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Abstract. We propose a model order reduction (MOR) approach for
networks containing simple and complex components. Simple compo-
nents are modeled by linear ODE (and/or DAE) systems, while complex
components are modeled by nonlinear PDE (and/or PDAE) systems.
These systems are coupled through the network topology using the Kirch-
hoff laws. As application we consider MOR for electrical networks, where
semiconductors form the complex components which are modeled by the
transient drift-diffusion equations (DDEs). We sketch how proper orthog-
onal decomposition (POD) combined with discrete empirical interpola-
tion (DEIM) and passivity-preserving balanced truncation methods for
electrical circuits (PABTEC) can be used to reduce the dimension of the
model. Furthermore we investigate residual-based sampling to construct
reduced order models which are valid over a certain parameter range.
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1 Introduction

In this paper we propose a simulation-based MOR approach for the reduction
of networks consisting of (many) simple and (only few) complex components.
We assume that the simple and complex components are modeled by systems
of linear ODEs (DAEs) and nonlinear PDEs (PDAEs), respectively, which are
coupled through the network topology using the Kirchhoff laws.
As application we consider electrical networks where the simple components
consist of resistors, capacitors, voltage sources, current sources, and inductors,
and the complex components are formed by e.g. semi-conductors, see Figure 1.
The overall system is then represented by a nonlinear partial differential algebraic
equation (PDAE) system, see e.g. [3, 8]. In this paper we address the following
issues:
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Fig. 1. Sketch of a coupled system with one semiconductor forming the complex com-
ponent.

1. construction of reduced order models for the complex components;
2. reduction of the complete network while retaining the structure of a network;
3. parametric MOR for complex components.

2 Example: Modeling of an electrical network

In electrical networks resistors, capacitors, and inductors form the simple com-
ponents which in general are modeled by linear ODEs. Complex components are
given by e.g. semiconductors which are modeled by PDAE systems, see below.
Considering additional voltage and current sources the overall network can be
modeled by a PDAE which is obtained as follows. First the network contain-
ing only the simple components is modeled by a differential algebraic equation
(DAE) which is obtained by a modified nodal analysis (MNA), including the
Ohmic contacts ΓO,k of the semiconductors as network nodes, see Figure 1. De-
noting by e the node potentials and by jL, jV , and jS the currents of inductive,
voltage source, and semiconductor branches, the DAE reads (see [8, 12, 19])

AC
d

dt
qC(A

�
Ce, t) +ARg(A

�
Re, t) +ALjL +AV jV +ASjS = −AI is(t), (1)

d

dt
φL(jL, t)− A�

Le = 0, (2)

A�
V e = vs(t). (3)

Here, the incidence matrix A = [AR, AC , AL, AV , AS , AI ] = (aij) represents the
network topology, e.g. at each non mass node i, aij = 1 if the branch j leaves
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node i and aij = −1 if the branch j enters node i and aij = 0 elsewhere. The
indices R,C,L, V, S, I denote the capacitive, resistive, inductive, voltage source,
semiconductor, and current source branches, respectively. In particular the ma-
trix AS denotes the semiconductor incidence matrix. The vector valued functions
qC , g and φL are continuously differentiable defining the voltage-current rela-
tions of the network components. The continuous vector valued functions vs and
is are the voltage and current sources. For details we refer to [10].

In a second step the semiconductors are modeled by PDAE systems, which
are then coupled to the DAE of the network. Here we use the transient drift-
diffusion equations as a continuous model for semiconductors, see e.g. [1, 3] and
the references cited there. Using the notation and scaling introduced there, we
obtain the following scaled system of PDEs for the electrostatic potential ψ(t, x),
the electron and hole concentrations n(t, x) and p(t, x) and the current densities
Jn(t, x) and Jp(t, x):

λΔψ = n− p− C, (4)

−∂tn+ νn div Jn = R(n, p), (5)

∂tp+ νp div Jp = −R(n, p), (6)

Jn = ∇n− n∇ψ, (7)

Jp = −∇p− p∇ψ. (8)

Here (t, x) ∈ [0, T ]×Ω and Ω ⊂ R
d. The nonlinear function R describes the rate

of electron/hole recombination, λ > 0 is the scaled Debye length, νn and νp are
the scaled mobilities of electrons and holes. The temperature is assumed to be
constant which leads to a constant thermal voltage UT . The function C is the
time independent doping profile.

This system is supplemented with the boundary conditions

ψ(t, x)=ψbi(x)+(A�
S e(t))k=UT log

(√
C(x)2 + 4n2

i+C(x)

2ni

)
+(A�

S e(t))k, (9)

n(t, x)=
1

2

(√
C(x)2 + 4n2

i + C(x)

)
, p(t, x)=

1

2

(√
C(x)2 + 4n2

i − C(x)

)
, (10)

for (t, x) ∈ [0, T ]×ΓO,k, where the potential of the nodes which are connected to a
semiconductor interface enter in the boundary conditions for ψ. Here, ψbi(x) de-
notes the build-in potential and ni the constant intrinsic concentration. All other
parts of the boundary are isolation boundaries ΓI := Γ \ ΓO, where ∇ψ · ν = 0,
Jn · ν = 0 and Jp · ν = 0 holds. The semiconductor model (4)-(8) is coupled to
the network through the semiconductor current vector jS with the components

jS,k =

∫
ΓO,k

(Jn + Jp − ε∂t∇ψ) · ν dσ, (11)

where ν denotes the unit outward normal to the interface ΓO,k. More details,
including a precise description of the coupling, are given in [10]. The analytical
and numerical analysis of PDAE systems of the presented form is subject to
current research, see [3, 7, 16, 19].
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3 Reduced order models for complex components

We assume that every complex component is modeled by a time-dependent PDE
or PDAE system which is amenable to a numerical treatment with Galerkin
methods. After appropriate spatial discretization the method of lines then yields
a large, nonlinear ODE system representing the spatially discrete complex com-
ponent. This nonlinear ODE or DAE system now represents the complex com-
ponent in the network. The reduction of the complex components is based on
simulation-based MOR with POD. In this approach time snapshots of the com-
plex components are extracted from snapshots of the simulation of the complete
network. POD for the complex component then is performed using the extracted
parts of the snapshots. In combination with DEIM [5] this now delivers low di-
mensional, nonlinear surrogate models for the complex components, see [9] for
details.

Among other things it is an important feature of this reduction technique
that it delivers distinct reduced order models for the same complex component
at different locations in the network.

As example let us consider the rectifier network in Figure 2 (left). The POD
basis functions of two identical semiconductors may be different due to different
operating states of the semiconductors. Simulation results for this network are
plotted in Figure 2 (right). Details of the implementation are sketched in Sec-
tion 4. The distance between the linear spaces U1 and U2 which are spanned,
e.g., by the POD-basis-functions U1

ψ associated to ψ for the diode S1 and U2
ψ

associated to ψ for the diode S2 respectively, is measured by

d(U1, U2) := max
u∈U1

‖u‖2=1

min
v∈U2

‖v‖2=1

‖u− v‖2.

Exploiting the orthonormality of the bases U1
ψ and U2

ψ and using a Lagrange
framework, we find

d(U1, U2) =

√
2− 2

√
λ,

where λ is the smallest eigenvalue of the positive definite matrix SS� with
Sij = 〈u1

ψ,i, u
2
ψ,j〉2. Here, u1

ψ,i denotes the i-th node in U2
ψ, u

2
ψ,j the j-th node

in U2
ψ. The distances for the rectifier network are given in Table 1. While the

reduced model for the diodes S1 and S3 are almost equal, the reduced models

Table 1. Distances between reduced models in the rectifier network.

Δ d(U1, U2) d(U1, U3)

10−4 0.61288 5.373 · 10−8

10−5 0.50766 4.712 · 10−8

10−6 0.45492 2.767 · 10−7

10−7 0.54834 1.211 · 10−6
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for the diodes S1 and S2 are significantly different. Similar results are obtained
for the reduction of the variables n, p, etc.
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Fig. 2. Left: Rectifier network with 4 identical semiconductors. Right: Simulation re-
sults for the rectifier network. The input vs is sinusoidal with frequency 1 GHz and
offset +1.5 V . The time integration of the underlying nonlinear DAE system is per-
formed with DASPK [4, 14].

4 Reduction of the whole network

Let us assume that the overall network with simple and complex components now
is represented by a nonlinear DAE system, where the linear part stems from the
simple components, and the nonlinear part from the spatially-discrete complex
components. The reduction for the complex components now is performed as
in the previous section, whereas the linear part is approximated by a reduced
order linear model of lower dimension. In the case of an electrical network the
passivity preserving reduction method PABTEC [18] can be used to perform the
reduction of the linear part of the network. Finally, the reduced order models, for
the linear an the nonlinear part have to be recoupled appropriately, for details
we refer to e.g. [17]. To illustrate the performance of this approach we report on
the numerical results obtained in [11] for an electrical network formed by an RC
chain with one diode, see Figure 3.

For model reduction of the linear circuit equations we use the MATLAB
Toolbox PABTEC [15]. The POD method is implemented in C++ based on the
FEM library deal.II [2] for discretizing the drift-diffusion equations. The obtained
large and sparse nonlinear DAE system as well as the small and dense reduced-
order model are integrated using the DASPK software package [4] based on a
BDF method, where the nonlinear equations are solved using Newton’s method.
Furthermore, the direct sparse solver SuperLU [6] is employed for solving linear
systems.
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Fig. 3. RC chain with a diode.

For the RC circuit with one diode in Figure 3 we use the input

u(t) = uV (t) = 10 sin(2πf0t)
4

with the frequency f0 = 104 Hz. The output of the system is y(t) = −ıV (t). We
simulate the models over the fixed time horizon [0, 2.5f0 ]. The linear resistors have
the same resistance R = 2kΩ and the linear capacitors have the same capaci-
tance C = 0.02μF.
We use the transient drift-diffusion equations to model the diode. For the param-
eters of the diode and the related scaling we refer to [11]. In Table 2 we collect
the numerical results for our reduction strategy. The outputs of the systems with
the reduced network and POD-reduced diode are compared to the fully, spatially
semidiscretized model with 7510 variables.

Here we construct a POD-reduced model for the diode based on a FE simula-
tion with 500 nodes, where we apply DEIM for the reduction of the nonlinearity.
The resulting reduced-order model for the diode is a dense nonlinear DAE of
dimension 105 while the original spatially discrete model of the diode has di-
mension 6006. In Table 2 we summarize the results of the numerical simulations
for the full nonlinear DAE system and the recoupled reduced system. The re-
sults demonstrate that the recoupling of the PABTEC reduced order model with
the POD-MOR model for the semiconductor delivers an overall reduced-order
model for the circuit-device system which allows significantly faster simulations
(speedup-factor is about 20) while keeping the relative errors below 10 %.

In Figure 4 the evolution of the output currents is depicted for the full and
the reduced systems. In addition, the evolutions of the output currents for the
partially reduced systems (only reduction of the linear network, and only reduc-
tion of the diode) are shown.
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Table 2. Statistics for model reduction of the coupled circuit-device system.

network diode dim. simul. Jacobian absolute relative
(MNA (DD time evaluations error error
equations) equations) ‖y − ŷ‖L2‖y − ŷ‖L2/‖y‖L2

unreduced unreduced 7510 23.37s 20
reduced reduced 130 1.19s 11 2.954 · 10−6 1.000 · 10−1

Fig. 4. Input voltage and output currents for different model reduction setups.

5 Parametric model order reduction with residual based
sampling

One major difficulty in simulation based MOR for complex components modeled
by e.g. nonlinear PDE systems consists in the construction of reduced order
models which are valid over a certain input parameter range, where the latter
for electrical networks may be given by the input frequency. To obtain reduced
order models for the complex components we propose residual based sampling
which detects extreme parameters by evaluating the residual R of the reduced
models over the parameter span. The greedy approach proposed in [13] then is
used to enrich the simulation basis for the construction of a new reduced order
model of the complex component, see Algorithm 1.

We summarize our ideas in the following sampling algorithm, for details
see [10]. Let P denote the parameter space and ω ∈ P a parameter. Furhtermore,
let R(zPOD(ω, P )) denote the residual obtained by evaluation of the unreduced
model at the solution of the reduced order model zPOD(ω, P ) based on snapshots
taken on the parameter set P ⊂ P .

Algorithm 1 (Sampling)

1. Select ω1 ∈ P, Ptest ⊂ P, tol > 0, and set k := 1, P1 := {ω1}. Simulate
the unreduced model at ω1 and calculate the reduced model with POD basis
functions U1.
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2. Calculate the residual ‖R(zPOD(ω, Pk))‖ for all ω ∈ Ptest.
3. Check termination conditions, e.g.

– maxω∈Ptest ‖R(zPOD(ω, Pk))‖ < tol, or
– no further reduction of residual, then STOP.

4. Calculate ωk+1 := argmaxω∈Ptest
‖R(zPOD(ω, Pk))‖.

5. Simulate the unreduced model at ωk+1 and create a new reduced model with
POD basis Uk+1 using also the already available information at ω1, . . ., ωk.

6. Set Pk+1 := Pk ∪ {ωk+1}, k := k + 1 and goto 3.

The step 5 in Algorithm 1 can be executed in different ways. If offline time and
offline memory requirements are not critical one may combine snapshots from
all simulations of the full model and redo the model order reduction on the
large snapshot ensemble. Otherwise a new reduced model at reference frequency
ωk+1 may be constructed using the current POD-basis Ū and then perform an
additional POD step on (Uk, Ū).

Fig. 5. Basic test circuit with one diode.

To illustrate the performance of the sampling procedure we now apply Algo-
rithm 1 to provide a reduced order model of the basic circuit shown in Figure 5.
We choose the frequency of the input voltage vs as model parameter with pa-
rameter space P := [108, 1012] Hz. We initialize with a reduced model which
is constructed from the simulation of the full model at the reference frequency
ω1 := 1010 Hz. The number of POD basis functions s is chosen such that the
lack of information content Δ(s) is approximately 10−7. The relative error and
the residual are plotted in Figure 6 (left). We observe that the residual admits a
structure similar to that of the approximation error. Using Algorithm 1 the next
additional reference frequency is ω2 := 108 Hz since it maximizes the residual.

The next two iterations of the sampling algorithm are also depicted in Fig-
ure 6. Based on the residual in step 2, one selects ω3 := 1.0608 · 109 Hz as the
next reference frequency. Since no further reduction of the residual is achieved in
step 3, the algorithm terminates. The maximal errors and residuals are given in
Table 3. We note that in practical applications the error is not amenable over the
whole parameter span. However the residual at least in the presented example
seams to deliver a reliable indicator for the expected model error.
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Fig. 6. Relative reduction error (solid line) and residual (dashed line) plotted over
the frequency parameter space. The reduced model is based on simulations at the
frequency parameter space. The reduced model is based on simulations at the reference
frequencies ω1 := 1010 Hz (left), ω1 and ω2 := 108 Hz (middle), and ω1, ω2, and
ω3 := 1.0608 · 109 Hz (right). The reference frequencies are marked by vertical dotted
lines.

Table 3. Performance of Algorithm 1.

step k reference parameters max. residual max. relative error
Pk (at frequency) (at frequency)

1 {1.0000 · 1010} 9.9864 · 102 3.2189 · 100
(1.0000 · 108) (1.0000 · 108)

2 {1.0000 · 108, 1.5982 · 10−2 4.3567 · 10−2

1.0000 · 1010} (1.0608 · 109) (3.4551 · 109)
3 {1.0000 · 108, 2.2829 · 10−2 1.6225 · 10−2

1.0608 · 109, (2.7283 · 109) (1.8047 · 1010)
1.0000 · 1010}
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