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Department of Mathematics, University of Hamburg, BunttaB8g 55, D-20146 Hamburg, Germany

This work concerns the solution of generalized Riemannlprob. To this end, we consider the ADER scheme
of Titarev & Toro (2002), which relies on a generalizatiortloé classical Godunov scheme. Another solution
method is the power series expansion of LeFloch & Ravia®8).9We analyze the two resulting approximation
schemes, where we show that for scalar 1d problems the TitaeV¥ solver and the LeFloch-Raviart expansion
yield the same Taylor series expansions in time. The fullyaiafor the Burgers equation is finally provided.

1 INTRODUCTION of the generalized Riemann problem can be expanded
We consider a system of hyperbolic conservation law#to a power-series of self-similar functions,

Oz, t) + 0y fq(z,) =0 forzeRt>0, (1) @)= ;O’fk“k (%) (3)

in one spatial dimension, whege R x [0,00) = R"  with polynomial functions¢ — u*(¢). LeFloch &
is a vector of conserved quantities and where the fluRaviart have given an explicit method to construct the

[ R" — R" is a smooth vector-valued function. expansion (3). We re-interpret the method of Toro &
We are interested in a Cauchy problem for (1), withTitarev in the context of that LeFloch-Raviart series
discontinuous initial data of the form expansion for the generalized Riemann problem.
The outline of this paper is as follows. In Section 2
o(2,0) = qr(x) forz <O, (2) We briefly review generalized Godunov schemes and
’ qr(z) forx >0, the Toro-Titarev solver for the ADER scheme. Then,

we recall well-known results on the solution of clas-
where the two functiong; and gz are smooth. The sical and generalized Riemann problems in Section 3.
Cauchy problem (1)-(2) is calledeneralized Rie- In Section 4, we discuss the key steps of the LeFloch-
mann problem Raviart expansion, where we show that for scalar 1d
Due to the pioneering work of (van Leer 1979) andproblems the Toro-Titarev solver and the LeFloch-
(Ben-Artzi & Falcovitz 1984), the generalized Rie- Raviart expansion yield the same the Taylor series
mann problem has been successfully used in the co®xpansions in time. The full analysis for a scalar 1d
struction of high order extensions to the classical Go€xample concerning Burgers equation is finally pro-
dunov scheme. A state of the art variant of this ap~Vided in Section 6.
proach is the ADER scheme of (Titarev & Toro 2002;
Toro & Titarev 2006). The basic idea of the ADER 2 THE ADER SCHEME
scheme is to use a high order spatial reconstruction d.1 Generalized Godunov Schemes
the solution from cell averages and to use the generfo numerically solve the Cauchy problem
alized Riemann problem to design a time discretisa-
tion of matching order. The key strategy in the Toro- 9:¢ +90:f(¢) =0 forz € R, ¢ >0,
Titarev solver is the reduction of the generalized Rie- ¢(z,0) = ¢(x) forz € R,
Irgr?gn problem to a series of classical Riemann Iorob\7ve use a Godunov-type finite volume scheme. To this
On the other hand, (LeFloch & Raviart 1988) haveend' we work with control volumes (cells) of the form
shown that, for > 0 sufficiently small, the solution [z, /2, 741/2] X [t",t"*Y  forie Z, neN.



For the sake of simplicity, we assume uniform grids,wherer > 1 is a fixed integerr = ¢ — t" is the local
so thatz, 1/ = (i +1/2)Ax, i € Z, andt™ = nAt  time, 04 = lim o7, andq(z;;1/2,04) evaluates the
with Az, At > 0. The cell average in theth cell at  solution of the generalized Riemann problem
initial time t° = 0 is then given by

Oq+0.f(q) =0 forzeR,7>0,

qQ = L Tit1/2 (j(x) di. (:L’ 0) B v?(x) forx < Tit1/25
AZ’ Ti—1/2 NS B ’Uén_’_l (ZL‘) fOI’ xT > .Z'Z'+1/2,

Now, the generalized Godunov scheme works agight at the cell interface for time = 0...
follows. At any time step™ — t"+!, for n > 0, Recall that the solutiop may contain discontinu-
ities. But for fixedz; 12, the functiong(x;1/2, -) (of
the time variable) is smooth for small> 0. To solve
v"(z) =R ({4} }iez) () the generalized Riemann problem, we work with a nu-
merical flux approximating the time integral in (4) by

able conservative nonlinear reconstruction oper-

ator, e.g., WENO reconstruction. Denote the re- N
striction of v to the cell[z;_1 s, 711 /5] By v T =Y wif(q(xisije ),
=1

e reconstruct a piecewise smooth function

e usev” as initial data and evolve for one time step
1o n wherew,, 7, are the Gaussian weights and nodes, and
v () = E(At)" (), N is the number of nodes. The valugs; , », 7,) are

where¢ is the exact entropy evolution operator determined through (5).

associated with (1);
@) 2.2 The Toro-Titarev Solver

e update the cell averages by averagifig’', We now describe how to compute the coefficients
el g st in (5), according to (Toro & Titarev 2006). The key
G = ’ idea is to reduce the solution of the generalized Rie-

where.A,; is the cell averaging operator, given as mann problem to a series of classical Riemann prob-
lems. To find the sought valugz; /,,0,), we solve

1 Tit+1/2 . .
A = — v(z) da. a classical Riemann problem
T T,
i—1/2 Oq+0:f(q) =0 forxeR, >0,
In a finite volume framework, evolution and averaging (z, () = q% for o < i, (6)
can be done in one step by the update formula dp  forz > i),

At with the extrapolated values

Gt =q - A (;11/2 - 7[11/2) 5

X AO . A~ ,\0 . A~
) gp= lim gr(z) and gr= lim ¢gr(z).
if we can compute the flux through the cell bound- T/ Tig1)2 TNTi 412

aries exactly, i.e., we need to compute the integral . o .
This problem has a similarity solution that we de-

. 1 . note byq’((z — x;11/2)/7). The leading term of the
i+1/2 7 Ay /tn f(E(r)v" (wigay2)) dT (4) expansion (5) is then given by, 1/2,04) = ¢°(0),
called theGodunov statef (6). For nonlinear sys-

exactly. However, this may be exceedingly compli-tems of conservation laws, computing the complete
cated, if not impossible. Therefore, we are looking forsolution of the Riemann problem can be a quite diffi-
an approximation to (4), being based on the approxieult task, and so we may need to employ a numerical
mate solution of a generalized Riemann problem.  (approximative) Riemann solver to compute the lead-
To obtain a numerical flux, we use ADE®ate ing term. However, as we are mainly interested in the
expansioni.e., a Taylor expansion of the solutign  analytical aspects of the scheme, we assume that the

around timet = ¢" at the cell interface; 12, Godunov state of (6) can be computed exactly.
N 0 For the higher order terms we perform a standard
q(Zit1/2,7) 2 q(Tiy1/2,04) Cauchy-Kowalewskaya-type procedure to express all

time derivatives as functions of lower order spatial

A derivatives, relying on a recursive mapping

k
+Zﬁf(1($i+1/z70+)%a ()
k=1 ’ 6fq:q)k(q,8xq,...,8];q) fork=0,...,7r—1.



Recall that for piecewise smooth initial data, thewhich we assume to be strictly hyperbolic, i.e., the Ja-
classical Cauchy-Kowalewskaya theorem does notobianA(q) = D f(q) hasn distinct real eigenvalues
apply. But to illustrate the basic ideas, we assume that
¢ is smooth. In this case, the following equations cami(q) < Xa(q) <--- < Au(q) forallg € R".

be obtained by simple manipulations of derivatives. _
Using ®* we can can compute the expansion (5),We further assume that all eigenvalue§;(z,t)) are

provided that we can find the spatial derivatives uniformly bounded in a neighbourhood of the origin.
We then choose bases of left and rlg_ht eigenvectors,
q®(z,t) = OFq(z,1). {61(q), -, @)} @and{ri(q),...m(q)}, i.e.,

To do so, we first compute the one-sided derivatives £i(@)" A(a) = Xi(@)li(a)",  A(@)ri(a) = Ni(q)ri(q),

fori=1,...,nandallg € R", here normalized as

¢ = lim 9%¢ (z)andgh = lim 0%qr(x).
x/‘aci_H/Q x\$i+1/2
i iy (:(q)-1i(q) = Lfori=j,
Then, we use these values as initial conditions for” ¢ 0 for i # 7,
classical Riemann problems. For the evolution equa-

tions of the spatial derivatives we take inhomoge-We assum¢ to be a smooth function and thereby, all

forall ¢ € R™.

neous equations of the form i, Ui, r; have the same regularity.
We restrict our analysis to systems, where we as-
g™ + A(q)0,q™ = H*(q9, ..., q¥)), (7)  sume that their characteristic fields are, for dny

i < n, either genuinely nonlinear in the sense of (Lax
where A(q) = Df(q) is the Jacobian of the flux. 1957),
Again, if the solutiong was smooth, equation (7)
could be derived by straight forward computation.VAi(¢) -ri(¢) #0 forallg € R,
Note, however, that we do not have yet a rigorous
analysis whether these equations also can be used 8

discontinuous solutions. - n
Now we simplify the given problem as follows. VAilg) -mi(g) =0 forallg € R,

Firstly, we neglect the source terms and secondly, we jnder these assumptions, we have the following

linearise the equations, so that we work with well-known result: Given two stated, % € R” with
|4% — ¢%| sufficiently small, the classical Riemann

f linearly degenerate,

g™ + ALr0,q® =0 forz e R,7 >0,

N problem
w0 ={ G e o
i fora >z, 0q°+0,f(¢°) =0 forzeR,t>0,
0 | ¢ forz<o,
whereA;r = A(q(zi11/2,04)). Then the self-similar ¢ (2,0) = { q% forz >0,

solutionsg”((z — x;+1/2)/7) of thesdinear problems
can be easily computed. Note that for Alive have permits a unique entropy admissible weak solution
the samed ;. that is self-similar,

These simplifications appear to be reasonable and,
in fact, they have already been used in many practicaéjo(x, t) = ud (f) )
applications. However, to the best of our knowledge, t

no theoretical justification concerning these simpli-tha selution consists of at mogh + 1) constant

flcaﬁonfs”has_ been 9}“’97” Sﬁ fa][. There;fore, we Slho"gtates, separated by rarefaction waves, shock waves or
In the following analysis, that for nonlinear, scalar, cqntact discontinuities. For a comprehensive analysis

1d problems the proposed simplifications lead 10 & the classical Riemann problem and the properties
method, whose solution agrees with a series expany

. , f its solution, see (Bressan 2000).
sion of the exact solution. Thereby, we show that the ' A< me that the initial data
resulting method does not reduce the accuracy order.

| qr(z) forz <O,
3 GENERALIZED RIEMANN PROBLEMS ate,0) = { qr(x) forz >0, ®)
To review some well-known results for the solution to
the classical and the generalized Riemann problenis piecewise smooth but discontinuousrat 0. For

let us consider the system the generalized Riemann problem (8)-(9) it is well-
known that taking;? = ¢;,(0), ¢% = ¢r(0), for suffi-
0q+0.f(q) =0 forzeR, t>0, (8) ciently small|g% — ¢Y], there exists a neighbourhood



z=oit b x=ost 4 ASYMPTOTIC EXPANSION

v = ot 4.1 Preliminary Discussion

= oyt 1 @ To further study the solution of the generalized Rie-
mann problem

do = g = % 8tq+6$f(Q)A:0 forz e R,t >0,

T (2,0) = Gr(z) foraz <O,

N6V =3 Gulz) forz >0,
x =77(t) t z = 5(t) we follow (LeFloch & Raviart 1988), where we want

to find an asymptotic expansion of the form
D;. T = 3(t)
z=n() D, gla,t) =Y tFu*(¢) (10)
k>0

Dy Dy with & = z/t. This is possible in any domain of
r  smoothnes®);, by simply taking a Taylor expansion,

so that every:* is a polynomial of degre&. We will
further discuss this in Section 5.

S , ) It can be shown that such a series expansion can
around the origin in which (8)-(9) has a unique en-gisq pe constructed inside a rarefaction z&nelow-
tropy admissible weak solution, see (Li & Yu 1985). gyer, for our numerical scheme we only need detailed
Moreover, the solutio consists of at mostn +1)  jnformation about the solution along the line segment
open domains of smoothneBs, 0 <i <n, separated (, — 0} x [0, At] (in local coordinates). We assume
either by smooth curves= v;(t) passing through the ' that the solution doesot contain a transonic rarefac-

Figure 1: Corresponding wave patterns.

origin, or by rarefaction zones of the form tion wave. In that case, the solution along that line
segment is given by some functigg). inside a do-
R={(z,t) e R x[0,00)|7.(t) <z <7,(t)}, main of smoothnes®;,, 0 < ix < n, and we do not
—J

need the explicit construction of the expansion inside

_ . a rarefaction zone.

wherez - l,j(t)’ T=T5 (t)j l<jsmn,are s.m.ooth . The above construction may be summarized as fol-

characteristic curves passing through the origin. In €itgws: Take a Taylor expansion in regions, where the

ther case, we assume that these curves are defined gmutionq is smooth. Then, investigate the jump con-

¢ > 0 sufficiently small. Thery has a shock or con- gitions at the boundaries of the smoothness domains.

tact discontinuity across each curve= 7;(t) and is A we are looking for an expansion in terms of self-

continuous across the characteristic cuvesy (), similar functions, it is useful to change the variables

x = 7,(t). The solution of the generalized Riemannto § = z/t. We letg(¢,t) = q(&t,t) and see that

problem and the solution of the corresponding clas-

sical Riemann problem fog® with the initial states 5 _ la and 8, = 0,G — §a q. (11)

¢® = G1.(0) andg% = Gr(0) have the same wave struc- ¢ ‘ e

ture, at least for small timé> 0. That is, if the so- o : . .

lution of the classical Riemann problem contains arf-2 Step I: Derivation of the Differential Equations

i-shock moving to the right, the same is true for theT0 derive an explicit construction of the functions

solution of the generalized Riemann problem and sd? (10), we first analyze the equations satisfied by

on. For illustration, a typical configuration of corres- these functions inside the domains of smoothness. By

ponding wave patterns is shown in Figure 1. using (11), the conservation law (1) can be written as
We finally remark that the generalized Riemann, , -~ ~ ~ _

problem has been the subject of ongoing researc t.ﬁtq — 80+ 0 f(a(&,1) = 0.

Special emphasis has been put on the global exisNote that the expansion

tence and the structural stability of solutions. We refer

to (Chen, Huang, & Han 2009; Chen, Han, & Zhangg(¢,t) = Zt’“u’“(&)

2009; Kong 2003; Kong 2005) and references therein =0

for an up-to-date account on the generalized Riemann -

problem. However, for the analysis of the numerical9IvV€s

schemes under consideration in this paper, we can rely du dut

the results on local existence and local structural starg,; — £0:G = _gi + Ztk <k;uk _ gi) . (12)

bility. g d§



Inserting this expansion into the physical flux yields It follows from (10) that

f(q(&,1)) Jut + fEUR).

u®) + > (A

k>1

(13)

Here, the functionf” depends only on the previous

terms (/51 — (u®, ..., uF1). We get f* by a Tay-

lor expansion of the physical flux, so thﬁ‘t contains
all higher order terms in that expansion, i.e., all but

A(u®)uk. By using that Taylor expansion gfin pow-

ers oft, it is easy to see that* is a polynomial of

degree at most, if everyu’ is a polynomial (in¢) of
degree at mogt, for0 < /¢ <k — 1.
Combining (12) and (13), we get

O

—fd—g + d£f< u’)
+k221tk (k b §—£+ dg(A(uo)ukJrfk)) =0
Fork =0, we have
0
—5—5 + éf( 0) = (14)
and fork > 1, we have
ot — 2 L a1 ) =
¢ d¢ N
Letting
h*(€) = ——gf’“( %), ..., u*(€)),
this becomes
e Ay = (15)
g dg

Sincef* is a polynomial in¢ of degree at most, the
functionh* is a polynomial of degree at mokst- 1.

4.3 Step II: Jump Conditions.

The above construction is valid whereveas smooth.
So next we need to investigate the jump conditions

satisfied byu* at the points of discontinuity of.

Take a curver = «(t) that separates two domains of
smoothness qof, thus either a shock curve, a contact
discontinuity or the boundary of a rarefaction zone.

0=y ()

k>0

> ()

k>0 >0

In fact, the solutiony is smooth, not only inD;, but
also in the closuré®;, see (Li & Yu 1985). So again
we can use a Taylor expansion in powersg afound
the origin to obtain

q(v(1),1) =

+Ztk< +0k%( 0))

k>1

+ Z tkzk(gkflj kal)'

k>0

(16)

Similar to thef* in (13), the functiong* depend only

onY 1 = (¢ ... o* 1) andU*!. Again, we insert

all higher order terms in an Taylor expansion info
We denote the jump of a functianat a pointz, by

[u](20) = u(zo,4) — u(z0,-),

so that in the case whetgis continuous across the
curvex = (t) we simply get

[w”] ("

from (16), whereas fok > 1 we get

)=0 fork=0 (a7)

b oP S g R (L URY) | (o) = 0,
d§
Note thatu® is continuous at the point’, whereas,
for k > 1, u* is in general discontinuous af.
Now let ¢ have a jump across the curwe= ~(¢).
Then, by the Rankine-Hugoniot conditions, we have

YD)l (x) = [f(@)](=)

Then we take expansions of boftit)q(~(¢),t) and
f(q(y(t),t)). By asimilar technique as above, we find

for x = ().

o'’} =[f(u")] ato”, (18)

for k = 0, whereas fok > 1 we get

[(A@®) —o%)ut] + o [< A — )Ci;é:|

o [(k+1)u’] + [w*] =0

Since these curves are all smooth, we can use a Tay-

lor expansion to write

Y(t) =0t + oMt 4o

with a functionw” depending only oro+—1 U+—!
For further details on the (rather technlcal) proof we
refer to (LeFloch & Raviart 1988).



We remark that (by finite speed of propagation) forRecall that:”* is a polynomial of degree at mast- 1.
|€| large enough, sajf| > &,, we have It is straightforward to show that the general solution

0 g of (21) is given by
(€)= { b ez (19)

We summarize our above construction as follows.

uB(€) = (€ — A@d) uk + pl(€), (22)

see Lemma 2 in (LeFloch & Raviart 1988), where
PROPOSITION The functionu® satisfies the rela- " € R” is an arbitrary vector angd’ : R — R" is a

tions (14), (17), (18) and (19), which characterizepolynomial of degree at mogt— 1 with coefficients
the piecewise continuous self-similar entropy solutionthat depend only ob/*—! = (u°,...,u*"1).
¢°(z,t) = u° (&) of the classical Riemann problem
0 0 5 CONNECTING SOLVER AND EXPANSION
0" +0:f(¢") =0 forz €R,t>0, Now let us take a look at the Taylor expansion that

50
¢°(z,0) = { g fora <o, (20)  we used to define the functions. We consider the
Gr forz>0, domains

with initial states;? = ¢, (0) andq% = qr(0). U D; = {£ER |y1(t)/t < & <v(t)/t}.
This shows that the solution strategy of the ADER .
method sets up “the right problem” for computing the Since we havey;(0) = 0,7(0) = o7, the domains re-

leading term of the expansion. main close to the domains! in which+° is constant,
for smallt > 0. In every domain of smoothnegs we
4.4 Step llI: Higher Order Terms. can take somér, t) close to the origin and write

Assume that the solution of (20) contains no transonic
rarefaction wave. Then line segmént=0} x [0, At] q(x:t) = q(wo, o)+
is contained in a domain of smoothness, sayin,
andv?, is the Godunov state of the Riemann prob- > koot gt (z— x0) (t — to)h"
lem (20). Since we do not explicitly need the expan- Z Z @WQ(%JO) 0k —0)!
sioninside the rarefaction zones, we only considerthe k=1 ¢=0
simplified case, where the solutiefi contains only , _ _ _
shock waves or contact discontinuities. The full prob- L€tix € {1,...,n} be the index for which the line
lem requires similar techniques, although some of théegmentz = 0} x [0, Af] is contained inD;, . Inside
details are more involved, see (LeFloch & Raviarti. We may take the limitzo, o) — (0,0) and thus
1988) for the full construction. the Taylor expansion around the origin gives

In situations, where we only have shocks and con- b g
tact discontinuities, the solution” of (20) has the g2, 1) = ZZ q(0,04) s

form 2 ot Ok — 0)]
k=0 ¢=0
e u(8] = ;org € E—Ooo,oa?g,l . )
U =< U or§ € (o;/,071),1 <i<n, o0 9t okt (0,04) ¢
A _ .0 k q\Y, Uy x
tn =y 1O ¢ € (o,00) =ul + 21D G = by (5)
k=1 (=0
In case of an-shock, we have N T .

Ai(uf) = of = Ni(uiyy), . o
_ o Thus, the vectonf in (22), which gives the lead-
and for ani-contact discontinuity, we have ing coefficient of this polynomial, defines the value

9kq(0,0,).

0_y (,,0N _ Y\ (,0 x » U . . .

0; = Ai(ui) = Ailuip)- To determine the vectors), we first describe.;
Now consider the domains andu®. Using the notation from Section 2, we can

write for the initial data
D) = {(x,t)]o) <& <oy} fori=0,...,n,

-1 -1 ik
in which v, takes the constant valué. As a conven-  G.(z) = G}, + %xk andgr(z) = ¢ + Z %xk.
tion, we leto) = —oo ando?,, = +oo. Then equa- k=1 k=1 "

tion (15) in DY becomes L .
(15) ! In Dy, the solution is given by the functions

b+ (AC) =€) g = 1) u(e) = (6~ Al b + (o).



Sincept: is a polynomial of degree at most- 1, contains a rarefaction wave. Therefore, the solution
of the generalized Riemann problem is given as

x
lim %" (?) = zFuf.

=0, qo(z,t) forx < (1),
z<n () glz,t)={ z/t for y(t) < = < 7(t),
Hence, it follows qi(z,t) fory(t) <.
1 Using the method of characteristics, we obtain
_ : _,0 k, .k
a,0) = lim q(o,t) =ug+ ) ugz". 2(x+1)+1— /Hz+ D+ 1
x<v1(t) k=1 do (.T, t) = 242 )

k = q ‘ i i k p— A '
TrEerefore,uO gr/k!, and likewiseu, = ¢},/k!, for o —1)+1— /BT +1
k?—O,...,T’—l. qlx’t): .

. . (
Now consider the scalar case. For a strictly convex 42

flux, f > 0, we only have two domains of smooth- The boundaries of the rarefaction zone are given

ness. In that case, all coefficient$,i = 0,1, and  py the head-characteristig(t) = 2¢t and the talil-
k=1,...,r — 1, are uniquely determined by the ini- characteristiey(t) = .

tial data ar_1d its derivat_ives._ Assuming that there is For sufficiently small time > 0, we approximate

no transonic wave, solving linear Riemann problemsghe solution along the-axis by

merely means picking the left or the right side, de-

pending on the sign of the coefficient in the evolution 9 t2

equation. Thus, to build the expansion, we first haved (0:1) = ¢(0,04) + 9q(0,04)t + 8t‘J(0’0+)§'

to solve one nonlinear Riemann problem to determine o _ _

which domain of smoothness contains the line seglNote that the-axis is contained in the domain,, so
ment{z = 0} x [0, At]. Then we use the data from In the subsequent analysis we only need to consider
that side, which is equivalent to solving linear Rie- the functiong,. We have

mann problems. Therefore, the Toro-Titarev solver re- 9
produces the first — 1 terms of the LeFloch-Raviart 0:40(0,04) = =2 and  57¢o(0,0) = 10.

expansion exactly, so that we can finally conclude: e now compute the terms of the LeFloch-Raviart
THEOREM. Consider the generalized Riemannexpansion up to the functionr (). At first, consider

problem for a scalar, nonlinear hyperbolic conservathe expansion of the flux arourd-= 0,

tion law with strictly convex flux in one spatial dimen- 0 Lo 1

sion. Let the initial data consist of piecewise polyno-/(4(&: 1)) =f(u”) +tf (u”)u

mials of degree — 1. Assume that the solution does

not contain a transonic wave. Then the numerical flux ol s on 2 L, 0vs 12

constructed with the solver of Toro and Titarev is ac- +i <f (u")u” + §f (u?)(u) ) :

curate of orde®(At") asAt — 0., in the sense that

Then,u is the solution of the Riemann problem

r—1
‘f(q(O,T)) —f <Z uk(0)7k> | = O(Al"). O’ +0,((u®)?/2) =0 forz e Rt >0,
k=0 0(7.0) — 1 forz <0,
- w(@,0)=1 9 forz > 0,

in which caseu’(¢) = 1 for all £ € Dy. Then, the

Consider Burgers equation,

0+ 0:(¢°/2) =0 “5”1‘5)%“5:0’
with initial data and the solution consistent with the initial data is
o(2,0) = { qL(x)ix22—l—2x+1 forz <0, ug(€) = 2(6 —1).
Gr(v) = 20" —dw+2 forz>0. Therefore, we have
In this case, we havé) = 1 < 2 = ¢,. Therefore, ()

(u'(€)* = —4( - 1).

the classical Riemann problem for the leading termh’(€) = 5

7



Note that the inhomogeneous equation{ér
d
20+ (1= €) ggu = ~4(6 ~ 1),
has the solutiom?(¢) = (¢ — 1) — 4(£ — 1). Thus,
Q&) ~ 1+2(6—1t+((E—1)* =4 - 1),

q(z,t) =~ 2®+2z — 62t + 512 — 2t + 1,
and in particular
q(0,t) = 1 — 2t + 5%

Now we use the solver of Toro and Titarev, where

we find the leading term(0, 0, ) by solving
Oiq+ 0,(¢?/2) =0 forx e Rt >0,

] ¢l=1 forz <0,
Q(x’o)_{q%:2 for z > 0.

This givesg(0,04) = 1.

Next, the Cauchy-Kowaleskaya procedure leads to

g = —q0xq, 0}q=2(0.q)*+ qd2q,
01(0,q) = —(0.q)* — qd2q, (23)
01(02q) = —30,q0%q — qO3q.

For ¢ = 9,q and¢® = 0?¢, we have the evolution
equations

0iq" + 0.4 = —(¢M)?
and
with the initial conditions

(1)
q(l)(:c 0) — ql(L =2 forx <0, (24)
’ gV =—4 forz >0,
and
~(2)
=2 forxz <0,
¢ (2,0) =4 U~ (25)
gy =4 forxz>0.

We drop the source terms and linearise around

¢(0,04) =1, so that we have
g™ +0,q% =0 fork=1,2,

together with the initial conditions (24) and (25), re-

spectively. Thesénear problems are readily solved,
where we find the Godunov states

q(l) (07 0+) =2 and q(2) (07 0+) =2

By the Cauchy-Kowaleskaya procedure (23) we get

3t<](0,0+) = —q(0,0+)q(1)(0,0+) = -2,

874(0,04) = 2(¢V(0,04))* +¢(0,04)¢®(0,0,) = 10,
and thus again we find
q(0,t) ~ 1 — 2t + 5t%.
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