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Abstract: We present a nonlinear model predictive framework for closed-loop control of two-
phase flows governed by Cahn-Hilliard Navier-Stokes system with variable density. The control
goal consists in achieving a prescribed concentration distribution in the Cahn-Hilliard part
through distributed and/or boundary control of the flow part. Special emphasis is taken on
quick control responses which are achieved through the inexact solution of the optimal control
problems appearing in the model predictive control strategy. The resulting control concept is
known as instantaneous control and is applied to feedback control of the Navier-Stokes system
in e.g. Choi et al. (1999); Hinze (2005a); Hinze and Volkwein (2002). We provide numerical
investigations which indicate that instantaneous wall parallel boundary control of the flow part
is well suited to achieve a prescribed concentration distribution in the variable density Cahn-
Hilliard Navier-Stokes system.
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1. INTRODUCTION

We present a nonlinear model predictive framework for
closed-loop control of two-phase flows governed by Cahn-
Hilliard Navier-Stokes system with variable density. The
control goal consists in achieving a prescribed concentra-
tion distribution in the Cahn-Hilliard part through dis-
tributed and/or boundary control of the flow part. Spe-
cial emphasis is taken on quick control responses which
are achieved through the inexact solution of the optimal
control problems appearing in the model predictive control
strategy. The resulting control concept is known as instan-
taneous control. Instantaneous control in the context of
flow control is proposed in e.g. Choi (1995); Choi et al.
(1999); Hinze and Kunisch (2000), and for distributed
control of the Navier-Stokes system is analyzed in Hinze
(2005a), where among other things it is shown that the
method is able to steer the system exponentially fast
to a prescribed flow profile supposing certain smallness
assumptions on the initial conditions. For an overview in
the field of nonlinear model predicitive control we refer to
Nevistic and Primbs (1997); Qin and Badgwell (2003) and
also to the monograph Grüne and Pannek (2011), where
also further references can be found.

The outline of this paper is as follows. In section 2 we
describe the concept of model predictive control. In section
3 we give a brief introduction to the variable density
Cahn-Hilliard Navier-Stokes system, including its numer-
ical treatment. In section 4 we describe the instantaneous
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control strategy for this system and demonstrate its per-
formance in section 5 by two numerical examples. Some
conclusions are given in section 6.

2. MODEL PREDICTIVE CONTROL

The aim of model predictive control (MPC) consists in
steering or keeping the state of a dynamical system to or
at a given desired trajectory, see e.g. Grüne and Pannek
(2011). To fix the concept, let us first consider an abstract
dynamical system with initial condition x0, state x(t),
observation y(t) and control u(t);

ẋ(t) +Ax(t) = b(x, t) + Bu(t), state,

y(t) = Cx(t) observation,

x(0) = x0 initial condition.

(1)

Our aim consists in constructing a nonlinear feedback
control law K with Bu(t) = K(y(t)) which steers the
observable part of the dynamical system to the desired
trajectory ȳ(t) in the observation space, i.e.

y(t)
!→ ȳ(t), (t→∞).

For ease of notation let us for the moment set B = id and
C = id, i.e. we assume full observability and allow fully
distributed controls. In section 4 we apply the concept to
control the phase field in a Cahn-Hilliard Navier-Stokes
system with different densities (Abels et al. (2012)) by
wall tangential boundary control of the flow part. The
according control and oberservation operators B and C are
also specified there.

To prepare for model predictive control, system (1) is
discretized in time using the semi-implicit Euler method



on a time grid 0 = t0 ≤ t1 ≤ . . . with tk+1 − tk = τk for
k = 0, 1, 2, . . . . Here xk denotes the state at time tk and
bk denotes the nonlinearity b(xk, tk). For given initial state
x0 we obtain the time discrete model

(I + τkA)xk+1 = xk + τkb
k + uk+1, k = 0, 1, . . . (2)

and consider for given time horizon L > 0 and α > 0 the
optimal control problem

min J(xj+1, . . . ,xj+L, uj+1, . . . , uj+L)

s.t. (2) for j = k, . . . , k + L− 1,
(Pk)

where

J(xj+1, . . . ,xj+L, uj+1, . . . , uj+L) :=
L∑
i=1

(
1

2
‖xk+i − x̄k+i‖2 +

α

2
‖uk+i‖2

)
.

Let us note that problem (Pk) for L = 1 admits a unique
solution. However, for L > 1 solutions in general need not
be unique since (2) then represents a nonlinear constraint.
In that case we assume that (Pk) admits a solution.

The idea of model predictive control now is to solve
minimization problem Pk to obtain a sequence of optimal
controls u = (uk+1, . . . , uk+L) and to use uk+1 to steer the
system to the next time-instance.

Instantaneous Control

The solution of the full optimization problem (Pk) forms
the bottleneck of the MPC approach if fast control re-
sponses are required, in particular if the prediction horizon
(i.e. L) is large. In this case the use of an approximate
solution to (Pk) in the MPC algorithm forms an option.
Various techniques are available for an approximate solu-
tion of (Pk); reduced order modeling techniques replace
the large–scale time discrete system in (Pk) by a low–
dimensional surrogate model and solve the modified op-
timization problem for an approximate optimal control
instead, see e.g. Hinze and Volkwein (2005). Here we
follow a different approach called instantaneous control,
which uses an inexact solution of problem (Pk). In its
simplest form the algorithm uses the control obtained by
performing only one steepest descent step for (Pk). In this
particular situation instantaneous control performs the
following steps for a given initialization uk+1

0 , . . . , uk+L
0 :

• Solve (2) for xk+1, . . . , xk+L with uk+i := uk+i
0 (i =

1, . . . , L),
• solve the adjoint system of (2) with right hand side

(xk+1 − x̄k+1, . . . , xk+L − x̄k+L)t for λk+L, . . . , λk+1,

• set d = α(uk+1
0 , . . . uk+L)t + (λk+1, . . . , λk+L)t,

• determine a suitable stepsize θ > 0,
• set uk+1 = uk+1

0 − θd1, k = k + 1.

Here we use the adjoint calculus to express the derivatives
of the cost functional J , see e.g. Hinze et al. (2009).

Let us recall that in the case L = 1 problem Pk is a linear
quadratic optimal control problem, so that the optimal
stepsize θ for minimizing J in direction d is given by

θopt = −
(
x
(
uk+1

0

)
− x̄k+1, x(d)

)
+ α(u, d)

‖x(d)‖2 + α‖d‖2
.

Here, for given κ the vector x(κ) denotes the solution to
(2) with uk+1 := κ.

3. THE GOVERNING EQUATIONS

We consider an immiscible fluid consisting of two com-
ponents A and B with different densities. To model the
underlying dynamics we here use a diffuse interface ap-
proach based on the model derived in (Abels et al., 2012,
3.), for which among other things sharp interface analysis
and energy-inequalities are available.

For the time discretization of the related Cahn-Hilliard
Navier-Stokes system with double-obstacle free energy
we use a semi–implicit Euler scheme (see e.g. Kay
et al. (2008)) and relax the variational inequality as-
sociated with the double-obstacle potential, see Blowey
and Elliott (1991), using a Moreau–Yosida regularization
proposed in Hintermüller et al. (2011). For details of
this discretization–relaxation approach we refer to Hin-
termüller et al. (2012). At a given time instance t we in
the present situation obtain the problem;

find (y, p, c, w) ∈ H1
0 (Ω)n×L2

(0)(Ω)×H1(Ω)×H1(Ω) such

that

ξρ(y − yold)− div(2ηDy) +∇p
+ ((ρy + j) · ∇) y + σεdiv(∇c⊗∇c)− ρG = 0 (3)

div y = 0, (4)

ξ (c− cold)−m∆w + yold∇c = 0 (5)

−σε∆c− w + λs(c)− σε−1cold = 0, (6)

which is supplemented with the boundary values

∇c · ν = ∇w · ν = 0.

Here, Ω ⊂ Rn, (n = 2, 3) denotes the flow domain with
outer unit normal ν. The concentration order parameter
associated with the mass concentrations cA and cB in
the fluid phases A and B defined on Ω, respectively, in
the unrelaxed case is c = (cA − cB)/(cA + cB) ∈ [−1, 1]
with c ≡ 1 in the pure A-phase and c ≡ −1 in the
pure B-phase region. The term λs(c) = smax(0, c − 1) +
smin(0, c+1) realizes the Moreau-Yosida relaxation of the
constraint |c| ≤ 1 with s > 0 denoting the relaxation
parameter. Initially, i.e. for t = 0, we have c(x, 0) = c0

in Ω. With y we denote the volume averaged velocity,
see (Abels et al., 2012, 2.) and p denotes the pressure
of the fluid. ρ = ρA+ρB

2 + ρA−ρB
2 c denotes the mean

density, and η = ηA+ηB
2 + ηA−ηB

2 c the mean viscosity of the
fluid. The quantity w represents the chemical potential.
G denotes the gravitational force, Dy := 1

2 (∇y + (∇y)t)
the stress tensor, and j = −mρ′∇w the flux arising from
the chemical potential, where m is the mobility of the
fluid. The subscript old denotes to the respective quantities
at the previous time step. Furthermore, the parameter
τ denotes the time stepsize, ξ := 1

τ , the constant ε is
related to the thickness of the diffuse interface, and the
constant σ is related to the surface energy density, see
(Abels et al., 2012, 4., 4.3.4). Finally, H1(Ω) denotes the
the Sobolev space of square integrable functions possessing
square integrable weak derivatives, H1

0 (Ω) its subspace
with zero traces at the boundary of Ω, and L2

(0) = {v ∈
L2(Ω) |

∫
Ω
v dx = 0}.

For the analysis of (3)–(6) and the numerical treat-
ment with semi-smooth Newton methods we refer to Hin-
termüller et al. (2011, 2012).



Spatial Discretization

The spatial discretization is performed by linear finite
elements for both the concentration and the chemical
potential yielding approximations ch, wh. For the flowfield
and the pressure we use the LBB-stable Taylor-Hood P 2−
P 1 finite element pair, see e.g. Hood and Taylor (1974);
Verfürth (2010), yielding approximations yh, ph. For the
spatial treatment of the Cahn-Hilliard part (5)–(6) we use
the adaptive approach presented in Hintermüller et al.
(2012, 2011). We emphasize that we use different spatial
meshes for the Cahn-Hilliard and the Navier-Stokes part.
In the present paper the discretization used for solving the
Navier-Stokes part is build upon a refined Cahn-Hilliard
mesh.

4. AN INSTANTANEOUS CONTROLLER FOR
TWO-PHASE-FLOWS

We now describe how the instantaneous control strategy
with one steepest descent step for L = 1 can be applied
to obtain a controller for multi-phase flows governed by
the Cahn-Hilliard Navier-Stokes system. The controlling
objective is given by

‖c(u)− cd‖L2
t→∞→ 0,

with c(u) denoting the phase-field, which is controlled
through distributed and/or tangential Dirichlet boundary
flow control u. Here, cd(t) denotes the desired concentra-
tion trajectory at time instance t. This might be an ideal
trajectory precomputed by an open loop optimization run,
or a concentration state which represents certain desired
concentration features. The control operator then is given
by C(y, p, c, w) := c|Ω ∈ L2(Ω).

Let us first consider distributed control in the domain Ω,
so that with U := L2(Ω)n the control operator is defined
by B(u) := (u, 0, 0, 0), i.e. it maps controls to the feasible
right hand sides of (3)-(6). To begin with we assume that
the flow can be controlled by volume forces at every single
point of the domain. Though this scenario is not realizable
in practice, it shows what one best can achieve in practice
through controlling the system in the flow part.

At a given time instance we consider the optimization
problem

min J(u) =
1

2
‖c(u)− cd‖2L2(Ω) +

α

2
‖u‖2U (P )

s.t.

ξρoldy − div (ηold∇y) +∇p =f(cold, yold) + u, (7)

divy =0, (8)

c− τm∆w =cold − τy∇cold, (9)

−σε∆c− w =σε−1cold − λ(cold), (10)

y = ν · ∇c = ν · ∇w =0 on ∂Ω. (11)

The construction of the controller now is based on per-
forming one steepest descent step to J at a given control
u to decrease the value of J(u). Here, J is a tracking-type
functional with α > 0 penalizing the control cost, and the
concentration is a function of the control, i.e. c = c(u),
realized through the system (7)–(11). The right hand side
in (7) is given by

f(cold, yold, u) =ξρoldyold − ρoldyold · ∇yold (12)

− σεdiv(∇cold ⊗∇cold) + ρoldG, (13)

and the control u thus enters the Navier-Stokes system as
a volume force on the right hand side. Let us note that (7)–
(11) represents a linear system, which for a given control u
in general can be solved faster than (5)–(6) supplied with
an additional distributed forcing term u in (7). This is our
motivation to consider the linear system (7)–(11) instead
of (5)–(6). However, we stress that the time discretization
related to (7)–(11) is not suitable for simulation purposes,
since e.g. mass is not conserved.

4.1 Adjoint representation of the gradient ∇J(u)

Using adjoint calculus Hinze et al. (2009) one easily verifies
that

∇J(u) = αu+ p3, (14)

where p3 is related to u through the adjoint system

p2 − τm∆p1 =0,

−σε∆p2 − p1 =c(u)− cd,
ξρoldp3 − div (ηold∇p3) +∇p4 =− τp1∇cold,

divp3 =0,

p3 = ν · ∇p1 = ν · ∇p2 =0 on ∂Ω,

(15)

with (p1, p2, p3, p4) ∈ H1(Ω)×H1(Ω)×H1
0 (Ω)n×L2

(0)(Ω)

denoting the adjoint variable, and c(u) denoting the solu-
tion to (7)–(11) for given u.

4.2 Obtaining the steepest descent stepsize

To achieve sufficient decrease in the value of J(u) through

u := u− θ∇J(u)

the choice of the stepsize θ is crucial. In the present
situation the functional J is quadratic, since (7) – (11)
forms a linear system with a well defined, linear and
continuous solution operator. Now, for given u ∈ U , let
g := ∇J(u) and denote by c(g) the concentration defined
through the system

ξρoldy − div(ηold∇y) +∇p =g

divy =0,

c− τm∆w = −τy∇cold,
−σε∆c− w = 0.

If g 6= 0, the optimal stepsize θ is well defined and satisfies

θ = argmint∈RJ(u− tg).

A short calculation shows

θ =
(c(u)− cd, c(g))L2(Ω) + α(u, g)L2(Ω)

‖c(g)‖2L2(Ω) + α‖g‖2L2(Ω)

,

so that in the present situation the computation of the
optimal steepest descent stepsize requires one additional
linear system solve.

The controller step for a given initial control guess u0 ∈ U
now performs the steps;

• Compute c(u0),
• compute p3(u0),
• set g = ∇J(u0),
• compute c(g),
• compute θ with u = u0, c(g) and g,
• update u = u0 − θg,



• compute c(u).

In total the numerical amount of work consists of four
linear system solves.

Subsequently we use u0 = 0 as initial control in
the controller step. On the discrete level the functions
y, p, c, g, p1, . . . p4 have to replaced by their finite element
counterparts. However, recalling the representation of g,
the control u = −θg is implicitly discretized through the
discrete counterpart of p3 (see Hinze (2005b)).

4.3 Tangential dirichlet boundary control

Tangential dirichlet boundary control is a practicable
control procedure which is mass-conserving. The related
optimization problem reads

min J(u) =
1

2
‖c(u)− cd‖2L2(Ω) +

α

2
‖u‖2U (PD)

s.t.

ξρoldy − div (ηold∇y) +∇p =f(cold, yold), (16)

divy =0, (17)

c− τm∆w =cold − τy∇cold, (18)

−σε∆c− w =σε−1cold − λ(cold), (19)

ν · ∇c = ν · ∇w =0 on ∂Ω, (20)

ν · y =0 on ∂Ω, (21)

ν⊥ · y =u on ∂Ω. (22)

Here ν⊥ denotes the unit tangential field to the boundary
∂Ω, where we assume that we have an orhtonormal basis
of the tangential space available at every point of ∂Ω
and (22) is satisfied for this basis. The right hand side in
(16) is the same as in (12). The control space U is either
L2(∂Ω)(n − 1), or H1/2(∂Ω)(n − 1), where we note that
in the L2 case the system (16),(17),(21),(22) has to be
understood in the very weak sense. The control operator
is defined by B(u) := ((−

∫
∂Ω
uν⊥∂η · dΓ, 0), 0, 0, 0).

The corresponding adjoint system again is (15), while the
gradient in the L2 case now takes the form

∇JD(u) = αu− ν⊥η(cold)∇p3ν. (23)

In the H1/2 case the function ν⊥η(cold)∇p3ν has to
be replaced by its Riesz representer associated to the
(H1/2, H−1/2) pairing. The system to be solved for ob-
taining the optimal stepsize θ changes accordingly.

5. NUMERICAL TESTS

Distributed Control

Here we report on the effectiveness of the instantaneous
control strategy described in the previous section. We use
fully distributed flow control with control gain of morphing
a circle (which represents a stable state) into a square
(which represents an unstable state). We set Ω := (0, 1)2,

c0(x, y) := − tanh

(√
(x− 0.5)2 + (y − 0.5)2 − 0.25

ε
√

2

)
which describes a circle with radius r = 0.25 and midpoint
located at M = (0.5, 0.5). The parameter ε corresponds to
the interfacial thickness. Inside the circle we have c0 ≈ 1

Fig. 1. Initial state c0 (left) and desired state cd (right) for
distributed control.
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Fig. 2. Concentration c at time t = 2 together with
stabilizing flowfield (left) and the temporal behaviour
of ‖c− cd‖ in the case of distributed control.

while c0 ≈ −1 outside the circle, see Fig. 1 (left), where
black indicates c ≈ 1 and white indicates c ≈ −1. Control
is applied to the flow field with control gain of steering c to
the desired state cd with values 1 in the square with edge
length ensuring (c0, 1) = (cd, 1) and center at (0.35, 0.35),
see Fig. 1 (right). This requirement is meaningful, since
our time discretization scheme (3)–(6) is mass-conserving.
We further use ρ1 = ρ2 = 1, η1 = η2 = 0.02, and set
G := 0. The mobility is m = 0.0001, and σ := ε = 1/(40π).
The time stepping is adapted to fulfill the CFL-condition,
which in the present example gives time steps of size about
0.0035.

Fig. 2 shows the stabilized state c at time t = 2 together
with the flowfield at this time instance (left). In Fig. 2 we
also show the temporal behaviour of ‖c− cd‖L2(Ω) (right).
The desired state is quickly reached quite well, and the
concentration then starts to oscillate around the desired
state. This indicates that the distributed control is well
suited for controlling multiphase flows with equal densities.

Tangential Dirichlet Boundary Control

We next show an example using tangential Dirichlet
boundary control in the rising bubble benchmark Hysing
et al. (2009), see Fig. 3 (left). Due to gravitational force the
bubble intends to rise. Using Dirichlet boundary control we
are able to prevent the bubble from rising and to stabilise
it at the bottom of the flow column.

As domain we choose Ω := (0, 1)× (0, 1.5),

c0(x, y) := − tanh

(√
(x− 0.75)2 + (y − 0.75)2 − 0.25

ε
√

2

)
which represents a circle with radius r = 0.25 located at
Mc0 = (0.75, 0.75). Again, the parameter ε corresponds



Fig. 3. Initial state c0 (left) and desired state cd (right) for
boundary control.

Fig. 4. States at time 0.25 (left) and at time 2.0 (right) for
boundary control.

to the interfacial thickness. Inside the circle we have
c0 ≈ 1, while c0 ≈ −1 outside the circle, see Fig. 3
(left). The desired state cd is a circle with same radius and
midpoint located at Mcd = (0.5, 0.5), see Fig. 3 (right).
Furthermore, ρ1 = 500, ρ2 = 100, η1 = 50, and η2 = 1,
and G = (0,−0.98). The mobility is m = 10−5, σ = 25,
and ε = 0.01. Values are similar to the ones used for
benchmarking in Hysing et al. (2009).

In Fig. 4 we show an intermediate state and the final sta-
bilised state. At the left boundary one sees the tangential
boundary control, while on the right part of the plots we
show some streamlines of the velocity field. We note that
the state is symmetric.

Fig. 5 shows that the instantaneous feedback controller
with tangential Dirichlet boundary control indeed steers
the system into the desired state very fast and stabilizes
it there.

6. CONCLUSIONS

We present a nonlinear model predictive framework for
closed-loop control of two-phase flows governed by Cahn-
Hilliard Navier-Stokes system with variable density. Spe-
cial emphasis is taken on quick control responses which
are achieved through the inexact solution of the optimal
control problems appearing in the model predictive control
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Fig. 5. Temporal behaviour of ‖c− cd‖L2(Ω) in the case of
boundary control.

strategy. The resulting control concept is known as instan-
taneous control, which in the present paper is successfully
applied with distributed and tangential Dirichlet boundary
control of the flow part to achieve a prescribed concen-
tration distribution in the variable density Cahn-Hilliard
Navier-Stokes system. In particular, the controller is able
to prevent the bubble in the rising bubble benchmark from
Hysing et al. (2009) from rising using tangential Dirichlet
boundary control.
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