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Abstract. This paper is concerned with the optimization of the dynamics of the gas flow in an
exhaust pipe. As prototypical question the start up heating of the catalytic converter is considered.
Here reaching the optimal temperature in the converter rapidly competes against the costs, i.e., re-
leasing too much unburnt fuel in the exhaust gases. The underlying model is a one dimensional small
Mach number asymptotic gas dynamic model for a mixture of burnt and unburnt gas, formulated
on a network consisting of the various pieces of the exhaust tube. For the optimization, adjoint cal-
culus is applied on the continuous level. The resulting system is then discretized. Finally, numerical
examples show the validity of this approach.
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1. Introduction. The control and the reduction of the emission caused by vehi-
cles is an import issue over the last 5 decades. The first restrictions were introduced
by the government of California (USA) in the early 1960s. In 1970 the European
Community passed first laws regarding exhaust gas pollution. Today, there is the
Euro 5 standard and the next Euro 6 standard will be compulsory in 2014 in Europe.
Similar severe restrictions hold in North America. Many other countries nowadays
use or introduce similar restrictions.

For the reduction of the concentration of CO, NOx and CxHy in the exhaust
gas, there is a classical technical solution, namely (mostly) two catalytic converters
installed in the exhaust pipe system. The function of the catalytic converters de-
pends strongly on the temperature in the converters. There is a lower limit (about
600 degrees Celsius) for a good function and an upper limit to avoid damages. In
particular, right after engine start there is a critical time interval where the temper-
ature in the converters is not high enough. A method of heating after the engine
start is the combustion of unburnt gas in the catalytic converters. Modern exhaust
systems can control the ratio of oxygen and fuel in the combustion chamber of the
engine. By choosing a ratio with more fuel and less oxygen some unburnt fuel flows
to the catalytic converters where it can be used for an exothermic reaction. Clearly,
there is a competition between reaching the optimal converter temperature fast and
using very little unburnt fuel in the exhaust gas. This choice is the main issue in this
paper. We show, how to compute an optimal inflow distribution of unburnt gas (into
the exhaust tube), with respect to the cost function, that will be presented later.

To face this problem, one has to model, appropriately, the gas dynamics in the
exhaust pipe and the heat dynamics in the converters. In addition, we not only need
an appropriate model but also a model which allows fast direct simulations in order
to be able to apply optimization tools; that typically need several simulations during
the optimization.

There is not much mathematical literature on the modelling of gas dynamic issues
in an exhaust pipe in the literature. We mention [20, 14, 4] on studies regarding the
temperature in the converter based on more complex chemical models, with assumed
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homogeneous gas dynamics. Furthermore, we mention fully compressible fluid dy-
namic models for the exhaust tube, where the aim is not primarily the determination
of the converter temperature but the computation of sound waves (see e.g. [11, 15])
or mechanical properties of the exhaust tube (see e.g. [12, 16]).

A model which promises to be appropriate was developed recently in [6, 7]. We
shortly summarize the main features of this model:

• The model is one dimensional in space. The spacial extension is along the
exhaust tube and all the values are mean values over the (non constant) cross
section.

• The basis is a fully compressible multi component gas dynamic model includ-
ing surface friction and heat transfer through the surface, i.e. the exhaust
tube walls.

• Since in this application the flow velocities are small (compared to the speed
of sound), i.e., the Mach number is small; a small Mach number asymptotic
model is used in order to rule out sound waves. This reduces the simulation
times significantly.

• We use two gas components to model the underlying complex chemistry,
namely burnt and unburnt gas. However, the crucial quantity for the heating
in the catalytic converters is the total heat release of the chemical reaction
which can be easily included in such a simple two component reaction model.

• The exhaust tube is modeled as a network of tubes with constant cross section.

Neither in the pre-asymptotic hyperbolic model, nor in the asymptotic (hyperbolic-
elliptic-like) model we have a well-posedness theory. However, assuming existence of
a unique solution and differentiability with respect to the inflow of unburnt gas, we
will derive a system of differential equations yielding the continuous adjoint to the
calculated flow. These will be used to find an optimal inflow profile using a projected
gradient method.

We remark that even in the pre-asymptotic regime, i.e., for hyperbolic systems,
questions of uniqueness, differentiability, and optimality conditions are a field of active
research. To give an impression of the different questions under consideration see, e.g.,
[9] for well-posedness of hyperbolic problems on networks, [22] for sensitivity analysis
of hyperbolic conservation laws, [8, 13] for optimization problems with hyperbolic
equations on networks, [1] for control of Burgers equation with vanishing viscosity, or
[2] for the control of unsteady compressible fluids.

However, the asymptotic model, with the above mentioned properties, allows
direct simulations almost in real time on a standard laptop computer. The model
derived in [6] was built on the basis of models proposed in [19, 18]. In order to
validate the models accuracy, we compared its numerical solutions to the ones of the
fully hyperbolic problem and found a good agreement (see [6]).

Although it seems that we have drastically reduced the complexity of the model
from a mathematical point of view, we still have a multi component nonlinear system
of PDE’s on a network. To do optimization on such a model is still a highly challenging
topic. We mention only a few papers where similarly complex issues where studies.
In [10] optimization of the gas flow in a pipeline is considered, whereas the optimal
control for traffic flow is discussed in [8]. In [5] the optimal control of glass cooling is
studied.

The paper is organized as follows. In section 2, we introduce the model, which was
derived in its main parts in [6]. In section 3, we define the optimization problem. In
section 4, we derive the optimality system. Section 5 is devoted to the discretization.
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Finally, in section 6, we present numerical examples.

2. Model. The following dimensionless model describes the gas dynamics in an
exhaust pipe.

(Aρ)t + (Aρu)x = 0,

(Aρu)t + (Aρu2)x +
1

ε
Apx =− Cfρ

u|u|

2
− CcAχρu,

(AρT + ε
R

cv
Aρ

u2

2
)t + (AρuT + ε

R

cv
Aup)x =− h(T − TWall) + q0AχρzK(T ),

(Aρz)t + (Aρuz)x =−AχρzK(T ),

p = ρT,

(2.1)

with the unknows ρ, u, p, T, z as the density, velocity, pressure, temperature, and the
ratio of unburnt gas, respectively. The terms on the left hand side originate from
the one-dimensional Euler equations of gas dynamic in a pipe with variable cross
section A = A(x). By the terms on the right hand side, we describe the main physical
effects which influence the dynamics of the gas. The first equation is the conservation
of mass. On the right hand side of the second equation (momentum balance) we
first have a wall friction (wall friction coefficient Cf ) and secondly a local friction
(honeycomb structure friction coefficient Cc) due to the honeycomb structure of the
catalyst (locality is denoted by the indicator function χ). In the third equation (energy
balance) we have, on one hand, energy loss due to heat transfer with the wall (heat
transfer coefficient h, wall temperature TWall), and, on the other hand, an energy gain
due to the local exothermic reaction in the catalytic converter (heat release coefficient
q0). The parameters cv and R denote the specific heat at constant volume and the
ideal gas constant, respectively. The fourth equation (reaction balance) describes the
dynamics of the the ratio of unburnt gas z in the pipe. The temperature dependent
reaction rate K(T ) is modeled by Arrhenius’ law. Lastly, we have the ideal gas law
as a closing relation.

The parameter ε := γM2 equals the product of the adiabatic exponent and the
square of the Mach number, and is known to be small (see [6]).

The numerical simulation of the fully compressible model (2.1) is (although it
is ”only” 1D) costly. In [6] it is shown that for many purposes there is a simplified
model to simulate gas dynamics more efficiently on the basis of (2.1). There are two
major steps in the derivation of this simplified model:

1. Rather than introducing artificial intervals for a smooth change of the cross
section A, one divides the exhaust pipe into pipes with constant cross sections
and treat the whole system as a network. This has two major advantages:
(a) Avoiding strong changes of A on small x-intervals, we can use larger step

sizes in space (and therefore, also in time).
(b) The coupling conditions at the junctions, allow to include models for

pressure losses caused by the pipe’s geometry.
2. The flow in the exhaust pipe is of low Mach number (M), and (in this appli-

cation) one is not interested in the propagation of sound waves, but mainly
in the temperature in the catalyst. Thus, one is able to simplify the model by
a small Mach number asymptotics (ε → 0). This will lead to the simplified
model (2.2), which is computationally much cheaper than the fully hyperbolic
model (2.1), due to much larger step sizes in time given by the CFL condition.
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See [6] for the detailed derivation and comparison with the original model (2.1). The
final version of our asymptotic model is the following:

ρit + (vi +Qi)ρix = −qiρi,

zit + (vi +Qi)zix = −χiziK(T i),

vit = Φi/Ri(0),

p0 = ρiT i,

(2.2)

with unknowns ρi = ρi(x, t), vi = vi(t), zi = zi(x, t), T i = T i(x, t) as the density,
time dependent velocity component, the ratio of unbrunt gas and the temperature
for the i-th pipe, respectively. Before we give definition for the other variables, let us
first discuss the structure of the model. We see that instead of four coupled PDEs
in (2.1) we have now only a system of two PDEs and one Integro-ODE. The super-
index i ∈ {1, . . . , nP } denotes the pipe number, where nP is the amount of pipes in
total. Since we have to differentiate between pipes that do and do not have a catalytic
converter, we denote multiply terms, that only occur in pipes that have a catalyst,
with the indicator function χi.

χi =

{

1 pipe i has a catalyst

0 otherwise
(2.3)

Furthermore, we have to define some terms in the equations (2.2). All values for the
parameters, can be found in the appendix A.

1. The velocity u is now split into the space independent velocity component v
and the aggregated energy balance Q.

ui(x, t) = vi(t) +Qi[ρi, zi](x, t) = vi(t) +

∫ x

0

qi[ρi, zi](y, t)dy,(2.4)

qi[ρi, zi](x, t) :=
1

γp0

[
−h(T i(x, t)− T i

Wall(x, t))(2.5)

+χiq0ρ
i(x, t)zi(x, t)K(T i(x, t))

]
,

with p0 zero order pressure in the small Mach number asymptotics and

T i
Wall(x, t) :=

1

2

(
T i(x, t) + Tout

)
,(2.6)

where Tout is the scaled outside temperature.
2. The reactions rate K, which depends on the temperature/density of the gas

mixture is defined in the following way:

K(T i) :=
K̃0xr
ur

exp

(

−
T̃+

TrT i

)

=
K̃0xr
ur

exp

(

−
T̃+

Trp0
ρi

)

=: Kρ(ρ
i)(2.7)

with Ẽ+ = RT̃+ as the activation energy.
3. The right hand side of the third equation is defined (with qi(x, t) = qi[ρi, zi](x, t)
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and Qi(x, t) = Qi[ρi, zi](x, t)) as follows:

(Ri(x))(t) :=

Li
∫

x

ρi(y, t)dy(2.8)

Φi[ρi, zi, vi](t) := pi1l(t)− pi1r(t)−

Li
∫

0

ρi(x, t)Qi
t(x, t)dx(2.9)

−

Li
∫

0

ρi(x, t)(vi(t) +Qi(x, t))qi(x, t)dx

− Cf

Li
∫

0

ρi(x, t)
(v(t)i +Qi(x, t))|v(t)i +Qi(x, t)|

2
dx

− χiCc

Li
∫

0

ρi(x, t)(vi(t) +Qi(x, t)) dx.

The index set Icc ⊂ 1, . . . , nP contains all pipes the contain a catalytic converter.
In order to describe the heating of the catalytic converter, we need to introduce an
equation which models the evolution of the temperature of the catalyst. We model
the temperature of the catalytic converter T i

c as a result of the heat exchange among
catalyst temperature T i

c and the average gas temperature T i
Gas in the i-th pipe.

T i
Gas(t) :=

1

Li

Li
∫

0

T i(x, t)dx.(2.10)

We choose the following ODE, for all pipes i ∈ Icc, to model this relation.

(T i
c(t))t = −hc(T

i
c(t)− T i

Gas(t)),(2.11)

and we substitute qi from (2.5) by

qi[ρi, zi, T i
c ] :=

1

γp0

[
−h(T i − T i

Wall)

+χi
(
−hc(T

i(t)− T i
c(t)) + q0ρ

iziK(T i)
)]
,(2.12)

including the heat exchange with the catalytic converter in the energy balance qi.

2.1. The summarized model. To summarize, we consider for our optimization
task the following model to describe the physics in an exhaust pipe:

ρit + (vi +Qi)ρix = −qiρi,

zit + (vi +Qi)zix = −χiziK(T i),

vit = Φi/Ri(0),

(T j
c )t = −hc(T

j
c − T j

Gas),

(2.13)
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for all pipes i = 1, . . . , nP , j ∈ Icc and (x, t) ∈ (0, Li)× (0, tend), with closing relation

ρi(x, t)T i(x, t) = p0,(2.14)

for all pipes i = 1, . . . , nP and (x, t) ∈ [0, Li]× [0, tend], initial conditions

ρi(x, 0) = ρiic(x), zi(x, 0) = ziic(x), vi(0) = viic, T j
c (0) = T j

c ic,(2.15)

for all pipes i = 1, . . . , nP , j ∈ Icc and x ∈ [0, Li], boundary conditions for all times
t ∈ [0, tend]

ρ1(0, t) = ρl(t), z1(0, t) = zl(t),(2.16)

and coupling conditions for all pipes i = 2, . . . , nP

ρi−1(Li−1, t) = ρi(0, t), zi−1(Li−1, t) = zi(0, t).(2.17)

Remark 2.1. There are additional physical boundary conditions we need to pre-
scribe, i.e., the pressure value at the exhaust pipe’s very left end very right end.

p1(0, t) = pl(t) = p0 + εp1l(t), pnP (LnP , t) = pr(t) = p0 + εp1r(t).(2.18)

For the mathematical model (2.13) these are just parameters (which appear in Φi, see
(2.9)). Therefore it is not mentioned in the model description. Since we also need
pressure values at the junctions, we need to prescribe a coupling condition for the
pressure value.

pi−1(Li−1, t) = pi(0, t) + fext.(2.19)

See [6] or [3, 17] for the definition of the pressure loss term fext. The numerical
computation of all pressure values at each pipe end for each time step is not trivial
and explained in detail in [6].

3. The Optimization Problem.

3.1. What do we want to optimize?. As already mentioned in the intro-
duction, the exothermic reaction of the unburnt gas has a major impact on the gas
temperature in the catalyst. The desired reactions in the catalyst take place best if a
certain temperature is achieved. More precisely the catalyst is not functioning if the
temperature is below a certain threshold, and may be damaged if a certain critical
temperature is exceeded.

It is thus natural to consider an optimization problem to reach a desired temper-
ature Topt by controlling the inflow of unburnt gas zl. We will neglect the natural
constraints induced by avoiding damage in this article.

In order to formulate this optimization task, we first need a cost functional. As
described above, on the one hand we want to reach the light of temperature in the
catalyst, but on the other hand do not want to use too much fuel. We express this
by the following cost functional.

J (T i
c , zl) :=

1

2

∑

i∈Icc

tend∫

0

(T i
c(t)− Topt)

2dt+ σ

tend∫

0

zl(t)dt,(3.1)
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with the additional upper and lower bound for zl

0 ≤ zl(t) ≤ zmax
l ∀t ∈ [0, tend].(3.2)

We note that the choice of the tracking type term for the temperature is rather
arbitrary, but is sufficient for our discussion. However, the choice of an L1-type term
for the unburnt gas is physically well motivated by the linear costs associated with
the amount of fuel used.

For the algorithmic realization, we assume that for any nonnegative function
zl ∈ L1(0, tend) there is a unique temperature T i

c = T (zl) ∈ L2(0, tend) given by the
model (2.13)-(2.17). This gives rise to the reduced problem to find zl solving

(3.3)
min j(zl) = J (T (zl), zl)

s.t. 0 ≤ zl ≤ zmax
l .

To solve this numerically, we will apply a projected gradient method in this reduced
setting, see Section 5. Before we can do so, we need to calculate the derivatives of the
reduced cost functional which we will do in the following section.

In the calculations, we follow the optimize-then-discretize approach, meaning that
we will derive the necessary optimality conditions for the continuous problem and then
discretize the optimality conditions to obtain a discrete problem, see our discussion
in Section 5.

4. The optimality system and its derivation. For the following compu-
tation, we need to assume that the velocity ui = vi + Qi is non-negative for all
(x, t) ∈ [0, Li] × [0, tend] in all pipes i = 1, . . . , nP . Then |vi + Qi| = vi + Qi in the
term Φ. This assumption is fully in correspondence with the application.
Since we want to determine the gradient of our cost functional J by an adjoint-
based method, we need to calculate the adjoint. To do so, we formulate a La-
grangian functional. Let W := (w1, . . . , wnP ) be the vector of all state variables,
i.e., wi := (ρi, zi, vi, T i

c) and Λ := (λ1, . . . , λnP ) the vector of all adjoint variables, i.e.,
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λi := (ξiρ, ξ
i
z , ξ

i
v, ξ

i
Tc
, ηρ, ηz, ν

i
ρ, ν

i
z , ν

i
v, ν

i
Tc
, ζiρ, ζ

i
z). Then the Lagrangian functional is

L(W, zl,Λ) =
∑

i∈Icc

tend∫

0

(T i
c(t)− Topt)

2dt+ σ

tend∫

0

zl(t)dt(4.1)

−

nP∑

i=1

tend∫

0

Li
∫

0

ξiρ(ρ
i
t + (vi +Qi)ρix + qiρi)dxdt(4.2)

−

nP∑

i=1

tend∫

0

Li
∫

0

ξiz(z
i
t + (vi +Qi)zix + χiziK(T i))dxdt(4.3)

−

nP∑

i=1

tend∫

0

ξiv

(

vit −
Φi

Ri(0)

)

dt(4.4)

−
∑

i∈Icc

tend∫

0

ξiTc
((T i

c)t + hc(T
i
c − T i

Gas))dt(4.5)

−

tend∫

0

ηρ(ρ
1(0, t)− ρl(t))dt−

tend∫

0

ηz(z
1(0, t)− zl(t))dt(4.6)

−

nP∑

i=1

Li
∫

0

νiρ(ρ
i(x, 0)− ρiic(x))dx −

nP∑

i=1

Li
∫

0

νiz(z
i(x, 0)− ziic(x))dx(4.7)

−

nP∑

i=1

νiv(v
i(0)− viic)−

∑

i∈Icc

νiTc
(T i

c(0)− T i
c ic)(4.8)

−

nP∑

i=2

tend∫

0

ζiρ
(
ρi−1(Li−1, t)− ρi(0, t)

)
dt(4.9)

−

nP∑

i=2

tend∫

0

ζiz
(
zi−1(Li−1, t)− zi(0, t)

)
dt.(4.10)

Before starting with the computation, let us have a quick look at the lines of this large
term. Line (4.1) is representing the cost functional. Lines (4.2 - 4.5) are the four state
equations multiplied with Lagrangian multipliers ξi

∗
, integrated over space and time

and summed up over all pipes of the network. The last four lines are the boundary
conditions muliplied with its Lagragian multipliers ηi

∗
and integrated over time (4.6),

the initial conditions multiplied with its Lagragian multipliers νi
∗
integrated over space

(4.7 - 4.8) and the coupling conditions multiplied with its Lagrangian multipliers ζi
∗

and integrated over time (4.9 - 4.10).

We derive the optimality system, by computing the first variation, with respect
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to Lagrangian multipliers, state variables and the control quantity, i.e.,

(4.11)

δL

∂λij
= 0 ⇒ constraints or state equations,

∂L

∂wi
j

= 0 ⇒ adjoint or co-state equations,

∂L

∂zl
(z∗l − zl) ≥ 0 ∀ z∗l ∈ [0, zmax

l ] ⇒ optimality condition.

4.1. Derivation of the optimality condition. Let us start with the derivation
of the optimality condition, since this computation is the easiest, since zl only appears
in the terms (4.1) and (4.6). Let δzl be an arbitrarily chosen L1-function, such that
0 ≤ zl + ǫδzl ≤ zmax

l , for sufficient small ǫ > 0. Then the first variation of the
Lagrangian L with respect to the control zl in direction δzl is

∂L(W, zl,Λ)

∂zl
(δzl) =

tend∫

0

δzl(σ + ηz)dt.

Given that (4.11) holds for all feasible test-functions we assert that the inequality in
the reduced optimality condition holds pointwise almost everywhere in [0, tend], by
fundamental lemma of calculus of variation (see, e.g., [21] Lemma 2.26). This yields
to

(σ + ηz)(z
∗

l − zl) ≥ 0 ∀ 0 ≤ z∗l ≤ zmax
l ,(4.12)

which in turn is equivalent to

σ + ηz







≥ 0 zl = 0,

= 0 0 < zl < zmax
l ,

≤ 0 zl = zmax
l .

(4.13)

4.2. Derivation of the constraints or state equations. In order to obtain
the state equations formally, we have to compute the first variations of the Lagrangian
functional L with respect to the Lagrangian multipliers. The computation works just
like in the above case. We then obtain the state system consisting of our differential
equations (2.13) and our boundary (2.16), initial (2.15) and coupling conditions (2.17).

4.3. Derivation of the adjoint or co-state equations. In this subsection,
we will refuse to write super-indices, but compute the first variations for a pipe of
length L = 1 with a catalytic converter. The computation of the adjoint equations for
a pipe without a catalyst is just a special case (no equation for Tc and Cc = K0 = 0).
Note that in the case of a single pipe, there are no coupling conditions required. We
will deal with this problem in subsection 4.4. The following part is most complicated
one, when it comes to computation of the first variations. This is the case, because
all state variable except v appear in the functional Q = Q[ρ, z, Tc].

We will only compute the variation for the space-independent velocity component
v and the density ρ. The latter is the most sophisticated and includes all techniques
that are required for the computation of the variation with respect to the other two
variables z and Tc. We start with ∂L/∂v, since this is the easier of the two cases.
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4.3.1. First variation of L with respect to v. The space independent velocity
component v appears in the Lagrangian L in the density PDE (4.2), the ratio of
unburnt gas PDE (4.3) and its own ODE (4.4) such as its initial condition (4.8). One
has to keep in mind, that the functional Φ (2.9) has also a v-dependence. So before
computing the first variation of L with respect to v, let us have a closer look at the
functional Φ.

Φ[ρ, z, v + ǫδv, Tc]− Φ[ρ, z, v, Tc] = −ǫδv

1∫

0

(

ρq + Cfρ

(

(v +Q) +
ǫδv

2

)

+ Ccρ

)

dx

= −ǫδv

1∫

0

(ρq + Cfρ(v +Q) + Ccρ) dx−
ǫ2δv2

2

1∫

0

Cfρdx.

We already isolated the term of order ǫ2, since this term is of higher order and will
vanish in the limit ǫ→ 0.

∂L(W, zl,Λ)

∂v
(δv) = lim

ǫ→0

1

ǫ



−

tend∫

0

1∫

0

ǫδv(ξρρx + ξzzx)dxdt− ǫδvηv|t=0

−

tend∫

0

ξv



ǫδvt +
ǫδv

R(0)





1∫

0

(ρq + Cfρ(v +Q) + Ccρ) dx









−

tend∫

0

ξvo(ǫ) dx



 .

Using integration by parts, we shift the time derivative of δv to the co-state. This
also leads to an evaluation at the boundaries.

−

tend∫

0

ξvδvtdt =

tend∫

0

(ξv)tδvdt−

[

ξvδv

]t=tend

t=0

.

The limit ǫ→ 0 gives

∂L(W, zl,Λ)

∂v
(δv) =

tend∫

0

δv



(ξv)t −

1∫

0

ξρρx + ξzzxdx

−ξv
1

R(0)





1∫

0

ρq + Cfρ(v +Q) + Ccρdx







 dt

−

[

ξvδv

]t=tend

t=0

− ηvδv(0).

Now, we assume the derivative of the Lagragian with respect to v, in the direction
δv, to vanish. Since the variation δv is arbitrary, we choose a variation that vanishes
at the boundaries, i.e., at t = 0 and t = tend. Then we deduce, by the fundamental
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theorem of variational calculus, that

−(ξv)t = −ξvS(0)−

1∫

0

ξρρx + ξzzxdx ,(4.14)

with

S(x) :=
1

R(0)

1∫

x

(ρq + Cfρ(v +Q) + Ccρ) dy.(4.15)

By choosing a variation that vanishes only at one of the end points t = 0, t = tend we
obtain, with the knowledge that (4.14) holds

ξv = 0 for t = tend.(4.16)

4.3.2. First variation of L with respect to ρ. Before the computation of the
derivative, let us focus on the dependence of q and Q upon the density ρ. We assume
ρ ≥ c > 0, which is in correspondence with the physics.

q[ρ+ ǫδρ, z, Tc] =
1

γp0

[

− h

(
p0

ρ+ ǫδρ
− TWall

)

− hc

(
p0

ρ+ ǫδρ
− Tc

)

+ q0(ρ+ ǫδρ)zKρ(ρ+ ǫδρ)

]

Note that, we will use the notation, given in (2.7), for the reaction rate function. We
observe that the density variable and its variation do not appear in a linear way, but
as the denominator of a friction and the argument of the reaction rate. In order to
subtract the evaluation of q at ρ+ ǫδρ, we have to get rid of these terms. We do this
by Taylor expansion:

1

ρ+ ǫδρ
=

1

ρ
− ǫδρ

1

ρ2
+ o(ǫ),

Kρ(ρ+ ǫδρ) = Kρ(ρ) + ǫδρK ′

ρ(ρ) + o(ǫ).

By replacing these terms with the Taylor expansions, we obtain

q[ρ+ ǫδρ, z, Tc] = q[ρ, z, Tc] + ǫδρ
1

γp0

[
p0(h+ hc)

ρ2
+ q0z(ρK

′

ρ(ρ) +Kρ(ρ))

]

+ o(ǫ).

By definition of Q, this yields

Q[ρ+ ǫδρ, z, Tc]−Q[ρ, z, Tc] =

x∫

0

ǫδρqρdy + o(ǫ),(4.17)

Qt[ρ+ ǫδρ, z, Tc]−Qt[ρ, z, Tc] =

x∫

0

(ǫδρqρ)t dy + o(ǫ)(4.18)

where

qρ :=
1

γp0

(
p0(h+ hc)

ρ2
+ q0z(ρK

′

ρ(ρ) +Kρ(ρ))

)

.(4.19)

Since the density appears in many terms in the Lagrangian, we will compute the first
variation of it step by step. The density does not appear in the cost functional (4.1),
hence we start with the ξρ-integral (4.2).
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The ξρ-integral (4.2).

(4.20)

−

tend∫

0

1∫

0

ξρ
(
(ρ+ ǫδρ)t + (v +Q[ρ+ ǫδρ, . . .])(ρ+ ǫδρ)x

+ q[ρ+ ǫδρ, . . .](ρ+ ǫδρ)
)
dxdt

+

tend∫

0

1∫

0

ξρ
(
ρt + (v +Q)ρx + qρ

)
dxdt

= −

tend∫

0

1∫

0

ξρ

(

ǫδρt + (v +Q)ǫδρx + qǫδρ+ ρqρǫδρ

+ ρx

x∫

0

ǫδρqρdy

)

dxdt+ o(ǫ)

=: Iξρ .

Our aim is to isolate the variation δρ, such that we can apply the fundamental lemma
of variational calculus again. Therefore we need to integrate by parts two times (one
with respect to the spatial and once with respect to the time component). Further-
more, we need to use the following identity

1∫

0

f(x)





x∫

0

g(y)dy



 dx =

1∫

0

g(x)





1∫

x

f(y)dy



 dx

which is a consequence of Fubini’s theorem. With this we manipulate (4.20) and
obtain

Iξρ =

tend∫

0

1∫

0

ǫδρ



(ξρ)t + (v +Q)(ξρ)x − qρ



ρξρ +

1∫

x

ξρρxdy







 dxdt(4.21)

−

[ tend∫

0

ǫδρ(v +Q)ξρdt

]x=1

x=0

−

[ 1∫

0

ǫδρξρdx

]t=tend

t=0

+ o(ǫ).

The ξz-integral (4.3). Analog computations as above give

−

tend∫

0

1∫

0

ξz
(
zt + (v +Q[ρ+ ǫδρ, . . .])zx + zKρ(ρ+ ǫδρ)

)
dxdt

+

tend∫

0

1∫

0

ξz
(
zt + (v +Q)zx + zKρ(ρ)

)
dxdt

= −

tend∫

0

1∫

0

ξz



zx

x∫

0

ǫδρqρdy + ǫδρzK ′

ρ(ρ)



 dxdt+ o(ǫ)

= −

tend∫

0

1∫

0

ǫδρ



qρ

1∫

x

ξzzxdy + ξzzK
′

ρ(ρ)



 dxdt+ o(ǫ).(4.22)
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The ξv-integral (4.4). This is the most technical part, since ρ appears in this
term so often. Let us develop this step by step. First, let us have a look on the density
integral in the denominator. By Taylor expansion we obtain:

1
∫ 1

0
ρ+ ǫδρdx

=
1

∫ 1

0
ρdx

−

1∫

0

ǫδρdx
1

(∫ 1

0 ρdx
)2 + o(ǫ)

=
1

R(0)
−

1

R(0)2

1∫

0

ǫδρdx+ o(ǫ).

The term Φ evaluated at ρ+ ǫδρ, will have the following form:

Φ[ρ+ ǫδρ, . . .] = Φ[ρ, . . .] + ǫΦρ[δρ; ρ, . . .] + o(ǫ).

We will compute Φρ in detail later. Let us first have a look on the whole integral
containing ξv.

−

tend∫

0

ξv

(

vt −
1

∫ 1

0
ρ+ ǫδρdx

Φ[ρ+ ǫδρ, . . .]

)

dt+

tend∫

0

ξv

(

vt −
1

∫ 1

0
ρdx

Φ[ρ, . . .]

)

dt

=

tend∫

0

ξv




1

R(0)
ǫΦρ −

1

R(0)2

1∫

0

ǫδρdx Φ



 dt+ o(ǫ) =: I(4.23)

The term ǫΦρ consists of all the terms in which ǫ appears linearly, when evaluating Φ
at ρ+ ǫδρ. We will now compute those terms. We therefore split Φ in several parts.

Φ[ρ, z, v, Tc] = p1l − p1r −

=:Φ1[ρ,z,Tc]
︷ ︸︸ ︷

1∫

0

ρQtdx −

=:Φ2[ρ,z,v,Tc]
︷ ︸︸ ︷

1∫

0

ρ(v +Q)qdx(4.24)

− Cf

1∫

0

ρ
(v +Q)2

2
dx

︸ ︷︷ ︸

=:Φ3[ρ,z,v,Tc]

−Cc

1∫

0

ρ(v +Q)dx

︸ ︷︷ ︸

=:Φ4[ρ,z,v,Tc]

(4.25)

We start now with the computation of −Φi[ρ+ ǫδρ, z, v, Tc] + Φi[ρ, z, v, Tc].

(4.26)

−Φ1[ρ+ ǫδρ, z, Tc] + Φ1[ρ, z, Tc]

= −

1∫

0

(ρ+ ǫδρ)Qt[ρ+ ǫδρ, . . .]dx+

1∫

0

ρQtdx

= −

1∫

0

ǫδρQt + [ǫδρqρ]tR(x)dx + o(ǫ),

−Φ2[ρ+ ǫδρ, z, v, Tc] + Φ2[ρ, z, v, Tc]

= −

1∫

0

ǫδρ



(v +Q)q + ρ(v +Q)qρ + qρ

1∫

x

ρqdy



 dx+ o(ǫ),
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−Φ3[ρ+ ǫδρ, z, v, Tc] + Φ3[ρ, z, v, Tc]

= −Cf

1∫

0

ǫδρ




(v +Q)2

2
+ qρ

1∫

x

ρ(v +Q)dy



 dx+ o(ǫ),

−Φ4[ρ+ ǫδρ, z, v, Tc] + Φ4[ρ, z, v, Tc]

= −Cc

1∫

0

ǫδρ



(v +Q) + qρ

1∫

x

ρdy



 dx+ o(ǫ).

Then Φρ is

Φρ[δρ; ρ, z, v, Tc] =−

1∫

0

δρ

(

ρ(v +Q)qρ + qρR(0)S(x)−
φ

ρ

)

dx

−

1∫

0

R(x)[δρ qρ]tdx

with

φ[ρ, z, v, Tc] := −

(

ρQt + ρ(v +Q)q + Cfρ
(v +Q)2

2
+ Ccρ(v +Q)

)

.
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Before finalizing the ξv-integral, we have to integrate by parts in order to get rid of
the time derivative of the perturbation δρ in the term (4.26).

−

tend∫

0

1∫

0

ξv
R(x)

R(0)
[ǫδρ qρ]tdxdt

=

tend∫

0

1∫

0

ǫδρ qρ

[

ξv
R(x)

R(0)

]

t

dxdt−

[

ξv
1

R(0)

1∫

0

ǫδρ qρR(x)dydx

]t=tend

t=0

=

tend∫

0

1∫

0

ǫδρ qρ

[

(ξv)t
R(x)

R(0)
+ ξv

Rt(x)

R(0)
− ξv

Rt(0)R(x)

R(0)2

]

dxdt

−

[

ξv
1

R(0)

1∫

0

ǫδρ qρR(x)dydx

]t=tend

t=0

=

tend∫

0

1∫

0

ǫδρ qρ

[(

ξvS(0) +

1∫

0

ξρρx + ξzzxdx

)

R(x)

R(0)
+ ξv

Rt(x)

R(0)

− ξv
Rt(0)R(x)

R(0)2

]

dxdt−

[

ξv
1

R(0)

1∫

0

ǫδρ qρR(x)dydx

]t=tend

t=0

=

tend∫

0

1∫

0

ǫδρqρ

[

R(x)

R(0)

1∫

0

ξρρx + ξzzxdx

+ ξv
1

R(0)

(

R(x)S(0) +Rt(x)−
Rt(0)R(x)

R(0)

)]

dx

−

[

ξv
1

R(0)

1∫

0

ǫδρ qρR(x)dx

]t=tend

t=0

+ o(ǫ)

Thus, our ξv-integral (4.23) equals

(4.27)

I =

tend∫

0

1∫

0

ǫδρqρ

[

ξv
1

R(0)

(

−ρ(v +Q)−R(0)S(x) +R(x)S(0)

+Rt(x)−
Rt(0)R(x)

R(0)

)

+
R(x)

R(0)

1∫

0

ξρρx + ξzzxdx

]

dxdt

−

tend∫

0

1∫

0

ǫδρ ξv
1

R(0)

(
Φ

R(0)
−
φ

ρ

)

dxdt

−

[

ξv
1

R(0)

1∫

0

ǫδρ qρR(x)dx

]t=tend

t=0

+ o(ǫ).
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The ξTc
-integral (4.5).

−

tend∫

0

ξTc



(Tc)t + hc



Tc −

1∫

0

p0
ρ+ ǫδρ

dx







 dt

+

tend∫

0

ξTc



(Tc)t + hc



Tc −

1∫

0

p0
ρ
dx







 dt

= −

tend∫

0

1∫

0

ǫδρ
hc
ρ2

ξTc
dxdt+ o(ǫ)(4.28)

The summary of the first variation of L with respect to ρ. Since every-
thing is prepared, we can start with the derivative. Putting the terms (4.21),(4.22),(4.27)
and (4.28) together, we obtain:

∂L(W, zl,Λ)

∂ρ
(δρ) = lim

ǫ→0

1

ǫ





tend∫

0

1∫

0

ǫδρ ((ξρ)t + (v +Q)(ξρ)x − qρF ) dxdt

+

tend∫

0

1∫

0

ǫδρ

(

−ξv
1

R(0)

(
Φ

R(0)
−
φ

ρ

)

− zK ′

ρ(ρ)ξz −
hc
ρ2
ξTc

)

dxdt

−

[ tend∫

0

ǫδρ(v +Q)ξρdt

]x=1

x=0

−

[

ξv
1

R(0)

1∫

0

ǫδρ qρR(x)dx

]t=tend

t=0

−

tend∫

0

ǫδρ(0, t)ηρdt−

1∫

0

ǫδρ(x, 0)ηρdx+ o(ǫ)



 ,

where F is defined as

F [ρ, z, v, Tc, ξρ, ξz , ξv] := ξρρ+

1∫

x

ξρρx + ξzzxdy −
R(x)

R(0)

1∫

0

ξρρx + ξzzxdx

+ξv
1

R(0)

(

ρ(v +Q) +R(0)S(x)−R(x)S(0)−Rt(x) +
Rt(0)R(x)

R(0)

)

.

By using that δρ is arbitrary, we end up with

−(ξρ)t − (v +Q)(ξρ)x = −qρF − ξv
1

R(0)

(
Φ

R(0)
−
φ

ρ

)

− zK ′

ρ(ρ)ξz −
hc
ρ2
ξTc

(4.29)

with the terminal condition

ξρ = 0 for t = tend(4.30)

and boundary condition

ξρ(v +Q) = 0 for x = 1(4.31)



Optimal control of the temperature in a catalytic converter 17

Remark 4.1. Note that we will have a problem evaluating the boundary condition
for x1, if the velocity u = v+Q at x = 1 would vanish at some time. We therefore have
to assume positive velocities at x = 1 for all times t ∈ (0, tend]. The only exception
will be at t = 0, where we will have u(x, 0) = 0 in the case of an engine start. We
will extrapolate the boundary condition for ξρ for this time.

4.4. Coupling conditions for the adjoint equations. Now, let us discuss
the derivation of coupling conditions for the adjoint equations. Let us consider the
first variation of the Lagrangian for the whole network (4.1-4.10) with respect to the
density in the i-th pipe and considering only the term at the boundaries of the pipe,
we obtain:

0
!
=
∂L(W, zl,Λ)

∂ρi
(δρ) =−

∫ tend

0

δρi(Li, t)
(
(vi(t) +Qi(Li, t))ξiρ(L

i, t) + ζi+1
ρ (t)

)
dt

+

∫ tend

0

δρi(0, t)
(
(vi(t) +Qi(0, t))ξiρ(0, t) + ζiρ(t)

)
dt.

Using the fact that δρi is arbitrary, we obtain

(vi(t) +Qi(Li, t))ξiρ(L
i, t) = −ζi+1

ρ (t)(4.32)

and

(vi(t) +Qi(0, t))ξiρ(0, t) = −ζiρ(t).(4.33)

So increasing the indices of all terms in (4.33), we can write together with (4.32):

(vi(t) +Qi(Li, t))ξiρ(L
i, t) = −ζi+1

ρ (t) = (vi+1(t) +Qi+1(0, t))ξi+1
ρ (0, t).(4.34)

4.5. Summary - The optimality system. We want to summaries the results
of all computation in this section. Our optimality system now consists of

constraints or state equations.

ρit + (vi +Qi)ρix = −qiρi,

zit + (vi +Qi)zix = −χiziK(T i),

vit = Φi/Ri(0),

(T j
c )t = −hc(T

j
c − T j

Gas)

(4.35)

for all pipes i = 1, . . . , nP , j ∈ Icc and (x, t) ∈ (0, Li)× (0, tend), with closing relation

ρi(x, t)T i(x, t) = p0(4.36)

for all pipes i = 1, . . . , nP and (x, t) ∈ [0, Li]× [0, tend], initial conditions

ρi(x, 0) = ρiic(x), zi(x, 0) = ziic(x), vi(0) = viic T j
c (0) = T j

c ic(4.37)

for all pipes i = 1, . . . , nP , j ∈ Icc and x ∈ [0, Li], boundary conditions

ρ1(0, t) = ρl(t), z1(0, t) = zl(t)(4.38)
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for all times t ∈ [0, tend] and coupling conditions

ρi−1(Li−1, t) = ρi(0, t), zi−1(Li−1, t) = zi(0, t)(4.39)

for all pipes i = 2, . . . , nP and times t ∈ [0, tend], where

qi[ρi, zi, T i
c ](x, t) :=

1

γp0

[
− h(T i(x, t)− T i

Wall(x, t))

+ χi
(
−hc(T

i(t)− T i
c(t)) + q0ρ

i(x, t)zi(x, t)K(T i(x, t))
) ]
,

T i
Wall(x, t) :=

1

2

(
T i(x, t) + Tout

)
,

T i
Gas(t) :=

1

Li

Li
∫

0

T i(x, t)dx,

K(T i) :=
K̃0xr
ur

exp

(

−
E+

TrT i

)

=
K̃0xr
ur

exp

(

−
E+

Trp0
ρi
)

=: Kρ(ρ
i),

(Ri(x))(t) :=

Li
∫

x

ρi(y, t)dy,

Φi[ρi, zi, vi, T i
c ](t) := pi1l(t)− pi1r(t)−

Li
∫

0

ρi(x, t)Qi
t(x, t)dx

−

Li
∫

0

ρi(x, t)(vi(t) +Qi(x, t))qi(x, t)dx

− Cf

Li
∫

0

ρi(x, t)
(v(t)i +Qi(x, t))2

2
dx

− χiCc

Li
∫

0

ρi(x, t)(vi(t) +Qi(x, t)) dx.

adjoint or co-state equations.

−(ξiρ)t − (vi +Qi)(ξiρ)x =− qρiF i − χi

(

ziK ′

ρ(ρ
i)ξiz +

hc
(ρi)2Li

ξiTc

)

− ξiv
1

Ri(0)

(
Φi

Ri(0)
−
φi

ρi

)

,

−(ξiz)t − (vi +Qi)(ξiz)x =− qizF
i − ξiz

(
χiK(T i)− qi

)

−(ξiv)t =− ξivS
i(0)−

Li
∫

0

ξiρρ
i
x + ξizz

i
xdx

−(ξjTc
)t =−

Lj
∫

0

q
T

j
c
F jdx− hcξ

j
Tc

+ (T j
c − Topt)

(4.40)



Optimal control of the temperature in a catalytic converter 19

for all pipes i = 1, . . . , nP , j ∈ Icc and (x, t) ∈ (0, Li) × (0, tend), with terminal
conditions

ξiρ(x, tend) = 0, ξiz(x, tend) = 0, ξiv(tend) = 0, ξjTc
(tend) = 0(4.41)

for all pipes i = 1, . . . , nP , j ∈ Icc and x ∈ [0, Li], boundary conditions

ξnP

1 (LnP , t)(vnP (t) +QnP (LnP , t)) = 0,

ξnP

2 (LnP , t)(vnP (t) +QnP (LnP , t)) = 0
(4.42)

for all times t ∈ [0, tend], and coupling conditions

(vi(t) +Qi(Li, t))ξiρ(L
i, t) = (vi+1(t) +Qi+1(0, t))ξi+1

ρ (0, t),

(vi(t) +Qi(Li, t))ξiz(L
i, t) = (vi+1(t) +Qi+1(0, t))ξi+1

z (0, t)
(4.43)
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for all pipes i = 1, . . . , nP and times t ∈ [0, tend], where

qiTc
:= χi hc

γp0
,

qiz [ρ
i](x, t) := χi q0

γp0
ρiK(T i(x, t)),

qiρ[ρ
i, zi, T i

c ](x, t) :=
1

γp0

(
h+ χihc
(ρi(x, t))2

+ χiq0z
i(x, t)ρi(x, t)K ′

ρ(ρ
i(x, t)

+ χiKρ(ρ
i(x, t)))

)

,

φi[ρi, zi, vi, T i
c ](x, t) := −

(

ρi(x, t)Qi
t(x, t) + ρi(x, t)(vi(t) +Qi(x, t))qi(x, t)

+ Cfρ
i(x, t)

(vi(t) +Qi(x, t))2

2

+ χiCcρ
i(x, t)(vi(t) +Qi(x, t))

)

,

(Si[ρi, zi, vi, T i
c ](x))(t) :=

1

(Ri(0))(t)

Li
∫

x

(

ρi(y, t)qi(y, t)

+ Cfρ
i(y, t)(vi(t) +Qi(y, t)) + χiCcρ

i(y, t)

)

dy,

F i[ρi, zi, vi, T i
c , ξ

i
ρ, ξ

i
z , ξ

i
v](x, t) := ξiρ(x, t)ρ

i(x, t) +

Li
∫

x

ξiρ(y, t)ρ
i
x(y, t) + ξiz(y, t)z

i
x(y, t)dy

−
(Ri(x))(t)

(Ri(0))(t)

Li
∫

0

ξiρ(x, t)ρ
i
x(x, t) + ξiz(x, t)z

i
x(x, t)dx

+ ξiv(t)
1

(Ri(0))(t)

(

ρi(x, t)(vi(t) +Qi(x, t))

+ (Ri(0))(t)(Si(x))(t) − (Ri(x))(t)(Si(0))(t)

− (Ri
t(x))(t) +

(Ri
t(0))(t)(R

i(x))(t)

(Ri(0))(t)

)

.

Furthermore, since we will be interested in the quantity ηz , the relation

ξ1z(0, t)(v
1(t) +Q1(0, t)) = ηz(t)(4.44)

for all t ∈ [0, tend] is needed.

optimality condition.

(σ + ηz)(z
∗

l − zl) ≥ 0 ∀ 0 ≤ z∗l ≤ zmax
l(4.45)

for all t ∈ (0, tend).
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5. Discretization. We follow the first optimize-then-discretize approach to nu-
merically calculate a solution to the necessary optimality conditions. In particular,
the calculated discretized adjoint converges to the continuous adjoint, thus small-
ness of the calculated gradient is related to smallness of the real gradient. On the
other hand, as it is well known, this approach has the draw back, that the calculated
discretized gradient of the functional need not coincide with the gradient of the dis-
cretized functional. This in turn allows our calculated “descend directions” to fail
giving descent for the discretized functional. However, if this happens any further
iteration on the given discretization is misleading anyway, since discretization errors
become dominant so that a refinement of the discretization is warranted. Hence fail-
ure of convergence without nearly satisfied optimality conditions serves us as a cheap
estimate for the accuracy of the applied discretization, for more details see Table 5.2
and the discussion in Section 5.3.

For the discretization of the state equation (4.35) an explicit upwind scheme for
the spatial differential operator and explicit Euler for the time derivative is used (see
[6] for details). Since the adjoint system (4.40) is posed backwards in space and time,
we first substitute the time and space variables by t̂ := tend− t and x̂ = Li−x. Then
the same numerical schemes that we use for solving the state system is used for the
solution of (4.40).

By the operation “·” between two element of RM we mean the weighted scalar
product, which is our approximation for the L2 scalar product, i.e., for two mappings
ϕ, ψ : [0, 1] → R and their discretizations ϕh, ψh ∈ RM we have

ϕh · ψh =
1

M

M∑

m=1

(ϕh)m(ψh)m ≈ (ϕ, ψ)L2
=

1∫

0

ϕψdy,(5.1)

noting that we have uniform step sizes.
In order to avoid too many sub-indices, we will not discriminate between the

continuous and discrete state, adjoint and control variables, as we will always work
with the discrete quantities in this section. Discretization of functionals such as
j : L1 → R, will be denoted by the sub-index h, i.e., j ≈ jh.

5.1. Algorithm. We will have two stopping criteria.
1. STOP if the optimality condition ||j′||L2

≈ 1
M
||∇jh||2 < TOLopt with a toler-

ance TOLopt > 0 and ∇jh being the discretized projected gradient, i.e.,

(∇jh)m =







σ + (ηz)m 0 ≤ (zl)m ≤ zmax
l ,

min(0, σ + (ηz)m) (zl)m = 0,

max(0, σ + (ηz)m) (zl)m = zmax
l .

(5.2)

2. STOP if the evaluation of the cost functional do not change any more, i.e.,
|j(zkl )− j(zk+1

l )| < TOLdiff , with a tolerance TOLdiff > 0.
The first criterion is related to almost satisfied KKT conditions. The second criterion,

however, can occur whenever the step size z
(k)
l −z

(k+1)
l tends to zero. This is the case,

in particular, when the computed continuous gradient and the discrete gradient are
too far apart. Thus if the algorithm stops due to the second criteria a refinement of
the discretization is reasonable to assert convergence of the gradient used to determine
the search direction.

Algorithm 5.1.

Guess a initial control z
(0)
l ∈ R

M , where M is the number of grid points in time.
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σ = 0.01 σ = 10

N DQh ∇jh(zl) · δzl Eǫ DQh ∇jh(zl) · δzl Eǫ

50 -85.3 -2052.5 1967.1 1579.7 -387.4 1967.1

100 -91.8 -1964.9 1873.1 1573.2 -299.9 1873.1

200 -93.9 -1876.2 1782.3 1571.1 -211.2 1782.3

400 -94.9 -1835.9 1741.1 1570.1 -170.9 1741.1

800 -95.4 -1810.9 1715.5 1569.6 -145.9 1715.5

1600 -95.7 -1798.5 1702.7 1569.3 -133.5 1702.7

Table 5.1

Difference quotient (DQh) vs. discretized analytic gradient (∇jh(zl) · δzl) for ǫ = 1 and zl = 0.1

For k = 0, 1, 2, . . . repeat the following steps until one of the above stopping criteria
is fulfilled:

1. solve the constraints with control z
(k)
l to obtain the corresponding state vari-

ables ρ(k) = ρ(z
(k)
l ), z(k) = z(z

(k)
l ), v(k) = v(z

(k)
l ), T

(k)
c = Tc(z

(k)
l );

2. solve the adjoint system with state variables ρ(k), z(k), v(k), T
(k)
c to obtain the

adjoint variables ξ
(k)
ρ , ξ

(k)
z , ξ

(k)
v , ξ

(k)
Tc
, η

(k)
z ;

3. use η
(k)
z to compute reduced gradient ∇jh(z

(k)
l ), with

∇jh(z
(k)
l ) = σ + η(k)z ∈ RM ;(5.3)

4. compute step length α via projected line search (Armijo rule applied to jh(zl));

5. set z
(k+1)
l = min(zmax

l ,max(0, z
(k)
l − α∇jh(z

(k)
l )) pointwise.

5.2. Numerical Test: continuous VS discrete gradient. In a first step, we
test whether our implementation is correct. In particular, we test the implementation
of the derivatives of jh, as we use them as stopping criteria in our algorithm. To do
so we compare directional derivatives with difference approximations, i.e., we check

Eǫ = |DQh −∇jh(zl) · δzl| =

∣
∣
∣
∣

jh(zl + ǫδzl)− jh(zl)

ǫ
−∇jh(zl) · δzl

∣
∣
∣
∣
→ 0

for various values of ǫ. In Table 5.1 we calculated these for the values (δzl)m = 1
for all m = 1, . . . ,M (unscaled (δz̃l)m = 0.1) for various values of spatial grid points
N . Due to the CFL-condition, this leads also to a refinement of the time mesh, i.e.,
M = O(N), where M is the number of time grid points.

As we can see in Table 5.1 the difference quotient for ǫ = 1 is relatively stable
with respect to the mesh size, however the calculated derivatives are still sensitive to
mesh refinement. This immediately implies that even at N = 1600 we will have to
expect effects of unresolved derivatives in our optimization algorithms. On the other
hand, by comparing the subtables for σ = 0.01 and σ = 10. It is immediately clear
from this, that any numerical test for the correct implementation of the derivative
will require a much more refined mesh in space and time.

To avoid this problem, we note that the discretization error gets smaller if the end
time tend is chosen smaller. In Figure 5.1, we see the behavior of the error between
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directional derivatives and difference quotients for various choices of simulation times
tend. As it is to be expected, for all values of tend as ǫ decreases so does the error as
Eǫ = O(ǫ). As standard numerical analysis reveals, at some point round-off errors
become dominant leading to a behavior Eǫ = O(ǫ−1) as it can be seen in the graphic.
We can see clearly that the point where round-off errors become dominate travels to
larger ǫ as tend growth. However, at small final times, we can see clearly that the error
is small. Since the only change in the program is switching the value for the final time
we conclude that our implementation yields correct values for the derivatives.

Remark 5.2. The reason why the error Eǫ in table 5.1 is constant for different
values of σ, is that for all ǫ > 0 it holds

ǫEǫ = |jh(zl + ǫδzl)− jh(zl)− ǫ∇jh(zl) · δzl|

=

∣
∣
∣
∣
∣
jTc

h (zl + ǫδzl)− jTc

h (zl) + σ
ǫ

M

M∑

m=1

(δzl)m −
ǫ

M

M∑

m=1

(σ + (ηz)m)(δzl)m

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
jTc

h (zl + δzl)− jTc

h (zl)−
ǫ

M

M∑

m=1

(ηz)m(δzl)m

∣
∣
∣
∣
∣
,

and thus, Eǫ is independent of σ. Above, we denoted

jTc

h (zl) :=
∑

i∈Icc

(

1

2M

M∑

m=1

(T i
c)m − Topt)

2

)

≈
∑

i∈Icc

1

2

tend∫

0

(T i
c − Topt)

2dt.

5.3. Numerical Test: Convergence Failure and Refinement of Discretiza-

tion. As a next test, we come back to out statement at the beginning of Section 5.
To this end, we consider the behavior of Algorithm 5.1 with the same initial value

z
(0)
l = 0 and σ = 0.01 for two different spatial (and thus also temporal) refinements.

As we can see from Table 5.2, already in the first iteration slight differences in
the value of the cost functional are visible. Already after the third iteration the value
of the cost functional is almost unchanged during the application of Algorithm 5.1
for N = 50. However, the projected gradient is still large, i.e., 1

M
‖∇jh‖2 ≥ 5 · 10−3.

On the other hand when N = 1600 we can continue until 1
M
‖∇jh‖2 ≈ 5 · 10−4 with

significantly lower value of j before the cost functional is again stagnant. This confirms
our expectation on the convergence of the algorithm and the possible cure of lack of
convergence by means of refinement.

6. Numerical Examples. We want to show results of two optimization prob-
lems we have simulated.

1. Setting: High cost of control, high starting control.
Expectation: A decrease of ratio of unbrunt gas zl is more important that
achieving an optimal temperature in the catalysts.

2. Setting: Low cost of control, low starting control.
Expectation: The ratio of unbrunt gas zl should be increased in order to
reach optimal temperature in the catalysts.

For all simulation, that we will present in this section, the following holds:
• The geometry of the pipe which is used in these simulations, is presented in
the figure 6.1 (for data of the pipe’s geometry see Table A.1 in the appendix
A).
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Figure 5.1. Error between gradient and difference quotient
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Figure 6.1. Geometry of the exhaust pipe

• We choose N = 1600 to be the number of spatial grid points. The number of
gird points in time M depend upon the CFL-condition, and therefore upon
the reached velocities in the simulation.

• All quantities presented in this section are unscaled, i.e., they have a dimen-
sion. We will denote the unscaled quantities by the tilde symbol “ ·̃ ”. The
table of reference values, we used for the scaling can be found in the Table
A.2 in the appendix.

• The value of the parameters used for the simulation are listed in the Table
A.3 in the appendix.

• For the verification of the simulation results, one should keep in mind the
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N = 50 N = 1600

iteration jh
1
M
||∇jh||2 jh

1
M
||∇jh||2

0 198.2154 0.0613 169.9120 0.0093

1 109.9411 0.0241 98.0908 0.0035

2 39.3864 0.0063 28.5489 0.0005

3 39.2464 0.0060 26.8061 0.0012

4 39.2349 0.0057 26.1496 0.0003

5 39.2349 0.0057 25.8218 0.0014

6 - - 24.2810 0.0009

7 - - 23.8705 0.0006

8 - - 23.8574 0.0004

9 - - 23.8574 0.0004

Table 5.2

Results of the optimization algorithm for different number of spatial grid points N (Values are
rounded to five decimal places)

optimal temperature in the catalytic converters

T̃opt = 800K.

• We will observe the temperature in the catalytic converters during the first

t̃end = 60s

after the engine start.
• The upper bound for the control variable z̃l will be

z̃max
l = 0.5.

• The initial condition below correspond to an engine start. For all pipes i =
1, . . . , 9 and for all x̃ ∈ [0, L̃i]

ρ̃iic(x̃, 0) = 1.2
kg

m3
, z̃iic(x̃, 0) = 0,

ũiic(x̃, 0) = 0
m

s
, T̃ i

c ic(0) = 290.28K.
(6.1)

Note that these are the physical and not mathematical initial condition for
this problem. We need for our mathematical model (4.35) an initial condition
for ṽi. From the above condition we can derive it by integrating equation
(2.4).

viic =

Li
∫

0

uiic(x)dx −

Li
∫

0

x∫

0

1

γp0

[

− h(T i
ic(y)− T i

Wall)

+ χi
(
−hc(T

i
ic(y)− T i

c ic) + q0ρ
i
ic(y)z

i
ic(y)K(T i

ic(y))
)
]

dydx,
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So applying ideal gas law for obtaining Tic, we can deduce, that with (6.1),
we have

ṽiic(0) = 0.(6.2)

• The boundary condition for the density for all pipes i = 1, . . . , 9 and for all
t̃ ∈ [0, t̃end]

ρ̃l(t) = 0.4
kg

m3
.(6.3)

The pressure boundary conditions p̃l and p̃r are only physical boundary con-
ditions. For the mathematical model (4.35) they are only parameters.
The boundary condition the ratio of unburnt gas (the quantity we want to
control optimally) for the two simulations will be announced in the following
subsections.

6.1. Example 1: High cost of control, high starting control. The cost of
control σ and the value for the first guess of the control variable zl (the boundary
condition for the ratio of unburnt gas) for this simulation were

σ = 20, z̃l(t̃) = 0.15 ∀t̃ ∈ [0, t̃end].(6.4)

The results of the simulation are illustrated in the Table 6.1 and Figure 6.2. The first
figure shows the mapping t̃ 7→ z̃l(t̃), where z̃l is the boundary condition for the ratio
of unburnt gas. The two other mappings show the temperature development over
time in the two catalytic converters (pipe 2 and 4). The table shows the evaluation
of the cost functional for the iterations done by the algorithm. J denotes the total
cost functional, whereas Jz and JT i

c
denote the cost of the control variable zl and the

cost of missing the optimal temperature Topt in the catalysts, respectively. We split
the cost functional as follows

jh = σjzh +
∑

l∈Icc

j
T l
c

h ,(6.5)

jzh :=
tend
M

M∑

m=1

(zl)m ≈

tend∫

0

zl(t)dt,(6.6)

j
T i
c

h :=
tend
2M

M∑

m=1

((T i
c)m − Topt)

2 ≈
1

2

tend∫

0

(T i
c(t)− Topt)

2dt.(6.7)

The tables contain the scaled quantities, since the unscaled values would be large. The
key quantities like relation between initial and final cost and the optimality conditions,
will remain their informative value, despite scaling.

We observe that after one iteration the optimization algorithm stops, since the
optimality condition is fulfilled. Due the high cost of the control, the optimal solution
is z̃l(t̃) = 0 for all t̃ ∈ [0, t̃end]. This means for our application, that one should use at
least the stoichiometric amount of air in the combustion chamber of the engine, i.e.,
enough air for a complete combustion of the fuel, such that no unburnt gas enters the
pipe. In other words, fuel is so expensive, it should not be used for heating up the
catalytic converters.



Optimal control of the temperature in a catalytic converter 27

iteration jh jzh j
T 2

c

h j
T 4

c

h
1
M
||∇jh||

0 5042.791 250 17.842 24.948 0.01698

1 169.912 0 36.764 133.149 0
Table 6.1

Example 1: Evaluation of the scaled cost functional (rounded to three decimal places) and
optimality condition (rounded to five decimal places) for different control variables z̃l, computed by
the optimization algorithm. (Compare figure 6.2 for corresponding control)
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Figure 6.2. Example 1: Boundary condition for ratio of unburnt gas z̃ and temperatures in the
catalytic converters T̃ i

c in [K] for some iterations (Compare table 6.1 for corresponding evaluation
of the cost functional)

In Figure 6.3, we can see the steady state solutions after of the state variables for
the initial control (black dotted lines) and the optimal control (green dashed lines).
The solid black lines show the geometry of the exhaust pipe and the blue rectangles
denote the catalysts.

velocity ũ(t̃∗, ·)

x̃[m]

ratio of unburnt gas z̃(t̃∗, ·)

x̃[m]

gas temperature T̃ (t̃∗, ·)
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Figure 6.3. Example 1: Results of numerical simulation of the state variables velocity ũ in
[m
s
], ratio of unburnt gas z̃ and gas temperature T̃ in [K] at time t̃∗ = t̃end = 60s (compare colors

at table 6.1)

In the first plot of Figure 6.3, we see the decreasing velocity profile. The reason



28 Gasser, Rybicki and Wollner

for this behavior is the increasing density/decreasing temperature. The changes in
diameter of the exhaust pipe lead to changes of the velocity at the junctions. The
second plot shows the ratio of unburnt gas in the exhaust pipe. In the first iteration
(black dotted line), we have a concentration of 0.15 as the boundary condition for
the unscaled ratio of unburnt gas, which decreases in the two catalytic converters
during the exothermic reaction. The temperature (third plot) increases in the catalytic
converts, in the case in which we have a positive concentration of unburnt gas, and
decreases over the whole exhaust pipe due to the heat transfer with the (colder) wall.

6.2. Example 2: Low cost of control, low starting control. The cost of
control σ and the value for the first guess of the control variable zl (the boundary
condition for the ratio of unburnt gas) for this simulation are

σ = 0.01, z̃l(t̃) = 0 ∀t̃ ∈ [0, t̃end].(6.8)

The results of the simulation are illustrated in the Table 6.2 and Figure 6.4. In this
scenario (fuel is cheap), the optimization algorithm suggests to use more of fuel. After
9 iterations this yields to our “optimal” control, although the stopping criteria which
led to the abortion of the algorithm, was the second criterion (no change of the cost
functional due to 20 line search attempts). Nevertheless, the obtained control leads
to a fast heating a temperature close to the optimal T̃opt = 800K in both catalytic
converters, i.e., from the application’s point of view: a satisfying result.

iteration jh jzh j
T 2

c

h j
T 4

c

h
1
M
||∇jh||

0 169.912 0 36.765 133.148 0.00933

1 98.091 482.276 51.327 41.941 0.00347

2 28.549 317.238 15.390 9.986 0.00058

3 26.806 282.716 10.502 13.477 0.00130

4 26.150 333.782 14.747 8.065 0.00035

5 25.822 266.863 8.843 14.310 0.00139

6 24.281 283.835 9.858 11.584 0.00091

7 23.870 295.016 10.702 10.219 0.00061

8 23.857 302.555 11.346 9.486 0.00042

9 23.857 302.555 11.346 9.486 0.00042
Table 6.2

Example 2: Evaluation of the scaled cost functional (rounded to three decimal places) and
optimality condition (rounded to five decimal places) for different control variables zl, computed by
the optimization algorithm. (Compare figure 6.4 for corresponding control; only iteration marked
bold are illustrated in the figure.)

7. Conclusion. In this paper, we were able to answer the question, how to
ensure reaching an optimal temperature in a catalytic converter of an exhaust pipe
after the engine start by controlling ratio of unburnt gas in the gas mixture. This
was achieved using the formal continuous adjoint for the calculation of derivatives
in a projected gradient algorithm. Numerical examples demonstrate the feasibility
of the approach, and show that stagnation of the projected gradient algorithm is
due to insufficient resolution of the differential equations and can thus be healed by
refinement of the discretization.
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Figure 6.4. Example 2: Boundary condition for ratio of unburnt gas z̃ and temperatures in the
catalytic converters T̃ i

c in [K] for some iterations (Compare table 6.2 for corresponding evaluation
of the cost functional)
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Appendix A. Data.

h :=
4h̃xr

d̃ρrurcv
, hc :=

h̃cxr
ρrurcv

, q0 :=
ρrzrq̃0R

prcv
, Cf :=

C̃fxr

d̃
, Cc :=

C̃cxr
ur

.(A.1)

The physical boundary conditions for the pressure used in all simulations are

p̃l = 1.01bar, p̃r = 1bar.(A.2)

The following tables A.1, A.2 and A.3 contain the information of the pipe’s geometry,
reference values and parameters used for the simulations, respectively.

pipe number length [m] radius [m] CC

1 0.415 0.021 0

2 0.12 0.04 1

3 0.93 0.021 0

4 0.1 0.06 1

5 0.45 0.021 0

6 0.47 0.06 0

7 0.17 0.021 0

8 0.43 0.095 0

9 0.515 0.021 0

sum 3.6 - 2
Table A.1

Pipe geometry



Optimal control of the temperature in a catalytic converter 31

Quantity Meaning Unit Reference quantity Reference value

t̃ time s tr = xr/ur 0.36s

x̃ space m xr = L̃ 3.6m

ρ̃ density kg m−3 ρr 1.2 kg m−3

ũ velocity m s−1 ur 10 m s−1

p̃ pressure kg m−1 s−2 pr 105 kg m−1 s−2

T̃ temperature K Tr = pr/(Rρr) 290.28 K

z̃ ratio of unburnt gas zr 0.1
Table A.2

Reference values

Parameter Meaning Unit Parameter value

C̃f wall friction 0.0241

cv specific heat at constant volume m2 s−2 K−1 717.7

h̃ heat transfer rate with wall kg s−3 K−1 100

p0 scaled pressure in leading order 1

R ideal gas constant m2 s−2 K−1 287.08

T̃out external temperature K 290.28

γ adiabatic exponent 1.4

C̃c catalyst friction s−1 800

T̃+ activation temperature K 600

h̃c heat transfer rate with catalyst kg s−3 K−1 100

K̃0 reaction rate s−1 100

q̃0 heat release rate in catalyst m2 s−2 5 · 106

T̃opt optimal temperature in catalyst K 800
Table A.3

Parameters, units, parameter values


