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Abstract. In this article we are concerned with the finite element dis-
cretization of optimal control problems subject to a second order elliptic
PDE and additional pointwise constraints on the gradient of the state.

We will derive error estimates for the convergence of the cost func-
tional under mesh refinement. Subsequently error estimates for the con-
trol and state variable are obtained.

As an intermediate tool we will also analyze a Moreau-Yosida reg-
ularized version of the optimal control problem. In particular we will
derive convergence rates for the cost functional and the primal vari-
ables. To this end we will employ new techniques in estimating the L∞

norm of the feasibility error which could also be used to improve existing
estimates in the state constrained case.
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1. Introduction

We are concerned with an analysis of the discretization error for optimal
control problems of second order elliptic equations subject to constraints on
the gradient of the state. Such problems have some natural application for
instance in cooling processes or structural optimization when high stresses
have to be avoided.

Despite these interesting applications first order state constraints have
hardly been recognized in mathematics. In the works [3,4] the case of optimal
control of semilinear elliptic equations with pointwise first order state con-
straints was studied under the assumption that the domain Ω ⊂ Rn possesses
a C1,1 boundary. In particular, they studied the adjoint equation and derived
first order necessary optimality conditions. It is immediately clear that their
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results carry over to the case of a polygonally bounded domain, as long as
the linearized state equation (with homogeneous Dirichlet boundary values)
defines an isomorphism between W 2,t(Ω)∩H1

0 (Ω) and Lt(Ω) for some t > n.
However, even for n = 2 this requires a convex domain which is usually too
restrictive for applications. However, in a recent publication [19] it was shown
that even on nonconvex domains such problems may remain well posed.

In [10] a Moreau-Yosida based framework for PDE-constrained opti-
mization with constraints on the derivative of the state is developed and used
to develop a semismooth Newton algorithm unfortunately their work does not
directly carry over to our problem class, because the presence of corner sin-
gularities is contradicting the assumptions made in there article. In [16] an
investigation of barrier methods for this problem class is conducted.

When concerned with the discretization of the infinite dimensional prob-
lem using finite elements, recent results where obtained in [5,7,13]. However
in all cases the domain was either smooth or polygonally bounded with suffi-
ciently small interior angles. Concerning adaptive discretization methods we
refer to [18] and the recent contribution [9].

The rest of this article is structured as follows. In Section 2 we will
discuss the problem class under consideration. Then we will consider its dis-
cretization in Section 2.1. In Section 3 we will derive an priori error estimate
for a certain semi discretization of the problem. The estimates are essen-
tially the same as those obtained in [5, 7, 13]. Unfortunately for this semi
discretization the control has to be chosen orthogonal to certain dual singu-
lar functions. Since this is not feasible in general we require further analysis.
For this purpose we consider a Moreau-Yosida regularization of the state
constraint in Section 4. Here we will derive convergence of both the cost
functional and the primal variables depending on the penalization parame-
ter. Parts of the analysis will be similar to the work of [8] but with further
complications due to the missing regularity of the control-to-state mapping.
We will however employ a new L∞ estimate for the feasibility violation which
could also be used to improve the convergence results obtained in [8, 17] for
state constrained problems. For the case without corner singularities one can
find similar results obtained simultaneously in [11].

With these preparations we can finally derive the main convergence
result in Section 5 for a computationally feasible discretization.

2. Problem formulation

In what follows, let Ω ⊂ R2 be a bounded polygonal domain. We are con-
cerned with optimization problems governed by a linear elliptic PDE. For
simplicity we consider

−Δu = q in Ω, (2.1a)

u = 0 on ∂Ω. (2.1b)
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It is then clear, that this operator defines an isomorphism−Δ: V = H1
0 (Ω) →

H−1(Ω).
Now we let r > 2 be a given number and define Q = Lr(Ω). We are

then particularly interested in an optimal control problem of the form

Minimize
Q×V

J(q, u) :=
1
2
‖u− ud‖2L2 +

1
r
‖q‖r

Lr , (2.2a)

such that (u, q) satisfies (2.1), (2.2b)

and such that |∇u| ≤ 1 in Ω. (2.2c)

If Ω would be a smooth domain, or a convex polygon, well posedness of (2.2)
would follow, e.g, from [4]. However, for a general polygon Ω the results do
not carry over easily. This is due to the conflicting nature of the constraint
|∇u| ≤ 1 and the existence of corner singularities due to the reentrant corners
of the domain. This means that for given q ∈ Q the solution u of (2.1) is
neither in C1(Ω) nor in W 1,∞(Ω). Thus the constraint |∇u| ≤ 1 can not be
posed easily in this topology. Nonetheless, problem (2.2) is well posed, see [19].
In particular (2.2) admits a unique solution (q, u) ∈ Q × V . Moreover there
exists a number t > 2 depending on the angles in the corners of the domain,
such that u ∈ W 2,t(Ω) ∩ V . Denote the image of W 2,t(Ω) ∩ V under −Δ
by I then, again following [19], we have that I is closed in Lt(Ω). With this
preparations we have in addition that q ∈ I ∩Q.

For the exposition of this article it is convenient to assume that Ω has
only one reentrant corner v with interior angle ω > π. Then by inspection of
the proof of [19, Lemma 2.2] we obtain the following bounds on t depending
on ω

t <
ω

π

(ω

π
− 1

)−1

if ω ∈ (π, 2π),

t < 4 if ω = 2π.
(2.3)

Further restrictions on t are possible due to convex corners of Ω.
This means that we are able to restate problem (2.2) equivalently as

follows

Minimize
Q∩I×V

J(q, u) :=
1
2
‖u− ud‖2L2 +

1
r
‖q‖r

Lr , (2.4a)

such that (u, q) satisfies (2.1), (2.4b)

and such that |∇u| ≤ 1 in Ω. (2.4c)

2.1. Discretization

In a next step we consider the discretization of these problems. To this end
we start by discretizing the state equation (2.1).

Let (Th)h∈(0,1] be a given family of triangulations, consisting of triangles
or quadrilaterals which are affine-equivalent to their respective reference ele-
ments, such that diam(T ) ≤ h for all T ∈ Th, h ∈ (0, 1]. We assume through-
out that the family is quasi-uniform in the sense of [2, Definition 4.4.13], that
is, there exists ρ > 0 such that, for each T ∈ Th and h ∈ (0, 1] there exists a
ball BT ⊂ T such that diam(BT ) ≥ ρh.
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We define the discrete state space Vh ⊂ V as the space of continuous
piecewise linear (or bi-linear) functions with respect to the mesh Th.

We remark that the restrictions we imposed on the family (Th)h∈(0,1]

ensure that the usual interpolation error results, best approximation results,
and inverse estimates hold [2, Sec. 4 and 5].

Finally, we define Πh : L1(Ω) → Vh to be the natural extension of the
L2-projection operator, that is, for q ∈ L1(Ω), we define Πhu ∈ Vh via

(Πhq, ϕ) = (q, ϕ) ∀ϕ ∈ Qh. (2.5)

It is shown in [6] that Πh is stable as an operator from Lp(Ω) to Lp(Ω), for
any p ∈ [1,∞], that is, there exist constants cp, independent of h, such that

‖Πhf‖Lp ≤ cp‖f‖Lp ∀f ∈ Lp(Ω). (2.6)

Now we can discretize the state equation. For fixed q ∈ Q we search for
a solution of the following

(∇uh,∇ϕh) = (q, ϕh) ∀ϕh ∈ Vh. (2.7)

This is already sufficient to obtain a finite dimensional optimization problem.
This is due to the fact, that it is sufficient to consider equivalence classes of
functions q, p ∈ Q given by the identification Πhq = Πhp as controls. Then
for the minimization of the cost functional in (2.2) it is sufficient to take the
unique element out of these classes with minimal Lr-Norm. Moreover due to
the first order optimality conditions these elements can be expressed in an
explicit way, see, e.g., [12] where this idea was explored first.

In particular the discretized version of (2.2) becomes

Minimize
Q×Vh

J(qh, uh) :=
1
2
‖uh − ud‖2L2 +

1
r
‖qh‖r

Lr , (2.8a)

such that (uh, qh) satisfies (2.7), (2.8b)

and such that |∇uh| ≤ 1 a.e. in Ω. (2.8c)

In addition, we can also discretize (2.4) and get

Minimize
Q∩I×Vh

J(qh, uh) :=
1
2
‖uh − ud‖2L2 +

1
r
‖qh‖r

Lr , (2.9a)

such that (uh, qh) satisfies (2.7), (2.9b)

and such that |∇uh| ≤ 1 a.e. in Ω. (2.9c)

Unlike the continuous case the optimal control problems (2.8) and (2.9) are
not equivalent. We will start with an analysis of (2.9). This analysis will
follow the lines of the arguments used in [13] where some of the arguments
have to be refined due to the presence of corner singularities. However, (2.9)
is not useful in practical computations. This is because the restriction to the
controls to lie in I can not be imposed. Hence we will continue our exposition
with the analysis of (2.8) based upon the results obtained during the analysis
of (2.9).
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Remark 2.1. We remark, that the space I is characterized by a so called dual
singular function s−1 which is known. However the characterization involves
the unknown solution u of (2.1). In particular, a function q ∈ I if and only
if with the corresponding solution u to (2.1) it holds

(q, s−1) + (u, Δs−1) = 0.

This representation is still of some use in order to calculate the singular
coefficients and thereby accelerating convergence of the finite element method
for the forward problem, see, e.g., [1]. In order to keep the presentation simple
we will not follow such ideas to improve convergence of the discrete problems.

3. Analysis of the semi discretization

In this section we will analyze the error between (2.9) and (2.2) or (2.4)
respectively.

To this end, we denote the unique solution to (2.2) or (2.4) by (q, u).
The unique solutions to (2.9) will be denoted by (q⊥h , u⊥

h ).
Then similar to the proof of [13, Theorem 1] we obtain

Theorem 3.1. Let (q, u) ∈ Q ∩ I ×W 2,t(Ω) ∩ V be the solution to (2.2) with
r ≥ t > 2. Further, let (q⊥h , u⊥

h ) ∈ Q∩ I × Vh be the solutions to (2.9). Then,
for any ε > 0, there exists a constant C > 0 independent of h ∈ (0, 1] such
that

|J(q, u)− J(q⊥h , u⊥
h )| ≤ Chβ

where β = 1− 2/t− ε.

Proof. We begin our proof by considering the Ritz projection uh ∈ Vh of u
defined by

(∇uh,∇ϕh) = (q, ϕh) ∀ϕh ∈ Vh.

Then, because u ∈W 2,t(Ω) ⊂W 1,∞ we have by [14, Theorem 2]

‖∇u−∇uh‖∞ ≤ chβ‖u‖C1,1−2/t ≤ chβ‖q‖Q. (3.1)

Apart from this argument the rest of the proof is the same as in the case of
a smooth domain, see [13, Theorem 1]. In particular, with c̃ ≥ c‖q‖Q, we get
that

(1− c̃hβ)|∇uh| ≤ (1− c̃hβ)|∇u|+ (1− c̃hβ)chβ‖q‖Q ≤ 1 a.e. in Ω.

From this we get that

(q̃h, ũh) = (1− c̃hβ)(q, uh) (3.2)

defines an element (q̃h, ũh) ∈ Q∩ I × Vh which is feasible for (2.9). It is then
clear, that

‖q − q̃h‖Q + ‖u− ũh‖2 ≤ chβ‖q‖Q.

Hence, we get
|J(q, u)− J(q̃h, ũh)| ≤ chβ‖q‖Q
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from local Lipschitz continuity of J . Furthermore we have

J(q⊥h , u⊥
h ) ≤ J(q̃h, ũh)

because (q̃h, ũh) is feasible for (2.9). This yields

J(q⊥h , u⊥
h )− J(q, u) ≤ J(q̃h, ũh)− J(q, u) ≤ chβ .

In particular the sequence ‖q⊥h ‖r
Q ≤ 2J(q⊥h , u⊥

h ) is bounded.
In order to show the reverse inequality, i.e.,

−chβ ≤ J(q⊥h , u⊥
h )− J(q, u)

we use the same line of arguments. We define for each given solution (q⊥h , u⊥
h ) ∈

Q ∩ I × Vh to (2.9) a continuous function u ∈ V using

(∇u,∇ϕ) = (q⊥h , ϕ) ∀ϕ ∈ V.

Due to the fact that q⊥h ∈ Q ∩ I we have u ∈ W 2,t(Ω) and hence we get
from [14, Theorem 2] that

‖∇u⊥
h −∇u‖∞ ≤ chβ‖u‖C1,1−2/t ≤ chβ‖q⊥h ‖Q

as in (3.1). Now one can continue analog by shifting to obtain a pair (q̂, û)
which is feasible for (2.2) such that

|J(q⊥h , u⊥
h )− J(q̂, û)| ≤ chβ .

Note that the constant c is independent of h because q⊥h can be bounded
independent of h.

This yields the desired lower bound, i.e.,

−chβ ≤ J(q⊥h , u⊥
h )−J(q̂, û) ≤ J(q⊥h , u⊥

h )−J(q, u) ≤ J(q̃h, ũh)−J(q, u) ≤ chβ

and concludes the proof. �

The convergence of the cost functional implies convergence of the primal
variables.

Corollary 3.1. Let (q, u) ∈ Q ∩ I ×W 2,t(Ω) ∩ V be the solution to (2.2) with
r ≥ t > 2. Further, let (q⊥h , u⊥

h ) ∈ Q∩ I × Vh be the solutions to (2.9). Then,
for any ε > 0, there exists a constant C > 0 independent of h ∈ (0, 1] such
that

‖q − q⊥h ‖r
Q + ‖u− u⊥

h ‖2 ≤ Ch1−2/t−ε.

Proof. The proof is identical to the one for [13, Corollary 1]. �

4. Regularization

Before we come to the analysis of the error between (2.2) and (2.8), we will
need some additional analysis. In particular, we are interested in the following
regularized problems for given γ > 0

Minimize
Q×V

Jγ(q, u) := J(q, u) +
γ

2
‖(|∇u| − 1)+‖2,

such that (u, q) satisfies (2.1).
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Similar problems have been analyzed in [10]. Unfortunately their analysis
was done under the assumption, that the state equation (2.1) defines an
isomorphism between W 2,t(Ω) ∩ V and Lt(Ω) which is not the case in our
setting. Further we will require bounds on the rate of convergence of the
primal variables similar to those obtained in [8]. Again the arguments are
complicated by the fact, that the state equation does not yield sufficient
regularity.

We note, that even though one can show convergence of the sequence
of minimizers to to above problem to those of (2.2). However, in the above
setting the convergence speed may be dominated by the existence of the
corner singularities. As we know that they do not appear in the solution we
will apply an additional filter to remove at least parts of the influence of the
reentrant corner.

To do so we need to separate the influence of the corner singularities.
Hence we define the set I⊥ as

I⊥ = {p ∈ Q∗ = Lp′(Ω) | (q, p) = 0 ∀ q ∈ Q ∩ I}
where p′ = p

p−1 . The set I⊥ is a finite dimensional linear space generated
by so called dual singular functions. The dimension m of I⊥ is equal to the
number of non convex corners of the domain Ω, see [19]. In our case, this
means by assumption m = 1.

Then we can define the finite dimensional linear space Qs ⊂ Q as follows

Qs = {q ∈ Q | ∃p ∈ I⊥ : (q, p) = 0 } ∪ {0}.
This gives the following representation of Q

Q = Q ∩ I ⊕Qs.

Let {q⊥} be a basis of I⊥. Then we choose {qs} ⊂ Qs as dual basis to {q⊥},
i.e., (qs, q⊥) = 1.

In particular, we can write any element q ∈ Q as

q = qr + αqs

where qr ∈ Q∩ I and α = (q, q⊥) ∈ R are uniquely determined. In particular
q ∈ Q ∩ I if and only if α = 0. Corresponding to this relation we can also
rewrite any solution u to (2.1) with right hand side q as

u = ur + αus

where ur ∈W 2,t(Ω)∩V and us behaves as rπ/ω in the vicinity of the reentrant
corner.

Then we can state the regularized problem as follows

Minimize
Q×V

Jγ(q, u) := J(q, u) +
γ

2
‖(|∇u| − 1)+‖2 +

γ

2
|(q, q⊥)|2,

such that (u, q) satisfies (2.1).
(4.1)

We note, that by standard arguments, there exists unique solutions
(qγ , uγ) ∈ Q × V to (4.1). Further, let (qγ , uγ) ∈ Q × V be the solution
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to (2.2). Due to the fact, that

J(qγ , uγ) ≤ Jγ(qγ , uγ) ≤ Jγ(q, u) = J(q, u)

we immediately obtain boundedness of ‖qγ‖Q. Further, this gives the relation

‖(∇uγ | − 1)+‖2 ≤ Cγ−1, |αγ |2 = |(qγ , q⊥)|2 ≤ Cγ−1
2 . (4.2)

Our analysis starts with an analysis of the feasibility error.

Lemma 4.1. Let (qγ , uγ) ∈ Q × V be the solution to (4.1). Further, denote
qγ = qr + αγqs ∈ Q∩ I ⊕Qs and uγ = ur

γ + αγus the corresponding splitting
of the state variable.

Then there exists a constant c independent of γ such that

‖(|∇ur
γ | − 1)+‖∞ ≤ cγ−1/2(β/(1+β)),

where β is the same as in Theorem 3.1.

Proof. To obtain the convergence of ur
γ in the maximum norm, we define

f(x) = (|∇ur
γ | − 1)+.

We remark, that by embedding theorems, we know that f ∈ C0,β(Ω). Then
define

εγ = max
x∈Ω

f(x).

An easy computation shows that (for γ ≥ 1)

‖(|∇ur
γ | − 1)+‖2 ≤ c(‖(|∇uγ | − 1)+‖2 + |αγ |2) ≤ cγ−1.

We assume w.l.o.g. that εγ > 0. Then by Hölder continuity of f we get that

cγ−1 ≥ ‖f‖2

≥
∫
{f≥εγ/2}

|f(x)|2 dx

≥
ε2

γ

4

∫
{f≥εγ/2}

dx

≥
ε2

γ

4
cε2/β

γ

≥ cε2+2/β
γ .

Hence by definition

‖(|∇ur
γ | − 1)+‖∞ = εγ

≤ cγ−β/(2β+2)

which shows the assertion. �
The rate of convergence of ‖(|∇ur

γ | − 1)+‖∞ is the same which could
be obtained following the analysis of [8, Lemma 3.1]. Unfortunately this rate
also limits our ability to derive convergence estimates for the primal variables.
Hence we will spend some effort on improving these results, the techniques
employed here have been developed simultaneously in [11]. We will derive
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them here nonetheless because we will have to face some additional difficulties
due to the presence of the corner singularities.

Before doing so, we recall that for a solution (q, u) ∈ Q×V to (2.2) there
exist z ∈ Lt′(Ω) and μ ∈ C∗(Ω) such that the following necessary optimality
conditions hold

(∇u,∇ϕ) = (q, ϕ) ∀ ϕ ∈ V,

(−Δϕ, z) = (u− ud, ϕ) + 〈μ,∇u · ∇ϕ)〉C∗×C ∀ ϕ ∈W 2,t(Ω) ∩ V,

(|q|r−2q, δq) = −(δq, z) ∀ δq ∈ Q ∩ I,

〈μ, ϕ〉C∗×C ≤ 0 ∀ ϕ ∈ C(Ω), ϕ ≤ 0,

〈μ, |∇u| − 1〉C∗×C = 0,

(4.3)
see, [19, Theorem 3.3]. Further, by standard arguments for a solution (qγ , uγ) ∈
Q × V to (4.1) there exist zγ ∈ V and μγ ∈ L2(Ω) such that the following
holds

(∇uγ ,∇ϕ) = (qγ , ϕ) ∀ ϕ ∈ V,

(∇ϕ,∇zγ) = (uγ − ud, ϕ) + (μγ ,∇uγ · ∇ϕ) ∀ ϕ ∈ V,

(|qγ |r−2qγ , δq) = −(δq, zγ)− γαγ(δq, q⊥) ∀ δq ∈ Q,

μγ =
γ

|∇uγ |
(|∇uγ | − 1)+

(4.4)

compare [10].

Lemma 4.2. Let (qγ , uγ) ∈ Q× V be the solution to (4.1).
Then there exists a constant c independent of γ such that it holds

γ‖(|∇uγ | − 1)+‖1 ≤ c, γ|αγ | ≤ c.

Proof. We obtain for (4.4) that

‖qγ‖r
Q + γ|αγ |2 = −(qγ , zγ)

= (−∇uγ ,∇zγ)

= −(uγ − ud, uγ)− γ((|∇uγ | − 1)+, |∇uγ |).

Now we obtain that ‖qγ‖Q, ‖uγ‖, and γ|αγ |2 are bounded independent of γ
because

0 ≤ J(qγ , uγ) ≤ Jγ(qγ , uγ) ≤ J(q, u)

Hence we have

γ‖(|∇uγ | − 1)+‖1 ≤ γ((|∇uγ | − 1)+, |∇uγ |)
= −‖qγ‖r

Q − (uγ − ud, uγ)− γ|αγ |2

≤ c.
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To get the bound on γ|αγ | we test (4.4) with qs and get

γ|αγ | = γ|αγ(qs, q⊥)|
= |(|qγ |r−2qγ , qs) + (uγ − ud, us) + (μγ ,∇uγ∇us)|
≤ c

by noting that

|(μγ ,∇uγ∇us)| ≤ γ‖(|∇u| − 1)+‖‖∇us‖ ≤ c.

�
With these preparations we can derive an improved L∞ estimate.

Lemma 4.3. Let (qγ , uγ) ∈ Q × V be the solution to (4.1). Further, denote
qγ = qr + αγqs ∈ Q∩ I ⊕Qs and uγ = ur

γ + αγus the corresponding splitting
of the state variable. Then there exists a constant c independent of γ ≥ 1
such that

‖(|∇ur
γ | − 1)+‖∞ ≤ cγ−(β/(β+2)),

where β is the same as in Theorem 3.1.

Proof. The proof is analog to the one for Lemma 4.1.
To obtain the convergence of ur

γ in the maximum norm, we define

f(x) = (|∇ur
γ | − 1)+.

We remark, that by embedding theorems, we know that f ∈ C0,β(Ω). Then
define

εγ = max
x∈Ω

f(x).

An easy computation shows that

|(|∇ur
γ | − 1)+| ≤ |(|∇uγ | − 1)+|+ |αγ ||∇us|

and hence by Lemma 4.2

‖(|∇ur
γ | − 1)+‖1 ≤ ‖(|∇uγ | − 1)+‖1 + |αγ |‖∇us‖1 ≤ cγ−1.

We assume w.l.o.g. that εγ > 0. Then by Hölder continuity of f we get that

|f(x)− f(y)| ≤ c‖x− y‖β

and hence if for some x∗ ∈ Ω it holds f(x∗) = εγ = maxx∈Ω f(x) then we
have that f(y) ≥ εγ/2 if c‖x− y‖β ≤ εγ/2. This gives

cγ−1 ≥ ‖f‖1

≥
∫
{f≥εγ/2}

|f(x)| dx

≥ εγ

2

∫
{f≥εγ/2}

dx

≥ εγ

2
cε2/β

γ

≥ cε1+2/β
γ .

(4.5)
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Hence by definition

‖(|∇ur
γ | − 1)+‖∞ = εγ

≤ cγ−(β/(β+2))

which shows the assertion. �

Remark 4.1. We remark, that usually the estimate in (4.5) is too pessimistic.
For instance, if μ has support on a curve in Ω it is reasonable to assume that
in fact ∫

{f≥εγ/2}
dx ≥ cε1/β

γ

yielding the improved rate

‖(|∇ur
γ | − 1)+‖∞ ≤ cγ

−β
β+1 .

Moreover, if μ has a volume contribution, then the set on which the maximum
is attained may even be independent of the Hölder continuity, i.e.,∫

{f≥εγ/2}
dx ≥ c

then yielding the rate

‖(|∇ur
γ | − 1)+‖∞ ≤ cγ−1.

For more details we refer to the forthcoming publication [11].

We remark that based upon these preparations one can derive estimates
for the primal variables following the ideas of [8, Theorem 2.1] with some
modifications due to the presence of corner singularities.

Lemma 4.4. Let (qγ , uγ) ∈ Q× V be the solution to (4.1) and (q, u) ∈ Q× V
be the solution to (2.2). Further, denote qγ = qr + αγqs ∈ Q ∩ I ⊕ Qs and
uγ = ur

γ + αγus the corresponding splitting of the state variable.
Then, the following estimate holds:

‖qγ − q‖r
Q + ‖ur

γ − u‖2 +
γ

2
‖(|∇uγ |2 − 1)+‖2

≤ 〈(|∇ur
γ |2 − 1)+, μ〉C,C∗ + |αγ |

(
|(u− ud, us)|+ |(|q|r−2q, qs)|

)

≤ C(‖(|∇ur
γ | − 1)+‖∞ + |αγ |).

Proof. First we remark, that for any r there exist a constant c > 0 such that

c‖f − g‖r
Lr ≤ (|f |r−2f − |g|r−2g, f − g)

holds for any f, g ∈ Lr(Ω).
This gives in combination with the necessary optimality conditions (4.3)

and (4.4)

c‖qγ − q‖r
Q ≤ (|qγ |r−2qγ − |q|r−2q, qγ − q)

= −(zγ , qγ − q) + (z, qr
γ − q)− αγ(|q|r−2q, qs)− γ2αγ(qγ − q, q⊥)

≤ −(zγ , qγ − q) + (z, qr
γ − q)− αγ(|q|r−2q, qs) + γ2αγ(q, q⊥).
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Now noting that (q, q⊥) = 0 we conclude with the necessary optimality con-
ditions (4.3) and (4.4) that

c‖qγ − q‖r
Q ≤ −(zγ , qγ − q) + (z, qr

γ − q)− αγ(|q|r−2q, qs)

= (zγ , Δuγ −Δu)− (z, Δur
γ −Δu)− αγ(|q|r−2q, qs)

= −(uγ − ud, uγ − u)− γ(∇uγ/|∇uγ |(|∇uγ | − 1)+,∇uγ −∇u)

+ (u− ud, ur
γ − u) + 〈μ,∇u(∇ur

γ −∇u)〉 − αγ(|q|r−2q, qs)

= −‖uγ − u‖2 − αγ(u− ud, us)− αγ(|q|r−2q, qs)

− γ(∇uγ/|∇uγ |(|∇uγ | − 1)+,∇uγ −∇u) + 〈μ,∇u(∇ur
γ −∇u)〉.

To proceed we need to rewrite the last two summands on the right hand side.
To do so, we note that both γ(|∇uγ | − 1)+ and μ are positive, and hence it
is sufficient to estimate the arguments. This yields

−∇uγ(∇uγ −∇u)/|∇uγ | = (−|∇uγ |2 +∇uγ∇u)/|∇uγ |

≤ (−|∇uγ |2 +
1
2
(|∇uγ |2 + |∇u|2))/|∇uγ |

=
1
2
(|∇u|2 − |∇uγ |2)/|∇uγ |

≤ 1
2
(1− |∇uγ |2)/|∇uγ |

≤ 1
2
(1/|∇uγ | − |∇uγ |).

Now, noting that |∇uγ |−1 < 1 on the set {|∇uγ | − 1 > 0} we conclude that
on this set

−∇uγ(∇uγ −∇u)/|∇uγ | ≤
1
2
(1− |∇uγ |).

Similarly one gets

∇u(∇ur
γ −∇u) ≤ 1

2
(|∇ur

γ |2 − 1)+.

Hence the first of the inequalities follows.
The second of the inequalities follows immediately by noting, that u, q,

us, and qs are independent of γ and that

|∇ur
γ |2 − 1 = (|∇ur

γ |+ 1)(|∇ur
γ | − 1) ≤ c(|∇ur

γ | − 1).

�

We note that Lemma 4.4 combined with Lemma 4.3 immediately gives a
bound on the convergence of the primal variables. Additionally one could use
the estimate of Lemma 4.1 in a bootstrapping argument to obtain better con-
vergence orders than those derived there. However the results obtained when
following this argument are not better than what we obtained in Lemma 4.3.
We obtain the following convergence result.
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Corollary 4.1. Let (qγ , uγ) ∈ Q×V be the solution to (4.1) and (q, u) ∈ Q×V
be the solution to (2.2).

Then the following estimate holds

‖qγ − q‖r
Q + ‖uγ − u‖2 ≤ cγ

−β
β+2 .

4.1. Convergence rates for the cost functional

Unfortunately for our later analysis we will require rates of convergence for
the cost functionals. Clearly we get from local Lipschitz continuity of J in
combination with Corollary 4.1 that

|J(qγ , uγ)− J(q, u)| ≤ cγ
−β

r(β+2) .

However, as we want to use the difference of the cost functionals to bound
the error in the primal variables this is not sufficient. Therefore we will spend
some additional effort on the derivation of convergence rates of the cost func-
tional.

Theorem 4.1. Let (qγ , uγ) ∈ Q×V be the solution to (4.1) and (q, u) ∈ Q×V
be the solution to (2.2). Further, denote qγ = qr + αγqs ∈ Q ∩ I ⊕ Qs and
uγ = ur

γ + αγus the corresponding splitting of the state variable.
Assume that

‖(|∇ur
γ | − 1)+‖∞ ≤ cγ−θ

then
0 ≤ J(q, u)− J(qγ , uγ) ≤ cγ−θ.

Proof. Assume that (1 − cγ−θ) > 0. Define q̃γ = (1 − cγ−θ)qr
γ . Now, denote

the corresponding solution to (2.1) by ũγ . Then it holds by assumption that

|∇ũγ | = (1− cγ−θ)|∇ur
γ | ≤ (1− cγ−θ)(1 + cγ−θ) < 1.

In particular (q̃γ , ũγ) is feasible for (2.2) and hence by local Lipschitz-continuity
of J it follows

J(q, u) ≤ J(q̃γ , ũγ) ≤ J(qγ , uγ) + cγ−θ.

�

Finally, we remark that a uniform convexity property holds for the func-
tion Jγ .

Lemma 4.5. The functional Jγ is uniformly convex in the sense that
1
2‖u1 − u2‖2 + 1

r‖q1 − q2‖r
Lr + Jγ( 1

2 (w1 + w3)) ≤ 1
2Jγ(w1) + 1

2Jγ(w2)

holds for all w1 = (q1, u1) ∈ Q× V and w2 = (q2, u2) ∈ Q× V .

Proof. We note that the stated uniform convexity holds for the cost functional
J by application of Clarkson’s inequality to u1 − ud and u2 − ud as well as
q1 and q2. Hence it remains to show that

‖( 1
2 |∇u1 +∇u2| − 1)+‖2 ≤ 1

2‖(|∇u1| − 1)+‖2 + 1
2‖(|∇u2| − 1)+‖2.
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This is clear, as the integral is monotone, the map x �→ max(0, x)2 : R → R

is monotone increasing and x → |x| − 1: R2 → R is convex. Similarly we
have

1
4 |(q1 + q2, q

⊥)|2 ≤ 1
2

(
|(q1, q

⊥)|2 + |(q2, q
⊥)|2

)
.

�

Then combination of Theorem 4.1 and Lemma 4.5 yield the same rates
of convergence that we obtained in Corollary 4.1.

Corollary 4.2. Let (qγ , uγ) ∈ Q×V be the solution to (4.1) and (q, u) ∈ Q×V
be the solution to (2.2).

Then the following estimate holds

‖qγ − q‖r
Q + ‖uγ − u‖2 ≤ cγ

−β
β+2 .

Proof. By Lemma 4.5 we obtain
1
2‖uγ − u‖2 + 1

r‖qγ − q‖r
Lr ≤ −Jγ( 1

2 (qγ + q, uγ + u)) + 1
2Jγ(qγ , uγ) + 1

2Jγ(q, u)

≤ 1
2Jγ(q, u)− 1

2Jγ(qγ , uγ)

≤ 1
2J(q, u)− 1

2J(qγ , uγ).

This shows the assertion using of Theorem 4.1 and Lemma 4.3. �

Remark 4.2. We comment shortly on the influence of Remark 4.1. Given the
comment there the speed of convergence in both Theorem 4.1 as well as in
Corollary 4.2 will enhance to

J(q, u)− J(qγ , uγ) ≤ cγ
−β
β+1

in the presence of a line measure in μ and

J(q, u)− J(qγ , uγ) ≤ cγ−1

in the presence of a volume measure in μ.

5. Analysis of the full discretization

In this section we will analyze the error between (2.8) and (2.2) or (2.4)
respectively.

To this end, we denote the unique solution to (2.2) or (2.4) by (q, u).
The unique solutions to (2.8) will be denoted by (qh, uh).

In contrast to the previous section we can no longer consider the solution
u ∈ V of

(∇u,∇ϕ) = (qh, ϕ) ∀ϕ ∈ V

in order to show that the lower bound

−chβ ≤ J(qh, uh)− J(q, u)

holds true. This is because the solution u defined above is no longer an element
of W 2,t(Ω). However, from Theorem 3.1 we immediately get

J(qh, uh)− J(q, u) ≤ J(q⊥h , u⊥
h )− J(q, u) ≤ chβ
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because Q ⊂ Q ∩ I. In particular, the solutions qh are uniformly bounded.
Before we come to the analysis of the convergence speed, we will start

with some preliminary results. First, we will show convergence qh → q and
uh → u. With these preparations we will compute the distance between qh

and I. Then finally, we can obtain the desired convergence rates.

Theorem 5.1. Let (qh, uh) be the unique solution to (2.8) and denote qh =
qr
h +αhqs

i with αh = (qh, q⊥). Then qh ⇀ q in Q and uh → u in H1
0 (Ω) where

(q, u) are the unique solution to (2.2). In particular, it holds αh → 0.

Proof. As already remarked, we have from Theorem 3.1 and Q ⊂ Q∩ I that

J(qh, uh) ≤ J(q⊥h , u⊥
h ) ≤ J(q, u) + chβ .

This shows that ‖qh‖Q is bounded. Hence there exists a weakly convergent
subsequence, denoted again by qh, with limit q0. Due to the compact embed-
ding L2(Ω) ⊂ H−1(Ω) a subsequence qh converges strongly in H−1(Ω) and
hence uh converges strongly in H1

0 (Ω) to a limit u0. Now, for any ϕ ∈ H1
0 (Ω)

there exists a sequence ϕh ∈ Vh with ϕh → ϕ because
⋃

h>0 Vh is dense in
H1

0 (Ω). Thus we have

(∇u0,∇ϕ) ← (∇uh,∇ϕh) = (qh, ϕh) → (q0, ϕh).

To proceed, we note that the sequence |∇uh| converges strongly in L2

and hence, again selecting a subsequence, pointwise almost everywhere. Now
‖∇uh‖∞ ≤ 1 which shows ‖∇u0‖∞ ≤ 1.

In particular, (q0, u0) are feasible for (2.2). From weak lower semiconti-
nuity of J we deduce

J(q0, u0) ≤ lim inf
h→0

J(qh, uh) ≤ J(q, u).

This shows q0 = q and u0 = u.
Finally, as qh ⇀ q ∈ Q ∩ I we obtain αh = (qh, q⊥) → (q, q⊥) = 0. �

In a next step we try to obtain a convergence rate for the singular
coefficient αh. To do so, we consider the following problems where qr

h is given
as in Theorem 5.1. We search ur, us ∈ V and ur

h, us
h ∈ Vh which solve

(∇ur,∇ϕ) = (qr
h, ϕ) ∀ϕ ∈ V (5.1)

(∇ur
h,∇ϕh) = (qr

h, ϕh) ∀ϕh ∈ Vh (5.2)

(∇us,∇ϕ) = (qs, ϕ) ∀ϕ ∈ V (5.3)

(∇us
h,∇ϕh) = (qs, ϕh) ∀ϕh ∈ Vh. (5.4)

Lemma 5.1. Let (qh, uh) be the unique solution to (2.8) and denote qh =
qr
h + αhqs

i . Then there exists a constant C independent of h such that

|αh|‖∇us
h‖∞ ≤ C.

Proof. We begin by noting, that ur ∈W 2,t(Ω) by definition of qr
h. In partic-

ular, due to [14, Theorem 2]

‖∇ur −∇ur
h‖∞ ≤ chβ‖qr

h‖Q ≤ chβ‖qh‖Q ≤ chβ .
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Hence ‖∇ur
h‖∞ ≤ C independent of h ∈ (0, 1].

This yields

‖αh∇us
h‖∞ = ‖∇uh −∇ur

h‖∞ ≤ 1 + C

and thus the assertion. �
In a next step, we need to show that ‖∇us

h‖∞ blows up with a certain
rate. This appears to be clear, unfortunately the author could not find a
citable source. This is why we need the following lemma.

Lemma 5.2. Let ω > π be the angle of the non convex corner of Ω. Further,
let us

h ∈ Vh be given by (5.4). Then for any ε > 0 there exists a constant c
such that for h > 0 sufficiently small it holds

‖∇us
h‖∞ ≥ ch−1+π/ω+ε.

Proof. Denote the non convex corner by v. Let s > 1 be given. Then it is
well known, that the solution us ∈ V of (5.3) satisfies

max
dist(v,x)=h1/s

us(x) ≥ c1h
π

sω

for some given constant c1 > 0 and h sufficiently small.
By [15, Theorem 4.1] we now that for any ε′ > 0 there exists some

c2 > 0 such that
‖us − us

h‖∞ ≤ c2h
π
ω −ε′ .

Then for given s it holds

c2h
s−1

s
π
ω −ε′ < c1/2

provided that h is sufficiently small.
In particular it holds for any x ∈ Ω

us
h(x) ≥ us(x)− c2h

π
ω −ε′ .

Hence we have for h sufficiently small that

max
dist(v,x)=h1/s

us
h(x) ≥ c1h

π
sω − c2h

π
ω −ε′

= h
π

sω (c1 − c2h
s−1

s
π
ω −ε′)

≥ c1

2
h

π
sω .

On the other hand h(v) = 0. And thus we have

max
Ω
|∇us

h(x)| ≥
maxdist(v,x)=h1/s us

h(x)− us
h(v)

h1/s

≥ c1

2
h

π
sω h

−1
s

=
c1

2
h

1
s (−1+ π

ω ).

Now, for given ε > 0 such that −1 + π
ω + ε < 0 there exists some s > 1 such

that
−1 +

π

ω
+ ε =

1
s
(−1 +

π

ω
).
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This proofs the assertion. �

Corollary 5.1. For any ε > 0 there exists a constant c such that for h > 0
sufficiently small the singular coefficients αh satisfy

|αh| ≤ ch1−π/ω−ε

Proof. The assertion follows immediately from Lemma 5.2 and Lemma 5.1.
�

Lemma 5.3. Let (qh, uh) be the unique solution to (2.8). Define uh ∈ V as
the solution to

(∇uh,∇ϕ) = (qh, ϕ) ∀ϕ ∈ V.

Then it holds
‖(|∇uh| − 1)+‖2 ≤ ch2π/ω.

Proof. By definition and the fact, that |∇uh| ≤ 1 , we have for almost all
x ∈ Ω

(|∇uh(x)| − 1)+ = max(0, |∇uh(x)| − 1)

≤ max(0, |∇uh(x)−∇uh|+ |∇uh| − 1)

≤ max(0, |∇uh(x)−∇uh|)
= |∇uh(x)−∇uh|.

Hence we get by standard finite error estimates

‖(|∇uh(x)| − 1)+‖2 ≤ ‖∇uh −∇uh‖2 ≤ ch2π/ω.

�

Theorem 5.2. Let (qh, uh) be the unique solution to (2.8) and (q, u) be the
unique solution to (2.2). Then for h sufficiently small, there exists a constant
c > 0 such that

|J(q, u)− J(qh, uh)| ≤ chβ2

where

β2 =
β

1 + β
(1− π/ω − ε)

for any ε > 0.

Proof. In view of Theorem 3.1 we already know that

J(qh, uh) ≤ J(q, u) + chβ .

Hence it remains to derive a lower bound on J(qh, uh). To this end, we define
uh ∈ V by

(∇uh,∇ϕ) = (qh, ϕ) ∀ϕ ∈ V.

Now, by standard L2-error estimates we have

‖u− uh‖ ≤ ch2π/ω
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and because 2π/ω ≥ 1 > β we get

J(qh, uh) ≤ J(q, u) + chβ ,

|J(qh, uh)− J(qh, uh)| ≤ chβ . (5.5)

From this we immediately see, that if

J(q, u) ≤ J(qh, uh)

we would be done.
Hence, we will now assume that

J(qh, uh) ≤ J(q, u).

Then we proceed by considering a regularized version of (2.2) namely (4.1).
Now we have that

|Jγ(qγ , uγ)− J(q, u)| ≤ cγ
−β
β+2

following the result of Theorem 4.1 and Lemma 4.3.
Further, with respect to Lemma 5.3 and Corollary 5.1 we have that

|J(qh, uh)− Jγ(qh, uh)| ≤ cγh2π/ω + cγh2(1−π/ω−ε)

and thus

J(q, u)− cγ
−β
2+β ≤ Jγ(qγ , uγ)

≤ Jγ(qh, uh) ≤ J(qh, uh) + cγh2π/ω + cγh2(1−π/ω−ε)

≤ J(q, u) + cγh2π/ω + cγh2(1−π/ω−ε) + chβ .

Now, in order to obtain the best possible rate of convergence, we choose
γ = h−x where x ≥ 0 solves

max
x≥0

min
(
x

β

2 + β
, 2

π

ω
− x, 2(1− π/ω − ε)− x

)
= f∗. (5.6)

To do so, we note that 2π/ω > 2−2π/ω−ε since ω ≤ 2π. Hence the minimizer
is obtained when the two terms x β

2+β = and 2(1− π
ω −ε)−x are equilibrated.

This happens at

x = (1− π

ω
− ε)

2 + β

1 + β

with the value

f∗ = x
β

2 + β
=

β

1 + β
(1− π/ω − ε) = β2 < β.

Thus we obtain

J(q, u)− chβ2 ≤ J(qh, uh) ≤ J(q, u) + chβ2

which shows the assertion. �

Convergence of the primal variables follows analog to Corollary 4.2 using
the uniform convexity of Jγ to get that

‖qγ − qh‖r
Q + ‖uγ − uh‖2 ≤ chβ2 .
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