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Abstract. A priori estimates on the length of the primal-dual path that results from a Moreau-
Yosida approximation of the feasible set for state constrained optimal control problems are derived.
These bounds depend on the regularity of the state and the dimension of the problem. Numerical
results indicate that the bounds are indeed sharp and are typically attained in cases where the
active set consists of isolated active points. Further conditions on the multiplier approximation are
identified which guarantee higher convergence rates for the feasibility violation due to the Moreau-
Yosida approximation process. Numerical experiments show again that the results are sharp and
accurately predict the convergence behavior.
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1. Introduction. In recent years, path-following methods based on the Moreau-
Yosida regularization of state constrained problems have received considerable atten-
tion. While general results on the convergence of this method can be derived under
fairly mild assumptions, deriving estimates on the length of corresponding homotopy
path, the “primal-dual path”, and its asymptotic behavior is more delicate. In partic-
ular, numerical experience shows that the asymptotic behavior varies from problem
to problem. This has lead to the consideration of a posteriori error estimators for the
regularization error; see, e.g., [11, 14].

The purpose of this note is twofold. First, we present a priori error estimates on
the order of convergence of the primal-dual path that depend on the dimension of
the problem and the smoothness of the solution. In comparison to the estimates that
were derived in [13] we obtain an improvement in the rate, compared to [6] we can
also improve upon the obtained convergence rate. We note that the techniques of [6]
when augmented by a bootstrapping argument also have the potential to yield the
same rate as ours; see Section 2.5 below. However, we point out that our results are
based on considerably weaker assumptions than those in the aforementioned work.
Finally, we note that in some cases one may derive our worst case estimates also from
the work contained in [4].

Secondly, we develop an understanding of the principles that govern the rate of
convergence of the primal-dual path. This will be accomplished by a comparison of
numerical and theoretical results. In fact, it turns out that the topology of the active
set plays a decisive role for the rate of convergence. In the “worst case” scenario,
which is the case of the active set being a single touch point (or a set of isolated touch
points), our theoretical estimates coincide with numerical observations. Moreover, we
are able to predict the convergence behavior in several prototypical cases depending
on the shape of the active set.
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In order to render our discussion concrete, we consider the primal-dual path-
following method for a state constrained model problem in optimal control. We em-
phasize, however, that the techniques presented here are applicable in a much broader
context; see, e.g., [15] for constraints on the gradient of the state. Thus, for our spe-
cific discussion we throughout consider the model problem (1.1) below. Applying
the Moreau-Yosida approximation to the indicator function of the set related to the
pointwise inequality constraint in

minimize J(y, u) =
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) over y ∈ H1(Ω), u ∈ L2(Ω)

subject to −∆y − u = 0 in Ω, y = 0 on ∂Ω,

y ≤ ψ in Ω,

(1.1)

results in the family of problems

minimize Jγ(y, u) =
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) +

γ

2
‖max(y − ψ, 0)‖2L2(Ω)

over y ∈ H1(Ω), u ∈ L2(Ω)

subject to −∆y − u = 0 in Ω, y = 0 on ∂Ω

(1.2)

for γ > 0. Above, we assume for simplicity that Ω is a smoothly bounded domain
in R

d for d = 1, 2, 3, yd ∈ L2(Ω), and ψ is a smooth, strictly positive function on
Ω and α > 0 some given constant. Let xγ := (yγ , uγ) denote the unique solution of
(1.2). It was shown in [7] that the sequence (xγ) converges to the original solution
x∗ := (y∗, u∗) of (1.1) as γ tends to infinity. Given the structure of our model problem,
we again remark that the following analysis does not depend on the special form of
the (partial differential) equation or the inequality constraint in (1.1), but rather on
the fact that the feasibility violation, i.e., max(y − ψ, 0) in our case, is not only in
L2(Ω) but in fact it is in some space Cβ(Ω) with 0 < β ≤ 2.

Using slightly non-standard notation we define the space Cβ as follows. Let
m ∈ N0. For m < β ≤ m + 1 denote by Cβ(Ω) the subspace of Cm(Ω) of functions
which have Hölder continuous derivatives of order up tom. These spaces are equipped
with the usual norms

‖v‖Cβ := ‖v‖Cm + ‖∇(m)v‖Cβ−m .

Practical algorithms use a semi-smooth Newton method to solve discretizations
of the problems (1.2) approximately or exactly; see, e.g., [7, 8]. For this purpose, the
first order necessary conditions are derived for (1.2) which assert the existence of an
adjoint state pγ ∈ H2(Ω) such that

yγ − yd + γmax(yγ − ψ, 0)−∆pγ = 0 in Ω, pγ = 0 on ∂Ω, (1.3)

αuγ − pγ = 0 in Ω, (1.4)

−∆yγ − uγ = 0 in Ω, yγ = 0 on ∂Ω. (1.5)

The system (1.3)–(1.5) approximates the first order necessary (and in our case also
sufficient) conditions for the original problem (1.1), which yield the existence of a
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measure-valued Lagrange multiplier m∗ ∈ M(Ω) and an adjoint state p∗ ∈ W 1,q′(Ω)
(q′ < d/(d− 1)) such that

y∗ − yd +m∗ −∆p∗ = 0 in Ω, p∗ = 0 on ∂Ω,

−∆y∗ − u∗ = 0 in Ω, y∗ = 0 on ∂Ω,

αu∗ − p∗ = 0 in Ω,

m∗ ≥ 0, y∗ ≤ ψ, 〈m∗, y∗ − ψ〉
M(Ω),C(Ω) = 0 in Ω,

where 〈·, ·〉
M(Ω),C(Ω) denotes the duality pairing between C(Ω) and its dual space

M(Ω), the regular Borel measures. We observe that, in the regularized setting, the
function γmax(yγ − ψ, 0) plays the role of m∗.

The elimination of uγ from (1.3)–(1.5) yields the system

F (x; γ) :=

{

y − yd + γmax(y − ψ, 0)−∆p = 0 in Ω, p = 0 on ∂Ω,
−∆y − α−1p = 0 in Ω, y = 0 on ∂Ω,

(1.6)

which can be tackled by a semi-smooth Newton method as shown in [7].

2. Analysis of the length of the primal-dual path. Our analysis proceeds
in three main steps. First, we derive uniform L1-bounds on the constraint violation.
In a second step we conclude that, given these L1-bounds, the length of the primal-
dual path depends on L∞-bounds on the constraint violation. Then, finally, these
latter bounds are derived by exploiting the Hölder continuity of the states.

2.1. A priori bounds for the constraint violation in L1. Abusing notation,
in what follows we write y+γ for max(yγ−ψ, 0). Our first aim is to show that γ

∥

∥y+γ
∥

∥

L1

is bounded uniformly as γ → ∞. The following technique is well established by now
and has been used in various contexts (see, e.g., [5, 8, 12]). Below, c denotes a generic
constant which may take different values at different occasions.

Lemma 2.1. The expression γ
∥

∥y+γ
∥

∥

L1 is uniformly bounded for γ → ∞.
Proof. Let S be the solution operator, i.e., the control-to-state mapping, of the

state equation which is the partial differential equation constraint in (1.2). We test
(1.3) and (1.4) by a feasible direction (Sv, v) ∈ H1(Ω)×L2(Ω) and add the resulting
two equations up (taking into account that 〈−∆pγ , Sv〉 = (pγ , v), where 〈·, ·〉 denotes
the duality pairing between H1(Ω) and its dual H1(Ω)∗ and (·, ·)L2 is the usual inner
product in L2(Ω)). As a consequence, we obtain

α(uγ , v)L2 + (yγ − yd, Sv)L2 + γ(y+γ , Sv)L2 = 0 ∀v ∈ L2(Ω).

Inserting v := uγ , Suγ = yγ we obtain

α(uγ , uγ)L2 + (yγ − yd, yγ)L2 − γ(y+γ , yγ)L2 = 0.

From (1.2) one readily finds that uγ , yγ , yd are bounded in L2 independently of γ.
Thus, we conclude that

γ(y+γ , yγ)L2 = γ

∫

Ω

yγy
+
γ dω ≤ c

for some constant c > 0 independent of γ. Hence, by the non-negativity of y+γ and
0 < ψ ≤ ψ ≤ yγ , for some ψ > 0, on {y+γ 6= 0} we get

γ
∥

∥y+γ
∥

∥

L1 ≤ γψ(y+γ , yγ)L2 ≤ c.
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This concludes the proof.
One may wonder which exponents s > 0 one might expected for estimates of the

form γs
∥

∥y+γ
∥

∥

Lq
≤ c in generic situations. Now assume that such an estimate would

hold true. If s ≥ 1, then we find that

γ
∥

∥y+γ
∥

∥

Lq
≤ c.

Hence, γy+γ is at least bounded in Lq(Ω) and converges to 0 in Lq(Ω). If q > 1, then
one infers for the original problem that a Lagrange multiplier m∗ exists in Lq(Ω).
This is the contents of the following proposition.

Proposition 2.2. Assume that
∥

∥y+γ
∥

∥

Lq
≤ cγ−1 holds true for some 1 < q <∞.

Then there exists a Lagrange multiplier for the pointwise inequality constraints on the
state in problem (1.1) which is an element of Lq(Ω).

Proof. Since γ
∥

∥y+γ
∥

∥

Lq
≤ c, the function γy+γ has a weak accumulation point

m∗ ∈ Lq(Ω), which is positive due to weak closedness of the positive cone in Lq(Ω).
Moreover,

(m∗, y∗)L2 = lim
γ→∞

(γy+γ , y∗)L2 = 0

by strong convergence of yγ → y∗ ≤ ψ inH1(Ω); see [8] for the latter. From the adjoint
equation (1.3) one readily infers uniform boundedness of (pγ) in H1(Ω). Then, by
compactness, pγ converges strongly in L2(Ω) to some p∗ as γ → ∞. Consequently,
uγ → u∗ in L2(Ω), as well, and (1.4) is satisfied in the limit. Hence, m∗ is the
Lagrange multiplier for the pointwise inequality constraints on the state.

In general, one observes that the multipliers m∗ are measures only. Thus, the
case s ≥ 1 for q > 1 only appears in exceptionally regular situations with respect to
Lagrange multipliers (or completely inactive state inequality constraints). Hence, we
generically expect s < 1 for q > 1. Consequently, the result of Lemma 2.1 appears to
be optimal.

2.2. Estimates depending on the constraint violation in L∞. We ap-
proach our aim via the value functional

V (γ) := Jγ(xγ) = J(xγ) +
γ

2

∥

∥y+γ
∥

∥

2

L2 .

It was shown in [7] that limγ→∞ V (γ) = J(x∗). Here we show that the rate of
convergence depends on ‖y+γ ‖∞.

Theorem 2.3. The value functional V is differentiable and the following estimate
for the derivative holds true:

0 ≤ d

dγ
V (γ) ≤ c

γ

∥

∥y+γ
∥

∥

L∞
. (2.1)

If
∥

∥y+γ
∥

∥

L∞
≤ cγ−s for some s > 0, then one has

0 ≤ J(x∗)− V (γ) ≤ cγ−s, (2.2)

and further

√
α ‖u∗ − uγ‖L2 ≤ cγ−s/2. (2.3)
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Proof. In [7, Proposition 4.1] differentiability of V was shown and the expression

d

dγ
V (γ) =

1

2

∥

∥y+γ
∥

∥

2

L2

was derived. Hence V is monotonically increasing, and from the estimate ‖v‖2L2 ≤
‖v‖L1 ‖v‖L∞ , it follows that

0 ≤ d

dγ
V (γ) ≤

∥

∥y+γ
∥

∥

L1

∥

∥y+γ
∥

∥

L∞
.

Due to Lemma 2.1 we have that γ
∥

∥y+γ
∥

∥

L1 ≤ c. Hence, (2.1) follows.

Now assume that
∥

∥y+γ
∥

∥

L∞
≤ cγ−s holds true. Then we obtain

0 ≤ d

dγ
V (γ) ≤ cγ−1−s

Let γ1 > γ2 be given. Then, from the fundamental theorem of calculus we infer

V (γ1)− V (γ2) =

∫ γ1

γ2

d

dγ
V (γ) dγ ≤

∫ γ1

γ2

cγ−1−s dγ = c(γ−s
2 − γ−s

1 ).

Since limγ→∞ V (γ) = J(x∗) this estimate yields

J(x∗)− V (γ2) = lim
γ1→∞

V (γ1)− V (γ2) ≤ cγ−s
2 ,

which implies (2.2). Finally, (2.3) readily follows from the uniform convexity of Jγ

with respect to u in L2(Ω) and (2.2). Indeed, we have

α

2
‖u∗ − uγ‖2L2 ≤ Jγ(x∗) + Jγ(xγ)− 2Jγ

(

1

2
x∗ +

1

2
xγ

)

≤ Jγ(x∗) + Jγ(xγ)− 2Jγ(xγ) = Jγ(x∗)− Jγ(xγ)

= J(x∗)− V (γ) ≤ cγ−s,

which concludes the proof.

2.3. A worst case estimate for the constraint violation in L∞. The bot-
tom line of the previous section is that we have to find an estimate for ‖y+γ ‖∞, which
is as sharp as possible. This can be achieved by exploiting the smoothness of y.

The essence of our technique is a geometric idea, which we explain by means of a
simple example for illustration purposes; cf. Figure 2.1. Let f(ω) = a(−ω2 + ε2) be
a concave parabola, and f+(ω) := max(f(ω), 0) its positive part. Then f(ω) ≥ 0 for
ω ∈ [−ε,+ε] with a maximum ‖f+‖

∞
= f(0) = aε2, and ‖f+‖L1 =

∫ ε

−ε
f(ω) dω =

4
3aε

3. Thus, we have

∥

∥f+
∥

∥

∞
= aε2 = a1/3

(

3

4

)2/3 (
4

3
aε3

)2/3

≤ c ‖f‖1/3C2

∥

∥f+
∥

∥

2/3

L1 .

Hence, from the boundedness of the second derivatives (by 2a) one can conclude a
relation between the L1-norm and the L∞-norm of a function with zero boundary
values. The following proposition generalizes this observation.
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||f+||∞

||f+||
L

1

−ε +ε

Fig. 2.1. Geometrical idea of our considerations.

Proposition 2.4. Let Ω ⊂ R
d be bounded and open, 0 ≤ y ∈ Cβ(Ω), with

0 < β ≤ 2, and y ∈ L1(Ω). Moreover, assume that y = 0 on ∂Ω. Then

‖y‖L∞ ≤ c ‖y‖1−Θ
Cβ ‖y‖ΘL1 (2.4)

with Θ = β
β+d . The constant c is independent of Ω.

Proof. Without loss of generality assume that 0 ∈ Ω and y(0) = ‖y‖L∞ ., and
denote by Br(0) the ball of radius r and with center 0.

If β ≤ 1 then by the definition of Hölder continuity, it follows that y(ω) >
y(0)− ‖y‖Cβ rβ for all ω ∈ Br(0). If β > 1 then y is once continuously differentiable
and attains a maximum at 0. Hence, we conclude that ∇y(0) = 0 for β > 1. Moreover
we can compute the value at any point ω ∈ Br(0) using the fundamental theorem of
calculus along the line [0, ω]. Using the Hölder continuity of the first derivative one
then obtains y(ω) > y(0)−‖y‖Cβ rβ for all ω ∈ Br(0) also in this case. In particular,
y(ω) is positive for ω ∈ BR(0) with

R =

(

y(0)

‖y‖Cβ

)1/β

=

(‖y‖L∞

‖y‖Cβ

)1/β

.

From the assumption y = 0 on ∂Ω it follows that BR(0) ⊂ Ω. Hence, we can compute

‖y‖L1 =

∫

Ω

|y(ω)| dω ≥ c

∫

[0,R]

∣

∣y(0)− ‖y‖Cβ r
β
∣

∣ rd−1 dr (2.5)

= c ‖y‖Cβ

∫

[0,R]

(

y(0)

‖y‖Cβ

− rβ
)

rd−1 dr

= c ‖y‖Cβ

∫

[0,R]

(

Rβ − rβ
)

rd−1 dr

≥ c ‖y‖Cβ R
β+d = c ‖y‖1−

β+d
β

Cβ ‖y‖
β+d
β

L∞ .

Solving for ‖y‖L∞ , we obtain

‖y‖L∞ ≤ c ‖y‖
β

β+d

L1 ‖y‖1−
β

β+d

Cβ
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as stated in the assertion.
Remark 2.5. Observe that (2.4) is only true for β ≤ 2, which means that we

can only use smoothness up to order 2. This corresponds to the fact that maximizers
yield vanishing derivatives of first, but not of higher order.

For 1 ≤ β ≤ 2 our argumentation is only valid due to our assumption y|∂Ω =
0. This allows to exploit that the maximizer of y lies in the interior of Ω. If this
assumption is dropped, then our result still holds for β ≤ 1 under a cone condition on
Ω. This is of interest when boundary conditions different from Dirichlet conditions
are considered.

A similar technique was previously used in the context of interior point methods
to show positivity of the distance of the central path to the bounds [12]. Also, in [9,
Lemma 4.7] similar techniques seem to be employed, at least for the case β ≤ 1 for
the virtual control approach considered in that work.

Corollary 2.6. If yγ is uniformly bounded in Cβ(Ω) for γ → ∞ and some
0 < β ≤ 2, we have the following estimate on the constraint violation:

‖y+γ ‖∞ ≤ cγ−s, where s =
β

β + d
. (2.6)

In particular, for the example problem (1.1) we have for every ε > 0:

‖y+γ ‖∞ ≤







cγ−2/3 : d = 1,
cγ−1/2+ε : d = 2,
cγ−1/4+ε : d = 3.

(2.7)

Proof. The result (2.6) follows readily from Lemma 2.1 and Proposition 2.4.
For deriving (2.7), we have to invoke standard regularity results for partial differ-

ential equations with measures in the right hand side; see, e.g., [3, Theorem 4]. Let
q′ = d/(d − 1) for d > 1 and q′ arbitrarily large if d = 1. Then, since γ

∥

∥y+γ
∥

∥ is uni-

formly bounded in L1(Ω), it follows that uγ is uniformly bounded in W 1,q′(Ω). This

implies that yγ is uniformly bounded in W 3,q′(Ω). It follows from Sobolev embedding
theorems that yγ is uniformly bounded in Cβ for β = 3 − ε, 2 − ε, 1 − ε in the cases
d = 1, 2, 3, respectively, and for every ε > 0.

In our numerical experiments below, we shall see that our technique yields sharp
estimates in geometric situations where the graph of the state has a shape similar to
an elliptic paraboloid, as modeled in our proof above. Such a configuration occurs
when the active set is indeed a single point, only. In more regular situations, however,
larger values of s are observed. We provide some further insight into this in section 2.6.

Remark 2.7. Under the assumption that yγ is uniformly bounded in C2, we get
the heuristic bound O(γ−2/5) for the constraint violation in the case d = 3.

Finally, we establish a generic upper bound on s.
Proposition 2.8. If s ≥ 1, then problem (1.1) has a Lagrangian multiplier in

Lq(Ω) for each 1 ≤ q <∞.
Proof. This is a direct consequence of Proposition 2.2.

2.4. The length of the primal-dual path. When we combine our estimates
above, then this yields the following convergence estimate.

Theorem 2.9. If yγ is uniformly bounded in Cβ(Ω) for γ → ∞ and some
0 < β ≤ 2, then the primal-dual path satisfies the following convergence estimate:

√
α ‖u∗ − uγ‖L2 ≤ cγ−

β
2(β+d) . (2.8)
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In particular, for every ε > 0 it holds that

√
α ‖u∗ − uγ‖U ≤







cγ−1/3 : d = 1,
cγ−1/4+ε : d = 2,
cγ−1/8+ε : d = 3.

(2.9)

In both situations, the constant c > 0 is independent of γ.
Proof. The result (2.8) follows from Theorem 2.3 and Corollary 2.6. In the same

way, (2.9) follows from (2.7).

2.5. A bootstrapping argument. We now come back to the possible improve-
ment of the results obtained in [6] using bootstrapping arguments. For this purpose,
we derive a bound on the L∞-norm based on a boundedness result for the L2-norm
of the feasibility violation.

Proposition 2.10. Let Ω ⊂ R
d be bounded and open, 0 ≤ y ∈ Cβ(Ω), y ∈ L2(Ω),

and 0 < β ≤ 2. Moreover, assume that y = 0 on ∂Ω. Then

‖y‖L∞ ≤ c ‖y‖1−Θ
Cβ ‖y‖ΘL2 (2.10)

with Θ = 2β
2β+d . The constant c is independent of y.

Proof. The proof is analog to the one of Proposition 2.10 with the following
replacement for (2.5):

‖y‖2L2 =

∫

Ω

|y(ω)|2 dω ≥ c

∫

[0,R]

∣

∣y(0)− ‖y‖Cβ r
β
∣

∣

2
rd−1 dr (2.11)

= c ‖y‖2Cβ

∫

[0,R]

(

y(0)

‖y‖Cβ

− rβ
)2

rd−1 dr

= c ‖y‖2Cβ

∫

[0,R]

(

Rβ − rβ
)2
rd−1 dr

≥ c ‖y‖2Cβ R
2β+d = c ‖y‖2−

2β+d
β

Cβ ‖y‖
2β+d

β

L∞ .

Solving for ‖y‖L∞ , we conclude that

‖y‖L∞ ≤ c ‖y‖
2β

2β+d

L2 ‖y‖1−
2β

2β+d

Cβ

holds with a constant independent of y.
To proceed we next show that, for the L∞-norm of the feasibility violation, one

obtains the same results as in Corollary 2.6 from the feasibility violation in L2(Ω)
when using a bootstrapping argument.

Theorem 2.11. Let yγ be uniformly bounded in Cβ(Ω) for γ → ∞ and some
0 < β ≤ 2. Then the following estimate on the constraint violation holds true:

‖y+γ ‖∞ ≤ cγ−s, where s =
β

β + d
.

Proof. We begin by noting that by Theorem 2.3 and in particular (2.2) we have
that

γ‖y+γ ‖2L2 ≤ c‖y+γ ‖L∞ ≤ c.
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In particular, for a constant independent of t ≥ 1 it holds that

‖y+γ ‖2L2 ≤ cγ−t. (2.12)

In order to obtain the best possible exponent t we start with t1 = 1 and get from
Proposition 2.10 that

‖y+γ ‖L∞ ≤ cγ
−

(

1
2

2β
2β+d

)

.

Combining this estimate with our initial bound γ‖y+γ ‖2 ≤ c‖y+γ ‖L∞ yields the im-
proved rate

‖y+γ ‖2L2 ≤ cγ−1−θ

with θ = 1
2

2β
2β+d and a constant independent of θ. We, thus, arrive at t2 = 1 + θ.

By induction it follows that for any n ≥ 1 it holds

‖y+γ ‖2L2 ≤ cγ−
∑n

k=0 θk

with a constant independent of n and θ. Thus, in the limit for n→ ∞ we obtain

‖y+γ ‖2L2 ≤ cγ−
∑

∞

k=0 θk

= cγ−1− β
β+d ,

as well as

‖y+γ ‖L∞ ≤ cγ−
∑

∞

k=1 θk

= cγ−
β

β+d .

This ends the proof.

2.6. Structural assumptions and refined results. In the numerical section
below we shall see that the rate of convergence of the primal-dual path depends on
the structure of the Lagrangian multiplier at the optimal solution. For example, it
can be observed that rates differ for line measures and for point measures. In order
to clarify this issue, in this section we provide an in-depth discussion.

The following structural assumptions are motivated by our model situation where
a lower dimensional problem is lifted to a higher space dimension through a parallel
translation along an additional degree of freedom. A similar situation can be observed
locally in many practically relevant cases.

We also note that the following regularity Assumption 2.12, applied to a measure
m, is widely used in the theory of Sobolev spaces. It is the simplest instance of a
regularity condition for measures, used in refined theories of Sobolev spaces, as for
examples those treated in the monograph [10]. This assumption holds, for instance,
when m is a measure with support on a δ-dimensional sub-manifold in Ω and repre-
sented by a bounded function. In order to emphasize the role of γy+γ as a measure
approximation we abbreviate mγ := γy+γ .

Assumption 2.12. For ω ∈ Ω denote by BR(ω) the ball of radius R and with
center ω. Let δ ≥ 0 be given. Assume that there exists K <∞, independent of x,R, δ,
and γ, such that the following inequality holds:

∫

BR(x)

dmγ ≤ KRδ (2.13)

for all sufficiently small R > 0.

9



Let us motivation our requirement (2.13). The exponent δ measures the actual
amount of singularity of the measure. For instance, if m is induced by a bounded
function on Ω, then δ = d. On the other hand, if m is a line measure, induced by a
bounded function on this line, then δ = 1. Non-integer values of δ may arise in cases
where the measures are induced by Lq-functions on submanifolds of Ω.

Theorem 2.13. Suppose that Assumption 2.12 holds true for some δ ≥ 0. Then
the constraint violation can be computed as

‖y+γ ‖∞ ≤ cγ−s‖yγ‖1−s
Cβ with s =

β

β + d− δ
. (2.14)

Proof. Assume that yγ attains its maximum at xγ . As in Proposition 2.4 we
choose R = (‖y+γ ‖∞/‖yγ‖Cβ )1/β , and compute

Kγ−1Rδ ≥
∫

BR(xγ)

y+γ dx ≥ c‖yγ‖CβRβ+d = c‖yγ‖
1− β+d

β

Cβ ‖y+γ ‖
β+d
β

∞ .

We solve the above inequality for ‖y+γ ‖∞ and set s = β
β+d−δ to obtain

‖y+γ ‖∞ ≤ cγ−s‖yγ‖1−s
Cβ ,

which concludes the proof.
Our assumption yields additional regularity. In particular we can obtain higher

regularity of the adjoint state (and thus of the constraint violation) if the exponent δ
in (2.13) is large.

Proposition 2.14. Suppose that Assumption 2.12 holds true for some 0 ≤ δ ≤ d.
Then (2.13) also holds for the Lagrangian multiplier m∗, i.e.,

∫

BR(x)
dm∗ ≤ KRδ.

Moreover, for any

l ∈ {0, 1} and q′ ∈ (max(1, (d− δ)/(2− l)), d),

one has pγ ∈W l,q(Ω) uniformly, where 1/q + 1/q′ = 1. The same holds true for p∗.
Proof. Due to weak∗-convergence γy+γ ⇀∗ m∗ we have

∫

BR(x)

dmγ →
∫

BR(x)

dm∗,

which implies that (2.13) also holds for m.
According to [10, Section 1.4.5] we have the embedding W 2−l,q′(Ω) →֒ L1(Ω,m)

for all l and q′ that satisfy our assumptions. Here L1(Ω,m) denotes the space of all
functions that are integrable with respect to the measure m. Hence, γy+γ and m yield

continuous linear functionals on W 2−l,q′(Ω) via the mapping

v →
∫

Ω

v dmγ and v →
∫

Ω

v dm∗,

respectively. Now the differential operator A = −∆ : W 2−l,q′(Ω) → (W l,q(Ω))∗ is an
isomorphism due to our regularity assumptions. Then A∗ :W l,q(Ω) → (W 2−l,q′(Ω))∗

is an isomorphism as well, which implies our result.
Corollary 2.15. Suppose that Assumption 2.12 holds true in the following

cases. Then we can conclude:

10



(i) (Line measure in 2d) If d = 2, δ = 1, then s = 2/3.
(ii) (Surface measure in 3d) If d = 3, δ = 2, then s = 2/3.
(iii) (Line measure in 3d) If d = 3, δ = 1, then s = 1/2− ε for each ε > 0.
Proof. From our results of Proposition 2.14 we obtain pγ uniformly bounded in

W 1,q(Ω) for arbitrary q <∞ in the cases (i) and (ii), and thus y ∈W 3,q(Ω) →֒ C2(Ω)
uniformly. Hence, we can apply Theorem 2.13 with β = 2.

In case (iii) we obtain pγ ∈ Lq(Ω) for arbitrary q < ∞, only, and thus y ∈
W 2,q(Ω) →֒ C2−ε(Ω) for all ε > 0. Theorem 2.13 with β = 2 − ε then yields the
result.

Comparing this corollary with Corollary 2.6 we see that we obtain the same rates
for d and δ as for d − δ in Corollary 2.6. This confirms that problems with higher
regularity of the Lagrangian multipliers essentially behave like lower dimensional prob-
lems.

2.6.1. Active sets with non-empty interior. Finally, we show that further
improvement of the convergence rate is possible, when the active set has a non-empty
interior. Here, we confine our discussion to the 1d-case, but augment our findings by
comments concerning the general case.

As a motivation for the following proof, consider the typical setting for d = 1
with an active set which has a non-empty interior; for numerical details we refer to

Section 3 below. Since y∗ is constant on the active interval the derivatives y
(m)
∗ satisfy

y
(m)
∗ = 0 for all m ∈ N0 on this set. Consider the functions f(ω) = a(−ω3 + εω2) and
f+ = max(f, 0) on [0,∞[; see the left plot of Figure 2.2 for a graphical illustration.

−2

−1

0

1

2

3

4

5

x 10
−6

||f+||∞

||f+||
L

1

Fig. 2.2. Geometric situation for yγ near an active interval. Left: observed in numerical

experiments for γ = 107, 108, and 109. Right: idealized model.

Obviously, f (m)(0) = 0 for m = 1, 2. Clearly, f is positive on [0, ε] and has a
maximum at ω = 2/3ε with f(2/3ε) = 10/27aε3, thus, ‖f+‖

∞
= caε3. Further,

‖f+‖L1 =
∫ ε

0
f(ω) dω = aε4/12. Hence, similarly as above and using 6a = ‖f‖C3 , we

conclude that

∥

∥f+
∥

∥

∞
≤ c ‖f‖1/4C3

∥

∥f+
∥

∥

3/4

L1 .

Theorem 2.16. Let d = 1, Ω a bounded interval, and assume that for all suffi-
ciently large γ the support of y+γ consists of finitely many intervals of positive length.
Assume that the minimal length of these intervals is bounded from below by a0 > 0,
which is independent of γ. Then, for each ε > 0 one has

‖y+γ ‖∞ ≤ cγ−s with s =
3

4
− ε.

11



Proof. Since our discussion is limited to the one-dimensional case, we obtain that
yγ is bounded in W 3,∞(Ω) by a constant M as γ → ∞. Moreover, we have shown
that ‖y+γ ‖∞ ≤ cγ−s for s = 2/3. A bootstrapping technique with respect to s allows
us to increase s to any value lower than 3/4.

As a special case of the Gagliardo-Nirenberg inequalities (cf., e.g., [16, Appendix])
it follows for a fixed domain (say, the unit interval I) that

‖∇jf‖L∞(I) ≤ K‖f‖θWm,∞(I)‖f‖1−θ
L∞(I),

where θ = j/m. Transforming I to an interval of arbitrary positive length a through
x 7→ ax+ x0 shows that the constant K depends on the length a, only. The constant
degenerates only if a→ 0 or a→ ∞.

Let Iγ denote the subinterval where y+γ attains its maximum. By assumption, the
length of Iγ is bounded from below by a0 and from above by the length of Ω. Using
our convention that Cβ(Ω) for integral β > 1 contains elements whose derivatives up
to the order (β − 1) are Lipschitz continuous, we hence, get

‖y+γ ‖C2(Iγ) ≤ K(a0)‖y+γ ‖
2/3
W 3,∞(Iγ)

‖y+γ ‖
1/3
L∞(Iγ)

≤ K(a0)M
2/3γ−s/3.

Employing Theorem 2.13 we obtain with s0 = β/(1 + β) = 2/3 that

‖y+γ ‖∞ ≤ ‖y+γ ‖1−s0
C2(Iγ)

γ−s0 ≤ cγ−( s
3

1
3 )−

2
3 .

Thus, we conclude that

‖y+γ ‖∞ ≤ cγ−s =⇒ ‖y+γ ‖∞ ≤ cγ−
s
9−

2
3 .

Consequently, starting with s = s0 = 2/3 we obtain a sequence (sn) whose elements
are defined recursively by

sn−1 7→ sn :=
sn−1

9
+

2

3
. (2.15)

A short computation yields that this sequence converges monotonically to the fixed
point s = 3/4 of (2.15), which shows our result.

Remark 2.17. When one tries to extend this result to higher dimensions, one
has to find an analogue to the stated minimal length assumption, in the sense that the
maximum of y+γ lies in the interior of a subset of supp y+γ , the support of y+γ , that can
be transformed to a fixed domain, say the unit square, such that the transformations
do not degenerate for γ → ∞. This will lead to uniform cone conditions on the
boundaries of the active sets, independent of γ. However while the idea is quite clear,
the mathematical realization is technical and, in our opinion, yields no further insight.
Hence we refrain from pursuing this direction here.

3. Comparison with experimental results. We conclude our paper with
numerical experiments in 1d and 2d, which illustrate the close relationship between
our theoretical estimates and the convergence behavior in practice.

In order to measure the exponent s we perform a numerical path-following method
for the system (1.6), implemented in MATLAB for the case d = 1. For this purpose,
we use a prescribed sequence of parameters γj . In our test problems we choose a
constant desired state yd ≡ 10, the control cost α = 1, and obtain different types of

12
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Fig. 3.1. Experimental results on the exponent s of the relation

∥

∥

∥
y+γ

∥

∥

∥

L∞

= O(γ−s) in a

one-dimensional setting.

active sets by varying the constant upper bound ψ. The discretization of the state y
and the adjoint state p is based on classical finite differences, i.e, the 3-point stencil
in the one-dimensional setting. In the 2d-case we use the optimization toolbox DOpE

based on the finite element library deal.ii [1, 2]. For obtaining a high resolution
of the quantity ‖y+γ ‖∞ we use anisotropic mesh refinement and locally refined grids
with piecewise bilinear finite elements.

An estimate for s is then computed by

sj :=
ln(‖y+γj

‖∞)− ln(‖y+γj+1
‖∞)

ln γj+1 − ln γj
.

Observe that this formula is quite sensitive to perturbations of y, which partially
explains the slightly oscillatory behavior observed in the plots.

3.1. Experimental results in 1d. In the one-dimensional case our computa-
tional domain is the unit interval, discretized uniformly by 10000 nodes. In our first
setting (with ψ ≡ 0.06), the active set consists of a single point, and the optimal state
y∗ has a parabolic shape, i.e., a second derivative, which is bounded away from zero.
Here, according to Figure 3.1, s ≈ 2/3 as predicted by Corollary 2.6.

In our second setting (with ψ ≡ 0.01), the active set is a proper interval. Here we
observe experimentally s ≈ 3/4, which is a higher rate than predicted by Corollary
2.6. However, this rate can be explained by the results of Theorem 2.16.

Another interesting aspect is the large value of s in the range γ ∈ [104, 105]. A
close look at the corresponding intermediate solutions shows that for these values yγ
has a very flat maximum, which explains this behavior. In terms of Assumption 2.12
this means δ ≈ d for an intermediate range of γ. For larger values of γ this single
maximum splits into two maxima, which can be nicely observed in Figure 3.2. For
larger values of γ the qualitative behavior of y+γ can be observed in Figure 2.2.

3.2. Experimental results in 2d. Compared to the 1d-case, the geometric
situation for d = 2 (and even more for d = 3) is much more complex, but still our
analysis and numerical experiments suggest the conjecture that the rate of convergence
of the primal-dual path will depend largely on the geometry of the active set, or
equivalently on the structure of the Lagrangian multipliers.

If the active set is a single point (for ψ ≡ 0.04), we observe in Figure 3.3 that our
estimates of Corollary 2.6 coincide with the numerical rate of convergence, namely
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Fig. 3.2. Transition from single maximum to double maximum of yγ for γ = 7.5 · 10−5, 5 ·

10−5, 2.5 · 10−5, and 10−5.

s ≈ 0.5. We observe the predicted rate of s ≈ 0.75 in the case of the active set with
nonempty interior (for ψ ≡ 0.01).

The computations were done using the optimization toolkit DOpE based upon
deal.ii. Using adaptive mesh refinement to accurately capture the behavior of
‖y+γ ‖∞. On the final mesh, the smallest elements where of diameter 2−12 with a
total of approximately 1.5 million unknowns.

Fig. 3.3. Experimental results on the exponent s of the relation

∥

∥

∥
y+γ

∥

∥

∥

L∞

= O(γ−s) in a

two-dimensional setting.

In order to obtain numerical results for a line measure we use a slightly different
numerical setting. In fact, we chose homogeneous Neumann boundary conditions on
two opposing boundary faces (i.e., {ω2 ∈ {0, 1}}) of the unit square and homogeneous
Dirichlet conditions on the other two faces (i.e., {ω1 ∈ {0, 1}}). As mentioned before,
we use the optimization toolkit DOpE based on deal.ii. For obtaining a high reso-
lution for the line measure case an anisotropic refinement is employed such that the
mesh is refined more in the ω1-direction yielding an aspect ratio of 1:128 with a total
number of 1065090 degrees of freedom.

3.3. Effect of a fixed discretization on the rate. On a fixed mesh, when yγ
is computed up to very large values of γ, then it can be observed (see Figure 3.4) that
a rate of s = 1 finally occurs. This can simply be explained by the fact that in finite
dimensional spaces all norms are equivalent, so that for uniformly bounded discrete
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(indicated by subscript h) γ‖(y+γ )h‖L1 we eventually observe the upper bound

‖(y+γ )h‖L∞ ≤ c(h)‖(y+γ )h‖L1 ≤ c(h)γ−1 ⇐⇒ s = 1.

If such a behavior is observed in practice, it is a clear indication that the problem has
been “over-solved” numerically, or that the multiplier m∗ is in Lq(Ω); see Proposi-
tion 2.8.
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Fig. 3.4. Experimental results on the exponent in a two-dimensional setting with large active

set for various coarse grids. For comparison the asymptotics for a fine grid h = 1/512 is added as

a dashed line.

4. Conclusion. Numerical experiments indicate that the asymptotics on the
constraint violation derived in this note are sharp, if the active set is a singleton,
at least in one- and two-dimensional problems. Moreover, we gave some arguments
concerning the implication of the regularity of the multiplier onto the observed con-
vergence of the constraint violation. Numerical experiments indicate that the derived
bounds are sharp in all these cases.

From a practical point of view, the observation that one has

‖y+γ ‖L∞ ≤ cγ−s

where s generically varies in an interval s ∈ [spoint, 1[ in turn implies a rate of conver-
gence for the error in the control which varies between [spoint/2, 1/2[. This may help
in the construction of adaptive algorithms, which try to balance algebraic errors and
discretization errors and clearly shows that an a posteriori estimation of this error
is necessary as the rates depend on the a priori unknown behavior of the feasibility
violation.

Acknowledgment. M.H. acknowledges support by the DFG-Research Center
DFG Research Center Matheon ”Mathematics for key technologies”, the DFG-
SPP 1253 ”Optimization with PDEs”, the START-Project Y305 ”Interfaces and Free
Boundaries” administered by the Austrian Science Fund FWF and the FWF-SFB
F32 ”Mathematical Optimization and Its Application in Biomedical Sciences” at the
Karl-Franzens University of Graz through subproject F32-04 ”FREELEVEL”. The
research of the second author, A.S., is supported by the DFG Research Center Math-

eon ”Mathematics for key technologies”.

15



REFERENCES

[1] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – a general purpose object oriented

finite element library, ACM Trans. Math. Softw., 33 (2007), pp. 24/1–24/27.
[2] W. Bangerth and G. Kanschat, deal.II Differential Equations Analysis Library, Technical

Reference. http://www.dealii.org.
[3] E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J. Control

Optim., 24 (1986), pp. 1309–1318.
[4] S. Cherednichenko, K. Krumbiegel, and A. Rösch, Error estimates for the lavretiev reg-
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