equations coupled to
the network equations [51, 57]. A spatial discretization of the drift-diffusion equa-
tions leads to systems of very large state space dimension that makes the analysis
and simulations unacceptably time consuming and expensive. In this context,
model order reduction is of great importance. A general idea of model reduction
is to approximate the large-scale system by a much smaller model that captures
the input-output behavior of the original system to a required accuracy and also
preserves essential physical properties. For circuit equations, passivity is the most
important property to be preserved in the reduced-order model.
For linear dynamical systems, many different model reduction approaches

have been developed over the last thirty years, see [6, 48] for recent collection
books on this topic. Krylov subspace based methods such as PRIMA [35] and
SPRIM [16, 17] are the most used passivity-preserving model reduction tech-
niques in circuit simulation. A drawback of these methods is the ad hoc choice of
interpolation points that strongly influence the approximation quality. Recently,
an optimal point selection strategy based on tangential interpolation has been pro-
posed in [3, 20] that provides an optimal H2-approximation.
An alternative approach for model reduction of linear systems is balanced

truncation. In order to capture specific system properties, different balancing tech-
niques have been developed for standard and generalized state space systems, see,
e.g., [21, 34, 38, 41, 55]. In particular, passivity-preserving balanced truncation
methods for electrical circuits (PABTEC) have been proposed in [42, 43, 56] that
heavily exploit the topological structure of circuit equations. These methods are
based on balancing the solution of projected Lyapunov or Riccati equations and
provide computable error bounds.
Model reduction of nonlinear equation systems may be performed by a trajec-

tory piece-wise linear approach [44] based on linearization, or proper orthogonal
decomposition (POD) (see, e.g., [49]), which relies on snapshot calculations and
is successfully applied in many different engineering fields including computa-
tional fluid dynamics and electronics [49, 24, 30, 53, 58]. A connection of POD
to balanced truncation was established in [45, 61].
A POD-based model reduction approach for the nonlinear drift-diffusion equa-

tions has been presented in [28], and then extended in [24] to parameterized elec-
trical networks using the greedy sampling proposed in [36]. An advantage of the
POD approach is its high accuracy with only few model parameters. However, for
its application to the drift-diffusion equations it was observed that the reduction
of the problem dimension not necessarily implies the reduction of the simulation
time. Therefore, several adaption techniques such as missing point estimation [4]
and discrete empirical interpolation method (DEIM) [10, 11] have been developed
to reduce the simulation cost for the reduced-order model.
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In this paper, we review results of [24, 25, 26, 27, 28] related to model order re-
duction of coupled circuit-device systems consisting of the differential-algebraic
equations modeling an electrical circuit and the nonlinear drift-diffusion equa-
tions describing the semiconductor devices. In a first step we show how proper
orthogonal decomposition (POD) can be used to reduce the dimension of the semi-
conductor models. It among other things turns out, that the reduced model for a
semiconductor depends on the position of the semiconductor in the network. We
present numerical investigations from [28] for the reduction of a 4-diode recti-
fier network, which clearly indicate this fact. Furthermore, we apply the Discrete
Empirical Interpolation Method (DEIM) of [10] for a further reduction of the
nonlinearity, yielding a further reduction of the overall computational complex-
ity. Moreover, we adapt to the present situation the Greedy sampling approach
of [36] to construct POD models which are valid over certain parameter ranges.
In a next step we combine the balancing-related model reduction PABTEC to re-
duce the dimension of the decoupled linear network equations with POD-MOR
for the semiconductor model. Finally, we present several numerical examples
which demonstrate the performance of our approach.

2 Basic models
In this section we combine mathematical models for electrical networks with
mathematical models for semiconductors. Electrical networks can be efficiently
modeled by a differential-algebraic equation (DAE) which is obtained from mod-
ified nodal analysis. Denoting by e the node potentials and by jL and jV the cur-
rents of inductive and voltage source branches, the DAE reads (see [29, 19, 57])

AC
d
dt
qC(A�C e, t)+ARg(A�R e, t)+AL jL+AV jV =−AIis(t), (1)

d
dt

φL( jL, t)−A�L e= 0, (2)

A�V e= vs(t). (3)

Here, the incidence matrix A = [AR,AC,AL,AV ,AI] represents the network topol-
ogy, e.g. at each nonmass node i, ai j = 1 if the branch j leaves node i and ai j =−1
if the branch j enters node i and ai j = 0 elsewhere. The functions qC, g and φL
are continuously differentiable defining the voltage-current relations of the net-
work components. The continuous functions vs and is are the voltage and current
sources. For a basic example consider the network in Figure 1 where the network
is described by

AV =
(
1, 0

)�
, AS =

(−1, 1
)�

, AR =
(
0, 1

)�
, and g(A�R e, t) =

1
R
e2(t).
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Under the assumption that the Jacobians

DC(e, t) :=
∂qC
∂e

(e, t), DG(e, t) :=
∂g
∂e

(e, t), DL( j, t) :=
∂φL
∂ j

( j, t)

are positive definite, analytical properties (e.g. the index) of DAE (1)-(3) are in-
vestigated in [14] and [15]. In linear networks, the matrices DC, DG and DL are
positive definite diagonal matrices with capacitances, conductivities and induc-
tances on the diagonal.
Often semiconductors themselves are modeled by electrical networks. These

models are stored in a library and are stamped into the surrounding network in
order to create a complete model of the integrated circuit. Here we use a different
approach which uses the transient drift-diffusion equations as a continuous model
for semiconductors. Advantages are the higher accuracy of the model and fewer
model parameters. On the other hand, numerical simulations are more expensive.
For a comprehensive overview of the drift-diffusion equations we refer to [1, 2,
8, 33, 47]. Using the notation introduced there, we have the following system of
partial differential equations for the electrostatic potentialψ(t,x), the electron and
hole concentrations n(t,x) and p(t,x) and the current densities Jn(t,x) and Jp(t,x):

div(ε gradψ) = q(n− p−C),
−q∂tn+divJn = qR(n, p,Jn,Jp),
q∂t p+divJp =−qR(n, p,Jn,Jp),

Jn = μnq(UT gradn−ngradψ),

Jp = μpq(−UT grad p− pgradψ),

with (t,x) ∈ [0,T ]×Ω and Ω ⊂ R
d . The nonlinear function R describes the rate

of electron/hole recombination, q is the elementary charge, ε the dielectricity, μn
and μp are the mobilities of electrons and holes. The temperature is assumed
to be constant which leads to a constant thermal voltage UT . The function C is
the time independent doping profile. Note that we do not formulate into quasi-
Fermi potentials since the additional non-linearities would imply higher online
simulation time for the reduced model. Further details are given in [24]. The
analytical and numerical analysis of systems of this form is subject to current
research, see [7, 18, 51, 57].

2.1 Coupling
In the present section we develop the complete coupled system for a network with
ns semiconductors. We will not specify an extra index for semiconductors, but we
keep in mind that all semiconductor equations and coupling conditions need to be
introduced for each semiconductor.
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Figure 1: Basic test circuit with one diode.

For the sake of simplicity we assume that to a semiconductor m semiconduc-
tor interfaces ΓO,k ⊆ Γ ⊂ ∂Ω, k = 1, . . . ,m are associated, which are all Ohmic
contacts, compare Figure 2. The dielectricity ε shall be constant over the whole
domain Ω. We focus on the Shockley-Read-Hall recombination

R(n, p) :=
np−n2i

τp(n+ni)+ τn(p+ni)

which does not depend on the current densities. Herein, τn and τp are the aver-
age lifetimes of electrons and holes, and ni is the constant intrinsic concentration
which satisfy n2i = np if the semiconductor is in thermal equilibrium.
The scaled complete coupled system is constructed as follows. (We neglect

the tilde-sign over the scaled variables.) The current through the diodes must be
considered in Kirchhoff’s current law. Consequently, the term AS jS is added to
equation (1), e.g.

AC
d
dt
qC(A�C e, t)+ARg(A�R e, t)+AL jL+AV jV +AS jS =−AIis(t), (4)

d
dt

φL( jL, t)−A�L e= 0, (5)

A�V e= vs(t). (6)

Here,
jS,k =

∫
ΓO,k

(Jn+ Jp− ε∂t∇ψ) ·ν dσ . (7)

I.e. the current is the integral over the current density Jn+Jp plus the displacement
current in normal direction ν . Furthermore, the potentials of nodes which are
connected to a semiconductor interface are introduced in the boundary conditions
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of the drift-diffusion equations (see also Figure 2):

ψ(t,x) = ψbi(x)+(A�S e(t))k =UT log

⎛⎝
√
C(x)2+4n2i +C(x)

2ni

⎞⎠+(A�S e(t))k,

(8)

n(t,x) =
1
2

(√
C(x)2+4n2i +C(x)

)
, (9)

p(t,x) =
1
2

(√
C(x)2+4n2i −C(x)

)
, (10)

for (t,x)∈ [0,T ]×ΓO,k. Here, ψbi(x) denotes the build-in potential and ni the con-
stant intrinsic concentration. All other parts of the boundary are isolation bound-
aries ΓI := Γ\ΓO, where ∇ψ ·ν = 0, Jn ·ν = 0 and Jp ·ν = 0 holds.
The complete model forms a partial differential-algebraic equation (PDAE).

The analytical and numerical analysis of such systems is subject to current re-
search, see [7, 18, 51, 57]. The simulation of the complete coupled system is
expensive and numerically difficult due to bad scaling of the drift-diffusion equa-
tions. The numerical issues can be significantly reduced by the unit scaling pro-
cedure discussed in [47]. That means we substitute

x= Lx̃, ψ =UT ψ̃ , n= ‖C‖∞ñ, p= ‖C‖∞ p̃, C = ‖C‖∞C̃,

Jn =
qUT‖C‖∞

L
μnJ̃n, Jp =

qUT‖C‖∞
L

μpJ̃p, ni = ñi‖C‖∞,

where L denotes a specific length of the semiconductor. The scaled drift-diffusion
equations then read

λΔψ = n− p−C, (11)
−∂tn+νndivJn = R(n, p), (12)

∂t p+νp divJp =−R(n, p), (13)
Jn = ∇n−n∇ψ, (14)
Jp =−∇p− p∇ψ, (15)

where we omit the tilde for the scaled variables. The constants are given by λ :=
εUT

L2q‖C‖∞
, νn := UT μn

L2 and νp :=
UT μp
L2 , where L denotes a specific length of the

semiconductor, see e.g. [47].

3 Simulation of the full system
Classical approaches for the simulation of drift-diffusion equations (e.g. Gummel
iterations [22]) approximate Jn and Jp by piecewise constant functions and then
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Figure 2: Sketch of a coupled system with one semiconductor. Here ψ(t,x) =
ei(t)+ψbi(x), for all (t,x) ∈ [0,T ]×ΓO,1.

solve equations (12) and (13) with respect to n and p explicitly. This helps reduc-
ing the computational effort and increases the numerical stability. For the model
order reduction approach proposed in the present work this method has the dis-
advantage of introducing additional non-linearities, arising from the exponential
structure of the Slotboom variables, see [51]. Subsequently we propose two finite
element discretizations for the drift-diffusion system which with regard to cop-
ing with nonlinearities are advantegeous from the MOR reduction point of view,
and which together with the equations for the electrical network finally lead to
large-scale nonlinear DAE model for the fully coupled system.

3.1 Standard Galerkin finite element approach
Let T denote a regular triangulation of the domain Ω with gridwidth h. In the
classical Galerkin finite element method the functions ψ , n and p are approxi-
mated by piecewise linear and globally continuous functions, while Jn and Jp are
approximated by patchwise-piecewise constant functions, e.g.

ψ(t,x) :=
N

∑
i=1

ψi(t)φi(x), n(t,x) :=
N

∑
i=1
ni(t)φi(x), p(t,x) :=

N

∑
i=1
pi(t)φi(x),

Jn(t,x) :=
N

∑
i=1
Jn,i(t)ϕi(x), Jp(t,x) :=

N

∑
i=1
Jp,i(t)ϕi(x),
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where the functions {φi} and {ϕi} are the corresponding ansatz functions, and
N denotes the number of degrees of freedom. For ψ , n and p the coefficients
corresponding to the boundary elements are prescribed using the Dirichlet bound-
ary conditions. Note that the time is not discretized at this point which refers to
the so-called method of lines. The finite element method leads to the following
DAE for the unknown vector-valued functions of time ψ , n, p, Jn, Jp for each
semiconductor:

0= λSψ(t)+Mn(t)−Mp(t)−Ch+bψ(e(t)),
−Mṅ(t) =−νnD�Jn(t)+hR(n(t), p(t)),
Mṗ(t) =−νpD�Jp(t)−hR(n(t), p(t)),

0= hJn(t)+Dn(t)−diag
(
Bn(t)+ b̃n

)
Dψ(t)+bn,

0= hJp(t)−Dp(t)−diag
(
Bp(t)+ b̃p

)
Dψ(t)+bp,

(16)

where S,M and D,B are assembled finite element matrices. The matrix diag(v) is
diagonal with vector v forming the diagonal. The vectors bψ(e(t)), bn, b̃n, bp and
b̃p implement the boundary conditions imposed on ψ , n and p through (8)-(10).
Discretization of the coupling condition for the current (7) completes the dis-

cretized system. In one spatial dimension we use

jS,k(t) =
aqUT‖C‖∞

L
(μnJn,N(t)+μpJp,N(t))− aεUTLh (ψ̇N(t)− ψ̇N−1(t)) ,

3.2 Mixed finite element approach
Since the electrical field represented by the (negative) gradient of the electrical
potential ψ plays a dominant role in (11)-(15) and is present also in the coupling
condition (7), we provide for it the additional variable gψ = ∇ψ leading to the
following mixed formulation of the DD equations:

λ divgψ = n− p−C, (17)
−∂tn+νndivJn = R(n, p), (18)

∂t p+νp divJp =−R(n, p), (19)
gψ = ∇ψ, (20)
Jn = ∇n−ngψ , (21)
Jp =−∇p− pgψ . (22)

The weak formulation of (17)-(22) then reads: Find ψ,n, p ∈ [0,T ]×L2(Ω)
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and gψ ,Jn,Jp ∈ [0,T ]×H0,N(div,Ω) such that

λ
∫

Ω
divgψ ϕ =

∫
Ω
(n− p) ϕ−

∫
Ω
C ϕ, (23)

−
∫

Ω
∂tn ϕ +νn

∫
Ω
divJn ϕ =

∫
Ω
R(n, p) ϕ, (24)∫

Ω
∂t p ϕ +νp

∫
Ω
divJp ϕ =−

∫
Ω
R(n, p) ϕ, (25)∫

Ω
gψ ·φ =−

∫
Ω

ψ divφ +
∫

Γ
ψ φ ·ν, (26)∫

Ω
Jn ·φ =−

∫
Ω
n divφ +

∫
Γ
n φ ·ν−

∫
Ω
n gψ ·φ , (27)∫

Ω
Jp ·φ =

∫
Ω
p divφ −

∫
Γ
p φ ·ν−

∫
Ω
p gψ ·φ , (28)

are satisfied for all ϕ ∈ L2(Ω) and φ ∈H0,N(div,Ω) where the space H0,N(div,Ω)
is defined by

H(div,Ω) := {y ∈ L2(Ω)d : divy ∈ L2(Ω)},
H0,N(div,Ω) := {y ∈ H(div,Ω) : y ·ν = 0 on ΓI} .

Consequently, the boundary integrals on the right hand sides in equations (26)-
(28) reduce to integrals over the interfaces ΓO,k, where the values of ψ , n and p are
determined by the Dirichlet boundary conditions (8)-(10). We note that, in con-
trast to the standard weak form associated with (11)-(15), the Dirichlet boundary
values are naturally included in the weak formulation (23)-(28) and the Neumann
boundary conditions have to be included in the space definitions. This is advan-
tageous in the context of POD model order reduction since the non-homogeneous
boundary conditions (8)-(10) are not present in the space definitions.
Here, equations (23)-(28) are discretized in space with Raviart-Thomas fi-

nite elements of degree 0 (RT0), alternative discretization schemes for the mixed
problem are presented in [8]. To describe the RT0-approach for d = 2 spatial
dimensions, let T be a triangulation of Ω and let E be the set of all edges. Let
EI := {E ∈ E : E ⊂ Γ̄I} be the set of edges at the isolation (Neumann) boundaries.
The potential and the concentrations are approximated in space by piecewise con-
stant functions

ψh(t),nh(t), ph(t) ∈ Lh := {y ∈ L2(Ω) : y|T (x) = cT , ∀T ∈T },
with ansatz functions {ϕi}i=1,...,N and the discrete fluxes ghψ(t), Jhn(t) and Jhp(t) are
elements of the space

RT0 := {y :Ω→ R
d : y|T (x) = aT +bTx, aT ∈ R

d, bT ∈ R,

[y]E ·νE = 0, for all inner edges E}.
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Here, [y]E denotes the jump y|T+− y|T− over a shared edge E of the elements T+
and T−. The continuity assumption yields RT0 ⊂ H(div,Ω). We set

Hh,0,N(div,Ω) := (RT0∩H0,N(div,Ω))⊂ H0,N(div,Ω).

Then it can be shown, that Hh,0,N posses an edge-oriented basis {φ j} j=1,...,M. We
use the following finite element Ansatz in (23)-(28)

ψh(t,x) =
N

∑
i=1

ψi(t)ϕi(x), ghψ(t,x) =
M

∑
j=1
gψ, j(t)φ j(x),

nh(t,x) =
N

∑
i=1
ni(t)ϕi(x), Jhn (t,x) =

M

∑
j=1
Jn, j(t)φ j(x),

ph(t,x) =
N

∑
i=1
pi(t)ϕi(x), Jhp(t,x) =

M

∑
j=1
Jp, j(t)φ j(x),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(29)

where N := |T |, i.e. the number of elements of T , and M := |E |− |EN |, i.e. the
number of inner and Dirichlet boundary edges.
This in (23)-(28) yields

λ
M

∑
j=1
gψ, j(t)

∫
Ω
divφ j ϕk−

N

∑
i=1

(ni(t)− pi(t))
∫

Ω
ϕi ϕk =−

∫
Ω
C ϕk,

−
N

∑
i=1
ṅi(t)

∫
Ω

ϕi ϕk+νn
M

∑
j=1
Jn, j(t)

∫
Ω
divφ j ϕk−

∫
Ω
R(nh, ph) ϕk = 0,

N

∑
i=1
ṗi(t)

∫
Ω

ϕi ϕk+νp
M

∑
j=1
Jp, j(t)

∫
Ω
divφ j ϕk+

∫
Ω
R(nh, ph) ϕk = 0,

M

∑
j=1
gψ, j(t)

∫
Ω

φ j ·φl+
N

∑
i=1

ψi(t)
∫

Ω
ϕi divφl =

∫
Γ

ψh φl ·ν,

M

∑
j=1
Jn, j(t)

∫
Ω

φ j ·φl+
N

∑
i=1
ni(t)

∫
Ω

ϕi divφl+
∫

Ω
nhghψ ·φl =

∫
Γ
nh φl ·ν,

M

∑
j=1
Jp, j(t)

∫
Ω

φ j ·φl−
N

∑
i=1
pi(t)

∫
Ω

ϕi divφl+
∫

Ω
phghψ ·φl =−

∫
Γ
ph φl ·ν,

which represents a nonlinear, large and sparse DAE for the approximation of the
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functions ψ , n, p, gψ , Jn, and Jp. In matrix notation it reads⎛⎜⎜⎜⎜⎜⎜⎝

0
−MLṅ(t)
MLṗ(t)
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝

−ML ML λD
νnD

νpD
D� MH

D� MH
−D� MH

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

AFEM

⎛⎜⎜⎜⎜⎜⎜⎝

ψ(t)
n(t)
p(t)
gψ(t)
Jn(t)
Jp(t)

⎞⎟⎟⎟⎟⎟⎟⎠

+F (nh, ph,ghψ) = b(e(t)),

with

F (nh, ph,ghψ) :=

⎛⎜⎜⎜⎜⎜⎜⎝

0
−∫ΩR(nh, ph) ϕ∫

ΩR(nh, ph) ϕ
0∫

Ω nhghψ ·φ∫
Ω phghψ ·φ

⎞⎟⎟⎟⎟⎟⎟⎠ , b :=

⎛⎜⎜⎜⎜⎜⎜⎝

−∫ΩC ϕ
0
0∫

Γ ψh(e(t)) φ ·ν∫
Γnh φ ·ν

−∫Γ ph φ ·ν

⎞⎟⎟⎟⎟⎟⎟⎠ , (30)

and ∫
Ω
R(nh, ph)ϕ :=

⎛⎜⎝
∫

ΩR(nh, ph)ϕ1
...∫

ΩR(nh, ph)ϕN

⎞⎟⎠ .

All other integrals inF and b are defined analogously. The matrices ML ∈ R
N×N

and MH ∈ R
M×M are mass matrices in the spaces Lh and Hh,0,N, respectively, and

D ∈ R
N×M. The final DAE for the mixed finite element discretization now takes

the form
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Problem 1 (full model).

AC
d
dt
qC(A�C e(t), t)+ARg(A�R e(t), t)+AL jL(t)+AV jV (t)

+AS jS(t)+AIis(t) = 0, (31)
d
dt

φL( jL(t), t)−A�L e(t) = 0, (32)

A�V e(t)− vs(t) = 0, (33)
jS(t)−C1Jn(t)−C2Jp(t)−C3ġψ(t) = 0, (34)⎛⎜⎜⎜⎜⎜⎜⎝

0
−MLṅ(t)
MLṗ(t)
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠+AFEM

⎛⎜⎜⎜⎜⎜⎜⎝

ψ(t)
n(t)
p(t)
gψ(t)
Jn(t)
Jp(t)

⎞⎟⎟⎟⎟⎟⎟⎠+F (nh, ph,ghψ)−b(e(t)) = 0, (35)

where (34) represents the discretized linear coupling condition (7).

We present numerical computations for the basic test circuit with one diode
depicted in Figure 1, where the model parameters are presented in Table 1. The
input vs(t) is chosen to be sinusoidal with amplitude 5V . The numerical results in
Figure 3 show the capacitive effect of the diode for high input frequencies. Similar
results are obtained in [50] using the simulator MECS.
The discretized equations are implemented in MATLAB, and the DASPK soft-

ware package [37] is used to integrate the high dimensional DAE. Initial values
are stationary states obtained by setting all time derivatives to 0. In order to solve
the Newton systems which arise from the BDF method efficiently, one may re-
order the variables of the sparse system with respect to minimal bandwidth. Then,
one can use the internal DASPK routines for the solution of the linear systems.
Alternatively one can implement the preconditioning subroutine of DASPK using
a direct sparse solver. Note that for both strategies we only need to calculate the
reordering matrices once, since the sparsity structure remains constant.

4 Model order reduction using POD
We now use proper orthogonal decomposition (POD) to construct low-dimensional
surrogate models for the drift-diffusion equations. The idea consists in replacing
the large number of local model-independent ansatz and test functions {φi},{ϕ j}

12



Table 1: Diode model parameters.
Parameter Value Parameter Value

L 10−4 cm ε 1.03545 ·10−12 F/cm
UT 0.0259 V ni 1.4 ·1010 1/cm3
μn 1350 cm2/(Vsec) τn 330 ·10−9 sec
μp 480 cm2/(Vsec) τp 33 ·10−9 sec
a 10−5 cm2 C(x), x< L/2 −9.94 ·1015 1/cm3

C(x), x≥ L/2 4.06 ·1018 1/cm3

Figure 3: Current jV through the basic network for input frequencies 1 MHz, 1
GHz and 5 GHz. The capacitive effect is clearly demonstrated.
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in the finite element approximation of the drift-diffusion systems by only a few
nonlocal model-dependent Ansatz functions for the respective variables.
The snapshot variant of POD introduced in [49] works as follows. We run

a simulation of the unreduced system and collect l snapshots ψ h(tk, ·), nh(tk, ·),
ph(tk, ·), ghψ(tk, ·), Jhn (tk, ·), Jhp(tk, ·) at time instances tk ∈ {t1, . . . , tl} ⊂ [0,T ]. The
optimal selection of the time instances is not considered here. We use the time
instances delivered by the DAE integrator.
Since every component of the state vector y := (ψ,n, p,gψ ,Jn,Jp) has its own

physical meaning we apply POD MOR to each component separately. Among
other things this approach has the advantage of yielding a block-dense model and
the approximation quality of each component is adapted individually.
Let X denote a Hilbert space and let yh : [0,T ]×X → R

r with some r ∈ N.
The Galerkin formulation (29) yields yh(t, ·) ∈ Xh := span{φX1 , . . . ,φXn }, where
{φXj }1≤ j≤n denote n linearly independent elements of X . The idea of POD con-
sists in finding a basis {u1, . . . ,um} of the span of the snapshots

span

{
yh(tk, ·) =

n

∑
i=1
yh,ki φXi (·), with k = 1, . . . , l

}
satisfying

{u1, . . . ,us}= argmin
{v1,...,vs}⊂X

l

∑
k=1

∥∥∥yh(tk, ·)− s

∑
i=1
〈yh(tk, ·),vi(·)〉Xvi(·)

∥∥∥2
X
,

for 1 ≤ s ≤ m, where 1 ≤ m ≤ l. The functions {ui}1≤i≤s are orthonormal in X
and can be obtained with the help of SVD as follows.
Let the matrix Y := (yh,1, . . . ,yh,l) ∈ R

n×l contain as columns the coefficient
vectors of the snapshots. Furthermore, let M := (〈φ Xi ,φXj 〉X)1≤i, j≤n be the posi-
tive definite mass matrix with its Cholesky factorization M = LL�. Let (Ũ ,Σ,Ṽ )
denote the singular value decomposition of Ỹ := L�Y , i.e. Ỹ = ŨΣṼ� with
Ũ ∈ R

n×n, Ṽ ∈ R
l×l , and a matrix Σ ∈ R

n×l containing the singular values σ1 ≥
σ2 ≥ . . . ≥ σm > σm+1 = . . . = σl = 0. We set U := L−�Ũ(:,1:s). Then, the s-
dimensional POD basis is given by

span

{
ui(·) =

n

∑
j=1
UjiφXj (·), i= 1, . . . ,s

}
.

The information content of {u1, . . . ,us} with respect to the scalar product 〈·, ·〉X
with

0≤ Δ(s) =

√
∑mi=s+1σ2i
∑mi=1σ2i

≤ 1, (36)
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is given by 1−Δ(s). Here Δ(s) measures the lack of information of {u1, . . . ,us}
with respect to span{yh(t1, ·), . . . ,yh(tl, ·)}. An extended introduction to POD can
be found in [39].
The POD basis functions are now used as trial and test functions in the Galerkin

method.
If the snapshots satisfy inhomogeneous Dirichlet boundary conditions, as in

(16), POD is performed for

ψ̃(t) = ψ(t)−ψr(t), ñ(t) = n(t)−nr(t), p̃(t) = p(t)− pr(t),

with ψr, nr, pr denoting reference functions satisfying the Dirichlet boundary
conditions required for ψ , n and p. This guarantees that the POD basis admits
homogeneous boundary conditions on the Dirichlet boundary.
In the case of the mixed finite element approach the introduction of a refer-

ence state is not necessary, since the boundary values are included more naturally
through the variational formulation. The time-snapshot POD procedure then de-
livers Galerkin Ansatz spaces for ψ , n, p, gψ , Jn and Jp. This leads to the Ansatz

ψPOD(t) =Uψγψ(t), gPODψ (t) =Ugψ γgψ (t),

nPOD(t) =Unγn(t), JPODn (t) =UJnγJn(t),
pPOD(t) =Upγp(t), JPODp (t) =UJpγJp(t).

⎫⎪⎬⎪⎭ (37)

The injection matrices

Uψ ∈ R
N×sψ , Un ∈ R

N×sn , Up ∈ R
N×sp ,

Ugψ ∈ R
M×sgψ , UJn ∈ R

M×sJn , UJp ∈ R
M×sJp ,

contain the (time independent) POD basis functions, the vectors γ(·) the corre-
sponding time-variant coefficients. The numbers s(·) are the respective number of
POD basis functions included. Assembling the POD system yields the DAE⎛⎜⎜⎜⎜⎜⎜⎝

0
−γ̇n(t)

γ̇p(t)
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠+APOD

⎛⎜⎜⎜⎜⎜⎜⎝

γψ(t)
γn(t)
γp(t)
γgψ (t)
γJn(t)
γJp(t)

⎞⎟⎟⎟⎟⎟⎟⎠+U�F (nPOD, pPOD,gPODψ ) =U�b(e(t)),
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with

APOD =U�AFEMU

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−U�ψMLUn U�ψMLUp λU�ψ DUgψ

νnU�n DUJn
νpU�p DUJp

U�gψD
�Uψ I

U�JnD
�Un I

−U�JpD�Up I

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and U = diag(Uψ ,Un,Up,Ugψ ,UJn,UJp). Note that we exploit the orthogonality
of the POD basis functions, e.g. U�n MLUn =U�p MLUp = IN×N andU�gψMHUgψ =

U�JnMHUJn =U
�
JpMHUJp = IM×M . The arguments of the nonlinear functional have

to be interpreted as functions in space.
All matrix-matrix multiplications are calculated in an offline-phase. The non-

linear functionalF has to be evaluated online. The reduced model for the network
now reads

Problem 2 (POD-MOR surrogate).

AC
d
dt
qC(A�C e(t), t)+ARg(A�R e(t), t)+AL jL(t)+AV jV (t)

+AS jS(t)+AIis(t) = 0,
(38)

d
dt

φL( jL(t), t)−A�L e(t) = 0,
(39)

A�V e(t)− vs(t) = 0,
(40)

jS(t)−C1UJnγJn(t)−C2UJpγJp(t)−C3Ugψ γ̇gψ (t) = 0,
(41)⎛⎜⎜⎜⎜⎜⎜⎝

0
−γ̇n(t)

γ̇p(t)
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠+APOD

⎛⎜⎜⎜⎜⎜⎜⎝

γψ(t)
γn(t)
γp(t)
γgψ (t)
γJn(t)
γJp(t)

⎞⎟⎟⎟⎟⎟⎟⎠+U�F (nPOD, pPOD,gPODψ )−U�b(e(t)) = 0.

(42)
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Figure 4: Left: L2 error of jV between reduced and unreduced problem, both for
standard and Raviart-Thomas FEM. Right: Time consumption for simulation runs
for left figure. The fine lines indicate the time consumption for the simulation of
the original full system.

4.1 Numerical investigation
We now present numerical examples for POD-MOR of the basic test circuit in
Fig. 1 and validate the reduced model at a fixed reference frequency of 1010 Hz.
Figure 4 (left) shows the development of the error between the reduced and the
unreduced numerical solutions, plotted over the neglected information Δ, see (36),
which is measured by the relative error between the non-reduced states ψ , n, p,
Jn, Jp and their projections onto the respective reduced state space. The number
of POD basis functions for each variable is chosen such that the indicated approx-
imation quality is reached, i.e. Δ := Δψ � Δn � Δp � Δgψ � ΔJn � ΔJp . Since
we compute all POD basis functions anyway, this procedure does not involve any
additional costs.
In Figure 4 (right) the simulation times are plotted versus the neglected infor-

mation Δ. As one also can see, the simulation based on standard finite elements
takes twice as long as if based on RT elements. However, this difference is not
observed for the simulation of the corresponding reduced models.
Figure 5 shows the total number of singular vectors k= kψ +kn+kp+kJn+kJp

required in the POD model to guarantee a given state space cut-off error Δ. While
the number of singular vectors included increases only linearly, the cut-off error
tends to zero exponentially.
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Figure 5: The number of required singular values grows only logarithmically with
the requested accuracy.

Table 2: Distances between reduced models in the rectifier network.
Δ d(U1,U2) d(U1,U3)

10−4 0.61288 5.373 ·10−8
10−5 0.50766 4.712 ·10−8
10−6 0.45492 2.767 ·10−7
10−7 0.54834 1.211 ·10−6

4.2 Numerical investigation, position of the semiconductor in
the network

Finally we note that the presented reduction method accounts for the position of
the semiconductors in a given network in that it provides reduced order models
which for identical semiconductors may be different depending on the location
of the semiconductors in the network. The POD basis functions of two identi-
cal semiconductors may be different due to their different operating states. To
demonstrate this fact, we consider the rectifier network in Figure 6 (left). Simu-
lation results are plotted in Figure 6 (right). The distance between the spaces U 1
andU2 which are spanned, e.g., by the POD-functionsU 1ψ of the diode S1 andU2ψ
of the diode S2 respectively, is measured by

d(U1,U2) := max
u∈U1
‖u‖2=1

min
v∈U2
‖v‖2=1

‖u− v‖2.
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Figure 6: Left: Rectifier network. Right: Simulation results for the rectifier net-
work. The input vs is sinusoidal with frequency 1 GHz and offset +1.5 V .

Exploiting the orthonormality of the bases U 1ψ and U2ψ and using a Lagrange
framework, we find

d(U1,U2) =
√
2−2

√
λ ,

where λ is the smallest eigenvalue of the positive definite matrix SS� with Si j =
〈u1ψ,i,u2ψ, j〉2. The distances for the rectifier network are given in Table 2. While
the reduced model for the diodes S1 and S3 are almost equal, the models for the
diodes S1 and S2 are significantly different. Similar results are obtained for the
reduction of n, p, etc.

4.3 MOR for the nonlinearity with DEIM
The nonlinear function F in (2) has to be evaluated online which means that the
computational complexity of the reduced order model still depends on the number
of unknowns of the unreduced model. A reduction method for the nonlinearity is
given by Discrete Empirical Interpolation (DEIM) [10]. This method is motivated
by the following observation. The nonlinearity in (42), see also (30), is given by

U�F(Uγ(t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
U�n Fn(Unγn(t),Upγp(t))
U�p Fp(Unγn(t),Upγp(t))

0
U�Jn FJn(Unγn(t),Ugψ γgψ (t))
U�JpFJp(Unγp(t),Ugψ γgψ (t))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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see e.g. [24]. The subsequent considerations apply for each block component of
F . For the sake of presentation we only consider the second block

U�n︸︷︷︸
size sn×N

Fn︸︷︷︸
N evaluations

( Un︸︷︷︸
size N×sn

γn(t), Up︸︷︷︸
size N×sp

γp(t) ), (43)

and its derivative with respect to γp,

U�n︸︷︷︸
size sn×N

∂Fn
∂ p

(Unγn(t),Upγp(t))︸ ︷︷ ︸
size N×N, sparse

Up︸︷︷︸
size N×sp

.

Here, the matricesU(·) are dense and the Jacobian of Fn is sparse. The evaluation
of (43) is of computational complexity O(N). Furthermore, we need to multiply
large dense matrices in the evaluation of the Jacobian. Thus, the POD model order
reduction may become inefficient.
To overcome this problem, we apply Discrete Empirical Interpolation Method

(DEIM) proposed in [10], which we now describe briefly. The snapshots ψ h(tk, ·),
nh(tk, ·), ph(tk, ·), ghψ(tk, ·), Jhn(tk, ·), Jhp(tk, ·) are collected at time instances tk ∈
{t1, . . . , tl}⊂ [0,T ] as before. Additionally, we collect snapshots {Fn(n(tk), p(tk))}
of the nonlinearity. DEIM approximates the projected function (43) such that

U�n Fn(Unγn(t),Upγp(t))≈ (U�n Vn(P�n Vn)−1)P�n Fn(Unγn(t),Upγp(t)),

where Vn ∈ R
N×τn contains the first τn POD basis functions of the space spanned

by the snapshots {Fn(n(tk), p(tk))} associated with the largest singular values. The
selection matrix Pn =

(
eρ1 , . . . ,eρτn

)∈R
N×τn selects the rows of Fn corresponding

to the so-called DEIM indices ρ1, . . . ,ρτn which are chosen such that the growth
of a global error bound is limited and P�n Vn is regular, see [10] for details.
The matrixWn := (U�n Vn(P�n Vn)−1) ∈ R

sn×τn as well as the whole interpola-
tion method is calculated in an offline phase. In the simulation of the reduced
order model we instead of (43) evaluate:

Wn︸︷︷︸
size sn×τn

P�n Fn︸ ︷︷ ︸
τn evaluations

( Un︸︷︷︸
size N×sn

γn(t), Up︸︷︷︸
size N×sp

γp(t) ), (44)

with derivative

W�
n︸︷︷︸

size sn×τn

∂P�n Fn
∂ p

(Unγn(t),Upγp(t))︸ ︷︷ ︸
size τn×N, sparse

Up︸︷︷︸
size N×sp

.

In the applied finite element method a single functional component of Fn only
depends on a small constant number c ∈ N components of Unγn(t). Thus, the
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Figure 7: Relative error between DEIM-reduced and unreduced nonlinearity at
the fixed frequency 5 ·109 Hz.

matrix-matrix multiplication in the derivative does not really depend on N since
the number of entries per row in the Jacobian is at most c.
But there is still a dependence on N, namely the calculation of Unγn(t). To

overcome this dependency we identify the required components of the vector
Unγn(t) for the evaluation of P�n Fn. This is done by defining selection matrices
Qn,n ∈ R

cτn×sn , Qn,p ∈ R
cτp×sp such that

P�n Fn(Unγn(t),Upγp(t)) = F̂n(Qn,nUnγn(t),Qn,pUpγp(t)),

where F̂n denotes the functional components of Fn selected by Pn restricted to the
arguments selected by Qn,n and Qn,p.
Supposed that τn ≈ sn� N we obtain a reduced order model which does not

depend on N any more.

4.4 Numerical implementation and results with DEIM
We again use the basic test circuit with a single 1-dimensional diode depicted in
Fig. 1. The parameters of the diode are summarized in [24]. The input vs(t) is
chosen to be sinusoidal with amplitude 5 V . In the sequel the frequency of the
voltage source will be considered as a model parameter.
We first validate the reduced model at a fixed reference frequency of 5 ·109 Hz.

Fig. 7 shows the development of the relative error between the POD reduced, the
POD-DEIM reduced and the unreduced numerical solutions, plotted over the lack
of information Δ of the POD basis functions with respect to the space spanned by
the snapshots. The figure shows that the approximation quality of the POD-DEIM
reduced model is comparable with the more expensive POD reduced model. The
number of POD basis functions s(·) for each variable is chosen such that the indi-
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Figure 8: Time consumption for simulation runs of Fig. 7. The horizontal line
indicates the time consumption for the simulation of the original full system.
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Figure 9: The number of required POD basis function and DEIM interpolation
indices grows only logarithmically with the requested information content.

cated approximation quality is reached, i.e. Δ := Δψ � Δn � Δp � Δgψ � ΔJn �
ΔJp . The numbers τ(·) of POD-DEIM basis functions are chosen likewise.
In Fig. 8 the simulation times are plotted versus the lack of information Δ.

The POD reduced order model does not reduce the simulation times significantly
for the chosen parameters. The reason for this is its dependency on the number
of variables of the unreduced system. Here, the unreduced system contains 1000
finite elements which yields 12012 unknowns. The POD-DEIM reduced order
model behaves very well and leads to a reduction in simulation time of about
90% without reducing the accuracy of the reduced model. However, we have to
report a minor drawback; not all tested reduced models converge for large Δ(s)≥
3 · 10−5. This is indicated in the figures by missing squares. This effect is even
more pronounced for spatially two–dimensional semiconductors.
In Fig. 9 we plot the corresponding total number of required POD basis func-
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Figure 10: Computation times of the unreduced and the reduced order models
plotted versus the number of finite elements.

tions. It can be seen that with the number of POD basis functions increasing
linearly, the lack of information tends to zero exponentially. Furthermore, the
number of DEIM interpolation indices behaves in the same way.
In Fig. 10 we investigate the dependence of the reduced models on the number

of finite elements N. One sees that the simulation times of the unreduced model
depends linearly on N. The POD reduced order model still depends on N linearly
with a smaller constant. The dependence on N of our DEIM-POD implementation
is negligible.
Finally, we in Fig. 11 analyze the behaviour of the models with respect to

parameter changes. We consider the frequency of the sinusoidal input voltage
as model parameter. The reduced order models are created based on snapshots
gathered in a full simulation at a frequency of 5 · 109Hz. We see that the POD
model and the POD-DEIM model behave very similar. The adaptive enlargement
of the POD basis using the residual greedy approach of [36] is discussed in the
next section based on the results presented in [24].
Summarizing all numerical results we conclude that the significantly faster

POD-DEIM reduction method yields a reduced order model with the same quali-
tative behaviour as the reduced model obtained by classical POD-MOR.

5 Residual-based sampling
Although POD model order reduction often works well, one has to keep in mind
that the reduced system depends on the specific inputs and parameters used to
generate the snapshots. A possible remedy consists in performing simulations
over a certain input and/or parameter sample and then to collect all simulations in
a global snapshot matrix Y := [Y 1,Y 2, . . .]. Here, each Y i represents the snapshots
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taken for a certain input resp. parameter.
In this section we propose a strategy to choose inputs/parameters in order to

obtain a reduced model, which is valid over the whole input/parameter range.
Possible parameters are physical constants of the semiconductors (e.g. length,
permeability, doping) and parameters of the network elements (e.g. frequency of
sinusoidal voltage sources, value of resistances). We do not distinguish between
inputs and parameters of the model.
Let there be r ∈ N parameters and let the space of considered parameters be

given as a bounded setP ⊂ R
r. We construct the reduced model based on snap-

shots from a simulation at a reference parameter ω1 ∈P . One expects that the
reduced model approximates the unreduced model well in a small neighborhood
of ω1, but one cannot expect that the reduced model is valid over the complete pa-
rameter setP . In order to create a suitable reduced order model we consider ad-
ditional snapshots which are obtained from simulations at parameters ω2,ω3, . . .∈
P . The iterative selection of ωk+1 at a step k is called parameter sampling. Let
Pk denote the set of selected reference parameters, Pk := {ω1,ω2, . . . ,ωk} ⊂P .
We neglect the discretization error of the finite element method and its influ-

ence on the coupled network and define the error of the reduced model as

E (ω;P) := zh(ω)− zPOD(ω;P), (45)

where zh(ω) := (eh(ω), jhV (ω), jhL(ω),yh(ω))� is the solution of problem 1 at the
parameterω with discretized semiconductor variables yh :=(ψh,nh, ph,ghψ ,Jhn ,Jhp)�.
zPOD(ω;P) denotes the solution of the coupled system in problem 2 with reduced
semiconductors, where the reduced model is created based on simulations at the
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reference parameters P⊂P . The error is considered in the space X with norm

‖z‖X :=
∥∥∥(‖e‖2,‖ jV‖2,‖ jL‖2,
‖ψ‖L2([0,T ],L2(Ω)),‖n‖L2([0,T ],L2(Ω)),‖p‖L2([0,T ],L2(Ω)),

‖gψ‖L2([0,T ],H0,N(div,Ω)),

‖Jn‖L2([0,T ],H0,N(div,Ω)),‖Jp‖L2([0,T ],H0,N(div,Ω))

)∥∥∥.
Obvious extensions apply when there is more than one semiconductor present.
Furthermore we define the residual R by evaluation of the unreduced model

(31)-(35) at the solution of the reduced model zPOD(ω;P), i.e.

R(zPOD(ω;P)) :=

⎛⎜⎜⎜⎜⎜⎜⎝

0
−MLṅPOD(t)
MLṗPOD(t)

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠+AFEM

⎛⎜⎜⎜⎜⎜⎜⎝

ψPOD(t)
nPOD(t)
pPOD(t)
gPODψ (t)
JPODn (t)
JPODp (t)

⎞⎟⎟⎟⎟⎟⎟⎠
+F (nPOD, pPOD,gPODψ )−b(ePOD(t)). (46)

Note that the residual of equations (31)-(34) vanishes.
We note that the same definitions are used in [23] for linear descriptor systems.

In [23] an error estimate is obtained by deriving a linear ODE for the error and
exploiting explicit solution formulas. Here we have a nonlinear DAE and at the
present state we are not able to provide an upper bound for the error ‖E (ω;P)‖X
which would yield a rigorous sampling method using for example the Greedy
algorithm of [36].
We propose to consider the residual as an estimate for the error. The evaluation

of the residual is cheap since it only requires the solution of the reduced system
and its evaluation in the unreduced DAE. It is therefore possible to evaluate the
residual at a large set of test parameters Ptest ⊂P . Similar to the Greedy algorithm
of [36], we add to the set of reference parameters the parameter where the residual
becomes maximal.
The magnitude of the components in error and residual may be large and a

proper scaling should be applied. For the error we consider the component-wise
relative error, i.e.

‖ψh(ω)−ψPOD(ω;P)‖L2([0,T ],L2(Ω))

‖ψh(ω)‖L2([0,T ],L2(Ω))

,
‖nh(ω)−nPOD(ω;P)‖L2([0,T ],L2(Ω))

‖nh(ω)‖L2([0,T ],L2(Ω))

, . . . ,
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and the residual is scaled by a block-diagonal matrix containing the weights

D(ω)R(zPOD(ω;P)) =⎛⎜⎜⎜⎜⎜⎜⎝

dψ(ω)I
dn(ω)I

dp(ω)I
dgψ (ω)I

dJn(ω)I
dJp(ω)I

⎞⎟⎟⎟⎟⎟⎟⎠R(zPOD(ω;P)).

The weights d(·)(ω) > 0 may be parameter-dependent. These weights are chosen
in a way that the norm of the residual and the relative error are component-wise
equal at the reference frequencies ωk where we know zh(ωk) from simulation of
the unreduced model, i.e.

dψ(ωk) :=
‖ψh(ωk)−ψPOD(ωk;P)‖L2([0,T ],L2(Ω))

‖ψh(ωk)‖L2([0,T ],L2(Ω)) · ‖R1(zPOD(ωk;P))‖L2([0,T ],L2(Ω))

, (47)

and similarly for the other components. If ‖R1(zPOD(ωk;P))‖L2([0,T ],L2(Ω)) = 0
we chose dψ(ωk) := 1.
In one dimensional parameter sampling with P := [p, p], we approximate

d(·)(ω) by piecewise linear interpolation of the weights d(·)(ω1), . . ., d(·)(ωk).
Extrapolation is done by nearest-neighbour interpolation to ensure the positivity
of the weights.
We summarize our ideas in the following sampling algorithm:

Algorithm 1 (Sampling).

1. Select ω1 ∈P , Ptest ⊂P , tol > 0, and set k := 1, P1 := {ω1}.
2. Simulate the unreduced model at ω1 and calculate the reduced model with
POD basis functions U1.

3. Calculate weight functions d(·)(ω)> 0 according to (47) for all ωk ∈ Pk.

4. Calculate the scaled residual ‖D(ω)R(zPOD(ω,Pk))‖ for all ω ∈ Ptest .
5. Check termination conditions, e.g.

• maxω∈Ptest ‖D(ω)R(zPOD(ω,Pk))‖< tol,
• no progress in weighted residual.

6. Calculate ωk+1 := argmaxω∈Ptest ‖D(ω)R(zPOD(ω,Pk))‖.
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7. Simulate the unreduced model at ωk+1 and create a new reduced model with
POD basisUk+1 using also the already available information at ω1, . . ., ωk.

8. Set Pk+1 := Pk∪{ωk+1}, k := k+1 and goto 3.
The step 7 in Algorithm 1 can be executed in different ways. If offline time

and offline memory requirements are not critical one may combine snapshots from
all simulations of the full model and redo the model order reduction on the large
snapshot ensemble. Otherwise we can create a new reduced model at reference
frequency ωk+1 with POD-basis Ū and then perform an additional POD step on
(Uk,Ū).

5.1 Numerical investigation for residual based sampling
We now apply Algorithm 1 to provide a reduced order model of the basic cir-
cuit and we choose the frequency of the input voltage vs as model parameter. As
parameter space we chose the intervalP := [108, 1012] Hz. We start the investi-
gation with a reduced model which is created from the simulation of the full model
at the reference frequency ω1 := 1010 Hz. The number of POD basis functions s is
chosen such that the lack of information Δ(s) is approximately 10−7. The relative
error and the weighted residual are plotted in Figure 12 (left). We observe that the
weighted residual is a rough estimate for the relative approximation error. Using
Algorithm 1 the next additional reference frequency is ω2 := 108 Hz since it max-
imizes the weighted residual. The second reduced model is constructed on the
same lack of information Δ := 10−7. Here we note that in practical applications,
the error is not known over the whole parameter space.
The next two iterations of the sampling algorithm are also depicted in Fig-

ure 12. Based on the residual in step 2, one selects ω3 := 1.0608 · 109 Hz as the
next reference frequency. Since no further progress of the weighted residual is
achieved in step 3, the algorithm terminates. The maximal errors and residuals
are given in Table 3.

6 PABTEC combined with POD-MOR
In the current section, we develop a framework to combine the PABTEC and
simulation based POD model order reduction techniques to determine reduced-
order models for coupled circuit-device systems. While the PABTEC method
preserves the passivity and reciprocity in the reduced linear circuit model, the
POD approach delivers high-fidelity reduced-order models for the semiconductor
devices.
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Figure 12: Left: Relative reduction error (solid line) and weighted residual
(dashed line) plotted over the frequency parameter space. The reduced model
is created based on simulations at the reference frequency ω1 := 1010 Hz, which
is marked by vertical dotted line. Middle: Relative reduction error (solid line)
and weighted residual (dashed line) plotted over the frequency parameter space.
The reduced model is created based on simulations at the reference frequencies
ω1 := 1010 Hz and ω2 := 108 Hz. The reference frequencies are marked by
vertical dotted lines. Right: Relative reduction error (solid line) and weighted
residual (dashed line) plotted over the frequency parameter space. The reduced
model is created based on simulations at the reference frequency ω1 := 1010 Hz,
ω2 := 108 Hz, and ω3 := 1.0608 · 109 Hz. The reference frequencies are marked
by vertical dotted lines.

Table 3: Progress of refinement method.
step k reference parameters max. scaled residual max. relative error

Pk (at frequency) (at frequency)

1 {1.0000 ·1010} 9.9864 ·102 3.2189 ·100
(1.0000 ·108) (1.0000 ·108)

2 {1.0000 ·108, 1.5982 ·10−2 4.3567 ·10−2
1.0000 ·1010} (1.0608 ·109) (3.4551 ·109)

3 {1.0000 ·108, 2.2829 ·10−2 1.6225 ·10−2
1.0608 ·109, (2.7283 ·109) (1.8047 ·1010)
1.0000 ·1010}
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6.1 Circuit model
Now we return to the network equations (1)-(3). Following the notation of [27]
we rewrite these as

AC q̇C (ATC η)+AR g(ATR η)+AL ıL +AV ıI = 0, (48a)

φ̇(ıL)−ATLη = 0, (48b)
ATV η−uV = 0, (48c)

where η denotes the vector of node potentials, ıL , ıV and ıI are currents of in-
ductive, voltage source and current source branches, respectively, while uV and
uI are voltages of voltage sources and current sources, respectively. We consider
a network with nη +1 nodes and nb branches. Hence AC ∈ R

nη ,nC , AL ∈ R
nη ,nL ,

AR ∈ R
nη ,nR , AV ∈ R

nη ,nV and AI ∈ R
nη ,nI are the (reduced) incidence matrices

describing the topology of the corresponding circuit elements, and the functions
qC : RnC → R

nC , g : RnR → R
nR and φ : RnL → R

nL describe capacitor charges,
resistor conductivities and electromagnetic fluxes in the inductors, respectively.
We will assume that
(A1) the matrix AV has full column rank,

(A2) the matrix
[
AC AL AR AV

]
has full row rank,

(A3) the functions qC , g and φ are continuously differentiable and their Jacobians

∂qC (uC )

∂uC
= C (uC ),

∂g(uR )

∂uR
= G(uR ),

∂φ(ıL)
∂ ıL

= L(ıL) (49)

are positive definite for all admissible uC = ATC η , uR = ATR η and ıL , re-
spectively.

Assumptions (A1) and (A2) imply that the circuit contains neither loops of volt-
age sources (V-loops) nor cutsets of current sources (I-cutsets), respectively, while
assumption (A3) means that all circuit elements are passive, i.e., they do not gen-
erate energy.
Using (49), the MNA equations (48) can be written in the compact form

E (x)ẋ = A x+ f (x)+Bu, (50a)
y = BT x, (50b)

where

x=

⎡⎣ η
ıL
ıV

⎤⎦ , u=
[
ıI
uV

]
, y=

[ −uI
−ıV

]
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are the state, input and output vectors, respectively, and

E (x) =

⎡⎢⎣ ACC (ATC η)ATC 0 0
0 L(ıL) 0
0 0 0

⎤⎥⎦, A =

⎡⎢⎣ 0 −AL −AV
ATL 0 0
ATV 0 0

⎤⎥⎦ ,(50c)
f (x) =

⎡⎢⎣ −AR g(ATR η)
0
0

⎤⎥⎦ , B =

⎡⎢⎣ −AI 0
0 0
0 −I

⎤⎥⎦ . (50d)

In the following, we will distinguish between linear circuit elements like linear
resistors, capacitors and inductors, and nonlinear circuit elements like nonlinear
capacitors, inductors, diodes and transistors. A circuit element is called linear
if the current-voltage relation for this element is linear. Otherwise, the circuit
element is called nonlinear. Without loss of generality, we may assume that the
circuit elements are ordered such that the incidence matrices can be partitioned as

AC =
[
AC̄ AC̃

]
, AL =

[
AL̄ AL̃

]
, AR =

[
A R̄ A R̃

]
, (50e)

where the incidence matrices AC̄ , AL̄ and A R̄ correspond to the linear circuit com-
ponents, and AC̃ , AL̃ and A R̃ are the incidence matrices for the nonlinear devices.
We also assume that the linear and nonlinear elements are not mutually connected,
i.e.,

C (ATC η) =

[ C̄ 0

0 C̃ (ATC̃ η)

]
, L(ıL) =

[
L̄ 0

0 L̃(ıL̃)

]
, g(ATR η) =

[ ḠATR̄ η

g̃(AT
R̃

η)

]
,

(50f)
where C̄ ∈R

nC̄ ,nC̄ , L̄ ∈R
nL̄ ,nL̄ and Ḡ ∈R

n R̄ ,n R̄ are the capacitance, inductance and
conductance matrices for the corresponding linear elements, whereas C̃ : RnC̃ →
R
nC̃ ,nC̃ , L̃ : RnL̃ → R

nL̃ ,nL̃ and g̃ : RnR̃ → R
nR̃ describe the corresponding nonlin-

ear components, and ıL̃ is the vector of currents through the nonlinear inductors.
If the circuit contains some critical semiconductors that have to be modeled by
distributed device equations, then we consider the further partitioning

A R̃ =
[
AN AS

]
, g̃(ATR̃ η) =

[
g̃N (ATN η)

g̃S (ATS η)

]
, (50g)

where the subscripts N and S stand for other nonlinear resistive elements with
simple current-voltage relations and for semiconductors, respectively.
For modeling of such critical semiconductors, we proceed as in Section 3.2

and use the mixed finite element approximation of the nonlinear drift-diffusion
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equations in mixed formulation. We recall that the resulting nonlinear DAE is
given by (35) and in the present notation reads⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−MLṅh
MLṗh

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=−AFEM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψh

nh

ph

ghψ
Jhn
Jhp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
−F (nh, ph,ghψ)+b(ATS η), (51)

where ψh, nh, ph, ghψ , Jhn , Jhp are the vectors of the corresponding semidiscretized
functions, and the functions F and b result from the nonlinearities in (17)-(22)
and the boundary conditions (8)-(10), respectively. Furthermore, the discretized
coupling relation (34) takes the form

ıhS =C1Jhn +C2Jhp+C3ġhψ , (52)

where ıhS is the semidiscretized semiconductor current vector, and C1, C2 and C3
are constant matrices. This relation can be shortly written as ıhS = ϑ(xhS ), where

xhS =
[
(ψh)T (nh)T (ph)T (ghψ)T (Jhn)T (Jhp)T

]T
is the state vector of (51), and ϑ is a state-to-output map. Determining the state xhS
from equation (51) for a given voltage ATS η , say xhS = χ(ATS η), and substituting it
into (52), we obtain the relationship

ıhS = g̃S (ATS η), (53)

where g̃S : RnS → R
nS defined as g̃S (ATS η) = ϑ(χ(ATS η)) describes the voltage-

current relation for the semidiscretized semiconductors. The relation (53) can be
considered as an input-to-output map, where the input is the voltage vector ATS η
at the contacts of the semiconductors and the output is the approximate semicon-
ductor current ıhS .
Summarizing, we have the coupled DAE system (50), (51) and (53) that rep-

resents a semidiscretized model for the electronic circuit with semiconductors. It
is complemented with the boundary conditions (8)-(10), compare Fig. 2, and see
Fig. 13, where a coupled circuit-device system with one semiconductor diode is
shown. The analytical properties and numerical methods for such a system have
been investigated in [51, 57, 24, 7].
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Figure 13: RC chain with a diode.
6.2 Model reduction approach
In this section, we present a model reduction approach for the coupled nonlinear
DAE system (50), (51) and (53) based on decoupling this system into linear and
nonlinear subsystems. Then the linear part is approximated by a reduced-order
linear model of lower dimension using the PABTEC algorithm [42, 56], while the
decoupled nonlinear equations are reduced using the POD method as described
in [24]. Combining these reduced-order linear and nonlinear models, we obtain
a nonlinear reduced-order model that approximates the coupled system (50), (51)
and (53), see Figure 14. We now describe this model reduction procedure in more
detail. For simplicity, in model reduction of the nonlinear part, we restrict ourself
to the semidiscretized drift-diffusion model (51). Other nonlinear equations can
be reduced in a similar way.

6.2.1 Decoupling

Our goal is now to extract a linear subcircuit from a nonlinear circuit. For this pur-
pose, we use a decoupling procedure from [52] that consists in the replacement
of the nonlinear inductors and nonlinear capacitors by controlled current sources
and controlled voltage sources, respectively. The nonlinear resistors are replaced
by an equivalent circuit consisting of two serial linear resistors and one controlled
current source connected parallel to one of the resistors. Such replacements in-
troduce additional nodes and state variables, but neither additional CV-loops nor
LI-cutsets occur in the decoupled linear subcircuit meaning that its index coin-
cides with the index of the original circuit, see [15] for the index analysis of the
circuit equations. An advantage of the suggested replacement strategy is exem-
plary demonstrated in the following example.

Example 6.1. Consider again a circuit with a semiconductor diode as in Figure 13.
We suggest to replace the diode by an equivalent circuit shown in Figure 15. If we
would replace the diode by a current source, then a decoupled linear circuit would
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Figure 14: Model reduction approach
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Figure 15: Decoupled linear RC chain with a replacement circuit.

have I-cutset and, hence, lack well-posedness. Moreover, if we would replace the
diode by a voltage source, then the resulting linear circuit would have CV-loop,
i.e., it would be of index two, although the original circuit is of index one. Note
that model reduction of index two problems is more involved than of index one
problems [54].

After the replacements described above, the extracted linear subcircuit can be
modeled by the linear DAE system in the MNA form

Eẋ� = Ax�+Bu�, (54a)
y� = BTx�, (54b)

with xT� =
[

ηT ηTz ıTL̄ ıTV ıTC̃
]
, uT� =

[
ıTI ı

T
z ıTL̃ uTV uTC̃

]
and

E =

⎡⎣ACCATC 0 0
0 L 0
0 0 0

⎤⎦, A=

⎡⎣−ARGATR −AL −AV
ATL 0 0
ATV 0 0

⎤⎦, B=

⎡⎣−AI 0
0 0
0 −I

⎤⎦,(54c)
where the incidence and element matrices are given by

AC =

[
AC̄
0

]
, AR =

[
A R̄ A1

R̃
A2

R̃
0 −I I

]
, AL =

[
AL̄
0

]
, (54d)

AV =

[
AV AC̃
0 0

]
, AI =

[
A
I
A2

R̃
AL̃

0 I 0

]
, (54e)

G=

⎡⎣ Ḡ 0 0
0 G1 0
0 0 G2

⎤⎦ , C = C̄ , L= L̄ . (54f)
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Here, the matrices A1
R̃
and A2

R̃
have entries in {0,1} and {−1,0}, respectively,

and satisfyA1
R̃
+A2

R̃
= A R̃ . Moreover, ηz is the potential of the introduced nodes,

and the matrices G1 and G2 are diagonal with conductances of the introduced
linear resistors in the replacement circuits on the diagonal, and the new input
variables uC̃ and ız are given by

uC̃ = ATC̃ η, (55)

ız = (G1+G2)G−11 g̃(A
T
R̃ η)−G2ATR̃ η. (56)

One can show that the linear system (54) together with the decoupled nonlinear
equations (51), (53) and the equations for the nonlinear inductors

L̃ ı̇L̃ −ATL̃η = 0

is state equivalent to the coupled system (50), (51) and (53) together with the
relations

ıC̃ = C̃ (uC̃ )u̇C̃ ,

ηz = (G1+G2)−1
(
G1(A1R̃ )Tη−G2(A2R̃ )Tη− ız

)
in the sense that these both systems have the same state vectors up to a permuta-
tion, see [52] for detail.

6.2.2 Model reduction of the linear subcircuit using the PABTEC method

Once we have the decoupled linear DAE system (54) with E, A ∈ R
n�,n� and B ∈

R
n�,m� , we can approximate this system by a reduced-order model

Ê ˙̂x� = Âx̂�+ B̂u, (57a)
ŷ� = Ĉx̂�, (57b)

with Ê, Â ∈ R
r�,r� , B̂ ∈ R

r�,m� , Ĉ ∈ R
m�,r� and r� � n�. If the matrices G, C and

L in (54f) are symmetric and positive definite, then system (54) is passive and
reciprocal. The latter means that the transfer function of (54) given by G(s) =
BT (sE−A)−1B satisfies GT (s) = SextG(s)Sext with the signature matrix

Sext = diag(InI+nL̃+nR̃
,−InV+nC̃

). (58)

Of course, these properties should be preserved in the reduced-order model (57).
This would allow us to synthesize this model as a circuit with a small number of
elements compared to the original circuit [31, 40].
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The passive and reciprocal reduced-order model (57) can be computed via the
PABTEC method [42] based on balanced truncation. First, we define the control-
lability and observability Gramians of system (54) as unique stabilizing solutions
of the projected Riccati equations

EXFT +FXET +EXBTcBcXET +PlBoB
T
o PTl = 0, X = PrXPTr , (59)

ETYF +FTYE+ETYBoBToYE +PTr BTcBcPr = 0, Y = PTl YPl, (60)

where
F = A−BBT −2PlB(I−MT0M0)−1MT0 BTPr,
Bo =

√
2BJ−1o , Bc =

√
2J−1c BT ,

JTo Jo = I−MT0M0, JcJTc = I−M0MT0 ,
M0 = I−2 lims→∞

BT (sE−A+BBT )−1B,
and Pr and Pl are the spectral projectors onto the right and left deflating sub-
spaces of the pencil λE− (A−BBT ) corresponding to the finite eigenvalues. The
balanced truncation approach is based on the transformation of system (54) into
a balanced form whose Gramians are both equal to a diagonal matrix. Then the
reduced-order model (57) is determined by the truncation of the states correspond-
ing to small diagonal elements of the balanced Gramians. In practice, we do not
need to balance system (54) explicitly. Instead, we can use the following algo-
rithm developed in [42].

Algorithm 2 (PABTEC). Given (E, A, B, BT ) for the linear model equations (54),
compute (Ê, Â, B̂, Ĉ) for a reduced-order model (57).
1. Compute the Cholesky factor RX of the stabilizing solution X = RXRTX of the
projected Riccati equation (59).

2. Compute the eigenvalue decomposition

RTXSintERX = [U1,U2 ]
[

Λ1 0
0 Λ2

]
[U1,U2 ]T ,

where Sint = diag(Inη+nR̃
,−InL̄ ,−InV+nC̃

), [U1,U2] is orthogonal,
Λ1 = diag(λ1, . . . ,λr) and Λ2 = diag(λr+1, . . . ,λq).

3. Compute the eigenvalue decomposition (I−M0)Sext =U0Λ0UT0 , where Sext
is as in (58), U0 is orthogonal and Λ0 = diag(λ̂1, . . . , λ̂m�).

4. Compute the reduced-order model (57) with

Ê =

[
Ir 0
0 0

]
, Â=

1
2

[
2WTAV

√
2WTBC∞

−√2B∞BT V 2 I−B∞C∞

]
, (61a)

B̂=

[
WTB

−B∞/
√
2

]
Ĉ =

[
BT V, C∞/

√
2
]
, (61b)
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where

B∞ = S0|Λ0|1/2UT0 Sext, C∞ =U0|Λ0|1/2,
W = RXU1|Λ1|−1/2, V = SintRXU1S1|Λ1|−1/2,
S0 = diag(sign(λ̂1), . . . ,sign(λ̂m�)), |Λ0|= diag(|λ̂1|, . . . , |λ̂m�|),
S1 = diag(sign(λ1), . . . ,sign(λr)), |Λ1|= diag(|λ1|, . . . , |λr|).

One can show that the reduced-order system (57), (61) is passive and recipro-
cal, and we have the following a priori L2-norm error bound

‖ŷ�− y�‖L2 ≤ 2‖I+G‖2H∞(|λr+1|+ . . .+ |λq|)‖u�‖L2,

provided 2‖I+G‖H∞(|λr+1|+ . . .+ |λq|) < 1, see [41, 42]. Here, the H∞-norm
is defined as ‖I+G‖H∞ = supω∈R ‖I+G(iω)‖, where ‖ · ‖ denotes the spectral
matrix norm. Furthermore, if we choose r in the PABTEC algorithm such that
2‖I+ Ĝ‖H∞(|λr+1|+ . . .+ |λq|) < 1, where Ĝ(s) = Ĉ(sÊ− Â)−1B̂ is the transfer
function of (57), then we obtain the a posteriori error bound

‖ŷ�− y�‖L2 ≤ 2‖I+ Ĝ‖2H∞(|λr+1|+ . . .+ |λq|)‖u�‖L2
that is inexpensive to compute.
Note that the projectors Pl, Pr and the matrixM0 required in Algorithm 2 can be

constructed in explicit form using the topological structure of the MNA equations
(54), see [42, 56]. Moreover, for RC and RL circuits, the PABTEC algorithm
can be simplified in such a way that a projected Lyapunov equation has to be
solved instead of the projected Riccati equation, that reduces the computational
complexity considerably [43].

6.2.3 Model reduction of the nonlinear semiconductor model using the POD
method

For the approximation of the nonlinear semiconductor model (51) by a reduced-
order model, we use the POD method [49] combined with the DEIM approach
[11] for efficient evaluation of nonlinearities, as described in section 4.

6.2.4 Recoupling

After model order reduction of the linear DAE system (54) using the PABTEC
method, we obtain the reduced-order model (57), (61). In particular, this model
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has the form

Ê ˙̂x� = Âx̂�+
[
B̂1 B̂2 B̂3 B̂4 B̂5

]
⎡⎢⎢⎢⎢⎣
ıI
ız
ıL̃
uV
uC̃

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣
ŷ�1
ŷ�2
ŷ�3
ŷ�4
ŷ�5

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
Ĉ1
Ĉ2
Ĉ3
Ĉ4
Ĉ5

⎤⎥⎥⎥⎥⎦ x̂�,

where ŷ� j = Ĉ jx̂�, j = 1, . . . ,5, approximate the corresponding components of the
output y� in (54b). Combining this system with the unchanged nonlinear circuit
equations and the reduced semiconductor model (42), (41) as described in [52],
we get the reduced-order nonlinear model

Ê (x̂) ˙̂x = ˆA x̂+ f̂ (x̂)+B̂ u, (62a)
ŷ = Ĉ x̂, (62b)

where x̂T =
[
x̂T� ı̂TL ûTC ûT

R̃

]
, uT =

[
ıTI uTV

]
and

Ê (x̂) =

⎡⎢⎢⎣
Ê 0 0 0
0 L̃(ı̂L̃) 0 0
0 0 C̃ (ûC̃ ) 0
0 0 0 0

⎤⎥⎥⎦, f̂ (x̂) =
⎡⎢⎢⎣

0
0
0

ˆ̃g(û R̃ )

⎤⎥⎥⎦, B̂ =

⎡⎢⎢⎣
B̂1 B̂4
0 0
0 0
0 0

⎤⎥⎥⎦,(62c)

ˆA =

⎡⎢⎢⎣
Â+ B̂2(G1+G2)Ĉ2 B̂3 B̂5 B̂2G1

−Ĉ3 0 0 0
−Ĉ5 0 0 0
−G1Ĉ2 0 0 −G1

⎤⎥⎥⎦, Ĉ =

[
Ĉ1 0 0 0
Ĉ4 0 0 0

]
.(62d)

The coupled system (62), (42) and (41) represents then an approximation to the
nonlinear DAE system (50), (51) and (53), where both the linear subcircuit as
well as the semiconductor model are reduced. Note that both model reduction ap-
proaches presented in Sections 6.2.2 and 6.2.3 for the decoupled linear subcircuit
and nonlinear drift-diffusion equations can be executed independently.

6.3 Numerical experiments
In this section, we present some results of numerical experiments to demonstrate
the applicability of the presented model reduction approaches for coupled circuit-
device systems.
For model reduction of linear circuit equations, we use the MATLAB Toolbox

PABTEC [46]. The POD method is implemented in C++ based on the FEM li-
brary deal.II [5] for discretizing the drift-diffusion equations. The obtained large
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Table 4: Simulation time and approximation errors for the nonlinear RC circuit
with the basic diode described by the voltage-current relation (63).

system dimension simulation absolute error relative error
time ‖y− ŷ‖L2 ‖y− ŷ‖L2/‖y‖L2

unreduced 1503 0.584 s
reduced 24 0.054 s 5.441 ·10−7 1.760 ·10−2

and sparse nonlinear DAE system (50), (51), (53) as well as the small and dense
reduced-order model (42), (41), (62) are integrated using the DASPK software
package [9] based on a BDF method, where the nonlinear equations are solved
using Newton’s method. Furthermore, the direct sparse solver SuperLU [13] is
employed for solving linear systems.
Consider an RC circuit with one diode as shown in Figure 13. The input is

given by
u(t) = uV (t) = 10sin(2π f0t)4

with the frequency f0 = 104 Hz, see Figure 16. The output of the system is y(t) =
−ıV (t). We simulate the models over the fixed time horizon [0, 2.5f0 ]. The linear
resistors have the same resistance R = 2kΩ and the linear capacitors have the
same capacitance C = 0.02μF.
First, we describe the diode by the voltage-current relation

g̃(u R̃ ) = 10−14
(
exp(40u R̃ )−1

)
, (63)

and apply only the PABTECmethod to the decoupled linear system (54) that mod-
els the linear circuit given in Figure 15. System (54) with n� = 1503 variables was
approximated by a reduced model (57) of dimension r� = 24. This dimension was
determined as r� = r+ r0, where r0 = rank(I−M0) and r satisfies the condition
(|λr+1|+ . . .+ |λq|) < tolBT with a prescribed tolerance tolBT = 10−7. The out-
puts y and ŷ of the original nonlinear system (50) and the reduced-order nonlinear
model (62), respectively, are plotted in Figure 16. Simulation time and the abso-
lute and relative L2-norm errors in the output are presented in Table 4. One can
see that the simulation time is reduced by a factor of 10, while the relative error is
below 2 %.
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Figure 16: Input voltage and output currents for the basic diode with the voltage-
current relation (63).

Table 5: Diode model parameters.
Parameter Value

ε 1.03545 ·10−12 F/cm
UT 0.0259 V
n0 1.4 ·1010 1/cm3
μn 1350 cm2/(V sec)
τn 330 ·10−9 sec
μp 480 cm2/(V sec)
τp 33 ·10−9 sec
Ω [0, l1]× [0, l2]× [0, l3]
l1 (length) 10−4 cm
l2 (width) 10−5 cm
l3 (depth) 10−5 cm
N(ξ ), ξ1 < l1/2 −9.94 ·1015 1/cm3
N(ξ ), ξ1 ≥ l1/2 4.06 ·1018 1/cm3
FEM-mesh 500 elements, refined at ξ1 = l1/2
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Table 6: Statistics for model reduction of the coupled circuit-device system.
network diode dim. simul. Jacobian absolute relative
(MNA (DD time evaluations error error
equations) equations) ‖y− ŷ‖L2 ‖y− ŷ‖L2/‖y‖L2
unreduced unreduced 7510 23.37s 20
reduced unreduced 6031 16.90s 17 2.165 ·10−8 7.335 ·10−4
unreduced reduced 1609 1.51s 16 2.952 ·10−6 1.000 ·10−1
reduced reduced 130 1.19s 11 2.954 ·10−6 1.000 ·10−1

As the next step, we introduce the drift-diffusionmodel (17)-(22) for the diode.
The parameters of the diode are summarized in Table 5. Note that we do not ex-
pect to obtain the same output y as in the previous experiment. To achieve this,
one would need to perform a parameter identification for the drift-diffusion model
which is not done in this paper. In Table 6, we collect the numerical results for dif-
ferent model reduction strategies. The outputs of the systemswith the reduced net-
work and/or POD-reduced diode are compared to the full semidiscretized model
(50), (51) and (53) with 7510 variables. First, we reduce the extracted linear net-
work and do not modify the diode. This reduces the number of variables by about
20 %, and the simulation time is reduced by 27 %. It should also be noted that the
reduced network is not only smaller but it is also easier to integrate for the DAE
solver. An indicator for the computational complexity is the number of Jacobian
evaluations or, equivalently, the number of LU decompositions required during
integration.
Finally, we create a POD-reduced model (42) and (41) for the diode. The

number of columns s∗ of the projection matrices U∗ is determined from the con-
dition Δ∗ ≤ tolPOD with Δ∗ defined in (36) and a tolerance tolPOD= 10−6 for each
component. We also apply the DEIM method for the reduction of nonlinearity
evaluations in the drift-diffusion model. The resulting reduced-order model (42)
for the diode is a dense DAE of dimension 105 while the original model (51) has
dimension 6006, for the diode only. Coupling it with the unreduced and reduced
linear networks, we obtain the results in Table 6 (last two rows). The simulation
results for the different model reduction setups are also illustrated in Figure 17.

The presented numerical examples demonstrate that the recoupling of the re-
spective reduced-order models delivers an overall reduced-order model for the
circuit-device systemwhich allows significantly faster simulations (speedup-factor
is about 20) while keeping the relative errors below 10 %.
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Figure 17: Input voltage and output currents for the four model reduction setups.

Finally, we note that the model reduction concept developed in this section is
not restricted to the reduction of electrical networks containing semiconductor de-
vices. It can also be extended to the reduction of networks modeling e.g. nonlinear
multibody systems containing many simple mass-spring-damper components and
only a few high-fidelity components described by PDE systems.
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