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This work concerns the solution of generalized Riemann problems. To this end, we consider the ADER scheme
of Titarev & Toro (2002), which relies on a generalization ofthe classical Godunov scheme. Another solution
method is the power series expansion of LeFloch & Raviart (1988). We analyze the two resulting approximation
schemes, where we show that for scalar 1d problems the Toro-Titarev solver and the LeFloch-Raviart expansion
yield the same Taylor series expansions in time. The full analysis for the Burgers equation is finally provided.

1 INTRODUCTION
We consider a system of hyperbolic conservation laws

∂tq(x, t) + ∂xf(q(x, t)) = 0 for x ∈ R, t > 0, (1)

in one spatial dimension, whereq : R× [0,∞)→ R
n

is a vector of conserved quantities and where the flux
f : Rn → R

n is a smooth vector-valued function.
We are interested in a Cauchy problem for (1), with

discontinuous initial data of the form

q(x,0) =

{
q̂L(x) for x < 0,
q̂R(x) for x > 0,

(2)

where the two functionŝqL and q̂R are smooth. The
Cauchy problem (1)-(2) is calledgeneralized Rie-
mann problem.

Due to the pioneering work of (van Leer 1979) and
(Ben-Artzi & Falcovitz 1984), the generalized Rie-
mann problem has been successfully used in the con-
struction of high order extensions to the classical Go-
dunov scheme. A state of the art variant of this ap-
proach is the ADER scheme of (Titarev & Toro 2002;
Toro & Titarev 2006). The basic idea of the ADER
scheme is to use a high order spatial reconstruction of
the solution from cell averages and to use the gener-
alized Riemann problem to design a time discretisa-
tion of matching order. The key strategy in the Toro-
Titarev solver is the reduction of the generalized Rie-
mann problem to a series of classical Riemann prob-
lems.

On the other hand, (LeFloch & Raviart 1988) have
shown that, fort > 0 sufficiently small, the solutionq

of the generalized Riemann problem can be expanded
into a power-series of self-similar functions,

q(x, t) =
∑

k≥0

tkuk
(x

t

)

(3)

with polynomial functionsξ 7→ uk(ξ). LeFloch &
Raviart have given an explicit method to construct the
expansion (3). We re-interpret the method of Toro &
Titarev in the context of that LeFloch-Raviart series
expansion for the generalized Riemann problem.

The outline of this paper is as follows. In Section 2
we briefly review generalized Godunov schemes and
the Toro-Titarev solver for the ADER scheme. Then,
we recall well-known results on the solution of clas-
sical and generalized Riemann problems in Section 3.
In Section 4, we discuss the key steps of the LeFloch-
Raviart expansion, where we show that for scalar 1d
problems the Toro-Titarev solver and the LeFloch-
Raviart expansion yield the same the Taylor series
expansions in time. The full analysis for a scalar 1d
example concerning Burgers equation is finally pro-
vided in Section 6.

2 THE ADER SCHEME
2.1 Generalized Godunov Schemes
To numerically solve the Cauchy problem

∂tq + ∂xf(q) = 0 for x ∈ R, t > 0,
q(x,0) = q̂(x) for x ∈ R,

}

we use a Godunov-type finite volume scheme. To this
end, we work with control volumes (cells) of the form

[xi−1/2, xi+1/2]× [tn, tn+1] for i ∈ Z, n ∈ N.
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For the sake of simplicity, we assume uniform grids,
so thatxi+1/2 = (i+ 1/2)∆x, i ∈ Z, and tn = n∆t
with ∆x,∆t > 0. The cell average in thei-th cell at
initial time t0 = 0 is then given by

q0i =
1

∆x

∫ xi+1/2

xi−1/2

q̂(x) dx.

Now, the generalized Godunov scheme works as
follows. At any time steptn → tn+1, for n ≥ 0,

• reconstruct a piecewise smooth function

vn(x) =R ({qni }i∈Z) (x)

from the cell averages{qni }i, whereR is a suit-
able conservative nonlinear reconstruction oper-
ator, e.g., WENO reconstruction. Denote the re-
striction ofvn to the cell[xi−1/2, xi+1/2] by vni ;

• usevn as initial data and evolve for one time step

ṽn+1(x) = E(∆t)vn(x),

whereE is the exact entropy evolution operator
associated with (1);

• update the cell averages by averagingṽn+1,

qn+1
i = Aiṽ

n+1,

whereAi is the cell averaging operator, given as

Aiv =
1

∆x

∫ xi+1/2

xi−1/2

v(x) dx.

In a finite volume framework, evolution and averaging
can be done in one step by the update formula

qn+1
i = qni −

∆t

∆x

(
f̄n
i+1/2 − f̄n

i−1/2

)
,

if we can compute the fluxf through the cell bound-
aries exactly, i.e., we need to compute the integral

f̄n
i+1/2 =

1

∆t

∫ tn+1

tn
f
(
E(τ)vn(xi+1/2)

)
dτ (4)

exactly. However, this may be exceedingly compli-
cated, if not impossible. Therefore, we are looking for
an approximation to (4), being based on the approxi-
mate solution of a generalized Riemann problem.

To obtain a numerical flux, we use ADERstate
expansion, i.e., a Taylor expansion of the solutionq
around timet = tn at the cell interfacexi+1/2,

q(xi+1/2, τ) ≈ q(xi+1/2,0+)

+

r−1∑

k=1

∂k
t q(xi+1/2,0+)

τk

k!
, (5)

wherer > 1 is a fixed integer,τ = t− tn is the local
time, 0+ = limτց0 τ , andq(xi+1/2,0+) evaluates the
solution of the generalized Riemann problem

∂tq + ∂xf(q) = 0 for x ∈ R, τ > 0,

q(x,0) =

{
vni (x) for x < xi+1/2,
vni+1(x) for x > xi+1/2,







right at the cell interface for timeτ = 0+.
Recall that the solutionq may contain discontinu-

ities. But for fixedxi+1/2, the functionq(xi+1/2, ·) (of
the time variable) is smooth for smallτ > 0. To solve
the generalized Riemann problem, we work with a nu-
merical flux approximating the time integral in (4) by
a Gaussian quadrature of the form

fn
i+1/2 =

N∑

γ=1

ωγf(q(xi+1/2, τγ)),

whereωγ, τγ are the Gaussian weights and nodes, and
N is the number of nodes. The valuesq(xi+1/2, τγ) are
determined through (5).

2.2 The Toro-Titarev Solver
We now describe how to compute the coefficients
in (5), according to (Toro & Titarev 2006). The key
idea is to reduce the solution of the generalized Rie-
mann problem to a series of classical Riemann prob-
lems. To find the sought valueq(xi+1/2,0+), we solve
a classical Riemann problem

∂tq + ∂xf(q) = 0 for x ∈ R, τ > 0,

q(x,0) =

{
q̂0L for x < xi+1/2,
q̂0R for x > xi+1/2,






(6)

with the extrapolated values

q̂0L = lim
xրxi+1/2

q̂L(x) and q̂0R = lim
xցxi+1/2

q̂R(x).

This problem has a similarity solution that we de-
note byq0((x− xi+1/2)/τ). The leading term of the
expansion (5) is then given byq(xi+1/2,0+) = q0(0),
called theGodunov stateof (6). For nonlinear sys-
tems of conservation laws, computing the complete
solution of the Riemann problem can be a quite diffi-
cult task, and so we may need to employ a numerical
(approximative) Riemann solver to compute the lead-
ing term. However, as we are mainly interested in the
analytical aspects of the scheme, we assume that the
Godunov state of (6) can be computed exactly.

For the higher order terms we perform a standard
Cauchy-Kowalewskaya-type procedure to express all
time derivatives as functions of lower order spatial
derivatives, relying on a recursive mapping

∂k
t q = Φk

(
q, ∂xq, . . . , ∂

k
xq
)

for k = 0, . . . , r− 1.
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Recall that for piecewise smooth initial data, the
classical Cauchy-Kowalewskaya theorem does not
apply. But to illustrate the basic ideas, we assume that
q is smooth. In this case, the following equations can
be obtained by simple manipulations of derivatives.

UsingΦk we can can compute the expansion (5),
provided that we can find the spatial derivatives

q(k)(x, t) = ∂k
xq(x, t).

To do so, we first compute the one-sided derivatives

q̂kL = lim
xրxi+1/2

∂k
x q̂L(x) andq̂kR = lim

xցxi+1/2

∂k
x q̂R(x).

Then, we use these values as initial conditions for
classical Riemann problems. For the evolution equa-
tions of the spatial derivatives we take inhomoge-
neous equations of the form

∂tq
(k) +A(q)∂xq

(k) = Hk(q(0), . . . , q(k)), (7)

where A(q) = Df(q) is the Jacobian of the flux.
Again, if the solutionq was smooth, equation (7)
could be derived by straight forward computation.
Note, however, that we do not have yet a rigorous
analysis whether these equations also can be used for
discontinuous solutions.

Now we simplify the given problem as follows.
Firstly, we neglect the source terms and secondly, we
linearise the equations, so that we work with

∂tq
(k) +ALR∂xq

(k) = 0 for x ∈ R, τ > 0,

q(x,0) =

{
q̂kL for x < xi+1/2,
q̂kR for x > xi+1/2,







whereALR = A(q(xi+1/2,0+)). Then the self-similar
solutionsqk((x−xi+1/2)/τ) of theselinear problems
can be easily computed. Note that for allk we have
the sameALR.

These simplifications appear to be reasonable and,
in fact, they have already been used in many practical
applications. However, to the best of our knowledge,
no theoretical justification concerning these simpli-
fications has been given so far. Therefore, we show
in the following analysis, that for nonlinear, scalar,
1d problems the proposed simplifications lead to a
method, whose solution agrees with a series expan-
sion of the exact solution. Thereby, we show that the
resulting method does not reduce the accuracy order.

3 GENERALIZED RIEMANN PROBLEMS
To review some well-known results for the solution to
the classical and the generalized Riemann problem,
let us consider the system

∂tq + ∂xf(q) = 0 for x ∈ R, t > 0, (8)

which we assume to be strictly hyperbolic, i.e., the Ja-
cobianA(q) = Df(q) hasn distinct real eigenvalues

λ1(q) < λ2(q) < · · · < λn(q) for all q ∈ R
n.

We further assume that all eigenvaluesλi(q(x, t)) are
uniformly bounded in a neighbourhood of the origin.

We then choose bases of left and right eigenvectors,
{ℓ1(q), . . . , ℓn(q)} and{r1(q), . . . rn(q)}, i.e.,

ℓi(q)
TA(q) = λi(q)ℓi(q)

T , A(q)ri(q) = λi(q)ri(q),

for i = 1, . . . , n and allq ∈ R
n, here normalized as

ℓj(q) · ri(q) =

{
1 for i = j,
0 for i 6= j,

for all q ∈ R
n.

We assumef to be a smooth function and thereby, all
λi, ℓi, ri have the same regularity.

We restrict our analysis to systems, where we as-
sume that their characteristic fields are, for any1 ≤
i ≤ n, either genuinely nonlinear in the sense of (Lax
1957),

∇λi(q) · ri(q) 6= 0 for all q ∈ R
n,

or linearly degenerate,

∇λi(q) · ri(q) ≡ 0 for all q ∈ R
n.

Under these assumptions, we have the following
well-known result: Given two stateŝq0L, q̂

0
R ∈ R

n with
|q̂0R − q̂0L| sufficiently small, the classical Riemann
problem

∂tq
0 + ∂xf(q

0) = 0 for x ∈ R, t > 0,

q0(x,0) =

{
q̂0L for x < 0,
q̂0R for x > 0,







permits a unique entropy admissible weak solution
that is self-similar,

q0(x, t) = u0
(x

t

)

.

The solution consists of at most(n + 1) constant
states, separated by rarefaction waves, shock waves or
contact discontinuities. For a comprehensive analysis
on the classical Riemann problem and the properties
of its solution, see (Bressan 2000).

Assume that the initial data

q(x,0) =

{
q̂L(x) for x < 0,
q̂R(x) for x > 0,

(9)

is piecewise smooth but discontinuous atx = 0. For
the generalized Riemann problem (8)-(9) it is well-
known that takinĝq0L = q̂L(0), q̂

0
R = q̂R(0), for suffi-

ciently small|q̂0R − q̂0L|, there exists a neighbourhood
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Figure 1: Corresponding wave patterns.

around the origin in which (8)-(9) has a unique en-
tropy admissible weak solution, see (Li & Yu 1985).
Moreover, the solutionq consists of at most(n+ 1)
open domains of smoothnessDi, 0≤ i≤ n, separated
either by smooth curvesx= γj(t) passing through the
origin, or by rarefaction zones of the form

R = {(x, t) ∈ R× [0,∞)
∣
∣
∣γ

j
(t) < x < γj(t)},

wherex = γ
j
(t), x = γj(t), 1 ≤ j ≤ n, are smooth

characteristic curves passing through the origin. In ei-
ther case, we assume that these curves are defined for
t > 0 sufficiently small. Thenq has a shock or con-
tact discontinuity across each curvex = γj(t) and is
continuous across the characteristic curvesx = γ

j
(t),

x = γj(t). The solution of the generalized Riemann
problem and the solution of the corresponding clas-
sical Riemann problem forq0 with the initial states
q̂0L = q̂L(0) andq̂0R = q̂R(0) have the same wave struc-
ture, at least for small timet > 0. That is, if the so-
lution of the classical Riemann problem contains an
i-shock moving to the right, the same is true for the
solution of the generalized Riemann problem and so
on. For illustration, a typical configuration of corres-
ponding wave patterns is shown in Figure 1.

We finally remark that the generalized Riemann
problem has been the subject of ongoing research.
Special emphasis has been put on the global exis-
tence and the structural stability of solutions. We refer
to (Chen, Huang, & Han 2009; Chen, Han, & Zhang
2009; Kong 2003; Kong 2005) and references therein
for an up-to-date account on the generalized Riemann
problem. However, for the analysis of the numerical
schemes under consideration in this paper, we can rely
the results on local existence and local structural sta-
bility.

4 ASYMPTOTIC EXPANSION
4.1 Preliminary Discussion
To further study the solution of the generalized Rie-
mann problem

∂tq + ∂xf(q) = 0 for x ∈ R, t > 0,

q(x,0) =

{
q̂L(x) for x < 0,
q̂R(x) for x > 0,







we follow (LeFloch & Raviart 1988), where we want
to find an asymptotic expansion of the form

q(x, t) =
∑

k≥0

tkuk(ξ) (10)

with ξ = x/t. This is possible in any domain of
smoothnessDi, by simply taking a Taylor expansion,
so that everyuk is a polynomial of degreek. We will
further discuss this in Section 5.

It can be shown that such a series expansion can
also be constructed inside a rarefaction zoneR. How-
ever, for our numerical scheme we only need detailed
information about the solution along the line segment
{x = 0} × [0,∆t] (in local coordinates). We assume
that the solution doesnot contain a transonic rarefac-
tion wave. In that case, the solution along that line
segment is given by some functionqi∗ inside a do-
main of smoothnessDi∗, 0 ≤ i∗ ≤ n, and we do not
need the explicit construction of the expansion inside
a rarefaction zone.

The above construction may be summarized as fol-
lows: Take a Taylor expansion in regions, where the
solutionq is smooth. Then, investigate the jump con-
ditions at the boundaries of the smoothness domains.
As we are looking for an expansion in terms of self-
similar functions, it is useful to change the variables
to ξ = x/t. We letq̃(ξ, t) = q(ξt, t) and see that

∂x =
1

t
∂ξ and ∂tq = ∂tq̃−

ξ

t
∂ξ q̃. (11)

4.2 Step I: Derivation of the Differential Equations
To derive an explicit construction of the functionsuk

in (10), we first analyze the equations satisfied by
these functions inside the domains of smoothness. By
using (11), the conservation law (1) can be written as

t∂tq̃ − ξ∂ξ q̃ + ∂ξf(q̃(ξ, t)) = 0.

Note that the expansion

q̃(ξ, t) =
∑

k≥0

tkuk(ξ)

gives

t∂tq̃− ξ∂ξq̃ = −ξ
du0

dξ
+
∑

k≥1

tk
(

kuk − ξ
duk

dξ

)

. (12)
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Inserting this expansion into the physical flux yields

f(q̃(ξ, t)) = f(u0) +
∑

k≥1

tk(A(u0)uk + fk(Uk−1)).

(13)

Here, the functionfk depends only on the previous
termsUk−1 = (u0, . . . , uk−1). We getfk by a Tay-
lor expansion of the physical flux, so thatfk contains
all higher order terms in that expansion, i.e., all but
A(u0)uk. By using that Taylor expansion off in pow-
ers of t, it is easy to see thatfk is a polynomial of
degree at mostk, if everyuℓ is a polynomial (inξ) of
degree at mostℓ, for 0 ≤ ℓ ≤ k − 1.

Combining (12) and (13), we get

−ξ
du0

dξ
+

d

dξ
f(u0)

+
∑

k≥1

tk
(

kuk − ξ
duk

dξ
+

d

dξ
(A(u0)uk + fk)

)

= 0.

Fork = 0, we have

−ξ
du0

dξ
+

d

dξ
f(u0) = 0 (14)

and fork ≥ 1, we have

kuk − ξ
duk

dξ
+

d

dξ
(A(u0)uk + fk) = 0.

Letting

hk(ξ) = −
d

dξ
fk(u0(ξ), . . . , uk−1(ξ)),

this becomes

kuk − ξ
duk

dξ
+

d

dξ
(A(u0)uk) = hk. (15)

Sincefk is a polynomial inξ of degree at mostk, the
functionhk is a polynomial of degree at mostk− 1.

4.3 Step II: Jump Conditions.
The above construction is valid whereverq is smooth.
So next we need to investigate the jump conditions
satisfied byuk at the points of discontinuity ofq.
Take a curvex = γ(t) that separates two domains of
smoothness ofq, thus either a shock curve, a contact
discontinuity or the boundary of a rarefaction zone.
Since these curves are all smooth, we can use a Tay-
lor expansion to write

γ(t) = σ0t+ σ1t2 + · · ·+ σk−1tk + . . . .

It follows from (10) that

q(γ(t), t) =
∑

k≥0

tkuk

(
γ(t)

t

)

=
∑

k≥0

tkuk

(
∑

ℓ≥0

tℓσℓ

)

.

In fact, the solutionq is smooth, not only inDi, but
also in the closureDi, see (Li & Yu 1985). So again
we can use a Taylor expansion in powers oft around
the origin to obtain

q(γ(t), t) =

u0(σ0) +
∑

k≥1

tk
(

uk(σ0) + σk du
0

dξ
(σ0)

)

+
∑

k≥0

tkzk(Σk−1, Uk−1). (16)

Similar to thefk in (13), the functionszk depend only
onΣk−1 = (σ0, . . . , σk−1) andUk−1. Again, we insert
all higher order terms in an Taylor expansion intozk.

We denote the jump of a functionu at a pointx0 by

[u](x0) = u(x0,+)− u(x0,−),

so that in the case whereq is continuous across the
curvex = γ(t) we simply get

[u0](σ0) = 0 for k = 0 (17)

from (16), whereas fork ≥ 1 we get
[

uk + σk du
0

dξ
+ zk(Σk−1, Uk−1)

]

(σ0) = 0.

Note thatu0 is continuous at the pointσ0, whereas,
for k ≥ 1, uk is in general discontinuous atσ0.

Now let q have a jump across the curvex = γ(t).
Then, by the Rankine-Hugoniot conditions, we have

γ̇(t)[q](x) = [f(q)](x) for x = γ(t).

Then we take expansions of bothγ̇(t)q(γ(t), t) and
f(q(γ(t), t)). By a similar technique as above, we find

σ0[u0] = [f(u0)] atσ0, (18)

for k = 0, whereas fork ≥ 1 we get

[
(A(u0)− σ0)uk

]
+ σk

[

(A(u0)− σ0)
du0

dξ

]

− σk
[
(k + 1)u0

]
+
[
wk
]
= 0

with a functionwk depending only onΣk−1, Uk−1.
For further details on the (rather technical) proof we
refer to (LeFloch & Raviart 1988).
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We remark that (by finite speed of propagation) for
|ξ| large enough, say|ξ| ≥ ξ0, we have

u0(ξ) =

{
q̂0R for ξ > ξ0,
q̂0L for ξ < −ξ0.

(19)

We summarize our above construction as follows.

PROPOSITION. The functionu0 satisfies the rela-
tions (14), (17), (18) and (19), which characterize
the piecewise continuous self-similar entropy solution
q0(x, t) = u0(ξ) of the classical Riemann problem

∂tq
0 + ∂xf(q

0) = 0 for x ∈ R, t > 0,

q0(x,0) =

{
q̂0L for x < 0,
q̂0R for x > 0,






(20)

with initial statesq̂0L = q̂L(0) andq̂0R = q̂R(0). �

This shows that the solution strategy of the ADER
method sets up “the right problem” for computing the
leading term of the expansion.

4.4 Step III: Higher Order Terms.
Assume that the solution of (20) contains no transonic
rarefaction wave. Then line segment{x= 0}× [0,∆t]
is contained in a domain of smoothness, say inDi∗,
andu0

i∗ is the Godunov state of the Riemann prob-
lem (20). Since we do not explicitly need the expan-
sion inside the rarefaction zones, we only consider the
simplified case, where the solutionu0 contains only
shock waves or contact discontinuities. The full prob-
lem requires similar techniques, although some of the
details are more involved, see (LeFloch & Raviart
1988) for the full construction.

In situations, where we only have shocks and con-
tact discontinuities, the solutionu0 of (20) has the
form

u0(ξ) =







u0
0 = q̂0L for ξ ∈ (−∞, σ0

1),
u0
i for ξ ∈ (σ0

i , σ
0
i+1),1 ≤ i < n,

u0
n = q̂0R for ξ ∈ (σ0

n,∞).

In case of ani-shock, we have

λi(u
0
i ) ≥ σ0

i ≥ λi(u
0
i+1),

and for ani-contact discontinuity, we have

σ0
i = λi(u

0
i ) = λi(u

0
i+1).

Now consider the domains

D0
i = {(x, t)|σ0

i < ξ < σ0
i+1} for i = 0, . . . , n,

in whichu0 takes the constant valueu0
i . As a conven-

tion, we letσ0
0 = −∞ andσ0

n+1 = +∞. Then equa-
tion (15) inD0

i becomes

kuk +
(
A(u0

i )− ξ
) d

dξ
uk = hk. (21)

Recall thathk is a polynomial of degree at mostk− 1.
It is straightforward to show that the general solution
of (21) is given by

uk(ξ) =
(
ξ −A(u0

i )
)k

uk
i + pki (ξ), (22)

see Lemma 2 in (LeFloch & Raviart 1988), where
uk
i ∈ R

n is an arbitrary vector andpki : R → R
n is a

polynomial of degree at mostk − 1 with coefficients
that depend only onUk−1 = (u0, . . . , uk−1).

5 CONNECTING SOLVER AND EXPANSION
Now let us take a look at the Taylor expansion that
we used to define the functionsuk. We consider the
domains

Di = {ξ ∈ R |γi−1(t)/t < ξ < γi(t)/t} .

Since we haveγi(0) = 0, γ′
i(0) = σ0

i , the domains re-
main close to the domainsD0

i in whichu0 is constant,
for smallt > 0. In every domain of smoothnessDi we
can take some(x0, t0) close to the origin and write

q(x,t) = q(x0, t0)+

∞∑

k=1

k∑

ℓ=0

∂ℓ

∂xℓ

∂k−ℓ

∂tk−ℓ
q(x0, t0)

(x− x0)
ℓ(t− t0)

k−ℓ

ℓ!(k − ℓ)!
.

Let i∗ ∈ {1, . . . , n} be the index for which the line
segment{x = 0}× [0,∆t] is contained inDi∗. Inside
Di∗ we may take the limit(x0, t0)→ (0,0+) and thus
the Taylor expansion around the origin gives

q(x, t) =

∞∑

k=0

k∑

ℓ=0

∂ℓ

∂xℓ

∂k−ℓ

∂tk−ℓ

q(0,0+)

ℓ!(k − ℓ)!
xℓtk−ℓ

= u0
i∗ +

∞∑

k=1

tk
k∑

ℓ=0

∂ℓ

∂xℓ

∂k−ℓ

∂tk−ℓ

q(0,0+)

ℓ!(k − ℓ)!
.
(x

t

)ℓ

︸ ︷︷ ︸

=uk(x/t)

Thus, the vectoruk
i∗ in (22), which gives the lead-

ing coefficient of this polynomial, defines the value
∂k
xq(0,0+).
To determine the vectorsuk

i , we first describeuk
0

anduk
n. Using the notation from Section 2, we can

write for the initial data

q̂L(x) = q̂0L +
r−1∑

k=1

q̂kL
k!
xk andq̂R(x) = q̂0R +

r−1∑

k=1

q̂kR
k!

xk.

In D0, the solution is given by the functions

uk(ξ) = (ξ −A(u0
0))

kuk
0 + pk0(ξ).
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Sincepk0 is a polynomial of degree at mostk − 1,

lim
t→0,

x<γ1(t)

tkuk
(x

t

)

= xkuk
0.

Hence, it follows

q(x,0) = lim
t→0,

x<γ1(t)

q(x, t) = u0
0 +

r−1∑

k=1

uk
0x

k.

Therefore,uk
0 = q̂kL/k!, and likewise,uk

n = q̂kR/k!, for
k = 0, . . . , r− 1.

Now consider the scalar case. For a strictly convex
flux, f ′′ > 0, we only have two domains of smooth-
ness. In that case, all coefficientsuk

i , i = 0,1, and
k = 1, . . . , r− 1, are uniquely determined by the ini-
tial data and its derivatives. Assuming that there is
no transonic wave, solving linear Riemann problems
merely means picking the left or the right side, de-
pending on the sign of the coefficient in the evolution
equation. Thus, to build the expansion, we first have
to solve one nonlinear Riemann problem to determine
which domain of smoothness contains the line seg-
ment{x = 0} × [0,∆t]. Then we use the data from
that side, which is equivalent to solving linear Rie-
mann problems. Therefore, the Toro-Titarev solver re-
produces the firstr− 1 terms of the LeFloch-Raviart
expansion exactly, so that we can finally conclude:

THEOREM. Consider the generalized Riemann
problem for a scalar, nonlinear hyperbolic conserva-
tion law with strictly convex flux in one spatial dimen-
sion. Let the initial data consist of piecewise polyno-
mials of degreer− 1. Assume that the solution does
not contain a transonic wave. Then the numerical flux
constructed with the solver of Toro and Titarev is ac-
curate of orderO(∆tr) as∆t → 0+, in the sense that

∣
∣
∣
∣
∣
f(q(0, τ))− f

(
r−1∑

k=0

uk(0)τk

)∣
∣
∣
∣
∣
= O(∆tr).

�

6 BURGERS EQUATION
Consider Burgers equation,

∂tq + ∂x(q
2/2) = 0

with initial data

q(x,0) =

{
q̂L(x) = x2 + 2x+ 1 for x < 0,
q̂R(x) = 2x2 − 4x+ 2 for x > 0.

In this case, we havêq0L = 1 < 2 = q̂0R. Therefore,
the classical Riemann problem for the leading term

contains a rarefaction wave. Therefore, the solution
of the generalized Riemann problem is given as

q(x, t) =







q0(x, t) for x ≤ γ(t),
x/t for γ(t) < x < γ(t),
q1(x, t) for γ(t) ≤ x.

Using the method of characteristics, we obtain

q0(x, t) =
2t(x+ 1) + 1−

√

4t(x+ 1) + 1

2t2
,

q1(x, t) =
4t(x− 1) + 1−

√

8t(x− 1) + 1

4t2
.

The boundaries of the rarefaction zone are given
by the head-characteristicγ(t) = 2t and the tail-
characteristicγ(t) = t.

For sufficiently small timet > 0, we approximate
the solution along thet-axis by

q(0, t) ≈ q(0,0+) + ∂tq(0,0+)t+ ∂2
t q(0,0+)

t2

2
.

Note that thet-axis is contained in the domainD0, so
in the subsequent analysis we only need to consider
the functionq0. We have

∂tq0(0,0+) = −2 and ∂2
t q0(0,0+) = 10.

We now compute the terms of the LeFloch-Raviart
expansion up to the functionu2(ξ). At first, consider
the expansion of the flux aroundt = 0,

f(q̃(ξ, t)) ≈f(u0) + tf ′(u0)u1

+ t2
(

f ′(u0)u2 +
1

2
f ′′(u0)(u1)2

)

.

Then,u0 is the solution of the Riemann problem

∂tu
0 + ∂x((u

0)2/2) = 0 for x ∈ R, t > 0,

u0(x,0) =

{
1 for x < 0,
2 for x > 0,







in which caseu0(ξ) = 1 for all ξ ∈ D0. Then, the
equation foru1 is

u1
0 + (1− ξ)

d

dξ
u1
0 = 0,

and the solution consistent with the initial data is

u1
0(ξ) = 2(ξ − 1).

Therefore, we have

h2(ξ) = −
f ′′(u0

0)

2
(u1(ξ))2 = −4(ξ − 1).
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Note that the inhomogeneous equation foru2,

2u2
0 + (1− ξ)

d

dξ
u2
0 = −4(ξ − 1),

has the solutionu2
0(ξ) = (ξ − 1)2 − 4(ξ − 1). Thus,

q̃(ξ, t) ≈ 1 + 2(ξ − 1)t+ ((ξ − 1)2 − 4(ξ − 1))t2,

q(x, t) ≈ x2 + 2x− 6xt+ 5t2 − 2t+ 1,

and in particular

q(0, t) ≈ 1− 2t+ 5t2.

Now we use the solver of Toro and Titarev, where
we find the leading termq(0,0+) by solving

∂tq + ∂x(q
2/2) = 0 for x ∈ R, t > 0,

q(x,0) =

{
q̂0L = 1 for x < 0,
q̂0R = 2 for x > 0.







This givesq(0,0+) = 1.
Next, the Cauchy-Kowaleskaya procedure leads to

∂tq = −q∂xq, ∂2
t q = 2(∂xq)

2 + q∂2
xq,

∂t(∂xq) = −(∂xq)
2 − q∂2

xq,
∂t(∂

2
xq) = −3∂xq∂

2
xq− q∂3

xq.
(23)

For q(1) = ∂xq andq(2) = ∂2
xq, we have the evolution

equations

∂tq
(1) + q∂xq

(1) = −(q(1))2

and

∂tq
(2) + q∂xq

(2) = −3q(1)q(2)

with the initial conditions

q(1)(x,0) =

{

q̂
(1)
L = 2 for x < 0,

q̂
(1)
R = −4 for x > 0,

(24)

and

q(2)(x,0) =

{

q̂
(2)
L = 2 for x < 0,

q̂
(2)
R = 4 for x > 0.

(25)

We drop the source terms and linearise around
q(0,0+) = 1, so that we have

∂tq
(k) + ∂xq

(k) = 0 for k = 1,2,

together with the initial conditions (24) and (25), re-
spectively. Theselinear problems are readily solved,
where we find the Godunov states

q(1)(0,0+) = 2 and q(2)(0,0+) = 2.

By the Cauchy-Kowaleskaya procedure (23) we get

∂tq(0,0+) = −q(0,0+)q
(1)(0,0+) = −2,

∂2
t q(0,0+) = 2(q(1)(0,0+))

2 + q(0,0+)q
(2)(0,0+) = 10,

and thus again we find

q(0, t) ≈ 1− 2t+ 5t2.
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