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Abstract: We analyze a numerical method for solving the inverse problem of identifying the diffusion

matrix in an elliptic PDE from distributed noisy measurements. We use a regularized least squares

approach in which the state equations are given by a finite element discretization of the elliptic PDE.

The unknown matrix parameters act as control variables and are handled with the help of variational

discretization as introduced in [8]. For a suitable coupling of Tikhonov regularization parameter, fi-

nite element grid size and noise level we are able to prove L2–convergence of the discrete solutions

to the unique norm–minimal solution of the identification problem; corresponding convergence rates

can be obtained provided that a suitable projected source condition is fulfilled. Finally, we present a

numerical experiment which supports our theoretical findings.
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1 Introduction

In this paper we are concerned with a convergence analysis for a numerical method that

identifies a diffusion matrix in the elliptic boundary value problem

−div (A∇y) = f in Ω, y = 0 on ∂Ω (1.1)

from distributed noisy measurements. Here, Ω ⊂ R
n is a bounded, polyhedral domain and

f ∈ H−1(Ω). In addition we assume that the diffusion matrix A(x) = (aij(x))
n
i,j=1 satisfies

aij ∈ L∞(Ω) and is uniformly elliptic. The boundary value problem (1.1) then has a unique

weak solution y ∈ H1
0 (Ω) which we denote by y = T (A, f). Our aim is to identify the unknown

diffusion matrix from distributed noisy measurements (z
(i)
δ , f

(i)
δ ) ∈ L2(Ω)×H−1(Ω), 1 ≤ i ≤ N

satisfying

‖z(i)δ − z(i)‖ ≤ δ, ‖f (i)
δ − f (i)‖H−1 ≤ δ. (1.2)
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Here,

z(i) = T (A∗, f (i)), 1 ≤ i ≤ N (1.3)

for some symmetric diffusion matrix A∗ with

a|ξ|2 ≤ A∗(x)ξ · ξ ≤ b|ξ|2 for all ξ ∈ R
n, a.e. in Ω, (1.4)

where 0 < a < b < ∞. We shall employ a least squares approach in order to reconstruct the

diffusion matrix, more precisely we consider the following optimization problem:

(P ) min
A∈M

J(A) :=
1

2

N∑
i=1

‖y(i) − z
(i)
δ ‖2 + γ

2
‖A‖2 subject to y(i) = T (A, f

(i)
δ ), 1 ≤ i ≤ N,

where γ > 0 and we use the symbol ‖ · ‖ for the L2-norm of scalar, vector- or matrix-valued

functions. The set M of admissible diffusion matrices will be defined in Section 2 below. One

of the main difficulties in analyzing (P) is that the mapping A �→ y = T (A, f) is not weakly

(sequentially) closed in L2(Ω,Rn,n). This can be seen with the help of the following example

taken from [16, Section 3]: let Ω = (0, 1) ⊂ R and ak ∈ L∞(Ω) be defined by

ak(x) :=

⎧⎪⎨
⎪⎩

a, m
k ≤ x <

m+ 1
2

k

b,
m+ 1

2
k ≤ x < m+1

k

m = 0, . . . , k − 1.

If we let yk = T (ak, f) it can be shown that yk → y = T (â, f) in L2(Ω), where

â ≡
(
1
2 (

1
a+

1
b )
)−1

. On the other hand, ak ⇀ a in L2(Ω) with a ≡ 1
2(a+b), so that y �= T (a, f),

since â �= a.

One possibility to overcome this problem is to use a stronger norm in the Tikhonov regular-

ization (such as ‖ · ‖H1 , see e.g. [15], [20]), but this approach can be numerically cumbersome

especially when one takes ellipticity constraints into account. In [4] we were able to prove the

existence of a solution to (P) by applying the concept of H–convergence ([16]). Furthermore,

we considered an approximation of (P) by discretizing (1.1) with the help of finite elements

and established the convergence of corresponding minimizers to a minimum of (P) in the case

that γ > 0 is fixed and z
(i)
δ = z(i), 1 ≤ i ≤ N . The goal of the present work is to extend the

convergence analysis to the case that the regularization parameter γ tends to zero, while we

also take into account noisy measurements satisfying (1.2). Denoting by (P δ
h) our approxi-

mation of (P) with corresponding minimum Aδ
h we shall prove in Section 3 that Aδ

h → Ā in

L2 as the mesh size h and the noise level δ tend to zero provided that γ is coupled to these

parameters in a suitable way. Here, Ā ∈ M denotes the norm-minimal (in the L2–sense)

diffusion matrix satisfying (1.3). Under a suitable projected source condition and appropriate

smoothness conditions on the data we then show in Section 4 that an error bound of the form

‖Aδ
h − Ā‖ ≤ Ch

holds. Section 5 presents a numerical test calculation which supports the rates obtained.

Let us briefly refer to related publications that have been concerned with the identification

of matrix–valued parameters. In [1] and [9] a reconstructed matrix is obtained as the large–

time limit of a suitable dynamical system. A stability result, which can also be used for the
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convergence analysis of numerical methods, is derived in [11] by Hsaio and Sprekels for the

reconstruction of matrices of the form A = ∇p ⊗ ∇p. In [13], Kohn and Lowe introduce a

variational method involving a functional which is convex in the matrix A and the conductiv-

ities A∇y(i). Rannacher and Vexler prove in [17] error estimates for a matrix–identification

problem in which a finite number of unknown parameters is estimated from finitely many

pointwise observations.

The problem of identifying a scalar diffusion coefficient has been investigated much more

intensively compared to the matrix case. Identifiability results have been obtained e.g. in [3],

[18] and [19]. A survey of numerical methods for parameter estimation problems can be found

in [14]. Error estimates for a least squares approach have been obtained by Falk in [6] and

more recently by Wang and Zou [20] taking into account Tikhonov regularization. The latter

paper also contains a long list of further references.

2 Notation and preliminary results

Let us denote by Sn the set of all symmetric n×n matrices equipped with the inner product

A ·B = trace(AB). We introduce the subset

K := {A ∈ Sn | a|ξ|2 ≤ Aξ · ξ ≤ b|ξ|2 for all ξ ∈ R
n}.

Since K is a convex and closed subset of Sn we may define the orthogonal projection PK :

Sn → K, which is characterised by the relation

(A− PK(A)) · (B − PK(A)) ≤ 0 for all B ∈ K. (2.1)

We define the admissible set for the optimization problem (P) by

M := {A ∈ L∞(Ω,Rn,n) |A(x) ∈ K a.e. in Ω} ⊂ L∞(Ω,Sn).

According to [4, Theorem 2.2], (P) has a solution A ∈ M. For the convenience of the reader

we include the necessary first order conditions satisfied by A. To begin, consider the mappings

Fi : M → L2(Ω), Fi(A) := T (A, f
(i)
δ ), 1 ≤ i ≤ N.

It is not difficult to verify that

F ′
i (A)H = w(i), H ∈ L∞(Ω,Sn),

where w(i) ∈ H1
0 (Ω) is the unique weak solution of the elliptic equation∫

Ω
A∇w(i) · ∇vdx = −

∫
Ω
H∇y(i) · ∇vdx for all v ∈ H1

0 (Ω) (2.2)

and y(i) = T (A, f
(i)
δ ). Denoting by p(i) ∈ H1

0 (Ω), i = 1, . . . , N the solutions of the adjoint

problems ∫
Ω
A∇p(i) · ∇vdx =

∫
Ω
(y(i) − z

(i)
δ )vdx for all v ∈ H1

0 (Ω),
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we have for H ∈ L∞(Ω,Sn)

J ′(A)H (2.3)

=

N∑
i=1

∫
Ω
(y(i) − z

(i)
δ )w(i)dx+ γ

∫
Ω
A ·Hdx =

N∑
i=1

∫
Ω
A∇p(i) · ∇w(i)dx+ γ

∫
Ω
A ·Hdx

= −
N∑
i=1

∫
Ω
H∇y(i) · ∇p(i)dx+ γ

∫
Ω
A ·Hdx =

∫
Ω

(
−

N∑
i=1

∇y(i) ⊗∇p(i) + γA
)
·Hdx,

where (p ⊗ q)ij =
1
2 (piqj + pjqi), i, j = 1, . . . , n for p, q ∈ R

n. We now have

Lemma 2.1. Let γ > 0 and A ∈ M be a solution of (P). Then

A(x) = PK

(
1

γ

N∑
i=1

∇y(i)(x)⊗∇p(i)(x)

)
a.e. in Ω.

Proof. The optimality of A yields J ′(A)(B − A) ≥ 0 for all B ∈ M, which can be rewritten

with the help of (2.3) as∫
Ω

(1
γ

N∑
i=1

∇y(i) ⊗∇p(i) −A
)
·
(
B −A

)
dx ≤ 0, for all B ∈ M.

A localization argument then shows that(
1

γ

N∑
i=1

∇y(i)(x)⊗∇p(i)(x)−A(x)

)
·
(
C −A(x)

)
≤ 0 for all C ∈ K and a.a. x ∈ Ω

which implies the result.

Next, let Th be a regular triangulation of Ω with mesh size h := maxT∈Th diam(T ). Let us

denote by

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th, vh|∂Ω = 0} ⊂ H1
0 (Ω)

the space of continuous, piecewise linear finite elements. For a given A ∈ M and f ∈ H−1(Ω),

the problem ∫
Ω
A∇yh · ∇vhdx = 〈f, vh〉 for all vh ∈ Xh

has a unique solution yh ∈ Xh which we denote by yh = Th(A, f). Here, 〈·, ·〉 is the duality

between H−1(Ω) and H1
0 (Ω). Standard arguments yield the following bounds

‖Th(A, f)‖H1 ≤ C‖f‖H−1 , (2.4)

‖Th(A, f)− T (A, f)‖H1 ≤ C inf
vh∈Xh

‖T (A, f)− vh‖H1 (2.5)

with a constant C that is independent of f ∈ H−1(Ω), A ∈ M and the mesh size h.

We are now in position to formulate our numerical method which is based on solving the

following semi-discrete minimization problem:

(P δ
h) min

A∈M
Jδ
h(A) :=

1

2

N∑
i=1

‖y(i)h − z
(i)
δ ‖2 + γ

2
‖A‖2 subject to y

(i)
h = Th(A, f

(i)
δ ), 1 ≤ i ≤ N.

(2.6)
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Note that following the idea of [8] the matrix parameters are not discretized, compare however

Remark 2.3 below.

Lemma 2.2. Problem (P δ
h) has a solution Aδ

h ∈ M. Every solution A ∈ M of (P δ
h) satisfies

A(x) = PK

(
1

γ

N∑
i=1

∇y
(i)
h (x)⊗∇p

(i)
h (x)

)
a.e. in Ω, (2.7)

where y
(i)
h = Th(A, f

(i)
δ ) and p

(i)
h ∈ Xh are the solutions of the adjoint problems∫

Ω
A∇p

(i)
h · ∇vhdx =

∫
Ω
(y

(i)
h − z

(i)
δ )vhdx for all vh ∈ Xh, 1 ≤ i ≤ N.

Proof. Let (Ak)k∈N ⊆ M be a minimizing sequence for problem (P δ
h) so that Jδ

h(Ak) ↘
infA∈M Jδ

h(A) as k → ∞. Since (Ak)k∈N is bounded in L∞(Ω,Rn,n) there exists Aδ
h ∈

L∞(Ω,Rn,n) such that Ak′
∗
⇀ Aδ

h in L∞(Ω,Rn,n) for some subsequence. In addition one

readily verifies that Aδ
h ∈ M. The sequences y

(i)
k′ = Th(Ak′ , f

(i)
δ ), 1 ≤ i ≤ N are uniformly

bounded in the finite-dimensional space Xh so that we may assume that y
(i)
k′ → y

(i)
h in

H1(Ω), 1 ≤ i ≤ N . Clearly y
(i)
h = Th(A

δ
h, f

(i)
δ ) and therefore

Jδ
h(A

δ
h) =

1

2

N∑
i=1

‖y(i)h − z
(i)
δ ‖2 + γ

2
‖Aδ

h‖2 ≤ lim
k′→∞

1

2

N∑
i=1

‖y(i)k′ − z
(i)
δ ‖2 + γ

2
lim inf
k′→∞

‖Ak′‖2

≤ lim inf
k′→∞

Jδ
h(Ak′) = inf

A∈M
Jδ
h(A).

The relation (2.7) is obtained exactly as in the continuous case.

Remark 2.3. Let us note that in view of (2.7) Aδ
h is piecewise constant on Th so that a

discretization of the set M is not required. Variational discretization automatically yields

solutions to (2.6) which allow a finite-dimensional representation.

In order to analyze the convergence of the above method we shall make use of the concept of

Hd-convergence. This concept was introduced in [5] in the context of finite volume discretiza-

tions of elliptic boundary value problems with the aim of adapting H–convergence results to

the discrete setting. The following theorem is a finite element version of the result obtained

in [5].

Theorem 2.4. Let (Ak)k∈N be a sequence in M and (Thk
)k∈N a sequence of triangulations

with limk→∞ hk = 0. Then there exists a subsequence (Ak′)k′∈N and A ∈ M such that for

every f ∈ H−1(Ω)

Thk′ (Ak′ , f) ⇀ T (A, f) in H1
0 (Ω) and Ak′∇Thk′ (Ak′ , f) ⇀ A∇T (A, f) in L2(Ω)n.

We then say that the sequence (Ak′)k′∈N Hd–converges to A and write Ak′
Hd→ A.

Proof. See [4, Theorem 3.1].

Please note that the Hd–limit in general will depend on the sequence (Thk
)k∈N.
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Corollary 2.5. Let (Ak)k∈N be a sequence in M and (Thk
)k∈N a sequence of triangulations

with limk→∞ hk = 0. Suppose that Ak
Hd→ A0 and Ak

∗
⇀ A1 in L∞(Ω,Rn,n). Then

A0 ≤ A1 a.e. in Ω and ‖A0‖2 ≤ ‖A1‖2 ≤ lim inf
k→∞

‖Ak‖2.

Proof. See [4, Corollary 3.1].

3 Convergence

To begin, note that (1.3) and (1.4) imply that the set

M := {B ∈ M| z(i) = T (B, f (i)), 1 ≤ i ≤ N} (3.1)

is not empty. Since M is a closed, convex subset of L2(Ω,Rn,n), there exists a uniquely

determined Ā ∈ M such that

‖Ā‖L2 = min
B∈M

‖B‖L2 . (3.2)

The following lemma gives a sufficient criterion for a matrix function Ā to be norm-minimal.

Lemma 3.1. Let Ā ∈ M and z(i) ∈ H1
0 (Ω) with z(i) = T (Ā, f (i)), 1 ≤ i ≤ N . Suppose that

there exist ψ(i) ∈ H1
0 (Ω), 1 ≤ i ≤ N such that

Ā(x) = PK

(
N∑
i=1

∇z(i)(x)⊗∇ψ(i)(x)

)
a.e. in Ω.

Then ‖Ā‖L2 = minB∈M ‖B‖L2 .

Proof. Let B ∈ M be arbitrary. Then

‖B‖2 − ‖Ā‖2 = ‖B − Ā‖2 + 2

∫
Ω
Ā · (B − Ā)dx.

In view of our assumption on Ā and (2.1) we have

( N∑
i=1

∇z(i)(x)⊗∇ψ(i)(x)− Ā(x)
)
·
(
B(x)− Ā(x)

)
≤ 0, a.e. in Ω,

so that

‖B‖2 − ‖Ā‖2 ≥ 2

N∑
i=1

∫
Ω

(
∇z(i) ⊗∇ψ(i)

)
·
(
B − Ā

)
dx

= 2
N∑
i=1

∫
Ω
B∇z(i) · ∇ψ(i)dx− 2

N∑
i=1

∫
Ω
Ā∇z(i) · ∇ψ(i)dx = 0,

which finishes the proof.

In order to formulate our first main result we introduce

ρ
(i)
h := inf

vh∈Xh

‖z(i) − vh‖H1 , 1 ≤ i ≤ N and ρh := max
1≤i≤N

ρ
(i)
h .

Note that ρh → 0 as h → 0.
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Theorem 3.2. Let Aδ
h ∈ M be a solution of (P δ

h ) and suppose that

γ → 0,
δ√
γ
→ 0,

ρh√
γ
→ 0, as δ → 0, h → 0. (3.3)

Then Aδ
h → Ā in L2(Ω,Rn,n) as δ → 0, h → 0, where Ā ∈ M is as in (3.2).

Proof. Given sequences (δk)k∈N, (hk)k∈N with limk→∞ δk = 0, limk→∞ hk = 0, choose γk > 0

such that limk→∞ γk = 0 and

δk√
γk

→ 0,
ρhk√
γk

→ 0 as k → ∞. (3.4)

Furthermore, let Ak = Aδk
hk

∈ M be a solution of (P δk
hk
). We deduce from Theorem 2.4 that

there exists a subsequence (Ak′)k′∈N and A0 ∈ M, A1 ∈ L∞(Ω,Rn,n) such that

Ak′
Hd→ A0, Ak′

∗
⇀ A1 in L∞(Ω,Rn,n).

Corollary 2.5 implies that

A0 ≤ A1 a.e. in Ω, ‖A0‖2 ≤ lim inf
k′→∞

‖Ak′‖2. (3.5)

For better readability we write again (Ak)k∈N instead of (Ak′)k′∈N.

We first claim that A0 ∈ M . Since Ak is a minimum of (P δk
hk
) we infer that Jδk

hk
(Ak) ≤ Jδk

hk
(Ā),

so that

1

2

N∑
i=1

‖y(i)hk
− z

(i)
δk
‖2 + γk

2
‖Ak‖2 ≤

1

2

N∑
i=1

‖z̄(i)hk
− z

(i)
δk
‖2 + γk

2
‖Ā‖2.

Here, y
(i)
hk

= Thk
(Ak, f

(i)
δk

), z̄
(i)
hk

= Thk
(Ā, f

(i)
δk

), 1 ≤ i ≤ N . As a consequence we obtain with

the help of (1.2)

N∑
i=1

‖y(i)hk
− z(i)‖2 ≤ 2

N∑
i=1

‖y(i)hk
− z

(i)
δk
‖2 + 2

N∑
i=1

‖z(i)δk
− z(i)‖2

≤ 2
N∑
i=1

‖z̄(i)hk
− z

(i)
δk
‖2 + 2γk‖Ā‖2 + 2Nδ2k. (3.6)

In order to estimate the first term on the right hand side we use (1.3), (1.2), (2.4), (2.5) and

the definition of ρh and obtain for i = 1, . . . , N

‖z̄(i)hk
− z

(i)
δk
‖L2 ≤ ‖z̄(i)hk

− z(i)‖H1 + ‖z(i) − z
(i)
δk
‖L2 (3.7)

≤ ‖Thk
(Ā, f

(i)
δk

− f (i))‖H1 + ‖Thk
(Ā, f (i))− T (Ā, f (i))‖H1 + δk

≤ C‖f (i)
δk

− f (i)‖H−1 + Cρhk
+ δk

≤ C(δk + ρhk
).

Inserting (3.7) into (3.6) we infer that y
(i)
hk

→ z(i) in L2(Ω) as k → ∞, 1 ≤ i ≤ N . On the

other hand we have that

y
(i)
hk

= Thk
(Ak, f

(i)) + Thk
(f

(i)
δk

− f (i)) ⇀ T (A0, f
(i)) in H1

0 (Ω)
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recalling (2.4), (1.2) and the fact that Ak
Hd→ A0. As a result we infer that

z(i) = T (A0, f
(i)), 1 ≤ i ≤ N

and therefore A0 ∈ M .

Let us show next that A0 = Ā. To see this, let B ∈ M be arbitrary. Since Jδk
hk
(Ak) ≤ Jδk

hk
(B)

we have

1

2

N∑
i=1

‖y(i)hk
− z

(i)
δk
‖2 + γk

2
‖Ak‖2 ≤

1

2

N∑
i=1

‖z(i)hk
− z

(i)
δk
‖2 + γk

2
‖B‖2, (3.8)

where again y
(i)
hk

= Thk
(Ak, f

(i)
δk

), while z
(i)
hk

= Thk
(B, f

(i)
δk

), 1 ≤ i ≤ N . Similarly as in (3.7) we

obtain

‖z(i)hk
− z

(i)
δk
‖ ≤ C(δk + ρhk

)

so that (3.8) yields

‖Ak‖2 ≤ C
( δ2k
γk

+
ρ2hk

γk

)
+ ‖B‖2. (3.9)

Sending k → ∞ we infer from (3.5) and (3.4) that ‖A0‖ ≤ ‖B‖ for every B ∈ M , so that we

deduce that A0 = Ā. Finally,

‖Ak − Ā‖2 = ‖Ak −A0‖2 = ‖Ak‖2 + ‖A0‖2 − 2(Ak, A0)L2

from which we infer with the help of (3.9) (with B = A0) and the fact that Ak
∗
⇀ A1 in

L∞(Ω,Rn,n)

lim sup
k→∞

‖Ak − Ā‖2 ≤ 2‖A0‖2 − 2(A1, A0)L2 ≤ 0,

since A0 ≤ A1 a.e. in Ω. In conclusion, Ak → Ā, k → ∞ in L2(Ω,Rn,n). Since the limit is

unique, the whole sequence converges to Ā and the theorem is proved.

4 Error bound

In order to obtain an error estimate we require stronger conditions on the data of our problem.

In what follows we shall assume that Ω is a bounded, polygonal subset of R2 and that

z(i) ∈ H1
0 (Ω) ∩W 2,p(Ω), f (i) ∈ Lp(Ω), 1 ≤ i ≤ N for some p > 2. (4.1)

Furthermore, we suppose that there exist ψ(i) ∈ H1
0 (Ω) ∩ W 2,p(Ω), 1 ≤ i ≤ N such that

z(i) = T (Ā, f (i)), 1 ≤ i ≤ N , where the matrix function Ā satisfies

Ā(x) = PK

(
N∑
i=1

∇z(i)(x)⊗∇ψ(i)(x)

)
a.e. in Ω. (4.2)

In addition, we assume that there exists μ > 2 such that

‖T (Ā, f)‖W 2,q ≤ C‖f‖Lq , f ∈ Lq(Ω), 1 < q < μ. (4.3)

Note that Ā ∈ M and satisfies ‖Ā‖ = min
B∈M

‖B‖ in view of Lemma 3.1. Let us write Ā(x) =

PK

(
E(x)

)
, where E(x) =

∑N
i=1∇z(i)(x) ⊗ ∇ψ(i)(x). Since ∇z(i),∇ψ(i) ∈ W 1,p(Ω,Rn) and
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the embedding W 1,p(Ω) ↪→ C0(Ω̄) is continuous we have that E ∈ W 1,p(Ω,Sn), which we

may extend to a function E ∈ W 1,p(Rn,Sn). Furthermore, the projection PK is Lipschitz

continuous with Lipschitz constant 1, so that∫
Rn

|ākl(x+ h)− ākl(x)|p
|h|p dx =

∫
Rn

|
(
PK

(
E(x+ h)

)
− PK

(
E(x)

))
ek · el|p

|h|p dx

≤
∫
Rn

|E(x+ h)− E(x)|p
|h|p dx ≤ C,

which implies that

ākl ∈ W 1,p(Ω), 1 ≤ k, l ≤ 2. (4.4)

Let us next interpret (4.2) as a projected source condition (see e.g. [7], which also contains

further references). To do so, we assume for a moment that f
(i)
δ = f (i) and write the objective

functional in (P) in the form

J(A) =
1

2
‖F (A) − Z‖2 + γ

2
‖A‖2,

where F : M → L2(Ω)N is given by Fi(A) = T (A, f (i)) and Zi = z
(i)
δ , 1 ≤ i ≤ N . We claim:

Lemma 4.1. There exists Θ ∈ L2(Ω)N such that

Ā = PM
(
F ′(Ā)∗Θ),

where PM denotes the orthogonal projection onto M in L2(Ω,Sn).

Proof. Recalling (2.2) we see that

F ′(Ā)H = (w̄(i))1≤i≤N , H ∈ L∞(Ω,Sn),

where w̄(i) ∈ H1
0 (Ω) are the solutions of∫
Ω
Ā∇w̄(i) · ∇vdx = −

∫
Ω
H∇z(i) · ∇vdx for all v ∈ H1

0 (Ω). (4.5)

In view of (4.4) the functions θ(i) := ∇ ·
(
Ā∇ψ(i)

)
belong to L2(Ω). Hence Θ = (θ(i))1≤i≤N ∈

L2(Ω)N and we have for H ∈ L∞(Ω,Sn)

〈F ′(Ā)∗Θ,H〉 =
(
Θ, F ′(Ā)H

)
L2 =

N∑
i=1

∫
Ω
∇ ·

(
Ā∇ψ(i)

)
w̄(i)dx

= −
N∑
i=1

∫
Ω
Ā∇w̄(i) · ∇ψ(i)dx =

N∑
i=1

∫
Ω
H∇z(i) · ∇ψ(i)dx

=
( N∑
i=1

∇z(i) ⊗∇ψ(i),H
)
L2 .

Here we have used (4.5). As a consequence we may identify

F ′(Ā)∗Θ =

N∑
i=1

∇z(i) ⊗∇ψ(i) ∈ L2(Ω,Sn)

9



and therefore we obtain for every B ∈ M
(
F ′(Ā)∗Θ− Ā, B − Ā

)
L2

=

∫
Ω

( N∑
i=1

∇z(i) ⊗∇ψ(i) − PK

( N∑
i=1

∇z(i) ⊗∇ψ(i)
))

·
(
B − PK

( N∑
i=1

∇z(i) ⊗∇ψ(i)
))

dx

≤ 0,

by (2.1), which implies the result.

Next, let us suppose that the sequence of triangulations (Th)h>0 is quasiuniform.We introduce

the Ritz projection Rh : H1
0 (Ω) → Xh associated with Ā by∫

Ω
Ā∇Rhz · ∇vhdx =

∫
Ω
Ā∇z · ∇vhdx for all vh ∈ Xh.

In view of (4.3) and (4.4) we may apply [2, Theorem 8.1.11] and [2, Theorem 8.5.3] together

with inequality (8.5.5) and deduce that there exists h0 > 0 so that for all 0 < h ≤ h0

‖Rhz‖W 1,∞ ≤ C‖z‖W 1,∞ , z ∈ W 1,∞(Ω) (4.6)

‖z −Rhz‖+ h‖∇(z −Rhz)‖ ≤ Ch2‖z‖H2 , z ∈ H2(Ω) ∩H1
0 (Ω). (4.7)

In particular we obtain for all f ∈ L2(Ω)

‖Th(Ā, f)− T (Ā, f)‖ ≤ Ch2‖f‖. (4.8)

Theorem 4.2. Let the conditions (4.1)–(4.3) be satisfied and Aδ
h ∈ M be a solution of (P δ

h ).

If
√
δ < h ≤ h0 and γ = ρh2 for some suitable ρ > 0, then

‖Aδ
h − Ā‖ ≤ Ch,

‖y(i)h − z(i)‖+ h‖∇(y
(i)
h − z(i))‖ ≤ Ch2, 1 ≤ i ≤ N,

where y
(i)
h = Th(A

δ
h, f

(i)
δ ), 1 ≤ i ≤ N .

Proof. Clearly,

γ

2
‖Aδ

h − Ā‖2 =
γ

2
‖Aδ

h‖2 − γ(Aδ
h, Ā)L2 +

γ

2
‖Ā‖2 (4.9)

= Jδ
h(A

δ
h)−

1

2

N∑
i=1

‖y(i)h − z
(i)
δ ‖2 + γ(Ā−Aδ

h, Ā)L2 − γ

2
‖Ā‖2.

Since Aδ
h is a solution of (P δ

h) we infer

Jδ
h(A

δ
h) ≤ Jδ

h(Ā) =
γ

2
‖Ā‖2 + 1

2

N∑
i=1

‖z(i)h − z
(i)
δ ‖2,

where z
(i)
h = Th(Ā, f

(i)
δ ). Furthermore, recalling (4.2) and (2.1) we have

(Ā−Aδ
h, Ā)L2 ≤

N∑
i=1

∫
Ω
(Ā−Aδ

h) · ∇z(i) ⊗∇ψ(i)dx =

N∑
i=1

∫
Ω
(Ā−Aδ

h)∇z(i) · ∇ψ(i)dx.

10



Inserting the above estimates into (4.9) we obtain

γ

2
‖Aδ

h − Ā‖2 (4.10)

≤ 1

2

N∑
i=1

‖z(i)h − z
(i)
δ ‖2 − 1

2

N∑
i=1

‖y(i)h − z
(i)
δ ‖2 + γ

N∑
i=1

∫
Ω
(Ā−Aδ

h)∇z(i) · ∇ψ(i)dx.

In order to estimate the first term we employ (2.4), (4.8) and (1.2)

‖z(i)h − z
(i)
δ ‖ ≤ ‖Th(Ā, f

(i)
δ − f (i))‖+ ‖Th(Ā, f (i))− T (Ā, f (i))‖+ ‖z(i) − z

(i)
δ ‖

≤ C‖f (i)
δ − f (i)‖H−1 + Ch2‖f (i)‖+ δ ≤ Cδ + Ch2.

If we use this bound in (4.10) we deduce

γ

2
‖Aδ

h − Ā‖2 + 1

2

N∑
i=1

‖y(i)h − z
(i)
δ ‖2 ≤ Cδ2 + Ch4 + γ

N∑
i=1

S(i), (4.11)

where

S(i) =

∫
Ω
(Ā−Aδ

h)∇z(i) · ∇ψ(i)dx =

∫
Ω
(Ā−Aδ

h)∇z(i) · ∇(ψ(i) −Rhψ
(i))dx

+

∫
Ω
(Ā−Aδ

h)∇(z(i) − y
(i)
h ) · ∇Rhψ

(i)dx+

∫
Ω
(Ā−Aδ

h)∇y
(i)
h · ∇Rhψ

(i)dx

≡ S
(i)
1 + S

(i)
2 + S

(i)
3 .

Using the embedding W 2,p(Ω) ↪→ C1(Ω̄) together with (4.7) we have

|S(i)
1 | ≤ ‖Aδ

h − Ā‖‖∇z(i)‖L∞‖∇(ψ(i) −Rhψ
(i))‖ (4.12)

≤ Ch‖ψ(i)‖H2‖z(i)‖W 2,p‖Aδ
h − Ā‖ ≤ Ch‖Aδ

h − Ā‖.

Next, (4.6) implies

|S(i)
2 | ≤ ‖Aδ

h − Ā‖‖∇(z(i) − y
(i)
h )‖‖∇Rhψ

(i)‖L∞

≤ C‖ψ(i)‖W 1,∞‖Aδ
h − Ā‖‖∇(z(i) − y

(i)
h )‖ (4.13)

≤ C‖Aδ
h − Ā‖‖∇(z(i) − y

(i)
h )‖.

Abbreviating z̃
(i)
h = Th(Ā, f (i)) we deduce from (2.5), an inverse estimate, (1.2) and (4.8)

that

‖∇(z(i) − y
(i)
h )‖ ≤ ‖∇(z(i) − z̃

(i)
h )‖+ ‖∇(z̃

(i)
h − y

(i)
h )‖

≤ Ch‖z(i)‖H2 + Ch−1‖z̃(i)h − y
(i)
h ‖

≤ Ch+ Ch−1
(
‖z̃(i)h − z(i)‖+ ‖z(i) − z

(i)
δ ‖+ ‖z(i)δ − y

(i)
h ‖

)
≤ Ch+ Ch−1δ + Ch−1‖z(i)δ − y

(i)
h ‖.

Inserting this bound into (4.13) we obtain

|S(i)
2 | ≤ C‖Aδ

h − Ā‖
(
h+ h−1δ + h−1‖z(i)δ − y

(i)
h ‖

)
. (4.14)
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Finally, the definition of Rh together with the fact that y
(i)
h = Th(A

δ
h, f

(i)
δ ), z(i) = T (Ā, f (i))

imply

S
(i)
3 =

∫
Ω
Ā∇y

(i)
h · ∇Rhψ

(i)dx−
∫
Ω
Aδ

h∇y
(i)
h · ∇Rhψ

(i)dx

=

∫
Ω
Ā∇y

(i)
h · ∇ψ(i)dx− 〈f (i)

δ , Rhψ
(i)〉

= −
∫
Ω
∇ ·

(
Ā∇ψ(i)

)
y
(i)
h dx−

∫
Ω
Ā∇z(i) · ∇Rhψ

(i)dx+ 〈f (i) − f
(i)
δ , Rhψ

(i)〉

= −
∫
Ω
∇ ·

(
Ā∇ψ(i)

)
y
(i)
h dx−

∫
Ω
Ā∇z(i) · ∇(Rhψ

(i) − ψ(i))dx−
∫
Ω
Ā∇z(i) · ∇ψ(i)dx

+〈f (i) − f
(i)
δ , Rhψ

(i)〉

=

∫
Ω
∇ ·

(
Ā∇ψ(i)

)
(z(i) − y

(i)
h )dx+

∫
Ω
Ā∇(z(i) −Rhz

(i)) · ∇(ψ(i) −Rhψ
(i))dx

+〈f (i) − f
(i)
δ , Rhψ

(i)〉.

Hence, we may estimate with the help of (4.7) and (1.2)

|S(i)
3 | ≤ ‖∇ ·

(
Ā∇ψ(i)

)
‖ ‖z(i) − y

(i)
h ‖+ ‖f (i) − f

(i)
δ ‖H−1‖Rhψ

(i)‖H1

+‖Ā‖L∞‖∇(z(i) −Rhz
(i))‖ ‖∇(ψ(i) −Rhψ

(i))‖

≤ C
(
‖z(i) − z

(i)
δ ‖+ ‖z(i)δ − y

(i)
h ‖

)
+ Cδ‖ψ(i)‖H1 + Ch2‖z(i)‖H2‖ψ(i)‖H2

≤ C‖z(i)δ − y
(i)
h ‖+ Cδ + Ch2. (4.15)

Inserting (4.12), (4.14) and (4.15) into (4.11) we deduce that

γ

2
‖Aδ

h − Ā‖2 + 1

2

N∑
i=1

‖y(i)h − z
(i)
δ ‖2 (4.16)

≤ Cδ2 + Ch4 + Cγ‖Aδ
h − Ā‖

(
h+ h−1δ + h−1

N∑
i=1

‖z(i)δ − y
(i)
h ‖

)

+Cγ
N∑
i=1

‖z(i)δ − y
(i)
h ‖+ Cγδ + Cγh2

≤ γ

4
‖Aδ

h − Ā‖2 + (Cγh−2 +
1

8

) N∑
i=1

‖y(i)h − z
(i)
δ ‖2

+C
(
δ2 + h4 + γh2 + γh−2δ2 + γδ + γ2

)
.

If we choose γ = ρh2 with ρ = 1
8C we finally obtain

‖Aδ
h − Ā‖2 ≤ C

(
δ2

γ
+

h4

γ
+ h2 +

δ2

h2
+ δ + γ

)
≤ Ch2

since δ ≤ h2. Returning to (4.16) we infer
∑N

i=1 ‖y
(i)
h − z

(i)
δ ‖2 ≤ Ch4, so that

‖y(i)h − z(i)‖ ≤ ‖y(i)h − z
(i)
δ ‖+ ‖z(i)δ − z(i)‖ ≤ Ch2 + δ ≤ Ch2, 1 ≤ i ≤ N (4.17)
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in view of the above relations betweeen γ, h and δ. Finally, (4.7), an inverse estimate and

(4.17) yield

‖∇(y
(i)
h − z(i))‖ ≤ ‖∇(y

(i)
h −Rhz

(i))‖ + ‖∇(Rhz
(i) − z(i))‖

≤ Ch−1‖y(i)h −Rhz
(i)‖+ Ch‖z(i)‖H2

≤ Ch−1
(
‖y(i)h − z(i)‖+ ‖z(i) −Rhz

(i)‖
)
+ Ch

≤ Ch,

which finishes the proof.

5 Numerical example

Let Ω := (−1, 1)2 ⊂ R
2 and consider for N = 1 the data (z, f) ∈ H1

0 (Ω)×H−1(Ω) with

z(x) := (1− x21)(1 − x22),

f(x) := −∇ ·
(
Ā(x)∇z(x)

)
for x = (x1, x2) ∈ Ω. The diffusion matrix is given by

Ā(x) := PK

(
∇z(x)⊗∇z(x)

)
,

where K = {A ∈ S2 | a|ξ|2 ≤ Aξ · ξ ≤ b|ξ|2 for all ξ ∈ R
2}. By construction we have z =

T (Ā, f), while Lemma 3.1 implies that

‖Ā‖L2 = min
B∈M

‖B‖L2 .

It is not difficult to verify that for a given matrix A ∈ S2 we have

PK(A) = Stdiag
(
P[a,b](λ1(A)), P[a,b](λ2(A))

)
S,

where λ1(A), λ2(A) denote the eigenvalues of A, S is an orthogonal matrix such that StAS =

diag
(
λ1(A), λ2(A)

)
and P[a,b](κ) := max(a,min(κ, b)). A calculation shows that

Ā(x) = aI2 +
P[a,b](η(x)) − a

η(x)
∇z(x)⊗∇z(x),

where η(x) = 4
(
x21(1− x22)

2 + x22(1− x21)
2
)
.

For the numerical verification of the estimates in Theorem 4.2 we choose a sequence of quasi-

uniform triangulations {Thl
} generated with the POIMESH and REFINEMESH environment

of MATLAB, where hl = 2−l, l ∈ N denotes the gridsize of Thl
. We consider the minimization

problem (P δ
h) for δ = δl, γ = γl = 0.01h2l and take zδ = zδl as the Lagrange interpolant of

z, and fδ = fδl as piecewise constant approximation to f on Ω defined through the function

values in the barycenters of the triangles in Thl
. We note, that since f is discontinuous (1.2) in

general can not be satisfied with δ ∼ h2 for choice of fδ. However, this fact seems not to have

significant effects on the convergence history of our numerical solutions presented in Tab. 1.

The constants a and b in the definition of K are chosen as a = 0.5 and b = 10. The discrete
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problems (P δ
h) are solved using the projected steepest descent method with Armijo step size

rule (see e.g. [12]), which we briefly describe for the convenience of the reader. In view of

Remark 2.3 it is sufficient to iterate within the class of matrices in M that are piecewise

constant on Th. Given such an A the new iterate is computed according to

A+ = A(τ) with τ = max
r∈N

{βr;Jl(A(β
r))− Jl(A) ≤ − σ

βr
‖A(βr)−A‖2}

where we have abbreviated Jl = Jδl
hl
. Furthermore, β ∈ (0, 1) and

A(τ)|T := PK

(
A|T + τ

(
∇yh|T ⊗∇ph|T − γA|T

))
, T ∈ Th.

Here, yh = Th(A, fδl) and ph ∈ Xh is the solution of the adjoint problem∫
Ω
Ah∇vh · ∇phdx =

∫
Ω
(yh − zl)vhdx for all vh ∈ Xh.

In our calculations we chose as initial matrix

A0 := diag(1.01, 1.01)PL2

h (A),

where PL2

h denotes the L2-projection onto the space of piecewise constant functions over the

grid Th. The iteration on refinement level l was stopped if

‖A+ −A(1)‖ ≤ τa + τr‖A0 −A0(1)‖

or the maximum number of l ∗ 100 iterations was reached, where τa = 10−3 ∗ hl and τr =

10−2 ∗ hl. Furthermore, we choose β := 0.5 and σ := 10−4. For h = hl the numerical solution

is denoted by Āh with associated optimal state ȳh. The numerical results are summarized

in Tab. 1, where we display the refinement level l, the number of iterations, the value of

γl, the final L2-errors in the parameter, the final L2-errors in the states, both together with

their experimental order of convergence (EOC), and the convergence history of the steepest

descent algorithm. As predicted by Theorem 4.2, we observe quadratic convergence for the

states. The matrix parameters in the present example seem to converge faster than predicted

by the numerical analysis.

Fig. 1 from left to right shows ȳh, the Lagrange interpolant of Ihz and ȳh−Ihz for refinement

level 5. As in the numerical experiments of [4] one observes that the difference between ȳh

and Ihz is comparatively large in regions where ∇z (and thus ∇Ihz) is small which is in

agreement with classical results on the identifiability of scalar diffusion coefficients, see e.g.

[18].
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l it γl ‖Ā− Āh‖ EOC ‖ȳh − z‖ EOC ‖Āh −Ah(1)‖ τa + τrr0

1 85 1.e-2 1.26 - 1.41e-1 - 3.88e-3 3.84e-3

2 200 2.5e-3 4.42e-1 1.51 2.87e-2 2.30 6.39e-4 7.58e-4

3 300 6.25e-4 1.10e-1 2.00 6.36e-3 2.17 2.37e-4 8.37e-4

4 400 1.56e-4 3.03e-2 1.86 1.51e-3 2.07 1.26e-4 3.00e-4

5 500 3.91e-5 1.09e-2 1.47 4.17e-4 1.87 6.44e-5 7.70e-5

1/5: 1.71 1/5: 2.10

mean 1.71 mean 2.10

Table 1: Mesh parameters, errors, experimental order of convergence, and convergence history

of the solution algorithm. The table is supplemented with the EOC between finest and coarsest

level (1/5) and with the mean value of the EOC over the refinement levels.

Figure 1: Numerical solution, desired state, and error ȳh − Ihz on refinement level 5.
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