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Abstract. We present the solution of the general linear system in n coquaternionic variables and
m equations, and derive the Kronecker product from the matrix system AXB in coquaternions.
It is shown, that the coquaternionic Kronecker product can be computed by means of dyadic co-
quaternionic products. The special matrix case Ax = b is also included. The one dimensional case,
including Sylvester’s equation is solved and there are several, nontrivial, numerical examples.
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1. Introduction. Coquaternions were introduced, 1849, by Sir James Cockle
(1819–1895), [3], [4], as complex matrices of the form

C :=
[

w z
z w

]
,(1.1)

where the bar indicates the complex conjugate of the quantity under the bar. The
matrix C is very similar to a quaternion (invented by Hamilton, 1843), which has the
complex representation (see v. d. Waerden, [16], p. 55)

Q :=
[

w z
−z w

]
.

In both cases, the products C1C2, Q1Q2 of two coquaternions C1, C2, and of two
quaternions Q1, Q2 form a coquaternion, quaternion, respectively. Thus, both sets
of matrices form a real algebra. This, in particular means that the center is in both
cases the set of matrices αI, α ∈ R, where the center is the set of elements which
commute with all elements and I is the 2 × 2 identity matrix. There is one decisive
difference between C and Q. The inverse of C is

C−1 :=
1

|w|2 − |z|2
[

w −z
−z w

]

and the inverse of Q is

Q−1 :=
1

|w|2 + |z|2
[

w −z
z w

]
.

The inverse of C exists if and only if |w|2 − |z|2 �= 0, whereas a quaternion Q has an
inverse as long as Q �= 0. Thus, the algebra of coquaternions has zero divisors, does
not form a field, whereas the algebra of quaternions is free of zero divisors, it is a
field, though not commutative.
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It is known, that a quaternion can also be represented by a real (4 × 4) matrix
involving the four real numbers �w,�w,�z,�z, where � stands for real part and �
stands for imaginary part of a complex number, see Gürlebeck and Sprössig, [7], p. 5.

Theorem 1.1. Put

w = a1 + a2i; z = a3 + a4i,(1.2)

and define the matrix

C4 :=

⎡
⎢⎢⎣

a1 −a2 a3 a4

a2 a1 a4 −a3

a3 a4 a1 −a2

a4 −a3 a2 a1

⎤
⎥⎥⎦ .(1.3)

Then, the set of all matrices of the type C4 forms an algebra, and this algebra is
isomorphic to the algebra of coquaternions.

Proof: Let C4, C̃4 be two matrices of type (1.3). Both have block structure,

C4=
[

A1 A2

A2 A1

]
, A1 :=

[
a1 −a2

a2 a1

]
, A2 :=

[
a3 a4

a4 −a3

]
,

C̃4=
[

B1 B2

B2 B1

]
, B1 :=

[
b1 −b2

b2 b1

]
, B2 :=

[
b3 b4

b4 −b3

]
,

hence,

C4C̃4=
[

A1B1 + A2B2 A1B2 + A2B1

A1B2 + A2B1 A1B1 + A2B2

]
,

A1B1 + A2B2=
[

a1b1 − a2b2 + a3b3 + a4b4 −a1b2 − a2b1 + a3b4 − a4b3

a2b1 + a1b2 + a4b3 − a3b4 −a2b2 + a1b1 + a4b4 + a3b3

]
,

A1B2 + A2B1=
[

a1b3 − a2b4 + a3b1 + a4b2 a1b4 + a2b3 − a3b2 + a4b1

a2b3 + a1b4 + a4b1 − a3b2 a2b4 − a1b3 − a4b2 − a3b1

]
.

Thus, the product has the same structure as the matrix given in (1.3). If we compare
the product of two coquaternions in the form given in (1.1) with the product C4C̃4

where (1.2) is used, then, we see, that the products are the same. �
Let a1, a2, a3, a4 ∈ R as in (1.2). The algebra of coquaternions is also isomorphic

to the algebra of all real 2 × 2 matrices (see Lam, p. 52, [12]):

C2 := a1

[
1 0
0 1

]
+ a2

[
0 1

−1 0

]
+ a3

[
0 1
1 0

]
+ a4

[
1 0
0 −1

]
(1.4)

=
[

a1 + a4 a2 + a3

−a2 + a3 a1 − a4

]
=:

[
c11 c12

c21 c22

]
∈ R

2×2.

Given the four matrix elements c11, c12, c21, c22 ∈ R, the four components of a can be
recovered by

a1 =
1
2
(c11 + c22), a2 =

1
2
(c12 − c21), a3 =

1
2
(c12 + c21), a4 =

1
2
(c11 − c22).

The inverse of C2 and of C4 (given in (1.3)) can be computed easily by applying
the formula (2.6) for a−1. If we denote the four basis elements in the order of the
equation (1.4) by E,I,J,K, then they obey the same multiplication rules as 1, i, j,k,
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respectively, given in Table 2.1 of the next section. An algebra of this type, is also
called a split algebra, in the current case the algebra of split quaternions , Lam, p. 58,
[12].

That coquaternions nowadays are still useful, e. g. in physics is shown by Brody
and Graefe, 2011, [2]. That paper also contains an overview over relevant properties of
coquaternions and 42 references are quoted. There is another, very subtle investigation
mainly on the analysis of coquaternions with application to physics by Frenkel and
Libine, [6].

We will denote the set of real numbers, the set of complex numbers, the set of
quaternions, the set of integers, the set of positive integers by R, C, H, Z, N, respec-
tively.

2. Coquaternions. In view of the preceding section, coquaternions may be re-
garded as elements of R

4 of the form

a := a1 + a2i + a3j + a4k, a1, a2, a3, a4 ∈ R

which we also abbreviate by a = (a1, a2, a3, a4) and which obey the multiplication
rules given in Table 2.1:

Table 2.1. Multiplication table for coquaternions, the red figures differ in sign
from the corresponding table for quaternions.

1 i j k
1 1 i j k
i i −1 k −j
j j −k 1 −i
k k j i 1

.

The algebra of coquaternions will be abbreviated by Hcoq. As elements of R
4 we have

1 := (1, 0, 0, 0), i := (0, 1, 0, 0), j := (0, 0, 1, 0),k := (0, 0, 0, 1), which we will abbreviate
also by ��1, ��2, ��3, ��4, respectively. Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4). For
future purposes we note the following multiplication results:

ab = a��1b = a1b1 − a2b2 + a3b3 + a4b4(2.1)
+(a1b2 + a2b1 − a3b4 + a4b3)i
+(a1b3 − a2b4 + a3b1 + a4b2)j
+(a1b4 + a2b3 − a3b2 + a4b1)k,

aib = a��2b = − a2b1 − a1b2 + a4b3 − a3b4(2.2)
+(−a2b2 + a1b1 − a4b4 − a3b3)i
+(−a2b3 − a1b4 + a4b1 − a3b2)j
+(−a2b4 + a1b3 − a4b2 − a3b1)k,

ajb = a��3b = a3b1 − a4b2 + a1b3 + a2b4(2.3)
+(a3b2 + a4b1 − a1b4 + a2b3)i
+(a3b3 − a4b4 + a1b1 + a2b2)j
+(a3b4 + a4b3 − a1b2 + a2b1)k,

akb = a��4b = a4b1 + a3b2 − a2b3 + a1b4(2.4)
+(a4b2 − a3b1 + a2b4 + a1b3)i
+(a4b3 + a3b4 − a2b1 + a1b2)j
+(a4b4 − a3b3 + a2b2 + a1b1)k.
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A coquaternion of the form a = (a1, 0, 0, 0) will be called real and will also be ab-
breviated as a1. As we see from (2.1) (and former considerations), real coquaternions
commute with all coquaternions. Let a = (a1, a2, a3, a4) be a coquaternion. The first
component, a1, of a, will be denoted by �(a) and called real part of a. We define the
conjugate of a in the notation a or in the notation conj(a) and abs2 of a by

a := (a1,−a2,−a3,−a4), abs2(a) := a2
1 + a2

2 − a2
3 − a2

4.(2.5)

The quantity abs2 may be negative, it is not the square of a norm. Let b be another
coquaternion. There are the following rules:

aa = aa = abs2(a), abs2(ab) = abs2(ba) = abs2(a)abs2(b),

(ab) = b a, �(ab) = �(ba).

The coquaternion a will be called singular if abs2(a) = 0. If a is nonsingular (= not
singular = invertible), then

aa−1 = a−1a = (1, 0, 0, 0) holds for a−1 =
a

abs2(a)
.(2.6)

Let the quaternion product (only in this section) be denoted by �, then by com-
paring the coquaternion product (2.1) with the corresponding quaternion product �,
we see that

ab = a � b + 2(a3b3 + a4b4) − 2(a3b4 − a4b3) i.

The third and fourth component of ab and of a � b coincide. Thus, the coquaternions
contain the complex numbers as subalgebra.

3. Linear mappings over R in general. Let L : R
n → R

m be a linear mapping
over R. Then it is known that such a mapping can be represented by a real matrix of
size (m× n). See Horn and Johnson, p. 5, [9]. In order to find this matrix, which we
will denote, in this paper, by M, we define a column operator col by

col(x) :=

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ ,

where x1, x2, . . . , xn are the components of x. If it happens that x is a matrix, we
put the columns of that matrix from the left to the right into one column in order to
define col for that matrix. By evaluating L at x ∈ R

n and applying the col operator
we obtain

col(L(x)) = Mcol(x), M ∈ R
m×n, col(x) ∈ R

n,(3.1)

where M is unknown so far. Let ej be the standard unit vectors in R
n, j = 1, 2, . . . , n.

If we put x := ej we obtain

col(L(ej)) = Mcol(ej) =

⎡
⎢⎢⎢⎣

μ1j

μ2j

...
μmj

⎤
⎥⎥⎥⎦ , j = 1, . . . , n ,(3.2)
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where μij are the elements of the matrix M and the right hand side of (3.2) represents
the jth column of M. Hence, the matrix M is completely known by the n values L(ej).
We note, that M will be integer if the values of L are integer.

A typical, nontrivial example is the mapping L : R
n → R

m defined by

L(X) = AXB, A ∈ R
p×q, B ∈ R

r×s, X ∈ R
q×r,(3.3)

where in this case we have m = ps, n = qr. In order to find the corresponding matrix
we have to set the jth element of X (counted columnwise from the left) to be one and
all other elements of X to be zero, j = 1, 2, . . . , qr, and compute the corresponding
col(L(X)). This gives the jth column of the wanted matrix M. What comes out is
the well known Kronecker (or tensor) product M = BT⊗A, a matrix of size (ps×qr).
The notation BT stands for the transposed matrix of B. For details see Horn and
Johnson, pp. 242, 254, [8].

4. Linear systems in coquaternions. Linear equations in coquaternions are
formally similar to linear equations in quaternions. An investigation of linear equa-
tions in quaternions exists by the current authors, [10], [11] and by Niven, [13]. A
linear system will always be a linear system over R. Linearity with respect to C or to
Hcoq is in general not granted. A linear system in n coquaternions xk, k = 1, 2, . . . , n,
and m equations will be defined as follows: Let

lj(u) :=
Kj∑
k=1

a
(j)
k ub

(j)
k , j = 1, 2, . . . , mn(4.1)

be an arbitrary set of mn linear, coquaternionic mappings in one coquaternionic
variable u, where a

(j)
k , b

(j)
k , k = 1, 2, . . . , Kj are given coquaternions, and Kj are

given, positive integers, j = 1, 2, . . . , mn. A system in n coquaternionic variables xk,
k = 1, 2, . . . , n and m equations will then be defined by

L1(x) :=
n∑

j=1

lj(xj),

L2(x) :=
n∑

j=1

lj+n(xj),

...

Lm(x) :=
n∑

j=1

lj+(m−1)n(xj),

where x ∈ R
4n consists of one column composed out of x1, x2, . . . , xn. The mapping

L : R
4n → R

4m will finally be defined by

L(x) :=

⎡
⎢⎢⎢⎣

L1(x)
L2(x)

...
Lm(x)

⎤
⎥⎥⎥⎦ .(4.2)

L is not a linear mapping over C or Hcoq. However, L is a linear mapping over R

because real coquaternions commute with arbitrary coquaternions. Hence, a matrix
M as in (3.1), (3.2) exists.
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In order to find the matrix M which represents L, we put x = ej , where the ej

represent the standard unit vectors in R
4n, j = 1, 2, . . . , 4n. Then col(L(ej)) is the

jth column of the wanted matrix. The next lemma will be useful.
Lemma 4.1. Let 1 ≤ j ≤ 4n be given. Then, the following equation including its

restrictions

4(κ − 1) + r = j, 1 ≤ κ ≤ n, 1 ≤ r ≤ 4(4.3)

determines κ and r uniquely by

0 ≤ 4κ − j ≤ 3, r = j − 4(κ − 1).(4.4)

Proof: If we solve (4.3) for r we obtain r = j − 4(κ − 1) = j − 4κ + 4 and the
given restriction for r implies the first part of (4.4) and the first part admits exactly
one solution κ with the restriction given in (4.3). For this reason, the second equation
in (4.4) (which coincides with the first equation in (4.3)) also has a unique solution.

�
Corollary 4.2. Let L be given as in (4.2). Then the jth column (1 ≤ j ≤ 4n)

of the matrix M representing L is

L(ej) :=

⎡
⎢⎢⎢⎣

L1(ej) = lκ(��r)
L2(ej) = lκ+n(��r)

...
Lm(ej) = lκ+(m−1)n(��r)

⎤
⎥⎥⎥⎦(4.5)

where κ and r are determined by j applying Lemma 4.1. The first component of
the unit vector ej is the rth coordinate, r ∈ {1, 2, 3, 4}, of the κth coquaternion,
κ ∈ {1, 2, . . . , n}.

The task of solving a linear, coquaternionic system L(x) = γ, where γ consists of
m given coquaternions, can be solved as follows. Compute the (4m × 4n) matrix M
which represents L and solve the real matrix equation Mcol(x) = col(γ) by standard
techniques.

Example 4.3. Let m = n = 3 and

l1(x) := a
(1)
1 xb

(1)
1 + a

(1)
2 xb

(1)
2 + a

(1)
3 xb

(1)
3 , l2(x) := a

(2)
1 xb

(2)
1 + a

(2)
2 xb

(2)
2 , l3(x) := a

(3)
1 xb

(3)
1 ,

l4(x) := a
(4)
1 xb

(4)
1 , l5(x) := a

(5)
1 xb

(5)
1 + a

(5)
2 xb

(5)
2 , l6(x) := a

(6)
1 xb

(6)
1 + a

(6)
2 xb

(6)
2 + a

(6)
3 xb

(6)
3 ,

l7(x) := a
(7)
1 xb

(7)
1 + a

(7)
2 xb

(7)
2 , l8(x) := a

(8)
1 xb

(8)
1 + a

(8)
2 xb

(8)
2 , l9(x) := a

(9)
1 xb

(9)
1 + a

(9)
2 xb

(9)
2 ,

where the needed coefficients a
(j)
k , b

(j)
k are defined in Table 4.4.

Table 4.4. Table of coquaternionic coefficients for l1 to l9

j a
(j)
1 b

(j)
1 a

(j)
2 b

(j)
2 a

(j)
3 b

(j)
3

1 (0, 0,−1, 1) −(−1, 1, 2, 0) (0, 1,−1,−1) (−1, 2, 2,−1) (0,−1, 1, 1) (−1, 2, 2,−1)
2 (2, 0, 1, 0) (−1, 2, 1, 1) (−2, 0, 1, 0) (−1, 0, 1, 2)
3 (1,−1, 1,−2) (0, 1, 2, 1)

4 (0, 1, 0, 2) (2, 1, 0, 0)
5 (−1, 1, 2, 2) (0,−1, 2, 1) (0, 0,−1, 2) (2,−1, 1, 1)
6 −(2, 0, 1,−1) (0,−1, 0, 1) (−1, 2, 1, 0) (2, 1,−2, 1) (0, 1, 1, 0) (0, 0,−2, 1)

7 −(1, 1, 1, 0) (0, 1, 2, 1) (0, 0, 0, 0) (0, 1,−1,−2)
8 −(2, 1, 1, 1) (1, 1, 2, 0) −(2, 0, 2, 1) (2, 0, 0,−1)
9 (0, 0,−2, 2) (0, 1, 2, 2) (−2, 0, 1, 0) −(1, 1,−2, 0)
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The entries of the Table 4.4 are randomly generated integers in [−2, 2]. This is the rea-
son for the occurrence of a zero element. The matrix M which in this case corresponds
to L, defined in (4.5), is

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −5 −1 2 2 −7 −2 0 1 −6 3 4
−9 −3 6 −5 1 −2 4 2 −4 1 −2 −1

3 0 −3 1 −2 0 2 7 1 0 3 −2
4 3 −3 3 −4 2 −1 −2 −2 5 −4 −5

−1 −2 −2 4 8 4 1 0 −7 −6 8 5
2 −1 4 2 6 −6 6 −3 4 −1 −1 2
2 4 1 −2 −9 4 −2 8 0 7 −5 −2
4 −2 2 1 6 3 6 0 −11 −2 4 5

−1 2 −3 0 −6 −1 −8 0 4 6 −7 −3
0 3 −2 −3 −7 −4 −8 0 1 0 −3 −1

−1 4 −3 −2 −10 −2 −10 −1 −3 3 −4 2
−2 −1 0 1 −2 2 1 −4 3 −5 −2 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let x1 = (0, 0, 1, 0), x2 = (−1, 0, 0, 2), x3 = (0, 1, 1,−1) and x = col(x1, x2, x3). Then,

col(L(x)) := Mx = (−10, 9, 18, 3; −13,−12, 30,−7; 5, 3, 2,−21)T.

4.1. Linear systems in coquaternionic matrices. The general case of a lin-
ear system in n unknowns and m equations does also contain the matrix case

Ax = b, A ∈ Hcoq
m×n, b ∈ Hcoq

m×1, x ∈ Hcoq
n×1,(4.6)

but not vice versa.
Example 4.5. Let

A :=
[

1 i
j k

]
⇒ A−1 =

1
2

[
1 j

−i k

]
, AT =

[
1 j
i k

]
.

If we multiply the second row of A from the right by j we obtain the first row. Thus,
the right row rank of A is one, and if we multiply the first column from the left by
i we obtain the second column. Thus, the left column rank of A is also one. Let us
compute the right column rank of A. To this purpose let(

1
j

)
α +

(
i
k

)
β =

(
0
0

)
, α, β ∈ Hcoq.

If we multiply the first equation from the left by j we obtain jα − kβ = 0. If we
add this equation to the second equation we obtain 2jα = 0, and if we subtract this
equation from the second equation we obtain 2kβ = 0. Thus, α = β = 0 and the right
column rank is two. In a similar way one can show that the left row rank is also two.
There is the following well known Theorem: Let M ∈ Hcoq

m×n. Then, the left row
rank coincides with the right column rank and the right row rank is equal to the left
column rank. If m = n and the right column rank of M is n, then M is nonsingular,
which means that there is a matrix M−1 such that of M−1M = MM−1 = I, where I
is the (n × n) identity matrix. Thus, A is nonsingular, whereas AT is singular. This
example was also used by Zhang, [17], for quaternions.
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Rather than specializing the general case to the matrix case, we directly treat
the matrix case (4.6) with the means we have already derived. If we apply the col
operator to (4.6) we obtain

col(Ax) = Mcol(x) = col(b), M ∈ R
4m×4n(4.7)

and determine M by replacing col(x) with ej , the jth standard unit vector in R
4n, j =

1, 2, . . . , 4n. Let j = 1 mod 4, j ≤ 4n−3, k = 1, 2, 3, 4. Then, the (j +k−1)th column
of M is

M(j+k−1) =

⎡
⎢⎢⎢⎣

col(a1,(j−1)/4+1��k)
col(a2,(j−1)/4+1��k)

...
col(am,(j−1)/4+1��k)

⎤
⎥⎥⎥⎦ .(4.8)

Each entry, col(a�,(j−1)/4+1��k), is a real 4 × 1 vector, � = 1, 2, . . . , m, where we
denote the jth column of M by M(j). Thus, M of (4.7) is given in (4.8). For A from
Example 4.5 we have

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 −1 0 0 1 0
1 0 0 0 0 1 0 0
0 −1 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There are many further questions related to coquaternionic matrices, for instance,
what kind of decompositions exist. This is a topic for another investigation.

4.2. The Kronecker product for coquaternions. The coquaternionic Kro-
necker product is the (real) matrix M which represents the linear mapping (over R)
L : Hcoq

q×r → Hcoq
p×s defined by

L(X) = AXB, A ∈ Hcoq
p×q, B ∈ Hcoq

r×s, X ∈ Hcoq
q×r.(4.9)

It is denoted by M(A,B), for short only M. Since each element in X has 4 real entries,
col(X) ∈ R

4qr. Furthermore, we have col(L(X)) ∈ R
4ps which implies M ∈ R

4ps×4qr .
The coquaternionic Kronecker product differs from the standard Kronecker or tensor
product which is BT ⊗ A. See also (3.3), on p. 5 and the corresponding remarks. In
order to find M, we enumerate the elements of X by � = 1, 2, . . . , qr, using the columns
as ordering system such that (to mention an example) the first element of the second
column will have the number � = q +1. We denote the so numbered elements of X by
X(1),X(2), . . . ,X(qr). Such an enumeration technique is used in some programming
languages in addition to the conventional enumeration XJ,K , which denotes the Kth
element in row J . We define the matrix X(�,k) by putting

X(ρ) =
{

��k for ρ = �,
0 for ρ �= �, � = 1, 2, . . . , qr, k = 1, 2, 3, 4.(4.10)

In other words, X(�,k) is the matrix which contains ��k at position �, and contains
otherwise zero elements. The corresponding columns of M are then

M(4(�−1)+k) := col(AX(�,k)B), � = 1, 2, . . . , qr, k = 1, 2, 3, 4.(4.11)
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We will describe an alternative technique to find M. Let us assume that X contains
only zeros, with the exception of the element XJ,K which contains one of the four
unit elements ��k. Then,

M4((K−1)q+(J−1))+k = col(AXB) = col((4.12)

⎡
⎢⎢⎢⎣

1 . . . K − 1 K K + 1 r
0 . . . 0 a1J 0 . . . 0
0 . . . 0 a2J 0 . . . 0

0 . . . 0
..
. 0 . . . 0

0 . . . 0 apJ 0 . . . 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 . . . 0
...

0 . . . 0 . . . 0
��kbK1 ��kbK2 . . . ��kbKs

0 . . . 0 . . . 0
...

0 . . . 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 4.6. Let K ∈ [1, r], J ∈ [1, q], k ∈ [1, 4] be fixed. See (4.9). The
coquaternionic Kronecker product M(A,B) in column [4((K − 1)q + (J − 1)) + k] is
given by the dyadic coquaternionic product col(A( : , J)(��kB(K, : ))).

Proof: Follows from the representation (4.12). �
Example 4.7. We will treat an example of the form

C = AXB =

[
a11 a12

a21 a22

] [
x11 x12

x21 x22

] [
b11 b12
b21 b22

]
where we use the data from Example 5.3 in [10]:

a11 = (0, 2, 2, 0), a12 = (4, 5,−1,−5), a21 = (0, 2, 2,−1), a22 = (−3, 3,−3, 2),

b11 = (0, 4,−5,−4), b12 = (−2, 2, 1,−4), b21 = (−3,−5, 2,−1), b22 = (4, 3,−2, 3),

x11 = (1, 1, 1, 1), x12 = (1, 2, 1, 2), x21 = (2, 1, 2, 1), x22 = (2, 2, 2, 2).

These data determine C =

[
c11 c12
c21 c22

]
as

c11 = (28,−1, 44,−65), c12 = (−58,−13, 2, 35),

c21 = (44,−92, 132,−12), c22 = (−76,−79, 32, 89).

An application of (4.11) or of Theorem 4.6 yields the Kronecker product

M(A, B) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−18 8 −8 18 5 5 −20 5
8 2 −2 −8 37 −45 −13 −60
8 2 −2 −8 −20 45 5 45

−18 8 −8 18 −37 20 13 35
−14 13 −4 18 −5 −10 −5 15

13 −2 −2 −12 −34 −19 −39 11
4 2 −6 −3 35 15 35 −10

−18 12 −3 22 9 19 14 −11
−2 12 −12 2 1 −7 −4 −13

4 −6 6 −4 −11 −37 29 −28
4 −6 6 −4 16 23 −19 17

−2 12 −12 2 1 32 −19 23
2 11 −10 4 −11 2 −13 −1
3 −10 8 −6 −22 11 −19 −17
2 −4 2 −5 19 −13 17 14
0 14 −13 6 17 −1 14 7

. . .
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14 8 −8 −14 16 24 −19 6
−4 6 −6 4 −46 10 34 25
−4 6 −6 4 41 4 −44 −14
14 8 −8 −14 16 −15 −4 −30
15 6 −13 −11 16 −5 10 6
−6 5 −3 9 7 32 12 −28

1 9 −7 2 −4 −30 −10 31
17 3 −10 −13 −12 −2 −17 −2

−10 −14 14 10 −12 −19 18 −1
2 −2 2 −2 45 14 −45 −4
2 −2 2 −2 −42 −19 48 −1

−10 −14 14 10 −15 −4 15 14
−13 −12 17 6 −9 2 −3 −4

4 1 −2 −5 8 −33 2 33
−1 −6 5 0 −9 32 −3 −34

−14 −11 16 7 2 3 8 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
16×16

.

A further test shows that Mcol(X) = col(C) for X chosen in the beginning of
this example.

Another interesting example is Sylvester’s equation [15, Sylvester, 1884]:

AX + XB = C, A ∈ Hcoq
m×m,B ∈ Hcoq

n×n,C,X ∈ Hcoq
m×n(4.13)

⇒ col(AX + XB) = (M(A, I) + M(I,B))col(X) = col(C).

It may be that the linear function L has the form

L(X) = AXTB, A ∈ Hcoq
p×q, B ∈ Hcoq

r×s, X ∈ Hcoq
r×q.

In order to find the corresponding Kronecker product for this case one has to change
the order in which the matrix elements are counted. The matrix elements of X in
formula (4.10) have to be counted row-wise.

Let A,B be two coquaternionic matrices. It should be noted, that the relation
(AB)T = BTAT is in general not true. Let us denote by conj(A) the matrix where all
elements of A have been changed to the corresponding conjugate element. Then, the
relation conj(AB) = conj(A)col(B) is in general also not true. However, (AB)∗ =
B∗A∗, is true, where A∗ := conj(AT).

It should be pointed out that the investigations of this paper are not restricted to
equations in coquaternions. With the same technique one could solve linear systems
of equations in tessarines or in cotessarines , algebras defined in R

4 and also intro-
duced by Cockle, [3]. Even more general algebras (finite dimensioal, real, associative
algebras) would allow the application of the same technique. See Abian, Drozd and
Kirichenko, Pierce [1, 5, 14].

5. The one dimensional case. For n = m = 1 the system (4.2) and (4.1)
specialize to one equation

L(x) :=
K∑

k=1

akxbk, where ak, bk, x are coquaternions.(5.1)

The simplest cases are

(i) L(x) = ax, (ii) L(x) = xb, (iii) L(x) = axb,

We denote the real 4 × 4 matrices for the three cases, respectively, by

aM, Mb, aMb.
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Let a = (a1, a2, a3, a4), b = (b1, b2, b3, b4). Then the three matrices are

aM := (a��1, a��2, a��3, a��4) =

⎡
⎢⎢⎣

a1 −a2 a3 a4

a2 a1 a4 −a3

a3 a4 a1 −a2

a4 −a3 a2 a1

⎤
⎥⎥⎦ ,(5.2)

Mb := (��1b, ��2b, ��3b, ��4b) =

⎡
⎢⎢⎣

b1 −b2 b3 b4

b2 b1 −b4 b3

b3 −b4 b1 b2

b4 b3 −b2 b1

⎤
⎥⎥⎦ ,(5.3)

aMb := [ab, a��2b, a��3b, a��4b],(5.4)
where the four columns are already defined in (2.1) to (2.4). Matrix aM is identi-
cal with the matrix C4, defined in (1.3) and this is clear because C4 represents the
coquaternion a = (a1, a2, a3, a4) and the mapping L is defined by L(x) = ax. A
real, square matrix is named singular if it is not invertible, or in other words if its
determinant vanishes.

Theorem 5.1. Matrix aM is singular if and only if a is singular. Matrix Mb is
singular if and only if b is singular. Matrix aMb is singular if a or b is singular.

Proof: Let L(x) = ax and a �= 0. The equation ax = c has clearly a unique
solution if a is nonsingular. If a is singular, we multiply by a and obtain 0 = aax = ac,
which does not have a unique solution. The other cases are similar. �

Example 5.2. We apply the technique described in Section 3 to

L(x) = a1xb1 + a2xb2 + a3xb3, where
a1 = (1, 1, 0, 1), b1 = (1,−1,−1, 0),
a2 = (1,−1,−1, 2), b2 = (2,−1, 1, 1),
a3 = (−1,−2, 0, 2), b3 = (0,−1, 0, 0).

From these data we obtain
a1b1 = (2,−1,−2, 0), a1ib1 = (−1, 2, 2, 0),

a1jb1 = (0, 0, 0, 1), a1kb1 = (2,−2,−3, 0),

a2b2 = (2, 0,−2, 3), a2ib2 = (6, 0, 3, 6),
a2jb2 = (0, 3, 0, 0), a2kb2 = (7, 0, 2, 6),

a3b3 = (−2, 1,−2, 0), a3ib3 = (−1,−2, 0, 2),
a3jb3 = (2, 0, 2,−1), a3kb3 = (0,−2, 1, 2),

and the matrix M which represents the linear mapping L is

M =

⎡
⎢⎢⎣

2 4 2 9
0 0 3 −4

−6 5 2 0
3 8 0 8

⎤
⎥⎥⎦ .

In order to find the four columns of M, one has to compute

col

⎛
⎝ 3∑

j=1

aj��kbj

⎞
⎠ , k = 1, 2, 3, 4.



12 Drahoslava Janovská and Gerhard Opfer

5.1. Sylvester’s equation in coquaternions. Sylvester’s equation (see [15])
in coquaternions, a special case of (4.13) and of (5.1), reads

L(x) := ax + xb = c, a, b, c, x ∈ Hcoq,(5.5)

where we will put a := (a1, a2, a3, a4), b := (b1, b2, b3, b4) ∈ Hcoq. It is clear that the
matrix corresponding to this system is

M := aM + Mb =

⎡
⎢⎢⎣

s1 −s2 s3 s4

s2 s1 d4 −d3

s3 d4 s1 −d2

s4 −d3 d2 s1

⎤
⎥⎥⎦ ,(5.6)

where aM,Mb are defined in (5.2), (5.3) and where

sj := aj + bj , dj := aj − bj, j = 1, 2, 3, 4.

Sylvester’s equation will be called singular if the matrix M defined in (5.6) is singular.
We observe that d1 := a1 − b1 is not occurring in (5.6).

Example 5.3. Let a = (1, 1, 1, 2), b = (1,−2, 2, 1). Then,

M :=

⎡
⎢⎢⎣

2 1 3 3
−1 2 1 1

3 1 2 −3
3 1 3 2

⎤
⎥⎥⎦ .

In this case a is nonsingular, b is singular, and M is, nevertheless, nonsingular.
Lemma 5.4. The determinant of M, defined in (5.6) is

det(M) = s2
1

(
s2
1 + s2

2 + d2
2 − (s2

3 + d2
3) − (s2

4 + d2
4)

)
+(5.7)

(−s2d2 + s3d3 + s4d4)2.

Proof: Apply the expansion formula to (5.6) and collect terms. �
The singularity of Sylvester’s equation, expressed by the singularity of the matrix

M, is characterized in the next theorem.
Theorem 5.5. The matrix M, defined in (5.6) is singular if and only if either

s1 := a1 + b1 = 0 and − abs2(a) + abs2(b) = 0, or s1 �= 0 and

s2
1

(−d2
1 + 2 (abs2(a) + abs2(b))

)
+ (−abs2(a) + abs2(b) + s1d1)2 = 0,

where the definition of abs2 is given in (2.5).
Proof: Use s2

j + d2
j = 2(a2

j + b2
j) and sjdj = a2

j − b2
j , j = 1, 2, 3, 4 and insert this

into (5.7) of Lemma 5.4. �
An example where the second part of Theorem 5.5 applies is a = (2, 1, 1, 2), b =

(1, 2, 2, 5). In this case a is singular, b is nonsingular, but M is singular.
Corollary 5.6. Let both, a, b ∈ Hcoq be singular. Then, M defined in (5.6) is

singular.
Proof: The assumptions are abs2(a) = abs2(b) = 0. The singularity of M follows

from one of the conditions of Theorem 5.5. �
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Conversely, one cannot say, that nonsingular a, b imply a nonsingular matrix M.
A necessary, but not sufficient condition for M being nonsingular is, that at least a
or b is nonsingular.

Example 5.7. Let a = (a1, a2, a3, a4) = (0, 0, 1, 0) = j, b = (b1, b2, b3, b4) =
(0, 0, 0, 1) = k. Then, s1 = a1 + b1 = 0, abs2(a) = −1, abs2(b) = −1, thus, both a, b
are nonsingular, but the first condition of Theorem 5.5 is satisfied, and, hence M,
defined in (5.6), and Sylvester’s equation (5.5) are singular.
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