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SPACE-TIME FINITE ELEMENT APPROXIMATION OF PARABOLIC
OPTIMAL CONTROL PROBLEMS
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Abstract: In this paper we investigate a space-time finite element approximation of parabolic
optimal control problems. The first order optimality conditions are transformed into an elliptic
equation of fourth order in space and second order in time involving only the state or the adjoint
state in the space-time domain. We derive a priori and a posteriori error estimates for the time
discretization of the state and the adjoint state. Furthermore, we also propose a space-time mixed
finite element discretization scheme to approximate the space-time elliptic equations, and derive
a priori error estimates for the state and the adjoint state. Numerical examples are presented to
illustrate our theoretical findings and the performance of our approach.
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1. INTRODUCTION

Optimal control problems governed by time-dependent partial differential equations play an
important role in many practical applications. Their numerical approximation forms a hot research
topic and there exist lots of contributions to error analysis and numerical algorithms for time-
dependent optimal control problems. For recent works on this topic we refer to, e.g., [16, 20, 21,
22, 23] and the references cited therein. In the present work we build the numerical analysis on
reformulations of the optimality conditions as fourth order in space and second order in time elliptic
boundary value problems for the state and the adjoint state which are valid under natural regularity
assumptions on the data. This approach has recently been used in [25] to tackle parabolic optimal
control problems numerically, and was motivated in e.g. [4], where a multi-grid method in the
spirit of Hackbusch [7, 8] is proposed to solve parabolic optimal control problems. For a detailed
discussion of multigrid methods in the context of optimization problems with PDE constraints we
refer the reader to [2]. Multigrid methods are also applied to the numerical solution of optimal
control problems with nonlinear PDE systems, see e.g. [15] for their application in flow control.

In this paper we present a discrete formulation of parabolic optimal control problems based
on the reformulation of their optimality conditions as second order in time and fourth order in
space elliptic boundary value problems. Since time and space have different physical meanings we
separate temporal and spatial discretization and put our focus on a priori and a posteriori error
analysis for the temporal discretization. In the a posteriori error analysis part we construct residual
based error estimators for the time discretization and keep the space variable continuous. The key
idea here consists in applying residual-based a posteriori error estimation techniques for two-point
boundary value problems to the a posteriori error estimation of space-time elliptic boundary value
problems for the state and the adjoint state. Furthermore, we prove a priori error estimates for
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temporal semi-discretization with piecewise linear, continuous finite elements, and propose a space-
time mixed finite element method to approximate the state and the adjoint state, for which we
also prove a priori error estimates. Finally, numerical examples are presented to illustrate the
theoretical findings. We note that in [13] an a posteriori space-time finite element approach is
presented which also is based on a reformulation of the optimality system as second order in time
and fourth order in space elliptic equation.

The outline of this paper is as follows. In section 2 we present the first order optimality conditions
for parabolic optimal control problems and derive the space-time domain elliptic systems for the
state and the adjoint state. We prove existence and uniqueness of solutions to the space-time
elliptic boundary value problems. In section 3 we derive a priori and a posteriori error estimates
for the time discretization scheme. Section 4 is devoted to the numerical analysis of the space-time
mixed finite element approximations of the state and the adjoint state. Numerical examples are
presented in section 5 to illustrate our analytical findings.

Let @ € R™ (1 < n £ 3) be an open bounded domain with sufficiently smooth boundary
=00, Qr = Qx (0,7], ¥r = T x (0,7]. Throughout this paper we denote by H™(Q)
and H™(Qr) the usual Sobolev space on €2 and Qp of integer order m > 0 with norm || - ||;n.0
and || - [|m.0p, respectively. H™(T') and H™(Xr) are defined accordingly. For m = 0 we have
H(Q) = L2(Q), H'(Qr) = L*(Qr), H*(T') = L*(T"), and H°(X7) = L?(Xr). For the analysis we
need H?1(Qr) = L2(0,T; H2(Q) N H(Q)) N HY(0,T; L?(2)) equipped with the norm
1
2

2,100 = (||w\|%2(o,T;H2(Q)) + ”w”%Il(O,T;LQ(Q))>

[[w

For the state space we take X = W(0,7T) = {v € L2(0,T; H}(Q)); ¢ € L*(0,T; H*(Q2))}. For

the control space we take U := L?(Q7). Throughout the paper ¢ and C' denote generic positive
constants.

2. OPTIMAL CONTROL PROBLEM

In this paper we consider the optimal control problem

. 1
(2.1) (ymnélng J(y,u) =s5lly— yd”%,szT + %HUH%,QT
subject to
% —Ay=wu in Qp,
(2.2) =0 onXr,
y(0) =yo in Q,

where a > 0, yo € H}(Q), ya € L*(Qr) and T > 0 are fixed. The analysis of this optimal control
problem is well understood. In e.g. [18] among other things the following theorem is proven.

Theorem 2.1. The control problem (2.1)-(2.2) admits a unique solution (y,u) € X xU. The pair
(y,u) is the solution of (2.1)-(2.2) if and only if there exists a unique adjoint state p € X such
that the triplet (y,p,u) satisfies the optimality system

0
(2.3) a—?z —Ay = u inQr, y=0 onXp, y(0)=yo inQ,
9]
(2.4) —a—]t) —Ap = y—ya nQp, p=0 onXp, p(T)=0 inQ,
(2.5) au+p = 0, in Qp.

For the state y and adjoint state p we have the following regularity results.
Lemma 2.2. If yo € H}(Q) and yq € L*(Qr), we according to [10] have

Y,p € H2’1(QT)'
2



Furthermore, if in addition yo € H3(Q)) and the following compatibility conditions
90 = yo € Hy (), g1 :=u(0) + Ago € Hy ()
hold, we by [10] also have
(a) y € L*(0,T; H*(Q)) N H?(0,T; L*(Q)) N H*(0, T; H*(2)).
Similarly, if we suppose that yg € H*1(Qr) and that the following compatibility conditions
go :=p(T) € HY(Q), g1 := y(T) — ya(T) + Ago € HE(Q)

hold, [10] delivers

(b) p € L*(0,T; H*(Q)) N H*(0,T; L*(2)) N H*(0,T; H*(Q)).
Remark 2.3. Since we assume that our domain Q is sufficiently smooth, the regularities of the
optimal state, the optimal control, and the associated adjoint are limited through the regularities of

the initial state yo and of the desired state yq. By a bootstrap argument we from (2.3)-(2.5) infer
for the state y the reqularity

() y € L*(0,T; H*(Q)) N H'(0,T; HY(Q)) N H?(0, T; H*(2)) N H?(0, T; L*(€2)).
For the adjoint p we obtain with the assumption yq € L*(0,T; H*(Q))NH(0,T; H?(2))NH?2(0,T; L?(£2))
that

(d)  pe L0, T HY(Q)) N H(0,T; H(Q) N H(0, T3 H*(Q)) 0 H*(0, T; L*(9))
holds.

We now show that the optimal state y and the associated adjoint state p under natural regularity
assumptions on the data also form solutions to certain 2nd—order in time and 4th—order in space
elliptic partical differential equations. More precisely, we shall show that y solves

Py . 1 1 .
—ﬁ‘f‘ﬁy"‘ay—ayd in Qr,
y=0 onXr,
(2.6) Ay =0 on Xr,
dy .
(E—Ay)(T) =0 in Q,
y(0) =yo in Q,
while p forms a solution to
%p 9 1 0Yq .
—@+A p+ap——W+Ayd in Qp,
p=0 on Xr,
(2.7) Ap=yq onXr,
dp .
(5 TAP)0) =4a(0) —yo in
p(T)=0 in Q.

We now provide the notions of weak solutions for (2.6) and (2.7), respectively. For this purpose
let us define the spaces

Hy'(Qr): = {U € H**(Qr): v(0)=0 in Q},
Hy'(Qr): = {U € H>'(Qr): v(T)=0 in Q},
the bilinear forms
Ar = HY'(Qr) x HY'(Qr) — R,

Ay HZYQp) x HX'(Qp) — R,
3



as well as linear forms
LT : Hg’l(QT) — R,
Lo : HI'(Qr) — R,

where
(91)1 (91)2 1 /
Ar(vy,v :/ V1V9) + AviAvg + | Vo (T)Vus(T),
7(v1, v2) (c')tc')t a12) o 1Av2 o 1(T)Vuo(T)
8’01 8’02 1 /
Ag(v1,v :/ + —vv9) + AviAvy + [ Vui(0)Vos(0),
o(v1,v2) T a12) o, 20 2t | 1(0)Vuz(0)
Lr(v) := / lydv, and
Qp &
r 0yYa
Lo(v) = / (— = + AYd V) H-1(Q)x HI Q) — /(yd(o)—yo)v(o)‘f'/ YyaVo - n.
0 Q X

Definition 2.4. We call y € H*>'(Qr) with y(0) = yo € HE(Q) a weak solution to (2.6), if y
satisfies

(2.8) Ar(y,v) = Lp(v) Yove HY'(Qr).
Let yg € H>Y(Qr). We call p € f]g’l(QT) a weak solution to (2.7), if p satisfies
(2.9) Ao(p,6) = Lo(¢) V ¢ € HY'(Qr).

In the following we prove existence and uniqueness of solutions to (2.8) and (2.9). For this
purpose we equip H?1(Qr) with the inner product

v, w] = %8—1” +/ vw + AvAw,
Qr

which induces the norm

Ov 3
il = (155 13 0, + 1A0]3 0, + 101 0, )
For the two norms || - [|2,1,0, and ||| - ||| we have the following equivalence result (compare [24]).

Lemma 2.5. The norms || - ||l2.1.0, and |||-||| are equivalent on Hy'' (Qr), i.e., there exist positive
constants c¢1 and co such that

C1|Hv||| < vll2 0 < cofllvll]-

Proof. For v € Hg’l(QT) we set u, := at — Av € L?(Q7). Then v forms a weak solution to
ov

E—Av—uv in Qr,

v=0 on X,
v(0)=0 1in Q,
which depends continuously on u,, i.e. we have

[v

Biar < Cluwla,

ov
CH* - Avl\%,nT

<
< (II + [ Av[ff o)
< C2H|v||\ :
The estimate
llvll]* = 154 lo.0r + 1A[[5 o + 10115 0p < V113,10,
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follows directly from the definition of ||v||2,1,0,. This gives the claim. O

Similarly one can prove that the norm || - ||2,1,0, is also equivalent to ||| - ||| on ﬁg’l(QT). We
are now in a position to prove

Theorem 2.6. There exists a unique weak solution y € H>'(Qr) to problem (2.8). If in addition
ya € W(0,T), (2.9) admits a unique weak solution p € HY' (Qr).

Proof. Since H*(Qr) — C([0,T]; HX(Q2)),
Vur(T)Vu(T) < [[Vui(T)llo,el Vo2 (T) 0,0
Q
< oilleqoma@pllvzlleqom:a @)
< Cluillzorllv2ll2,1,00
holds for vy, vy € H*(Q7). This implies
Aq(vi,v2)
81)1 ng
< P =
l ey llo, x| 9
<

1
0.9 + al\vl 0.2r[v2llo.or + [|[Aviflo0r[[Av2llo,0r + Cllvillz,0r 022,107

Cllvtllz1,00 v2ll21.0r
with a positive constant C'. Moreover, we have
v 1
Are) > [ (Gt [ @,
Qp Ot a Qr

Lemma 2.5 now yields
Ar(v,0) = Cloll3yq,.

which implies that Ar is coercive. Note that L is linear and bounded. Therefore, the Lax-Milgram
theorem implies that the weak formulation (2.8) admits a unique solution y € H*!(Qr).
Similarly we can prove that the bilinear form Ag(-,-) is bounded and coercive , i.e.,

Ag(vi,v2) < Clluill2,1,.00llv2ll2,1,.00
and
Ao(v,v) = Ol q,-
Since Lg is linear and bounded, i.e.,
[Lo()] < Cllvll2,10r

the Lax-Milgram theorem again gives the existence and uniqueness of a solution p € ﬁgl(QT) to
the weak formulation (2.9). This completes the proof. O

For our optimal control problem (2.1) we now can prove

Theorem 2.7. Let (y,u) € X x U denote the solution to problem (2.1)-(2.2) with associated
adjoint state p € X. Assume that y satisfies (a) of Lemma 2.2. Then y satisfies (2.6) a.e. in space
time, and is a weak solution to (2.6). If p satisfies (b) of Lemma 2.2, then p solves (2.7) a.e. in
space time, and is a weak solution to (2.7).

Proof. Since the solution y of (2.1)-(2.2) together with adjoint state p satisfy the regularity of
Lemma 2.2, we may insert (2.5) into (2.3) and take the derivative with respect to time. This yields

0%y 1
— — Ay = ——p;.
atQ Yt apt
Inserting this equation into the adjoint equation we obtain
0%y 1
— — Ay, = —(A — Yd)-
52~ Ay = _(Ap+y —ya)

5



Now, we use the state equation to replace p in the previous equation. This gives

0%y 1
I Ay, = —(A _
92 Y o (Ap+y —ya)
1 Ay
= —(y-— A(——=—=+A
a(y ya) + A( o Y)
1
= —Ap+ A%+ —(y—ya)
Thus
0%y 1 1
2.10 2 + A%y + —y = —ya
(2.10) g2 TAYT Y= v
The boundary conditions together with initial value for state variable then read
(2.11) y=0 onXr, y(0)=yo in Q.

From the boundary condition of adjoint state p we obtain

0
O:p:a(Ay—a—‘z) on X,

which implies
(2.12) Ay=0 on 2.
Note that p(T") =0 in Q. Thus

(2.13) 0=p(T) =a(Ay — %)(T) in Q.

Collecting (2.10)-(2.13) gives (2.6). Therefore, we can conclude that the state y satisfies the space-
time elliptic boundary value problem (2.6) a.e. in space-time. Now let y € L2(0,T; H*(R2)) N
H2(0,T; L2(Q)) N HY(0,T; H?(Q2)). Then y € H>'(Qr) and by Green’s formula one can easily
prove that y satisfies (2.8), which implies that y is also a weak solution to (2.6).

By similar arguments we can prove that the adjoint state p satisfies the space-time elliptic
equations (2.7) a.e. in space-time under the assumption yq € H*(Qr), and also forms a weak
solution to (2.7), where we only have to require y4 € W(0,T).

O

3. ERROR ESTIMATES FOR THE TIME DISCRETIZATION SCHEME

In this section we present a priori and a posteriori error analysis for the temporal discretization,
while the space variable is kept continuous.

Let 0 =tg <t1 < -+ <ty_1 <ty =T be atime grid with k, =t, —t,_1, n=1,2,--- , M.
Set I, = [tn—1,tn] and k = lgla<xM k. For the time discretization of the state y we define

—k
Vi ={ve B* (Qr); ()1, € PIn)}, Ve = VN HE (Qr)
and consider the semi-discrete problem: Find y;, € V¥ with y;.(0) = yo and
—k
(3.1) AT(yky'Uk) = LT(Uk) Y Vi € Vt .

Since V/¥ is a closed subspace of H?1(Qr), the Lax-Milgram theorem implies that (3.1) admits a
unique solution y; € V;*¥. For this scheme we have

Theorem 3.1. Let y € H>'(Q7) and yi, € V¥ be the solutions to (2.8) and (5.1), respectively.
Assume that y € H*(0,T; H>(Q)) NW2>(0,T; H' (). Then we have

ly = ylloar + klly — il oo, L2(0)) < CK*.
6



Proof. From (2.8) and (3.1) we obtain the following error equation:

Oy — yr) Ovg, 1
/QT (Tﬁ + E<y - yk)Uk) + o Ay — yr)Avy,

(3.2) + /Q V(y - yk)(T)V’U;C(T) =0 Vo € Vf

Let Ryy € V¥ denote the temporal Ritz projection ([3]) of y, which is defined by

/ Ay — Ryy) Oy,
0. Ot ot

Decompose y — yr =y — Rpy + Ry — yx = §y + 1y Then we can rewrite (3.2) as

677y ka 1
/ (at ot T W’k>+ o AnyAvy + /Q Vi, (T)Vi(T)

=0, Vo EVf

(3.3) - - /Q b /Q Ve, (T)Vur(T) - /Q A A

Testing (3.3) with v = 7, leads to

677y
A
f, (G g} s [, sie [ wwer?
1
= _/;2 agyny - /g; V& (T)Vny (T) _/Q A&y Any.
Using the Young’s inequality and error estimates for the Ritz projection ([27]) we obtain

an
H77y||0 ar + 15 .00 + 1120 [5.02 + [V (T) 5.0

(H&y”o,QT + ||V§y(T)Ho,n + ||A§y||o,nT)
Ck4(”y||%{2(0,T;L2(Q)) + ||y||%/V2~°°(O,T;H1(Q)) + ||Ay||§12(o,T;L2(Q)))-

NN

Then triangle inequality and error estimates for the Ritz projection finally give the estimates

1y — vkl o,mr20) < Cky ly — ykllo.or < CK.
O

For the temporal discretization of the adjoint state p we proceed similarly as above. We seek
pr € VF such that

(3.4) Ao(pr, ) = Lo(dk) V ox € V¥
holds. Here V¥ := V;¥ N H* (Qr). Then a proof similar to that of the previous theorem gives

Theorem 3.2. Let p € ﬁgl(QT) and py € ‘Zk be the solutions to (2.9) and (3.4), respectively.
Suppose that p € H*(0,T; H*(Q)) N W2°(0,T; H (). Then we have

lp = prllo,or + Ellp = prllar(0,1502(0)) < Ck>.

Now we are in the position to derive temporal residual type a posteriori error estimates for
y and p. We adopt standard Lagrange interpolation in the a posteriori error estimates since
HY0,T) = C([0,T)).

Theorem 3.3. Lety € H?Y(Qr) and yx € V¥ denote the solutions to (2.8) and (5.1), respectively.
Then we obtain

ly — vel3.1.0. < Cnj,

1 Pyp 1
=k [ v G - a%nla+ X [ IAulir-
n n n n

7
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Proof. Let e¥ =y — yi, and let me? denote the standard Lagrange type temporal interpolation of
e¥. By (2.8), (3.1), Lemma 2.5 and the definition of Lagrange interpolation we have

clly = vel31.00
3(?% - yk)
ot

/QT W% + /QT é(y —yr)e’ + /Q V(y =y )(T)Ve!(T) + | Ay — yr)Ae?

Qr
_ 8(y — yk) 8(6y — ﬂ.key) / l _ y Yy
- /S;T at at + Qr O[(y yk)(e e )

+ /Q AW pAE ) + /Q V(y — 1) (T)V(e¥ — mpe?)(T)

1 Oy, O(e¥ — mpeY) / 1
- - Y oY) YYE G\ET T TERET) - Yy
o /QT ya(e¥ — mpe?) o, Ot 5 A yr(e¥ — mre?)

—/ AykA(e”—Wkey)—/ Vyr(T)V(e¥ — mre?)(T)
Qr Q

1 Oyy, 0(e¥ — me?) / 1 /
- = v _meevy— [ RAT T TRED [ 2 eV —mpe?) — [ AyrAe — me?
5 /QT ya(e¥ — mpe?) o, Ot ot A yr(e¥ — mre?) o, yrA(e¥ — mpeY)

@
T
Integrating by parts on each time interval yields

N

1
~lly = vllG.0r + | 5.0, + 1A = )13 0r

N

clly = yell3.1.00
1 Py 1
< - ~ Ty — A2 Ve
3], JGus i~ g e e

+ AypV(mpe?y —e?) - n
X7

Using error estimates for Lagrange interpolation, the trace inequality, and Young’s inequality we
obtain

1 Py 1
Iy =wlBan, < OB [ vt GHE - Sm = Al
—" s,

oy / 1Agil2

We note that the previous theorem in particular implies

1 Py 1
Iy =wlnorsay < R [ Izt G = 2o A%lBa
~" ),

Y [ A

Remark 3.4. Since Ay = 0 on Xr, the term 3 [, |[Ayxllg - accounts for the wiolation of this
21,

2
0,

boundary condition on the time-discrete level.
For the adjoint state p we proceed similarly.

Theorem 3.5. Let p € ﬁgl(QT) and py € ‘7;"' be the solutions to (2.9) and (3.4), respectively.
Then we have

Hp - pk”%,uzT < 0772,
8



where

0 0%p 1
D R e L A

Proof. Let e?P = p — pi, and meP be the standard Lagrange type temporal interpolation of eP.
Using (2.9), (3.4), Lemma 2.5 and the definition of Lagrange interpolation we deduce

cllp — pell31.00

1 o(p — pr)
aHP —pellg o, + HT”%,QT + 1AM = pe)lI§ .0y

/QT W% +/QT é(p—pk)e” +/§2V(p—pk)(0)V€”(0) +/QT A(p — pr)Ae?

_ O(p — pr) O(e? — mieP) / 1 » »
/QT It ot + QTa(p pr)(€” — mie”)

+ /Q A pAE i)

N

N

0
= [ G2 @ e+ [ e e
Qr S

Opy O(e? — mel’) 1 P P P P
ap Ot ot /SZT apk<€ Tre?) o AppA(e? — mpeP).

Integrating by parts on each element yields
cllp = pell3,1.0,

0 02 1
Z/ /(—ﬂ + Aya+ é%pj — ~pi— A%y (e — mie)
(ya — Apg)V(e? — mieP) - n.
X7

Error estimates of Lagrange interpolation, the trace inequality and Young’s inequality then give
2
lp — pkHQ,l,QT

9y Pp 1
< CZki/I | — =%+ Aya + —&pk_AQPng,Q

n

oy / lva — Apell o
n YIn

Theorem 3.5 also implies

lp — pk”%—Il(O T;L2(Q))

0 0? 1
< C’ZkQ/ ||—ﬂ+ +7p2k—apk_A2png,Q

ot
> /I lya — Apelr.

Remark 3.6. Similarly as above, Y [, |lya — Apk||(2)7F accounts for the violation of the boundary

n
condition Ap = yq on X on the time-discrete level.
9



4. SPACE-TIME MIXED FINITE ELEMENT DISCRETIZATION

Several options can be used to tackle the space-time elliptic problems (2.6) and (2.7) numerically.
In order to use piecewise linear, continuous finite elements for the spatial discretization we in this
section propose a space-time mixed finite element method to treat (2.6) and (2.7) numerically and
prove corresponding a priori error estimates.

In order to derive a mixed formulation of (2.6) let w := — Ay, where y denotes the unique solution
to (2.6). Then (2.6) motivates the following mixed formulation: Find (y,w) which satisfies
0%y 1

1
—— —Aw+ —y=—yq in Qp,
o e

ot?
Ay+w=0 in Qp,
=0 onXp,
(4.1) Y g
w=0 on X,
(& apmy =0 me,
y(0) =yo in .
Let

Y = {v e HY(0,T; HY(Q)) : v(0) =0 in Q} W = L2(0, T; HL(Q)).

Then the mixed variational form for (4.1) is to find y € H'(0,T; H}(2)) satisfying y(0) = yo and
w € W such that

1

(77 +—yv)+ VwVv—l—/V TVvT:/ “yqv Vv ey,
| Gratam+ | [ v = [ L
(4.2)

— VyV¢+/ wp=0VepeW
Qr Qr

In the following we prove that the pair (y,w) with w := —Ay and y the unique smooth solution
to (2.6) is a solution to the mixed variational form (4.2), and also that this mixed form has at
most one solution (y,w) € Y x W, so that the unique smooth solution y to (2.6) defines the mixed
variational solution.

We start with proving that (4.2) admits at most one solution. Suppose that (y;,w1) and (ya, ws)
are two different solutions to problem (4.2). Then (y,w) = (y1 — y2, w1 —w2) satisfies the following
homogeneous system

Oyov 1_ - _
(== +—yv)+ VaVv+ | VH(T)Vu(T)=0 Vv ey,
Qrp ot ot « Qr Q
(4.3)
- V@'qu-f—/ wp=0 Ve

Qp Qp

Testing (4.3) with v = § and ¢ = w, and adding the resulting equations yields

| (G o)+ [amp+ [ @r=o

Hence,

Thus, (4.2) admits at most one solution.

Now let y € H>Y(Qr) N L2(0,T; H3(£2)) be the smooth solution to (2.6). Then w := —Ay €
L2(0,T; H'(2)), and y, w satisfy (4.2), as is shown in the following. For v € H'(0,T;C§°(2)) we
have from (2.8)

oyov 1 1
/QT(atat + Eyv) + o VwVov + /Q Vy(T)Vu(T) = /QT ~ Yav-
10



According to the density argument we derive the first equation of (4.2). Moreover, we have

- vyv¢>+/ wp=0VYpeW
QT QT

holds. Thus (y,w) solves (4.2), and consequently, it is the unique solution to (4.2).

Now we are in a position to consider the discretization of (4.2). We will consider space-time
discretization and pure time discretization, respectively.

In the case of space-time discretization, let 7 hbia quasi-uniform partitioning of {27 into disjoint
regular (n + 1)-simplices 7 or rectangles, so that Qr = J_ . 5» 7, where element edges lying on the
boundary may be curved. Let h, denote the diameter of 7. Set h = max h,. Associated with 7"

T
is a finite dimensional subspace V" of C(Qr), such that x|, are linear or bilinear polynomials for
all x € YP and 7 € I". Let usset Y = VAN HLY(0,T; HY(Q)), Y2 =VhNY and W =VinW
in this case.

In the case of pure time discretization, let 0 = tg < t1 < --- < ty_1 < ty = T denote a time
grid on [0, T] with grid size h = max h,,, where h,, = t, —t,_1. Let us set 7" = {I,})_, with

n
In = [tnfhtn] and
VP ={ve H'(0,T; H'(2); v(-)|1, € Pi(In)}.
We in this case set Y = VN HY(0,T; H}(Q), Y] =V NY and W =VhinW.

The discrete approximation to (4.2) is to find y; € Y, wj;, € W such that y,,(0) = yo and

Ayp, 0 1
/ (R 4 Zyon) +
Qr a

1 h
ot ot YVw, Vo, + /Q Vyh(T)V’Uh(T) = /Q aydvh Y vy, € Yb R

QT T

(4.4)
- Vthh+/ wndn =0y, € WE.

Qr Qr
holds. Here yop, =: yo for pure time discretization and yon =: §o(0) for space-time discretization,
where 7 is an approximation of yo in Y, whose approximation properties can be adjusted to the
error bounds which we shall prove below.
Now we are in a position to estimate the errors between the solutions (y, w) of (4.2) and (yn, wp)
of (4.4).

Theorem 4.1. Let (y,w) € Y x W and (yn,ws) € Y x W be the solutions to (4.2) and (4.4),
respectively. In the case of pure time discretization we fory € H?(0,T; H*(Q))NW?2>=(0,T; H*(Q))
have

ly = ynllm o2 < Chs |ly — ynllo,or < CR® and  |[w — wplo,0, < Ch2.
In the fully discrete case we for y € H?(0,T; H*(Q)) have
ly = ynllm 0,020 < Ch and |Jw — wp 0,0, < Ch.

Proof. From (4.2) and (4.4) we deduce the following error equations

/QT (M% + i(y - yh)vh) + V(w — wp)Voy

ot ot Oy
(4.5) +/QV(y —y)(T)Vor(T) =0 Yo, €Y,
(4.6) —/ V(y—uyn)Von + (w—wp)pp =0 Y ¢y € WY
Qr Qr

Let y! € Y w! € W and set ¢ = y! — y,. Then (4.5) yields

clly" - th?Jl(O,T;L?(Q)) + 1" =) (D) o
11



I _ h
Ay IO+ 20—yt + [ 90T i) (DT
Q

/N
:\
5
5
&
5
=~

I _ h
- [ RO L -yt [ V6 - @)

_ h
+/QT wa{% + é(y — )" + /Q V(y = yn)(T)V"(T)
I h
= [ RS s e [ V@9t - [ v —w) vt

_ 8(91*9)8wh 1, 4 h I h
_ /QTataﬁa( - +/Qv<y — y)(T) VM (T)

(4.7) — | Vw-whHveh— [ V(w! —w,)Vyh
Qr Qr

Similarly, from equation (4.6) we have
—/ V(w! — wp,) Vi
Qr

V(w' —wp)V(y — yn)

T

—/ V(w' —wn)V(y' —y) -
Qr

I

(w' —wp)(w — wp)

T

—/ V(w" —wn)V(y' —y) -
Qr

- )V ) - [ ) - [ @l —wnw! —w)

T Qr

(4.8)

— [ V(' —w)V( —y) -
Qr

(w' — wp)(w — w") = [w" —ws§ g, -
T

S— S— 55— 5—

Combining (4.7) and (4.8) we get
clly’ - yh||2H1(O,T;L2(Q)) + w” = whll§ o, + 1" =) (D)3 o

N Ay —y) oyt 1
-/ R R L M URTOA | v =nmvet)

_/QT V(w! —wp)V(y' —y) — /QT(wz =) — )

6
=1

Now it remains to estimate F;, i = 1,---,6. We note that these error representations are valid for
both, the pure time—discrete as well as for the fully discrete case. We now distinguish these cases
and proceed with considering the pure time-discrete case. Let ¢! and w! denote the temporal Ritz
projection ([3]) of y and the temporal Lagrange interpolation of w, respectively. Then we have the
following error estimates:

(4.9)

@) Bl = || @ =il = =0,
Qr
1 _
(4.11) |Ea| = |a/ W' =" —yn)l < o' CR2| Yl 20,0200 1" = ynllo.or
Qr
(412)  |Es| = (w —wp)(w — w")| < CR?|Jw| 20,7522 |w" — whllo.0r-

Qr
12



Note that w! and y! are continuous w.r.t the space variable. By Green’s formula we have

By = V(w—wHV(y' —un)
Qr

= */ Alw —w")(y" = yn)
Qr
and
B = ATWy—Mwwﬂ—mn
= [ A=y - ).
Qr

Therefore we deduce

(4.13) |Es| < Ch?(|Aw| 20,7200 1y" — ynllo.or
and
(4.14) |E5| < Ch2||Ay||H2(O7T;L2(Q))||wI — ’th||O7QT.
It remains to estimate Ey. Following [27] we obtain

Bl = | [ V6 = @veh@)
(4.15) < CR|lyllwaes (0,702 () [0 (T)]1,0-

Combining (4.10)-(4.15) we deduce
ly" - yh”iP(O,T;L%Q)) + Jw’ - wh”%,QT +(y" - yn) (T3 o
< Ca 'Ryl azo.rc2@) v’ = ynllo.or + CR2 AW g20,7:12 ) Iy — Y
+CR? |[yllw2 0,151 )| (" = yn) (D)1 + CR2 (| Ayl 52 (0,7:L2(0)) llw" — whllo.0r

0,Qr

+Ch2||w| g2 (0,7;2(0)) W’ — whllo,00-

Applications of the triangle inequality and of Young’s inequality, combined with error estimates
for the Ritz projection and Lagrange interpolation, lead to the following estimate

ly = ynllm0,m522)) < Chy Iy — ynllo,or < CR®
and
[w —wa oo, < Ch%

Now we are in a position to derive the error estimates for the space-time discretization case.
Let y! = Ry € Y and w! = Rpw € WY denote the Ritz projections ([3]), which are defined as
follows:

/ V(g — Rhe)Vo, =0, Yo, € W
Qr

for either ¢ = y or ¢ = w. Then we have

A" —y) Oy’ —yn Ay" —yn
(4.16) [EB1| = | . ( 5 ) o 5 )| < Cth||H2(o,T;H1(Q))H%HO,QW
T
1 _
(4.17) |Eo| = |a/Q W' =" =yl < o 'CR |yl 20,2 1y — Ynllo.ors
T
(418) |BEs] = || V(w—w")V( —yn) =0,
Qr
(4.19) |E4| = |/QV(?JI =) (MY (" = yn) (D) < Chllyl 20,1 12000 | (¥ — yu) ()10,

13



(420) 1B = | [ Vo' —w)ve -pi=0
(4.21) ‘E6| = | o (w —wh)(w—w1)|gChQHwHHz(O,T;Hz(Q))||wI—wh||0’QT.
T

From (4.16)-(4.21) we deduce

HyI - th%ﬂ(O,T;lﬁ(Q)) + ||w1 - wh||(2),QT + |(ZJI - yh)(T)ﬁ,Q
o(y" — yn)
ot
+Chlyl g2 0,m: 5200 | (Y — yn)(D)|1,0 + CR* 0| g2 (0,752 0)) W' — whllo,0-

< Chllyllaz 0,820 | lo,0r + Ca™ B2yl m2(0. 1122 1Y" — ynllo,0r

Several applications of the triangle inequality and of Young’s inequality combined with error esti-
mates for the Ritz projection lead to

||y — thHl(O,T;LZ(Q)) < Ch and HU) — ’th”OTQT < Ch

O

Remark 4.2. (Superconvergence, see [28] for results and details) If we could expect supercon-
vergence properties on uniform structured meshes (for example, on rectangular meshes, on three
directional triangular meshes in two spatial dimensions, and on uniform brick meshes in three
spatial dimensions), in the fully discrete case we expect the improved estimates

ly — ynllo,or < Ch*|logh| and |Jw —whljo0, < Ch*|loghl.

In the following we consider the space-time mixed finite element approximation of the adjoint
state p. Let ¥ := —Ap, where p denotes the unique solution to (2.7). Then (2.7) motivates the
following mixed formulation for the adjoint state p:

_Pp 9ya .
94+ Ap =0 in Qp,
(1.22) p=0 on Xr,
’ —9=yq on Xr,
0 .
(Gp +29)(0) = 4a(0) —yo
p(T)=0 1in Q.
Let
V. = {p e HY(0,T; HX(Q)) : p(T) =0 in Q}
W: = L*0,T;H'(Q)).

The mixed variational formulation related to (4.22) is to find p € Y, 9+ ya € W such that:
Opd 1
/ (Gr 5 + =pv)+ | VIVv +/ Vp(0)Vu(0)
Qr at at Qr o)

(4.23) /Q <—%+Ayd>v— / (va(0) — yo)u(0) Vv e T,

- vpv¢+/ Vo=0 VYoecW.
QT QT
14



According to (4.23) the mixed finite element approximation of the adjoint state p is to find py €
Y, 9 € VP and 9p|r = —7a4 such that

aph (91)}1 1

— —— + —pnvn) + Vi, Vo +/Vp 0)Vy, (0
/QT(atat ahh) o, JonVuR | 1 (0) Vv (0)
_ ya h
(4.24) = (_W + Ayg)vn — | (a(0) — yo)vn(0), Vo, €Yy,

Qr Q
—/ VorVor +/ Undn =0, Vo € W,

QT QT

holds, where ?Oh =V"NY and U4 € V" is an approximation of y,.
By arguments similar to those applied in the analysis of the state y we get

Theorem 4.3. Let (p, V) € Y xW and (pn, V1) € f’thVh denote the solutions to (4.23) and (4.24),
respectively. In the pure time-discrete case, we for p € H?(0,T; H*(Q))NW?2°°(0,T; H' () have
lp = prllrorsr2) < Chy o= prlloor < CR* and  [|9 — pllo,0r < Ch2.
In the fully discrete case we for p € H2(0,T; H*()) have
lp — puller 0.2 @) < Ch and ||9 — Iullo.or < Ch.

Remark 4.4. In allignement to Remark 4.2 we for the fully discrete space in the case of superconvergence—
meshes expect the estimates

Ip = prllo,or < CR?*logh| and  [[0 = nllo.0r < Ch®|loghl.
Remark 4.5. By exploiting the respective second identites in (4.2) and (4.4), the estimates of
Theorem 4.1 also yield
1y = ynllur @) < Ch

in the pure time—discrete case, and

ly = ynllar ) < Ch2

for space-time discretization. Furthermore, we can expect

ly = ynll 1 (@) < Chy/[loghl

for space-time discretization on uniform meshes by using the results of Remark 4.4. We note that
similar results also apply to the error estimates for the adjoint state p.

5. NUMERICAL EXAMPLES

In this section, we will carry out some numerical examples to confirm our theoretical results.
Firstly, we test the convergence order of the space-time mixed finite element scheme presented in
Section 4. Secondly, we investigate the effectiveness of the temporal a posteriori error estimates 7,
and 7, developed in Section 3. In both cases a space-time mixed finite element method is used to
solve the space-time elliptic equations. The adaptive procedure is built upon an initial time mesh,
together with a refinement strategy based on the local a posteriori error estimator 14 1, (¢ =y or
p) related to the interval I,, together with bulk marking, i.e. all intervalls I,, satisfying

1.1, = 0max{ng 1, },
are refined, where 6 € (0,1). The effectivity index EI is defined as

UL
Bl = ,
6 — Ol 0,7;02 )

where ¢ = y or p.
15



TABLE 1. Errors in y and w for Example 5.1 on a uniform rectangular mesh with
fixed space mesh size.

Dof [w—wnlloo, | order [y — ynllo,or order | |ly — ynllm1(0,7:22(0)) | order
2565 | 0.130512029211 \ 0.013224854142 \ 0.362590027287 \
4617 | 0.027382620124 | 2.2529 | 0.002775737620 | 2.2523 0.179149675402 1.0172
8721 | 0.006451392985 | 2.0856 | 0.000654996906 | 2.0833 0.089179789894 1.0064
16929 | 0.001594433608 | 2.0166 | 0.000162900612 | 2.0075 0.044535562504 1.0018

TABLE 2. Errors of state y and w for Example 5.1 on a uniform rectangle mesh.

Dof | |Jw— wp|o,q, | order ly — ynllo.or order | [ly — ynllm(o,r,02(0)) | order
25 1 0.238351935729 \ 0.047527619881 \ 0.365097724548 \
81 | 0.058703812693 | 2.0216 | 0.012226170429 | 1.9588 0.179271813135 1.0261
289 | 0.014624795001 | 2.0050 | 0.003078755763 | 1.9896 0.089187811733 1.0072

1089 | 0.003657974813 | 1.9993 | 0.000771587704 | 1.9964 0.044536635124 1.0019

TABLE 3. Errors of state y and w for Example 5.1 on general triangle meshes.

Dof | ||w—wp|o,q, | order ly — ynllo.or order | [y — ynlla(0,1;02(0)) | order
141 | 0.038492500552 \ 0.008262001121 \ 0.200428019476 \

521 | 0.015827469735 | 1.3599 | 0.002168764945 | 2.0467 0.099641508687 1.0697
2001 | 0.007415718014 | 1.1268 | 0.000556931706 | 2.0205 0.049566630052 1.0378
7841 | 0.003527879682 | 1.0879 | 0.000141382932 | 2.0077 0.024676235560 1.0214

TABLE 4. Errors of state y and w for Example 5.1 on uniform triangle meshes.

Dof | |lw—walloor | order | [y —wynllo,o, | order | ||y — ynllaro,r2(0)) | order
25 | 0.586731483264 \ 0.097380683188 \ 0.623236266193 \
81 | 0.187433063539 | 1.6463 | 0.029508172382 | 1.7225 0.315028169663 0.9843
289 | 0.060557215241 | 1.6300 | 0.007845736087 | 1.9111 0.155997022609 1.0140

1089 | 0.021473108657 | 1.4958 | 0.001991686518 | 1.9779 0.077531227695 1.0087

Example 5.1. Let Q = [0,1], T = 1 so that Qp = (0,1) x (0,1). We choose an ezact solution
(y,u) of our optimal control problem (2.1) together with an exact adjoint state p as follows

y(z,t) = sin(nx)cos(nt), p(x,t) = sin(wz)sin(nt), u(z,t) = —sin(nz)sin(nt).
Here, the corresponding desired state yq and the right hand side f have to be chosen accordingly.

We first consider the behavior of the error with respect to time. The domain is triangulated into
rectangles and bilinear finite elements are applied to approximate the state y. The uniform space
mesh has fixed size 1/512, while the time mesh is refined uniformly. In Table 1 the results for the
experimental order of convergence are presented for the errors ||y —yn || g1 (0,7;22(2)), [|lw —wrllo.r
and ||y—ynllo.op- We find errors of order O(h), O(h?) and O(h?), respectively, which is in agreement
with the theoretical analysis of Theorem 4.1.

Next, in Table 2 we present the error of the states under uniform refinement with respect
to a uniform rectangular space-time mesh. In this case, superconvergence properties may be
expected, compare Remark 4.2. In fact, we observe O(h?) convergence for ||w — wp|o . and also
for ||y — ynllo,or- In the subsequent tables 3 and 4 we present numerical results for the space-time
discretization on general triangle meshes, and on uniform triangle meshes, respectively. One can
see that we for general triangle meshes obtain the convergence predicted by Theorem 4.1, whereas
on uniform triangle meshes we obtain an error of order O(h3/?).
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TABLE 5. Errors of state y for Example 5.2 on uniform and adaptive meshes with

the same fixed space mesh size and € = 1.0e — 003.

Uniform | [ly — yallo.or | lw —whlloo, | Adaptive | [y — ynllo.or | [[w — wallo.0r
2121 0.1847 1.8231 2121 0.0158 0.1557
4141 0.1283 1.2671 4343 0.0011 0.0108
8181 0.0755 0.7451 8181 7.2029e-004 0.0068
10201 0.0555 0.5481 10605 2.7602e-004 0.0022

FI1GURE 1. The surfaces and contour lines for the states y, and wy on uniform
meshes for Example 5.2 with € = 1.0e — 3.

Example 5.2. In this example we investigate the effectiveness of the a posteriori error estimator
for the state y presented in Theorem 8.3. Let Qr = (0,1) x (0,1). The exact solutions are chosen
as

y(z,t) = sin(rmx)atan((t — 1/2)/e), plx,t) = sin(nzx)sin(nt), u(z,t) = —sin(wz)sin(wt)
where the corresponding desired state yq and right hand side f have to be chosen accordingly.

The state y developes an interior layer at t = 1/2 for small e. We use the a posteriori error
estimator 7, of Theorem 3.3 to construct the adaptive mesh for the state y.

The surfaces and contour lines for the state y on the uniform and on the adaptive mesh are
presented in Figure 1 and 2, respectively. The errors of the state y on uniform and adaptive meshes
are displayed in Table 5. The error reduction for the state y on the uniform and on the adaptive
mesh is shown in Figure 4. We observe that the adaptive mesh largely improves the quality of
the numerical solutions. Figure 3 displays the adaptive mesh and documents the behaviors of the
error estimators. We deduce, that our a posteriori error indicator n, captures the singular layer
exactly, with an effectivity index ET close to 2.

All the numerical results clearly indicate that the a posteriori error estimator for the state y
is reliable and efficient, and that the use of adaptive meshes can heavily improve the behavior of
numerical solutions and also save substantially calculation time.

Example 5.3. In this ezample we investigate the behavior of the a posteriori error estimator for
the adjoint state p developed in Theorem 3.5. Again Qr = (0,1) x (0,1). The exact solutions are
17
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F1GURE 2. The surfaces and contour lines of the states y; and wj, on adaptive
meshes for Example 5.2 with ¢ = 1.0e — 3.

—+— error measure
—a— error estimator
efficiency index

F1GURE 3. The adaptive mesh (left) and the performance of the a posteriori error
estimator (right) for the state y.

TABLE 6. Values of n]f, and 172 for Example 5.3 on time-adaptive meshes with a
fixed space mesh (left with size T%ov right with size ﬁ) and ¢ = 1.0e — 004.

b

Adaptive | 7}, s Adaptive | 7} n
3200 2.4717 | 3.4169e-004 6600 1.5436 | 1.2586e-004
5000 1.0833 | 4.8034e-005 8607 0.9511 | 4.3404e-005
7100 0.6553 | 2.7031e-005 10268 0.7285 | 2.9835e-005
9600 0.4549 | 2.2352e-005 14647 0.4605 | 2.2354e-005
chosen as
e(tfl)/s _ 671/5
y(x,t) = sin(rz)sin(nt), p(z,t) =x(x—1)({t— W), u(z,t) = —

where the desired state yq and right hand side f have to be chosen accordingly.
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FIGURE 4. The error reduction for the state y on uniform and adaptive meshes.

TABLE 7. Errors of adjoint state p for Example 5.3 on uniform and adaptive
time—meshes with a fixed space mesh and € = 1.0e — 003.

Uniform | [|p — pnllo,or | [V — Inllo,0r | Adaptive | |Ip — pallo,or | [[¥ = Inllo,0r
2626 0.0200 0.2196 2727 4.6762e-005 4.8235e-004
4141 0.0175 0.1873 4343 1.7571e-005 1.4911e-004
6161 0.0124 0.1337 6161 1.4466e-005 1.1573e-004
9191 0.0087 0.0955 9090 1.0441e-005 6.7456e-005

The adjoint state p in this example developes a boundary layer at ¢ = 1 if € is small. We use the
a posteriori error estimator 7, of Theorem 3.5 to construct adaptive time meshes for the adjoint
state p. We denote by 771’; and 7711;, respectively the first and second contribution of the a posteriori
error estimator n,. The values of 77; and 772 on adaptive times meshes on a fixed space mesh are
presented in Table 6. We observe that 17;, dominates the a posteriori error estimator 7, and that
the contribution of 7711; is, as expected, negligible.

The surfaces and contour lines for the adjoint state p on uniform and adaptive meshes are shown
in Figure 5 and 6. The errors of the adjoint p on uniform and adaptive meshes are presented in
Table 7. The error reduction for the adjoint state p on uniform and adaptive meshes is documented
in Figure 8. We can conclude that the use of adaptive meshes improves the numerical solutions
and saves substantially computation time.

The adaptive mesh and the behaviors of errors and error estimators are displayed in Figure 7.
We see that the a posteriori error estimator 7, exactly captures the singular boundary layer with
effectivity index ET of approximately 2.
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