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OPTIMAL N-TERM APPROXIMATION BY LINEAR SPLINES

OVER ANISOTROPIC DELAUNAY TRIANGULATIONS

LAURENT DEMARET AND ARMIN ISKE

Abstract. Anisotropic triangulations provide efficient geometrical methods

for sparse representations of bivariate functions from discrete data, in particu-
lar from image data. In previous work, we have proposed a locally adaptive

method for efficient image approximation, called adaptive thinning, which re-

lies on linear splines over anisotropic Delaunay triangulations. In this paper,
we prove asymptotically optimal N -term approximation rates for linear splines

over anisotropic Delaunay triangulations, where our analysis applies to rele-

vant classes of target functions: (a) piecewise linear horizon functions across α

Hölder smooth boundaries, (b) functions ofWα,p regularity, where α > 2/p−1,

(c) piecewise regular horizon functions of Wα,2 regularity, where α > 1.

1. Introduction

During the last few years, there has been an increasing demand in efficient (i.e.,
sparse) representations of bivariate functions, especially for images. From the view-
point of (image) approximation, one is interested in the construction of suitable
dictionaries A = {ϕj}j∈N ⊂ L2([0, 1]2) to obtain asymptotically optimal N -term
approximations of the form

(1.1) ‖f − fN‖2L2([0,1]2) = O(N−α) for N → ∞,

where fN is, for any N ∈ N, a linear combination of N (suitably chosen) elements
from A. Moreover, the target f is assumed to lie in a function class Fα ⊂ L2([0, 1]2)
of regular, or, piecewise regular bivariate functions, whose regularity is reflected by
the parameter α > 0.

Tensor product wavelets are classical tools to provide (mildly) nonlinear approxi-
mation schemes for image approximation. In this approach, for a given wavelet
orthonormal basis of L2([0, 1]2), the N -term approximation operator WN associates
to any f ∈ L2([0, 1]2) the L2-function fN = WNf obtained by the N largest wavelet
coefficients of f (see e.g. [14]). Provided that the chosen wavelet basis satisfies
sufficient regularity and decay conditions, the resulting decay rate of the N -term
approximation in (1.1) is related to the Besov regularity of the target f by the
following equivalence (see [14, p. 118] for details).

Proposition 1.1. For f ∈ L2([0, 1]2), asymptotic N -term approximations

‖f −WNf‖2L2([0,1]2) = O(N−α) for N → ∞

can be achieved, if and only if f ∈ Bα
τ,τ ([0, 1]

2), where Bα
τ,τ ([0, 1]

2) is the Besov
space of regularity α w.r.t. the Lτ -norm, and where 1/τ = 1/p+ α/2.
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However, in cases where f ∈ L2([0, 1]2) is only piecewise smooth with singu-
larities along (smooth) curves, N -term approximation by tensor product wavelets
achieve decay rates (cf. [15, eq. (3.5), p. 727]) of the form

‖f −WNf‖2L2([0,1]2) = O(N−1) for N → ∞.

It is well-known that these O(N−1/2) decay rates are only suboptimal [25].
During the last few years, different geometrical methods were developed to design

efficient image approximation schemes, where correlations along curves are essen-
tially taken into account to locally capture the geometry of the given image data.
Curvelets [6, 7] and shearlets [20, 21] are prominent examples for non-adaptive
highly redundant function frames with strong anisotropic directional selectivity.

For piecewise Hölder continuous functions f of second order with discontinuities
along C 2-curves, Candès and Donoho [7] proved that a best approximation fN to
f with N curvelets satisfies the asymptotic decay rate

(1.2) ‖f − fN‖2L2([0,1]2) = O(N−2 (log2 N)3) for N → ∞.

Up to the (log2 N)3 factor, this curvelet N -term approximation rate is asymptoti-
cally optimal (see [7, Section 1.3]).

Similar decay rates were proven by Guo and Labate [20] for shearlet frames. We
remark that curvelets (and other related approximation schemes) are not adaptive
to the assumed regularity of the target f . Therefore, the curvelet N -term approxi-
mation rate in (1.2) does not apply to functions of less regularity, e.g. functions f
which are only piecewise C α with singularities along C α-curves, for α < 2.

When approximating piecewise regular functions, in particular images, locally
adaptive approximation methods are of increasing interest. In fact, during the last
few years, several approaches for (locally) adaptive image approximation schemes
were developed [2, 10, 16, 17, 22, 24, 26, 27, 28, 30, 31], where the approximation
schemes are adapted to the (local) image geometry, rather than fixing a basis or a
function frame beforehand to approximate f .

Recent alternative concepts for locally adaptive approximation methods rely on
anisotropic triangulation methods. Due to their simplicity and flexibility, these
methods are enjoying an increasing popularity, especially in image approximation.
In previous work, we have developed one such image approximation scheme, termed
adaptive thinning, which works with linear splines over anisotropic Delaunay trian-
gulations, and which is locally adaptive to the geometric regularity of the image.
As demonstrated in [11, 13], adaptive thinning leads to an efficient and competitive
image compression method at computational complexity O(N log(N)). Related
methods for image approximations by anisotropic triangulations are in [5, 8, 9, 23],
see the survey [12] for a comparison of these image approximation methods.

Yet it remains to prove asymptotic error bounds of the form (1.1) for image
approximation methods relying on linear splines over anisotropic triangulations.

In this paper, we show that linear splines over locally adaptive anisotropic De-
launay triangulations lead to asymptotically optimal N -term approximation rates

(1.3) ‖f − fN‖2L2([0,1]2) ≤ C N−α for α ∈ (1, 2]

for relevant classes of target functions f , including

• piecewise linear horizon functions across α Hölder smooth boundaries,
• functions of Wα,p regularity, where α > 2/p− 1,
• piecewise regular horizon functions of Wα,2 regularity, where α > 1.
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Our constructive approach taken for the computation of the anisotropic Delaunay
triangulations essentially depends on the local regularity of the target function f .
The resulting approximation method applies in particular to the relevant case of
piecewise Hölder continuous horizon functions f of order α ∈ (1, 2] with singularities
along α Hölder smooth boundaries.

The outline of this paper is as follows. In the following Section 2, we briefly
introduce linear splines over Delaunay triangulations, where we recall some of their
basic properties. In Section 3, we show that linear splines over locally adaptive
Delaunay triangulations lead to asymptotic N -term estimates of the form (1.3) for
piecewise linear-affine horizon functions with α Hölder smooth boundary. Then, in
Section 4 we first discuss a classical result by Birman-Solomjak [4], which states
that piecewise affine-linear functions over quadtree partitions provide optimal ap-
proximation rates of the form (1.3) for regular functions f ∈ Wα,p([0, 1]2), where
α > 2/p − 1. We transfer the Birman-Solomjak result to the special case of lin-
ear spline approximation over locally adaptive Delaunay triangulations. Finally, in
Section 5, we combine the results from Sections 3-4 to obtain N -term approxima-
tions of the form (1.3) for piecewise regular horizon functions across Hölder smooth
horizon boundaries.

2. Linear Splines over Delaunay Triangulations

In this section, we introduce the basic ingredients which are required for the
subsequent analysis in the following Sections 3-5. But let us make a few preliminary
remarks concerning their approximation behaviour.

When using triangulation methods for image approximation to piecewise smooth
images f , one should consider anisotropic triangular meshes, whose triangular ele-
ments are well-adapted to the local image geometry. Therefore, we are interested
in the construction of locally adaptive triangulations, whose long and thin trian-
gles are aligned with the curve singularities of f to improve the accuracy of the
resulting approximation scheme. On the other hand, in regions of higher regularity,
larger and isotropic triangles should be used in order to increase the efficiency of
the resulting approximation scheme.

We can combine our basic requirements, especially for local adaptivity and for
computational efficiency, by using Delaunay triangulations. Delaunay triangula-
tions are well-known for providing stable and flexible approximation schemes, where
their triangular meshes are efficient to compute and to maintain. Moreover, due
to their unicity, Delaunay triangulations entirely avoid the coding costs for the
connectivities between their nodes.

Therefore, we prefer to work with linear splines over locally adaptive Delaunay
triangulations, whose basic properties are explained as follows.

2.1. Conformal and Delaunay Triangulations. Let us start our discussion by
introducing conformal triangulations.

Definition 2.1. A conformal triangulation T ≡ T (Y ) of a discrete planar
point set Y is a set T = {T}T∈T of triangles satisfying the following properties.

(a) the vertex set of T is Y ;
(b) any pair of two distinct triangles in T intersect at most at one common

vertex or along one common edge;
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(c) the convex hull conv(Y ) of Y coincides with the area covered by the union
of the triangles in T .

In the following discussion, we require conv(Y ) = [0, 1]2, so that T is a parti-
tioning of the (image) domain [0, 1]2. Now let us turn to Delaunay triangulations.

Definition 2.2. The Delaunay triangulation D(Y ) of a discrete planar point set
Y is a conformal triangulation of Y , where no circumcircle of a triangle T ∈ D(Y )
contains any point from Y in its interior.

We recall three important properties of Delaunay triangulations.

(a) The Delaunay triangulation D of Y is unique, provided that no four points
in Y are co-circular. We remark that there are efficient computational
methods for choosing, on given Y , a Delaunay triangulation of Y without
ambiguity (see [19]). Therefore, we will from now assume that D is the
unique Delaunay triangulation of Y .

(b) On given point set Y of size N = |Y |, its (unique) Delaunay triangulation
D can be computed in O(N log(N)) steps.

(c) For any Delaunay triangulation D of a point set Y , its dual graph is the
Voronoi diagram V of Y .

To further explain property (c), let us first introduce Voronoi diagrams.

Definition 2.3. For any finite planar point set Y , the Voronoi diagram V(Y ) of
Y is a planar graph consisting of the Voronoi tiles

VY (y) =

{
x ∈ R

2 : ‖x− y‖2 = min
z∈Y

‖x− z‖2
}

for y ∈ Y,

each containing, for y ∈ Y , all points in the plane whose nearest point in Y is y.

Now, the Delaunay triangulation of Y is dual to the Voronoi diagram in the
following way. Any pair (y1, y2) of two distinct points y1, y2 ∈ Y are said to be
Voronoi neighbours, iff the intersection VY (y1) ∩ VY (y2) of their Voronoi tiles is a
non-degenerate edge in VY . Now, for any pair of Voronoi neighbours (y1, y2), the
straight line [y1, y2] between y1 and y2 is an edge in the Delaunay triangulationD(Y )
of Y . In fact, by connecting all possible Voronoi neighbours in V(Y ), we obtain a
planar graph yielding the Delaunay triangulation D(Y ) of Y . For further details
concerning the duality between Delaunay triangulations and Voronoi diagrams we
refer to the textbook [29].

2.2. Linear Splines over Conformal Triangulations. We associate with any
conformal triangulation T the finite dimensional linear function space

ST :=
{
g ∈ C ([0, 1]2) : g|T ∈ P1 for all T ∈ T

}
of all linear splines over T , containing all globally continuous functions over [0, 1]2

whose restriction to any triangle T ∈ T is a linear polynomial. Therefore, P1 in the
above definition of ST denotes the linear space of all bivariate linear polynomials.
Recall that the dimension of ST is the number |Y | of vertices Y .

Note that for any function f ∈ C ([0, 1]2), there is a unique linear spline inter-
polant s ∈ ST to f over the vertices Y of T satisfying s

∣∣
Y

= f
∣∣
Y
. In particular,

any linear spline s ∈ ST is uniquely determined by its values at the vertices Y of T .
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In the following Sections 3-5 we prove asymptotically optimal N -term approxi-
mation rates of the form (1.3) for linear spline interpolation over (conformal) De-
launay triangulations. To this end, we construct sequences of (conformal) Delaunay
triangulations {DN}N∈N, such that there are constants C,M > 0 (independent of
N) satisfying the following two properties.

(a) The number |YN | of vertices in DN is bounded above by |YN | ≤ M ×N ;
(b) the L2-approximation error can be bounded above by

‖f − fN‖2L2([0,1]2) ≤ CN−α,

where fN ∈ S(DN ) is the unique linear interpolant to f at YN , and α > 0
is essentially related to the regularity of f , as detailed in Sections 3-5.

3. Approximation of Horizon Functions

Horizon functions [17] are popular and simple prototypes for piecewise smooth
images with discontinuities along Hölder smooth curves. In this section, we prove
asymptotically optimalN -term approximations of horizon functions by linear splines
over conformal triangulations.

To introduce the class of horizon functions, first recall that for any α = r + β,
with r ∈ N0 and β ∈ [0, 1),

C α[0, 1] :=
{
g ∈ C r[0, 1] : |g(r)(x)− g(r)(y)| ≤ C|x− y|β for all x, y ∈ [0, 1]

}
is the linear space of α-Hölder smooth functions over [0, 1]. Moreover, C α[0, 1] is by

|g|Cα([0,1]) := inf{C : |g(r)(x)− g(r)(y)| ≤ C|x− y|β for all x, y ∈ [0, 1]}
equipped with the usual semi-norm.

In our following analysis, we require α ∈ (1, 2], i.e., we assume α = 1 + β for
β = α− 1 ∈ (0, 1], in which case for any α-Hölder smooth function g ∈ C α([0, 1]),

|g|Cα([0,1]) = inf{C : |g′(x)− g′(y)| ≤ C|x− y|α−1 for all x, y ∈ [0, 1]}
is the semi-norm of g in C α([0, 1]). Note that g′ ∈ C α−1([0, 1]), where

|g′|Cα−1([0,1]) = |g|Cα([0,1]) for all g ∈ C α([0, 1]).

In the remainder of this paper, we let

|g|α := |g|Cα([0,1]) for g ∈ C α[0, 1]

for notational convenience.
Now the class of α-horizon functions comprises all piecewise affine-linear func-

tions with one discontinuity along an α-Hölder smooth horizon boundary. To be
more precise, we give the following definition.

Definition 3.1. For any α ∈ (1, 2], a function f : [0, 1]2 → R is said to be an
α-horizon function, iff it has the form

f(x, y) :=

{
p(x, y) for y ≤ g(x),

q(x, y) otherwise,

for some affine-linear functions p, q : R2 → R, and where g ∈ C α[0, 1]. The α-
Hölder smooth function g ∈ C α[0, 1] is called the horizon boundary of f .
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We remark that our definition for α-horizon functions differs from that in [17],
where piecewise constant horizons (rather than piecewise affine-linear horizons) are
used. This slight extension of the definition in [17] leads us to a slightly larger
target space (of piecewise affine-linear horizons), which better complies with the
concept of our approximation scheme, where we use linear splines, i.e., piecewise
affine-linear functions over conformal triangulations. But otherwise our extension
in Definition 3.1 to that in [17] is immaterial for the subsequent analysis.

3.1. Optimal Decay Rates on Conformal Triangulations. Now let us turn
to the approximation of α-horizon functions by linear splines over anisotropic De-
launay triangulations. Our first result relies on a rather straightforward application
of the classical univariate spline theory. In fact, we can immediately extend well-
known results from univariate spline approximation to bivariate approximation of
horizon functions as follows. We remark that a similar result for C 2-curves is given
in [25, pp. 404-405].

Proposition 3.2. For α ∈ (1, 2], let f be an α-horizon function. Then, there
exist constants C,M > 0 (independent of N), such that for any N ∈ N there is a
conformal triangulation TN with |TN | ≤ M ×N vertices satisfying

(3.1) ‖f − fN‖2L2[0,1]2 ≤ CN−α,

where fN ∈ TN is the spline interpolant to f at the vertices of TN .

Proof. We split the proof into three steps.

Step 1. In the first step, we apply univariate spline interpolation to approximate
the horizon boundary g ∈ C α[0, 1]. To this end, let SN (g) be the unique linear
spline interpolant to g at uniform knots, xi = i/N , i = 0, . . . , N , of mesh width
h = 1/N .

In this case, the approximation error between g and SN (g) can, over any interval
[xi, xi+1], be represented as

(3.2) |g(x)− (SNg)(x)| =
∣∣∣∣g(x)− g(xi)−

g(xi+1)− g(xi)

xi+1 − xi
(x− xi)

∣∣∣∣ .
Since g′ ∈ C α−1([0, 1]), we have∣∣∣∣g(xi+1)− g(xi)

xi+1 − xi
− g′(xi)

∣∣∣∣ ≤ C|xi+1 − xi|α−1 = Chα−1,

for some constant C > 0, which in turn implies

|g(x)− (SNg)(x)| =
∣∣g(x)− g(xi)−

(
g′(xi) +O(hα−1)

)
(x− xi)

∣∣ .
On the other hand, by Taylor series expansion, we have

g(x) = g(xi) + g′(xi)(x− xi) +O(|x− xi|α)
so that (3.2) can further be rewritten as

|g(x)− (SNg)(x)| = O(|x− xi|α) +O(hα) = O(hα).

This yields the uniform bound

‖g − SN (g)‖L∞([0,1]) ≤ Chα = CN−α

for some constant C > 0 independent of N .
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Step 2. We wish to approximate f by functions fN : [0, 1]2 → R of the form

(3.3) fN (x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

p(x, y) for y ≤ (SNg)(x)− εN ,

q(x, y) for y ≥ (SNg)(x) + εN ,

gN (x, y) otherwise,

for a sequence of sufficiently small constants εN > 0 (to be specified in step 3),
and where the functions gN : [0, 1]2 → R are required to be uniformly bounded
on [0, 1]2 by ‖gN‖L∞([0,1]2) ≤ ‖f‖L∞([0,1]2), so that, in particular, the functions

fN : [0, 1]2 → R are in this case also uniformly bounded on [0, 1]2, i.e., we have

‖fN‖L∞([0,1]2) ≤ ‖f‖L∞([0,1]2) for all N ∈ N.

Moreover, note that fN coincides with f outside the εN -corridor

KεN :=
{
(x, y) ∈ [0, 1]2 : |y − (SNg)(x)| ≤ εN

}
,

so that

‖f − fN‖2L2([0,1]2) =

∫
KεN

|f(x, y)− fN (x, y)|2 dx dy

≤ 4‖f‖2L∞([0,1]2)

∫
KεN

dx dy = 8‖f‖2L∞([0,1]2)εN .

Step 3. Finally, we construct a conformal triangulation TN , whose associated
linear spline interpolant to f is a function of the form fN in (3.3). To this end, we
regard the following three sets of (strictly) convex quadrilaterals.

The first set, Q+, contains all quadrilaterals with vertices

(xi, (SNg)(xi) + εN ), (xi+1, (SNg)(xi+1) + εN ), (xi, 1), (xi+1, 1),

the second set, Q−, contains all quadrilaterals with vertices

(xi, (SNg)(xi)− εN ), (xi+1, (SNg)(xi+1)− εN ), (xi, 0), (xi+1, 0),

for i = 0, . . . , N−1, and the third set, QεN , contains all quadrilaterals with vertices

(xi, (SNg)(xi)± εN ), (xi+1, (SNg)(xi+1)± εN ) for i = 0, . . . , N − 1.

Now, we triangulate each quadrilateral Q ∈ Q± ∪QεN by splitting Q across one
of its two diagonals. This then yields a conformal triangulation TN of [0, 1]2, whose
vertices are given by the 4(N + 1) vertices of the quadrilaterals in Q± ∪ QεN , see
Figure 1 (b) for illustration.

Moreover, the unique linear spline interpolant fN ∈ STN
to f satisfying fN ≡ f

on Q± has the desired form (3.3), so that

‖f − fN‖2L2([0,1]2) ≤ 8‖f‖2L∞([0,1]2)εN .

Now we finally let εN := hα = N−α, which then yields the stated error estimate in
(3.1) for C = 8‖f‖2L∞([0,1]2). This completes our proof. �
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(a) (b)

Figure 1. (a) Approximation of the horizon boundary g by linear
spline SN (g), (b) conformal triangulation of vertices Q± and QεN .

3.2. Optimal Decay Rates on Delaunay Triangulations. Note that the tri-
angulations TN constructed in Proposition 3.2 are anisotropic. In fact, smaller
triangles are aligned with the horizon boundary g, whereas larger triangles are
in smooth areas of f . The triangulations TN are conformal but not necessarily
Delaunay triangulations of the vertices Q± ∪ QεN .

In this section, we construct a sequence of Delaunay triangulations DN of size
|DN | ≤ M × N , with some M > 0 independent of N , such that the associated
sequence of linear spline interpolants fN ∈ SDN

to f satisfies the error bound

‖f − fN‖2L2([0,1]2) ≤ CN−α

for some C > 0 independent of N . The Delaunay triangulations DN are obtained
by triangulating the individual quadrilaterals in Q± and QεN (from the proof of
Proposition 3.2) according to the Delaunay criterion. To see this, we first prove the
following lemma, which constructs a Delaunay triangulation preserving the upper
and the lower boundary line of the corridor KεN .

Lemma 3.3. For α ∈ (1, 2] let g ∈ C α([0, 1]) with g([0, 1]) ⊂ (0, 1). Moreover, let

Yn =
n⋃

i=0

{p+i,n, p−i,n} ∪ {(0, 0), (0, 1), (1, 0), (1, 1)},

where

p±i,n = (xi,n, g(xi,n)± εn) for i = 0, . . . , n,

for εn = |g|α/nα. Then there is a non-negative integer N ∈ N, such that for all
n ≥ N the Delaunay triangulation D(Yn) of Yn contains all (horizontal) edges

[p+i,n, p
+
i+1,n] and [p−i,n, p

−
i+1,n] for i = 0, . . . , n− 1

and all (vertical) edges [p−i,n, p
+
i,n] for i = 0, . . . , n.

Proof. Note that by g([0, 1]) ⊂ (0, 1) we have Yn ⊂ [0, 1]2 for n large enough.
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Let us first make some notational preparations. In the following of this proof it
is convenient to let gi,n = g(xi,n) for i = 0, . . . , n. Moreover, we let

si,n =
gi+1,n − gi,n
xi+1,n − xi,n

= n(gi+1,n − gi,n) for i = 0, . . . , n− 1

denote the slope of the linear spline interpolant Sn(g) to g on interval [xi,n, xi+1,n].
Note that, since g ∈ C α([0, 1]), we have the uniform bound

(3.4) |si,n| ≤ |g|α for all 1 ≤ i ≤ n and n ∈ N.

Let Ci,n be the circumcircle of the triangle Ti,n with vertices p−i,n, p+i,n and

p−i+1,n, and let ci,n denote the centre of Ci,n. Note that ci,n is given by the intersec-

tion between the perpendicular bisections of the two line segments [p−i,n, p
+
i,n] and

[p−i,n, p
−
i+1,n], see Figure 2 for illustration.

xi,n xi+1,nxi−1,n xi+2,n

gi,n

gi+1,n

p+i,n

p−i,n

p+i+1,n

p−i+1,n

ci,n

Figure 2. Circumcircle Ci,n of triangle Ti,n with vertices p±i,n and

p−i+1,n. Note that the centre ci,n of Ci,n is given by the intersection

of the straight line segments [p−i,n, p
+
i,n] and [p−i,n, p

−
i+1,n].

Now let us determine the two coordinates of ci,n = (cx, cy). First recall that

p±i,n = (xi,n, gi,n ± εn) for i = 0, . . . , n,

which immediately yields cy = gi,n. As for the computation of cx, let p−i+1/2,n be

the midpoint of the line segment [p−i,n, p
−
i+1,n], whose coordinates are given by

p−i+1/2,n =

(
xi,n +

1

2n
, gi,n − εn +

si,n
2n

)
.

The orthogonality of the line segments [p−i,n, p
−
i+1,n] and [ci,n, p

−
i+1/2,n],

0 = (p−i+1,n − p−i,n)
T (ci,n − p−i+1/2,n) =

(
1

n
,
si,n
n

)T (
cx − xi,n − 1

2n
, εn − si,n

2n

)
,
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yields

(3.5) cx = xi,n +
1

2n
+ si,n

(si,n
2n

− εn

)
= xi,n +

1

n

(
s2i,n + 1

2
− si,n|g|α

nα−1

)

for the other coordinate of the centre ci,n = (cx, cy).
Next, let us compute the radius ri,n of Ci,n, as given by the distance between

ci,n and p−i,n = (xi,n, gi,n − εn), and so we obtain

r2i,n = ε2n +
1

n2

(
s2i,n + 1

2
− si,n|g|α

nα−1

)2

=
1

n2

⎡
⎣ |g|2α
n2(α−1)

+

(
s2i,n + 1

2
− si,n|g|α

nα−1

)2
⎤
⎦ .(3.6)

Due to the uniform bound on si,n in (3.4), we can conclude ri,n = O(1/n), for
n → ∞, i.e., we have

(3.7) ri,n ≤ Cr

n
for all n ∈ N

for some constant Cr > 0 that does not depend on n.

We split the remainder of this proof into the following special cases, where we
tacitly assume from now and throughout this proof that n is large enough.

Case 1. Suppose that si,n > 0 for the slope of Sn(g) on [xi,n, xi+1,n].
Due to the representation of cx in (3.5) and the uniform bound on si,n in (3.4),

we see that xi,n < cx. Moreover, from the decay of its radius ri,n in (3.7), we can
conclude that the circle Ci,n is contained in the strip (xi−1,n, 1] × [0, 1]. But this
implies that all points {p±k,n : k < i} lie outside the circle Ci,n.

Recall that the three vertices p±i,n, p
−
i+1,n of Ti,n lie on the boundary of Ci,n.

Now let us check the point p+i+1,n. To this end, we compare the distances between

the centre ci,n and the points p±i+1,n = (xi+1,n, gi+1,n ± εn), given by

‖p±i+1,n − ci,n‖2 = (xi+1,n − cx)
2 + (gi+1,n − gi,n ± εn)

2.

Since gi+1,n − gi,n > 0, we can conclude that the distance between p+i+1,n and ci,n
is larger than the distance between p−i+1,n and ci,n. Therefore, also the point p+i+1,n

lies outside the circle Ci,n.

Case 1a. Suppose 0 < si,n < 1. Given the representation of cx in (3.5), we see
that cx − xi,n < 1/n, and so xi,n < cx < xi+1,n. Likewise, by the representation of
ri,n in (3.6), we obtain ri,n < 1/n. Therefore, we can conclude that the circle Ci,n

is contained in the strip (xi−1,n, xi+2,n)× [0, 1]. But this already implies that none
of the points {p±i,n : 0 ≤ i ≤ n} lies in the interior of the circle Ci,n. Only the three

vertices p±i,n, p
−
i+1,n of triangle Ti,n lie on the boundary of Ci,n.

Case 1b. Suppose si,n ≥ 1.
We first show that no point from {p−i+k,n : k = 2, . . . , n− i} lies in the interior of

the circle Ci,n. Since g′ ∈ C α−1([0, 1]) and by the mean value theorem, there are
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intermediate points ξ1 ∈ (xi,n, xi+1,n) and ξ2 ∈ (xi+1,n, xi+2,n) satisfying

|si+1,n − si,n| =

∣∣∣∣ gi+2,n − gi+1,n

xi+2,n − xi+1,n
− gi+1,n − gi,n

xi+1,n − xi,n

∣∣∣∣
= |g′(ξ2)− g′(ξ1)| ≤ |g′|α−1 · |ξ2 − ξ1|α−1 ≤ Cg

nα−1
,

for all i = 0, . . . , n− 2, where we let Cg = 2α−1 · |g′|α−1. But this implies

(3.8) si,n − si+k,n ≤ |si+k,n − si,n| ≤
k−1∑
j=0

|si+j+1,n − si+j,n| ≤ k
Cg

nα−1
.

Now let ti,n denote the slope of the tangent to the circle Ci,n at the point p−i+1,n.

Note that ti,n = −1/t⊥i,n, where t
⊥
i,n is the slope of the straight line passing through

the centre ci,n and p−i+1,n, see Figure 3.

xi xi+1 xi+2

gi,n

gi+1,n

p+i,n

p−i,n

p+i+1,n

p−i+1,n

ci,n

p−i+2,n
p−i+3,n

Figure 3. Case 1b. si,n ≥ 1. The points p±i+k,n, k = 1, . . . , n− i,
and the interior of circle Ci,n are separated by the tangent of Ci,n

at p−i+1,n. Note that for si,n > 0 the ordinate of p−i+1,n is necessarily

larger than the ordinate of p−i,n.

Recalling the coordinates of ci,n = (cx, cy) and p−i+1,n = (xi+1,n, gi+1,n − εn), we
get

(3.9) ti,n =
xi,n + 1

n

(
s2i,n+1

2 − si,n|g|α
nα−1

)
− xi+1,n

si,n
n − εn

=

s2i,n−1

2 − si,n|g|α
nα−1

si,n − nεn
,

where we used xi,n − xi+1,n = −1/n.
Now for any 1/2 > δ > 0, there exists N0 ∈ N satisfying

nεn =
|g|α
nα−1

≤ δ for all n ≥ N0,
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in which case si,n − nεn ≥ si,n − δ, for all n ≥ N0, so that

1

si,n − nεn
≤ 1

si,n − δ
for all n ≥ N0.

This in combination with (3.9) yields

ti,n ≤
s2i,n

2(si,n − δ)
<

(
1

2
+ δ

)
si,n = γsi,n for all n ≥ N0,

for γ := 1/2 + δ ∈ (1/2, 1), where we used si,n ≥ 1 and 0 < δ < 1/2 to establish
the second inequality. From this, in combination with (3.8), we get

si+k,n − ti,n ≥ si,n − ti,n − k
Cg

nα−1

≥ (1− γ)si,n − k
Cg

nα−1

≥ (1− γ)− k
Cg

nα−1
≥ 0

for all k satisfying 2 ≤ k ≤ nCr, where Cr is the constant in (3.7). In this case,
the interior of the circle Ci,n and the points {p−i+k,n : 2 ≤ k ≤ nCr} are separated

by the tangent of Ci,n at p−i+1,n, see Figure 3 for illustration. But this implies that

also the points {p+i+k,n : 2 ≤ k ≤ nCr} lie outside the circle Ci,n.

For the remaining cases, where k > nCr, we have xi+k,n − xi,n = k/n > Cr, in
which case we can see that all points {p±i+k,n : k > nCr} do also lie outside Ci,n.

Altogether, all points {p±i+k,n : k = 2, . . . , n− i} lie outside Ci,n.

In conclusion from cases 1a and 1b, we see that (for n large enough) no point
{p±i,n : i = 1, . . . , n} lies in the interior of the circle Ci,n. Only the three vertices

p−i,n, p
+
i,n, p

−
i+1,n of triangle Ti,n lie on the boundary of Ci,n. Therefore, triangle Ti,n

satisfies the Delaunay criterion, and so its three edges [p−i,n, p
−
i+1,n], [p

−
i,n, p

+
i,n], and

[p+i,n, p
−
i+1,n] are contained in the Delaunay triangulation D(Yn).

Case 2. Suppose si,n < 0. In this case, we can follow along the lines of exactly
the same arguments as in the previous case 1, after a reflection of the x-coordinate
about x = 1/2, so that g is replaced by g(1− x), and xi,n is mapped onto 1− xi,n,
for all i = 0, . . . , n, so that in particular the points p±i,n are then in reverse order.

Case 3. Suppose si,n = 0. In this case, ci,n = (xi,n + 1/(2n), gi,n), so that
xi,n < cx < xi+1,n. Therefore, all points from {p±k,n : k < i or k > i+1} lie outside

the circle Ci,n. Moreover, since gi,n = gi+1,n, the four points p±i,n, p
±
i+1,n are the

corners of the rectangle Ri,n = [xi,n, xi+1,n] × [gi,n − εn, gi,n + εn] centred at ci,n.
Therefore, all four corner points p±i,n, p

±
i+1,n lie on the boundary of circle Ci,n, so

that all four edges [p±i,n, p
±
i+1,n], [p

−
i,n, p

+
i,n], and [p−i+1,n, p

+
i+1,n] of rectangle Ri,n are

contained in the Delaunay triangulation D(Yn) of Yn.

Finally, to show that all edges [p+i,n, p
+
i+1,n], i = 0, . . . , n, are in D(Yn), this can

be done by similar arguments as in the above cases 1.-3., but now after a reflection
of the y-coordinate about y = 1/2, where y is replaced by 1− y. �

Now we are in a position, where we can combine Proposition 3.2 with Lemma 3.3
to prove a result which is stronger than that in Proposition 3.2. We will so obtain
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asymptotic approximation rates as in Proposition 3.2, but now for linear splines
over Delaunay triangulations rather than just over conformal triangulations.

Theorem 3.4. For α ∈ (1, 2], let f be an α-horizon function. Then, there exist
constants C,M > 0 (independent of N), such that for any N ∈ N there is a
Delaunay triangulation DN ≡ D(YN ) with |YN | ≤ M ×N vertices satisfying

‖f − fN‖2L2[0,1]2 ≤ CN−α,

where fN ∈ SDN
is the linear spline interpolant to f at YN .

Proof. Let YN be the vertex set in Lemma 3.3, whose size is |YN | = 2(N + 1) + 4.
Due to Lemma 3.3, all (horizontal) edges

[p+i,N , p+i+1,N ] and [p−i,N , p−i+1,N ] for i = 0, . . . , N − 1

and all (vertical) edges [p−i,N , p+i,N ], i = 0, . . . , N , are contained in the Delaunay
triangulation DN of YN , for N large enough.

We can complete the Delaunay triangulation DN by first triangulating the area of
the εN -corridor KεN (cf. the proof of Proposition 3.2) w.r.t. the Delaunay criterion.
Note that KεN is given by the union of the parallelograms Qi,N = [p±i,N , p±i+1,N ],
for i = 0, . . . , N − 1, and so the Delaunay triangulation of the corridor KεN can
be obtained by the Delaunay triangulations of the parallelograms Qi,N . This is
followed by the construction of the Delaunay criterion in the complementary area
[0, 1]2 \KεN which completes the Delaunay triangulation DN of YN .

Now note that the linear spline interpolant fN ∈ SDN
to f at YN coincides with

f on [0, 1]2 \KεN , so that we obtain the desired asymptotic bound

‖f − fN‖2L2[0,1]2 ≤ CN−α

by the following along the lines of our arguments in the proof of Proposition 3.2. �

In conclusion, we have proved that approximation of any α-horizon function, for
α ∈ (1, 2], (cf. Definition 3.1) by linear splines over locally adaptive triangulations
leads to the asymptotic N -term approximation error

(3.10) ‖f − fN‖2L2[0,1]2 = O(N−α) for N → ∞

when using conformal triangulations (Proposition 3.2) or when using Delaunay
triangulations (Theorem 3.4). We recall that nonlinear approximation by tensor
product wavelets can only achieve the suboptimal decay rate O(N−1) [25]. More-
over, there is no depth-search limited dictionary which can achieve a better rate
than that in (3.10) for piecewise C α functions with C α boundary (cf. [18] for a
proof).

To relate this statement to our setting, we remark that our results in Theorem 3.4
can be achieved by selecting the points p±i,N , which are defining the Delaunay trian-

gulations D(YN ), from a fine grid whose size is of polynomial growth in N . To detail
this, we consider a uniform grid with sampling size 1/Nβ , where β > α. Then, in
particular, a representation for fN of the form (3.3) could also be obtained via a
selection of N functions from a dictionary AN , whose size is of polynomial growth
in N , with maintaining the asymptotic error bound (3.10). Therefore, approxima-
tion by linear splines over Delaunay triangulations yields asymptotically optimal
approximation rates among all depth-search limited dictionaries.
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4. Approximation of Regular Functions

In the previous section, we have restricted our attention to the approximation
of piecewise-affine horizon functions f with singularities along α-Hölder smooth
boundary curves g ∈ C α[0, 1]. In that case, our approximation scheme, relying on
linear splines over anisotropic (Delaunay) triangulations, is adapted to the smooth-
ness α of the horizon boundary g, whereas the regularity of the target function
f away from the horizon boundary does not take impact on the adaptivity of the
triangular mesh.

In this section, we turn to the approximation of regular functions, where a regular
function f is an element in a Sobolev space Wα,p([0, 1]2), for α ∈ (0, 2] and p ≥ 1,
where α > 2/p− 1. In this case, Wα,p([0, 1]2) is embedded in L2([0, 1]2), but does
not lie on the L2([0, 1]2) embedding line. For the sake of brevity, we will then say
that Wα,p([0, 1]2) lies above the L2-embedding line.

We will essentially adapt our approximation scheme to the regularity of f . Note
that regular functions are isotropic and, moreover, they can be characterised by
the asymptotic behaviour of their wavelet coefficients. We remark that the class of
regular functions, being investigated in this section, form a rather large subset in
the linear space of all functions which can be approximated by classical nonlinear
(tensor product) wavelet approximations at a decay rate O

(
N−α/2

)
, for N → ∞,

cf. the discussion at the end of this section.

4.1. Optimal Approximation with Quadtree Partitions. To detail our ana-
lysis, let us first recall a classical result by Birman-Solomjak [4] concerning the
approximation of regular functions by piecewise-affine functions over quadtree par-
titions of [0, 1]2.

Theorem 4.1. Let α ∈ (0, 2] and p ≥ 1 satisfy α > 2/p− 1, so that Wα,p([0, 1]2)
lies strictly above the L2-embedding line. Further suppose f ∈ Wα,p([0, 1]2). Then
there exists a constant C > 0 (independent of N), such that for any N ∈ N there
is a quadtree partition QN of [0, 1]2 with |QN | ≤ N leaves satisfying

(4.1) ‖f − fN‖2L2([0,1]2) ≤ CN−α,

where fN := ΠQN
f is the orthogonal L2-projection of f onto the space of piecewise

affine-linear (not necessarily continuous) functions over the quadtree partition QN .

We remark that the proof of Birman-Solomjak is constructive. In particular, an
explicit algorithmic construction of a quadtree partition QN satisfying the error
estimate (4.1) is provided in [4]. But QN does not necessarily minimize the ap-
proximation error in (4.1) among all quadtree partitions Q of size |Q| ≤ N . This
may affect the size of the constant C but not the asymptotic decay rate in (4.1).

4.2. Optimal Approximation with Delaunay Triangulations. Now let us
turn to the approximation of regular functions by adaptive linear splines over
anisotropic Delaunay triangulations. On the basis of the construction by Birman-
Solomjak, we can construct a sequence of Delaunay triangulations DN , such that
the corresponding sequence of linear spline interpolants fN ∈ SDN

to f at the
vertices of DN achieves the same approximation rate as the sequence of functions
ΠQN

f from the Birman-Solomjak Theorem.

Corollary 4.2. Let α ∈ (0, 2] and p ≥ 1 satisfy α > 2/p− 1, so that Wα,p([0, 1]2)
lies strictly above the L2-embedding line. Suppose f ∈ Wα,p([0, 1]2). Then there
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exist constants C,M > 0 (independent of N), such that for any N ∈ N there is a
Delaunay triangulation DN of size |DN | ≤ M ×N satisfying

‖f − fN‖2L2([0,1]2) ≤ CN−α,

where fN ∈ SDN
is the linear spline interpolant to f over DN .

Proof. We split the proof into three steps.

Step 1. Let {QN}N denote the sequence of quadtree partitions from the Birman-
Solomjak Theorem, satisfying (4.1). By VQN

= {(xm, ym)}m=1,...,M we denote, for
any N ∈ N, the vertex set of QN , comprising all M vertices from the |QN | ≤ N
quadtree leaves, so that M ≤ 4×N .

Next we associate, for some (sufficiently small) ε > 0, the vertex set VQN
with

the perturbed planar point set

VM,ε = ({(xm ± ε, ym ± ε) : m = 1, . . . ,M} ∪ {(0, 0), (0, 1), (1, 0), (1, 1)}) ∩ [0, 1]2.

For illustration, Figure 4 (a) shows one example for a quadtree partition QN with
vertex set VQN

. Its associated partition, resulting from the perturbed point set
VM,ε, is shown in Figure 4 (b). Note that |VM,ε| ≤ 4×M ≤ 16×N .

(a) (b) (c)

Figure 4. (a) Quadtree partition QN with vertex set VQN
, (b)

Associated partition from perturbed vertex set VM,ε, (c) Delaunay
triangulation D(VM,ε).

Step 2. Now we construct the Delaunay triangulation D(VM,ε) of the perturbed
point set VM,ε. To this end, we partition the domain [0, 1]2 into a set of disjoint
areas, M small subsquares sm, N large subsquares Sn, and K anisotropic rectangles
Rk, so that

[0, 1]2 =

(
M⋃

m=1

sm

)⋃(
N⋃

n=1

Sn

)⋃(
K⋃

k=1

Rk

)
,

where each small subsquare sm ⊂ [0, 1]2 is defined as

sm = conv{(xm ± ε, ym ± ε)} ∩ [0, 1]2 for m = 1, . . . ,M.

As for the subsquares Sn, note that any element Qn ∈ QN of the Birman-
Solomjak quadtree partition QN has the form

Qn =

[
i

2k
,
i+ 1

2k

]
×

[
j

2k
,
j + 1

2k

]
for some 0 ≤ i, j, k ∈ N.
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We define any large subsquare Sn ⊂ Qn as

Sn =

[
i

2k
+ ε,

i+ 1

2k
− ε

]
×

[
j

2k
+ ε,

j + 1

2k
− ε

]
for n = 1, . . . , N.

Now note that the complement

[0, 1]2 \
((

M⋃
m=1

sm

)⋃(
N⋃

n=1

Sn

))

can be partitioned by K = 4×N long and thin (anisotropic) rectangles with pair-
wise disjoint interior. We denote these rectangles as Rk, k = 1, . . . ,K. Figure 4 (b)
shows one example for such a decomposition of [0, 1]2 into a union of small sub-
squares sm, large subsquares Sn and anisotropic rectangles Rk with pairwise disjoint
interior.

Next, we observe that for each small subsquare sm lying in the interior of the
unit square [0, 1]2, and for sufficiently small ε > 0, the four pairs of its vertices,

(xm − ε, ym − ε) and (xm + ε, ym − ε)

(xm + ε, ym − ε) and (xm + ε, ym + ε)

(xm + ε, ym + ε) and (xm − ε, ym + ε)

(xm − ε, ym + ε) and (xm − ε, ym − ε)

are Voronoi neighbours in the Voronoi diagram V(VM,ε) of VM,ε, respectively. Like-
wise, for each subsquare sm lying adjacent to the boundary of the unit square
[0, 1]2, its corresponding four vertex pairs of its four vertices are Voronoi neigh-
bours in V(VM,ε).

Due to the duality of the Voronoi diagram V(VM,ε) and the Delaunay trian-
gulation D(VM,ε), all four edges of any subsquare sm are edges in the Delaunay
triangulation D(VM,ε), for m = 1, . . . ,M . Likewise, all four edges of any rectangle
Rk are edges in D(VM,ε), for k = 1, . . . ,K.

To complete the Delaunay triangulation D(VM,ε) of VM,ε, it remains to trian-
gulate the subsquares sm and Sn, as well as the rectangles Rk. For the small
subsquares sm and the rectangles Rk, this can be done by splitting each subdo-
main, sm or Rk, across any of its two diagonals. But note that in this case their
Delaunay triangulation is not unique, since any of sm or Rk could also be split
across the other diagonal, respectively.

As regards the large subsquares Sn, note that any Sn may contain, besides its
four corner points, further points from VM,ε on its boundary. Therefore, the trian-
gulation of Sn is accomplished by triangulating the point set Sn ∩ VM,ε according
to the Delaunay criterion. Figure 4 (c) shows one example for a Delaunay triangu-
lation D(VM,ε) of a perturbed vertex set VM,ε.

Step 3. Finally, let fN ∈ SDN
, DN = D(VM,ε), be the unique linear spline

function which interpolates the piecewise affine-linear Birman-Solomjak function
ΠQN

f in (4.1) at the vertices VM,ε. Note that fN coincides with ΠQN
f on each

large subsquare Sn, and therefore

‖fN −ΠQN
f‖2L2([0,1]2) =

M∑
m=1

‖fN −ΠQN
f‖2L2(sm) +

K∑
k=1

‖fN −ΠQN
f‖2L2(Rk)

.
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Now we can bound the L2-error over any small square sm by

‖fN −ΠQN
f‖2L2(sm) ≤ C‖ΠQN

f‖2∞
∫
sm

dx dy = C‖ΠQN
f‖2∞4ε2

for some constant C > 0 independent of N . Likewise, we can bound the L2-error
over any rectangle Rk by

‖fN −ΠQN
f‖2L2(Rk)

≤ C‖ΠQN
f‖2∞

∫
Rk

dx dy ≤ C‖ΠQN
f‖2∞2ε

for some constant C > 0 independent of N . This then yields the error estimate

‖f − fN‖2L2([0,1]2) ≤ ‖f −ΠQN
f‖2L2([0,1]2) + ‖fN −ΠQN

f‖2L2([0,1]2)

≤ CN−α + Cε,

for arbitrarily small ε > 0. We let ε = N−α to complete our proof. �

4.3. Concluding Remarks, Comparison with Wavelets, and Optimality.
Let us finally make a few remarks concerning the result of our Corollary 4.2.

Although the proof by Birman-Solomjak of Theorem 4.1 is constructive, it does
not provide a sequence of optimal quadtree partitions, {Q∗

N}, satisfying
‖f −ΠQ∗

N
f‖L2([0,1]2) = inf

QN

‖f −ΠQN
f‖L2([0,1]2).

Moreover, since our construction in Corollary 4.2 relies on quadtree partitions, the
Delaunay triangulations DN in Corollary 4.2 are in general not optimal either.
To improve on the quality of the Delaunay triangulations DN , as output by our
construction in Corollary 4.2, one should essentially avoid long thin triangles, as
they are resulting from the splitting of the long thin rectangles Rk (cf. the proof
of Corollary 4.2). Instead, one should rather work with adaptive Delaunay trian-
gulations containing isotropic triangles, since the target function f is assumed to
be regular. In that case, however, it is much harder to prove optimal rates for
asymptotic N -term approximations, where the technical difficulties are mainly due
to the Delaunay criterion.

But our greedy approximation algorithm, adaptive thinning [11, 13], achieves to
construct a sequence of anisotropic Delaunay triangulations {D∗

N}N , whose corre-
sponding linear spline interpolants f∗

N ∈ D∗
N improve the approximation quality

of the interpolants fN ∈ DN output in Corollary 4.2. In fact, as supported by
our numerical results, the smallest constant M in Corollary 4.2, reflecting the data
size of the Delaunay triangulations D∗

N , can, at equal approximation error and in
comparison with the Delaunay triangulations DN in Corollary 4.2, be reduced quite
significantly.

We may be able to show that for the piecewise affine-linear target functions,
i.e., the Birman-Solomjak functions ΠQN

f in (4.1), adaptive thinning outputs a
sequence of Delaunay triangulations {D∗

N}N which are ”close” to those Delaunay
triangulations DN in the proof of Corollary 4.2, along with a sequence of corres-
ponding linear spline interpolants f∗

N ∈ D∗
N that approximate f at the same rate as

the functions ΠQN
f . We prefer to defer this rather delicate point to future work.

By Corollary 4.2, any regular function f ∈ Wα,p([0, 1]2), α > 2/p − 1, can be
approximated by linear splines over Delaunay triangulations at an N -term approx-
imation rate of N−α/2. We remark that this approximation rate is at least as good
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as the approximation rate which can be achieved by nonlinear wavelet approxi-
mation. In fact, nonlinear wavelet approximation to f may only be superior in
situations, where f does not belong to any of the Sobolev spaces Wα,p([0, 1]2) cov-
ered by our Corollary 4.2, but lies in the wavelet approximation space Bα

τ,τ ([0, 1]
2),

where 1/τ = 1/p+ α/2.
Finally, we remark that the asymptotic decay rate of wavelet representations is

optimal for the Sobolev spaces Wα,p([0, 1]2) which are considered in Corollary 4.2
(see, e.g., [17] and references therein). This implies that the Birman-Solomjak
quadtree representations (Theorem 4.1) and those of Delaunay triangulations (as
constructed in the proof Corollary 4.2) provide asymptotically optimal decay rates
for the class of regular functions Wα,p([0, 1]2), where α > 2/p− 1.

5. Approximation of Piecewise Regular Horizons

We remark that the utilized regularity concepts of Sections 3 and 4 are of funda-
mental difference. While the approximation of regular functions (as in Section 4)
could be covered by classical linear approximation methods (e.g. with wavelet or-
thonormal bases), the horizon functions of Section 3 have singularities which are
concentrated along a regular curve. For the latter class of target functions, optimal
approximation rates can only be achieved by anisotropic methods, as considered in
this paper.

In this section, we combine the two different regularity concepts from previous
Sections 3 and 4 for the purpose of approximating generalized horizons, i.e., piece-
wise regular horizon functions. But this requires a very careful treatment in regions
close to the horizon boundary. To handle the resulting technical problems, we work
with suitable extension operators, whereby we need to restrict ourselves to the spe-
cial case, where p = 2 and α > 0, to approximate piecewise regular functions from
the regularity class Wα,2([0, 1]2).

5.1. Generalized Horizons. Let us first define the class of generalized horizons.

Definition 5.1. For α ∈ (1, 2] and g ∈ C α([0, 1]), let

Ω+ =
{
(x, y) ∈ (0, 1)2 : y > g(x)

}
and Ω− =

{
(x, y) ∈ (0, 1)2 : y < g(x)

}
denote the hypograph and epigraph of g on (0, 1)2. A function f ∈ L2([0, 1]2) is then
said to be a generalized α-horizon, iff each of its restrictions f |Ω± to Ω± lies in
Wα,2(Ω±), where Wα,2(Ω±) are the usual Sobolev spaces of regularity α w.r.t. the
L2-norm on Ω±. We collect all generalized α-horizons in the linear function space

H α,2([0, 1]2) =
{
f ∈ L2([0, 1]2) : f |Ω+ ∈ Wα,2(Ω+) and f |Ω− ∈ Wα,2(Ω−)

}
.

Note that the set H α,2([0, 1]2) is well-defined. Moreover, the open domains Ω+

and Ω− are simply connected and their boundaries are closed Jordan curves.

5.2. Optimal Approximation of Generalized Horizons. Now we approximate
generalized α-horizons by linear splines over anisotropic Delaunay triangulations.
To this end, we use specific ingredients from our analysis of the previous two sec-
tions. In particular, we will construct point sets XN , such that their Delaunay
triangulations D(XN ) lead (for sufficiently large N) to a sequence of linear spline
interpolants fN ∈ SD(XN ) satisfying

‖f − fN‖2L2([0,1]) ≤ CN−α,
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where, moreover, the number of triangles in D(XN ) can be bounded by a constant
multiple of N , that does not depend on N , i.e., |D(XN )| ≤ M×N for some M > 0.

But let us first discuss the construction of the points sets YN . For the sake
of simplicity we restrict ourselves, without loss of generality, to the cases where√
N ∈ N. Let

UN :=

{(
i√
N

,
j√
N

)
: 0 ≤ i, j ≤

√
N

}
for

√
N ∈ N

be a set of uniformly sampled points in [0, 1]2 and, moreover, let

GN :=

{
z ∈ [0, 1]2 : dist(z, graph(g)) ≤ 2Cr

N

}
denote the set of all points in the unit square whose distance to the graph of g,

graph(g) := {(x, g(x)) : x ∈ [0, 1]},
is at most 2Cr/N , where Cr is the same constant as in (3.7). Finally, we define the
point sets

(5.1) XN := YN ∪ (UN \GN ),

whose following properties of their Delaunay triangulations D(XN ) will be useful
in our subsequent analysis.

Lemma 5.2. The Delaunay triangulation D(XN ) of the point set XN in (5.1)
satisfies the following properties, provided that N ∈ N is large enough.

(a) All line segments [p+i,N , p+i+1,N ] and [p−i,N , p−i+1,N ] are edges in D(XN ).

(b) The diameter of any triangle T ∈ D(XN ) can be bounded above by

diam(T ) ≤ 2
√

2/N.

(c) The number of triangles in D(XN ) is, for some M ∈ N, bounded by

|D(XN )| ≤ M ×N for all N ∈ N.

Proof. (a) By definition, any point in UN \GN is of distance at least 2Cr/N away
from graph(g). Note that the distance between any point in the interior of any circle
Ci,N to its nearest point in graph(g) is smaller than the diameter diam(Ci,N ) =
2ri,N of Ci,N . Therefore, due to the uniform bound on the radii ri,N in (3.7), no
point from UN \ GN is contained in the interior of a circle Ci,N , provided that N
is large enough. Using similar arguments as in the proof of Lemma 3.3, this shows
that all line segments [p+i,N , p+i+1,N ] and [p−i,N , p−i+1,N ], i = 0, . . . , N − 1, are edges

in D(XN ).

(b) Note that

(5.2)
Cr

N
<

1√
N

holds for N large enough, which we tacitly assume from now. In this case, the
assertion in (b) is obvious for any triangle T containing only vertices in YN , or, for
triangles T containing only vertices in UN \GN .

Let us now consider a triangle T with vertices in both sets, YN and UN \ GN .

Moreover, suppose that the circumcircle CT of T is strictly larger than 2
√

2/N .
Then, due to (5.2), CT contains at least three vertices from XN . But this violates
the Delaunay criterion, which is in contradiction to our assumption on D(XN ).
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(c) Note that the size |UN | of the regular point set UN is (
√
N + 1)2, and so

|UN \ GN | ≤ (
√
N + 1)2. Moreover, the point set YN , as defined in Lemma 3.3,

contains 2(N +1)+ 4 points. But this implies that the size of XN can be bounded
above by a constant multiple of N , in particular by |XN | ≤ 4 × N for sufficiently
large N . In this case, and by using the Euler polyhedron formula, we can also
bound the number of triangles in D(XN ) by an integer multiple of N , so that
|D(XN )| ≤ M ×N for some M > 0 independent of N . �

For the purpose of illustration, Figure 5 shows one example for a Delaunay trian-
gulation D(XN ), according to our above construction. Note that the triangulation
D(XN ) is not adaptive in the two regions Ω± \GN , where f ∈ Wα,2(Ω±) is regular.
This is in contrast to the adaptive partition of the domain [0, 1]2 by anisotropic
quadtrees (Birman-Solomjak, Theorem 4.1) or by anisotropic Delaunay triangula-
tions (in our Corollary 4.2). But the above construction of XN serves to simplify
our analysis in the proof of Theorem 5.3.

Figure 5. Approximation of a generalized horizon f . The Delau-
nay triangulation D(XN ) of the point set XN = YN ∪(UN \GN ) in
(5.1) is shown. Note that the vertices of the squares in the regular
part of f are a sufficient distance away from the horizon bound-
ary g. Moreover, any triangle in D(XN ) is contained in a square

of edge length 2/
√
N .

Now we are in a position, where we can prove the main result of this section.

Theorem 5.3. For α ∈ (1, 2], let f be a generalized α-horizon. Then, there exist
constants C,M > 0 (independent of N), such that for all N ∈ N there is a Delaunay
triangulation DN with |DN | ≤ M ×N triangles satisfying

(5.3) ‖f − fN‖2L2([0,1]2) ≤ CN−α,

where fN ∈ SDN
is the linear spline interpolant to f at the vertices of DN .

Proof. Since the boundary horizon g of f is in C α([0, 1]), with α > 1, g is a
Lipschitz function. Therefore, both domains Ω+ and Ω− are Lipschitz. This allows
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us to apply the Stein extension theorem (see [1, Theorem 5.24, p. 154]), which
implies that for any m ∈ N there are strong and bounded total extension operators

E±
m : Wm,2(Ω±) → Wm,2(R2).

We apply classical operator theory (see, for instance, [3, Corollary, p. 341]) to
interpolate E±

m, m = 1, 2, for α ∈ (1, 2), where the resulting interpolation operators

E± : Wα,p(Ω±) → Wα,p(R2)

are bounded on the intermediate Sobolev spaces of order α.
Now we can use similar techniques as in the Birman-Solomjak proof [4] of their

Theorem 4.1. Recall that the Birman-Solomjak theorem aims at adaptive approxi-
mation of regular functions over quadtree partitions. But the situation of this
proof is even much simpler, since we are only concerned with the (non-adaptive)
approximation of f over uniform grids, to be performed in each subdomain Ω±,
where f is regular (cf. Figure 5).

To prove the desired error bound in (5.3), we first decompose the domain [0, 1]2

into three subdomains with pairwise disjoint interior,

[0, 1]2 = KεN ∪ Ω+
N ∪ Ω−

N ,

where the two subdomains Ω±
N are given by the unions

Ω±
N :=

⋃
T∈T ±

N

T

of all triangles in DN := D(XN ) lying in the hypograph (epigraph)

T ±
N :=

{
T ∈ D(XN ) : T ⊂ Ω±}

of the horizon boundary g, respectively. Moreover, the complementary set

KεN := [0, 1]2 \ Ω±
N

is given by the εN -corridor around the horizon boundary g (cf. part 2 of our proof
for Lemma 5.2).

Therefore, the approximation error can be split as

(5.4) ‖f − fN‖2L2([0,1]2) = ‖f − fN‖2L2(KεN
) + ‖f − fN‖2

L2(Ω+
N )

+ ‖f − fN‖2
L2(Ω−

N )
,

where fN ∈ SDN
is the linear spline interpolant to f at XN . The first term in the

right hand side of (5.4) can be estimated as

‖f − fN‖2L2(KεN
) ≤ C · ‖f‖2L∞([0,1]2) · |KεN | ≤ CN−α,

where |KεN | = 2εN is the area of the corridor KεN . Moreover, the second and the
third term in the right hand side of (5.4) can be represented through the orthogonal
L2-projection ΠT ±

N
f of f onto T ±

N , yielding

(5.5) ‖f − fN‖2
L2(Ω±

N )
= ‖f −ΠT ±

N
f‖2

L2(Ω±
N )

.

Now we can provide an upper bound for the right hand side of (5.5) by using
classical Sobolev inequalities. For instance, the application of [4, Lemma 3.2] gives
the upper bound

‖f −ΠT f‖2L2(T ) ≤ C · |T |α · ‖f‖2Wα,2(T ) ≤
C

Nα
‖f‖2Wα,2(T ) for all T ∈ T ±

N ,
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where C > 0 is a constant that does not depend on T or N . By summation over
the triangles in T ±

N , we obtain

‖f − fN‖2
L2(Ω±

N )
≤ C

Nα

∑
T∈T ±

N

‖f‖2Wα,2(T ) =
C

Nα
‖f‖2

Wα,2(T ±
N )

≤ C

Nα
‖E±f‖2Wα,2([0,1]2).

Since C‖E±f‖2Wα,2([0,1]2) does not depend on N , this completes our proof. �

Note that the set H α,2([0, 1]2) of generalized α-horizon functions (cf. Defini-
tion 5.1) contains the set of α-horizon functions (cf. Definition 3.1). Therefore, the
error bound in (5.3) is optimal in exactly the same sense as discussed at the end
of Section 3: no depth-search limited dictionary can achieve a better asymptotic
decay rate than that in (5.3).
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