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Balancing Transformations for Infinite-Dimen-
sional Systems with Nuclear Hankel Opera-
tor

Timo Reis and Tilman Selig

Abstract. We consider balancing and model reduction by balanced trun-
cation for infinite-dimensional linear systems. A functional analytic ap-
proach to state space transformations leading to balanced realizations
is presented. These transformations can be further used to explicitly
construct truncated balanced realizations. The presented approach is
applicable to bounded well-posed linear systems with nuclear Hankel
operator and finite-dimensional input and output space. Controllability
and observability are not required.

Balanced truncation is one of the most popular methods for model re-
duction of asymptotically stable input-output systems of the form z(t) =
Azx(t) + Bu(t), y(t) = Cx(t) + Du(t), where A, B, C and D are matrices of
suitable size. Besides preservation of asymptotical stability it also provides
an a priori error bound in the Hq-norm in terms of the twice the sum of the
neglected Hankel singular values. The typical approach in the (numerical) de-
termination of balanced realizations works via a state-space transformation
that is constructed from the gramians P and @ of the system (see [1, Sec. 7.3]
for an overview).

The probably most commonly used balancing technique in the finite-
dimensional case has been introduced by POSTLETHWAITE and TOMBS in
[19]: Starting from factorizations P = RRT and @ = SST of the Gramians,
a singular value decomposition ST R = VXU is performed. The construction
T, = 7 V2vT8T, T, = RUS™Y2 and A, = T)AT,, B, = T,B, C, = CT,,
Dy = D then leads to a balanced realization. If the system is minimal (i.e.,
it is both controllable and observable), then 7; and T, are both square and
T,T. is the identity, whence this approach is basically a change of coordinates
in the state space. In fact, this procedure can be also applied to non-minimal
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systems; in this case, the multiplication with T; and T;. eliminates the non-
observable and non-controllable parts, while the input-output behavior (or,
equivalently, the transfer function) is preserved. The popularity of this bal-
ancing approach is mainly based on two facts: First, there are various nu-
merical methods for the determination of Gramians which directly provide
the factors S and R instead of the Gramians themselves (see [1, Chap. 6] for
an overview). Second, this balancing approach can be easily modified to di-
rectly construct the truncated balanced realization without determining the
parts of Ay, By, Cy which are truncated anyway; this can be done by simply
truncating the singular value decomposition of STR.

The purpose of this article is to consider this balancing approach for
systems with infinite-dimensional state space. Balancing and truncation has
been considered in various articles [2,3,6-9,12-15]. The error bound in terms
of neglected Hankel singular values has been first shown in [6] for the class
of systems with square integrable impulse response, and has recently been
generalized to systems with nuclear Hankel operator [8,9]. All mentioned ap-
proaches to balancing and truncation of infinite-dimensional systems have in
common that they rely on a construction by means of the Schmidt pairs of
the Hankel operator [6,8,9] and not on transformations of the state space.
The latter approach has been considered in [18, Chap. 9], where the classi-
cal result that two minimal realizations of the same input-output behavior
are related by a state space transformation, the so-called pseudo-similarity
transformation. These can be unbounded and also may not have a bounded
inverse. The pseudo-similarity approach is powerful since it may be applied
to general bounded well-posed linear systems.

In this article we will make use of the theory of pseudo-similarity to show
that the approach in [19] to balancing and truncation of finite-dimensional
linear systems can be generalized to the infinite-dimensional case. These
transformations can be indeed unbounded; we will show that the operator
products are however defined in a certain sense. It will also turn out that
these transformations eliminate non-controllable and non-observable parts.

This article is organized as follows: Section 1 introduces the notation
and basic functional analytic requisites. In Section 2 we review and develop
some required results from infinite-dimensional linear systems theory. In par-
ticular, we introduce the class of systems which is considered in later parts.
In Section 3 we provide a result about the generators of the well-known
Kalman compression of a system, that could not be found in the existing
literature and is needed in later parts. We give a definition of balanced and
truncated systems in Section 4, where we furthermore show some properties
of the canonical shift realizations for our system class. All the main result
about balancing and normalizing transformations as well as truncation are
collected in Section 5. The remaining sections are devoted to the proofs of
these main theorems, except for the final Section 11, which shows the relation
to the concept of pseudo-similarity if the original system is minimal.
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1. Basic notation and functional analytic framework

The symbol B(X;Y) stands for the space of bounded linear operators from
a Banach space X into the Banach space Y; we set B(X) := B(X;X). For
the evaluation of the bounded functional f € X’ := B(X;C) at x € X
we write (f,z)y, x. To have sesquilinearity of the mapping X’ x X — C,
(f,z) — {f,x)x’ x, multiplication on the dual space X' is defined by

Ofridxox = XF.2hxnx.

We define the inner product (-,-)y in a Hilbert space X such that it is
also anti-linear in the first and linear in the second component. The Riesz
isomorphism z +— (z,-)x, which is often used to identify X with its own
dual X’ becomes linear in this way. Furthermore, we use idx, 7z € B(X)
for the identity on X and the orthogonal projection onto the closed subspace
Z of a Hilbert space X, respectively. If a normed space Z is densely and
continuously embedded into the Banach space X, we write Z — X.

The domain of an operator T is denoted by dom 7', the restriction of T’
to a subspace Z < domT by T|z; the part of T : domT < X — Z in Z is
defined to be the restriction of T to the domain {z € ZndomT : Tz € Z}. For
the closure of an operator T we use the symbol T. The kernel and range of
a linear operator are denoted by ker T" and ran 7', respectively. The resolvent
set of T'is p(T') < C.

Definition 1.1 (Strongly continuous semigroup, generator). An operator-
valued function 2 : R, — B(X) is called a strongly continuous semigroup, if
2A(0) = idx, At + s) = A(t) -A(s) for all t,s € Ry, and

lim A(t)xr =2 foral xze X.

t—0,t>0

A strongly continuous semigroup is called bounded, if there exists some M €
Ry such that |A(t)|gx) < M for all t € Ry. The operator A : dom A <
X — X defined by

dom A = {a:eX

im 1 _ — lim _
lglrglt(Ql(t)a: x)eX}, Ax ltllrglt(Ql(t)a: x),

is called the generator of the semigroup 24(-).

The domains of A and its adjoint are known to be dense in X; A is
a closed operator [22, Cor. 2.1.8 & Prop. 2.3.1 & Prop. 2.8.1]. For a strongly
continuous semigroup ¢ — 2A(t) and appropriate operators T and T we
abbreviate the semigroup ¢ — TRU(¢)T" by TAT". A linear space Z is called
a core for the generator A of 2, if it dense in dom A with respect to the graph
norm of A. By [5, Proposition I1.1.7] Z is already a core for A if it is dense
in dom A with respect to the norm of X and 2-invariant.

Lemma 1.1. /5, p. 60] Let X, Z be a Banach spaces with Z — X and A
be the generator of a semigroup A on X. Assume that Z is 21 invariant and
t — A(t)|z is strongly continuous with respect to the norm of Z, then the
generator of |z is the part of A in Z.
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Let V be a Banach space and X be a Hilbert space with V «— X.
Then the dual space of V' with respect to X is defined as the completion
of X with respect to the norm |[z[v: := supy,, _ [{z,v)x|. If V is reflexive
than this space is indeed isomorphic to the space of bounded functionals on
V' [22, Proposition 2.9.2].

Lemma 1.2. /22, Proposition 2.9.3] Let Vi, Vo, X1 and Xo be Hilbert spaces
with Vi — X1 and Vo — Xo. Assume A € B(Vy; Xa) satisfies A*Vy < V4.
Then A has an extension A_y : (Vi)' — (Va)" given by (A_1v},v2)vy v, =
v, A*vodv, v, for vl € V] and vg € Va.

We use the notation Ry = (0,0), R_ := (—0,0) and C; := {\ €
C : Re(A) > 0}. For p € [1,0], some interval I € R and a Hilbert space
X, LP(I; X) denotes the Lebesgue space of measurable functions f : [ — X
with the property that §, | f(¢)|xdt < oo. A function f € LP(Ry, X) is said
to have a Lebesgue point at 0, if the limit limy o § So T)dr exists. The space
LY(I,X) is embedded into the dual space of L®(I, X) via the identification
of h € L'(I,X) with the functional z — §,(h(7),z(7))xdr. For k € N, the
Sobolev space W*P(I; X) consists of all functions whose first & distributional
derivatives belong to LP(I; X). The space W P(I; X) consists of all functions
in WkP(I; X) that take the value zero on the boundary of I. W=FP(I; X) is
defined to be the dual space of W0 “P(I; X). By extension of a function defined
on J < I to zero on J\I, we regard LP(J; X)) as a subspace of LP(I; X). For
t € R, the left shift operators 7* € B(L?*(R;U)), 7t € B(L*(R+;Y)) and
7t € B(L2(R_;U)) are defined by

u(s) ;== u(s +1t), seR, Thu(s) ==u(s+t), seRy,
fu(s) = u(s +1t), se(—ow,—t),
T 0, s € (—t,0).

The Hardy space Ho (U, Y) consists of all holomorphic and bounded B(U; V)-
valued functions defined on C; this space is provided with the norm

|Gl = sup |G (8) 9 w.)-
S€C+

¢, stands for the p-summable complex sequences.
A compact operator T' € B(X;Y') acting between two Hilbert spaces X
and Y is known to admit a singular value decomposition

o= 3] i)

for some monotonically decreasing null sequence of (0, )neny in Ry and or-
thonormal systems (4, )nen in X and (vy, )pen in Y [16, pp. 203]. The numbers
o, are called singular values and (uy,,vy,) is called Schmidt pair associated
to o,. Note that, for the sake of a better notation, we allow consecutive o, to
be equal, i.e. we ignore the multiplicity of the singular values at this stage. If
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the sequence of singular values fulfills (o, )nen € ¢1, then T is called nuclear.
A singular value decomposition of 1" can also be written as

T=VxU*
with operators X € B(l3), U € B(la; X), V € B(¢2;Y) defined by

Z(xn)nEN = (Unxn)nEN (11)

and
xn neN : Z TpUn, V xn neN : Z TpnUn. (12)

Here, we have assumed that there are infinitely many singular values, or,
equivalently, ran 7T is infinite-dimensional. In case of k-dimensional range,
/5 is replaced by CF and obvious modifications have to be made. In any
case, there holds ranV = ranT, ranU = kerT+, U*U = V*V = idy,,
VV* = % and UU* = my, 1 and, moreover, the restrictions U*| .+
and V*|.. 7o are both unitary. It can be seen that X is injective, has dense
range, and is self-adjoint, whence

X =V*TU = U*T*V.
Since ¥ is a bounded self-adjoint operator, Y3 has a meaning: The spaces
LY ran(E%), ¥ly :=ran(X)
become Hilbert spaces with the respective scalar products

_1 _1 — —
<x,y>2% = <E LY 2y>€2a <$,y>2 = <2 1'7:72 1y>€2' (13)

2. The system class

We review some facts from infinite-dimensional linear systems theory which
are needed in later parts. We consider systems, which can formally be written
as

%(t) = Az(t) + Bu(t),

y(t) = Cx(t) + Du(t),

where the input u(+), state x(-) and the output y(-) respectively evolve in the
Hilbert spaces U, X and ). In the sequel we step by step collect conditions
on the operators A, B, C' and D involved in (2.1). The assumptions S1-S6
will mean that (2.1) constitutes a bounded well-posed linear system accord-
ing to [18] and thus, a meaningful solution to the equations (2.1) can be
defined. Hypotheses H1-H4 are assumptions on the Hankel operator, finite-
dimensionality of input and output spaces, and regularity of the system.

(2.1)

S1 A:dom(A) c X — X generates a strongly continuous semigroup 2 on
X.
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With the aid of A the rigged Hilbert spaces X; and X_; are constructed as
follows: Take any A in the resolvent set p(A) of A, then |- |; :==|(A—A)-||x
defines a norm on dom A, which is equivalent to the graph norm |- |3, 4 =
|- |3 + |A-|%. In the other direction, the Hilbert space X_; is defined by
the completion of X with respect to the norm | - |_; := [(A — A)~! - | x and
is isometrically isomorphic to the dual space of (dom A*,| - ||qom 4% ) With
respect to the pivot space X [22, Proposition 2.10.2]. The operator A can,
by using Lemma 1.2, be extended to an operator Ay : X < X1 — X 4
that generates the semigroup 2|x_,, which is the extension of 2 to X_; [22,
Sec. 2.10].

S2 Be BU; X_y).

The assumption that B maps to a larger space than X is motivated by
boundary control of partial differential equations [22, Chap. 10]. Although
we identify (dom A*)" with X_; instead of dom A* itself, the bidual space
(dom A*)” is again identified with dom A*, so that we have an adjoint oper-
ator B’ € B(dom A*;U). Since B maps to X_; and 2 extends to a strongly
continuous semigroup on X_1, the variation of constants formula

x(7) == A(7)zo + LT A(T — o0)|x_, Bu(o)do

defines for each 7 € [0,t) an element of X_;, given initial state xo € X and
u € L2([0,t];U). The trajectory x is called solution of #(t) = Ax(t) + Bu(t),
z(0) = xo.

The output operator C' is allowed to map from a subspace of X, which
allows for example for boundary evaluations:

S3 C :domC — Y is linear with X; € domC < X and C|x, € B(X1;)).

A further assumption on the domain of C' will be made in R1. The operator
D is simply assumed to be bounded, i.e.,

S4 DeBU;Y).

The next assumption will entail that state and output trajectories are well-
defined for any square integrable input.

S5 For all t € Ry, we L2([0,t];U), z¢ € X, the solutions of #(t) = Az(t) +
Bu(t) with z(0) = z¢ € X fulfill
a) x(r) € X for all 7€ [0,¢];
b) z(7) € dom C for almost all 7 € [0, ¢].
Assumption S5 a) means that the state trajectory, evolving by definition in
X_1, effectively takes values in the state space X; S5 b) implies that the
expression Cz(7) (and thus y(7)) is meaningful for almost all 7 € [0, ¢].
We further assume that the system satisfies a certain stability condition:

S6 There exists some ¢ > 0 such that for all t € Ry, u € L([0,t];U),
xo € X, the solutions of (2.1) with z(0) = zg € X fulfill

19l 2(o.059) + l2@)x < e (Julzzqo,nu) + |20l x) -
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The above condition on the system basically comprises four properties, name-
ly the global boundedness of the state-to-state map (that is, the boundedness
of the semigroup ), the global boundedness of the input-to-state map, the
global boundedness of the state-to-output map and the global boundedness of
the input-output map. This assumption gives rise to the following mappings
being well-defined and bounded:

B LAR_;U) — X, C: X - LA(Ry;)),

0
u() — 17 A(—7)Bu(r), x— CU( )z,

D : L*(R;U) — L*(R; ),
u() cf_ A(- — 7)Bu(r)dr + Du(-).

The controllability map ‘B is the operator that maps past input to state at
zero time; the observability map € applied to x € X consists of the output tra-
jectory y(-) of the system with zero input initialized with z; the input-output
map ® maps the input u(-) € L2(R;U) of the system to the corresponding
output y(-). The latter one has the following two properties, namely © is

(i) time-invariant, i.e., 0 = D7 for all t € R, and

(ii) causal, i.e. Tr2m_ O 2R, ) = 0,
The above defined mappings 2, B, € and © form a well-posed linear systems
according to [18, Definition 2.2.1]. The definition is recapped below.

Definition 2.1 (Well-posed linear system, realization, generator). Let U, X
and ) be Hilbert spaces. A bounded well-posed linear system on (U, X,))
consists of a quadruple (2, B, €, D) with the following properties:
(i) t — 2A(t) € B(X) is a bounded semigroup on X;
(i) B e B(L*(R_;U); X) satisfies A(¢)B = BrL for all t > 0;
(ii) €€ B(X;L*(Ry;))) satisfies €A(t) = 71.€ for all ¢ > 0;
(iv) © € B(L*(R;U); L3(R;)))) is continuous, causal, time-invariant and it
satisfies 7TL2(]R+;3/)©|L2(]R_;Z/{) = B,
X is called the state space of the system, and since U and ) are fixed in
this paper, we just speak of a system on X. Any bounded well-posed system
(A, B, ¢, D) satisfying these conditions is called a realization of its input-
output map . Furthermore, if a well-posed linear system (2,95, D) is
defined via (2.2) with a quadruple (4, B, C, D) satisfying S1-S6, then we call
(A, B,C, D) the generators of (A,B,€,D).
A bounded well-posed linear system is called observable, if ker € = {0},
controllable, if ran®B is dense in X, and minimal, if it is both, controllable
and observable.

Remark 2.1 (Well-posed linear systems). Definition 2.1 actually covers a lar-
ger class than the one fulfill S1-S6. More precisely, the class of systems that
can be described by S1-S6 is called compatible, bounded L?-well posed systems
in [18].
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Definition 2.2 (Hankel operator, Gramians). For a bounded well-posed linear
system (2,8, ¢, D) on (U, X,)),

(i) § =B e B(L>(R_;U); L?>(R,;))) is called Hankel operator,

(ii) P =BB* € B(X) is called controllability Gramian,

(i) @ = €*C e B(X) is called observability Gramian.

While S1-S6 will be permanently presumed throughout this work, the
following assumptions will be optional.

H1 U/ and Y are finite-dimensional.

The following are compactness assumptions on the Hankel operator of varying
strength.

H2 The Hankel operator is nuclear.
H3 The Hankel operator has a special representation: Namely, there exists
some h € LY(R,; B(U;Y)), such that for all u e L%(R_;) holds

(Hu)(t) = fi) h(t — 7)u(r)dr, for almost all t € R. (2.3)

H4 The Hankel operator is compact.

Remark 2.2 (Systems with nuclear Hankel operator). a) The Hankel oper-
ator as used here is related to the Hankel operator used in [8] and [6]
via multiplication from the left with the reflection operator

DiL2(RY) — L2(ReY) () = y(—-). (2.4)

b) Given H1, the implications H2=H3=-H4 hold. The first implication has
been proven in [8, Corollary 5.1.18.], the second one in [6, Appendix 1,
p.895].

¢) Further characterizations of nuclearity of Hankel operators can be found
in [4].

d) Compactness of the Hankel operator gives rise to the existence of a sin-
gular value decomposition of the Hankel operator, that is,

H = VIU*,

with diagonal operator X2 € B(¢3) as in (1.1). The elements of the strictly
decreasing sequence (o, )nen are called Hankel singular values.

Definition 2.3 (Regular linear system). A well-posed system (2,5, ¢, D) is
said to be regular, if there is an operator D € B(U; ), such that for all v e U
holds

t

o1
lim . D(X[0,qv)(1)dT = Dv, (2.5)

where X0, : R — R is the characteristic function on [0,t]. The operator D
with the above property is called feedthrough operator.

The final assumption is again concerned with the output operator C' and
closely related to regularity.
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R1 The system (2,8, €, D) generated by (A, B, C, D) is regular and for all
2 € dom C' holds

1t
Cr =Cpr:=lim —f (Cx)(7)dT. (2.6)
t—0 t 0

Moreover, dom C consists of all € X for which the limit in (2.6) exists.

Definition 2.4. The operator Cf, from equation (2.6) with its natural domain
is called Lebesgue extension of CL|dom A-

Given an arbitrary regular well-posed system (2(, B, €, D), it is possible
to assign a unique generator (A, B, C, D) that satisfies S1-S6 and R1 to it:
Obviously, A has to generate the semigroup 21. Furthermore, according to [18,
Thm 4.2.1], B can be defined to be

Bu = (A — A|x)B(eu), ueld (2.7)

where ey € L?(R_;C) is the function ¢ — e for some A € p(A). C and D
are defined via (2.6) and (2.5), where the domain of C' is by definition the
set on which which the limit in (2.6) exists.

Remark 2.3 (Regular linear systems, transfer functions). a) In [18], the map-
ping CL|dom 4 is denoted by C' and said to be the generator of €. In
contrast to this, we have defined the generator C to be the Lebesgue
extension of C|qom 4 here.

b) There is some redundancy in R1: Assume that S1-S6 hold. Then by [21,
Theorem 5.8], R1 already implies regularity of the generated system and
also that D fulfills (2.5). On the other hand, if the system is regular, C'
and D can always be redefined by (2.5) and (2.6) to make (2.6) hold.

¢) Regularity is implied by S1-S6 and H2: Using

t
(Du)(t) = f h(t — T)u(r)ds + Du(t), for almost all t € R,
—00

and h € LY(Ry;B(U;Y)), we see that (2.5) holds for all v € Y. In
particular, if S1-S6 and H2 are fulfilled, R1 can be assumed without
loss of generality. Relation (¢) in particular implies that the input-output
map © is uniquely determined by $) and D.

d) It follows from [21, Theorem 5.8] that regularity implies (ran(sl —
A)7'B) < domC for all s € C,. This gives rise to the existence of
the transfer function G : C; — B(U;)), which is defined by

G(s)=C(sI — A)~'B+ D.
There holds G € Hoo (U;Y) [20] and
1G3e = 1D 5(L2®u0), 2R YY) -

We will very frequently make use of the following basic assertion on
similarity of well-posed linear systems, which can be found in [18, Example
2.3.7].
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Lemma 2.1. Given a well-posed linear system (2y,B1,¢1,01) on (U, X,D),
a further Hilbert space Z and a boundedly invertible operator T € B(X; Z).
Then Ay : Ry — B(Z), t — TA ()T, By 1= TBy, € = &, T and
Dy 1= D1 constitute a well-posed linear system on (U, Z,)). If the system
is regular, the generators of this system are given by (As, Ba, Cy, D) with
dom As = T'dom Ay, dom Cy = T'dom C; and

Ay = TAlTil, By = T|(domA;k)’Bl’ Cy = ClTil, Dy = Dy.

Here, T|( g a%y 15 the unique extension of T to an operator from (dom Af)’
to (dom A%)'.

A classical result in finite-dimensional linear systems theory is that two
minimal systems with equal input-output map are similar. The concept of
pseudo-similarity generalizes this to well-posed linear systems.

Definition 2.5. Two well-posed linear systems (20,91, C;,D) and (s, B,
s,D9) on (U, X,)), respectively (U, Z,Y) are pseudo-similar, if D1 = Do,
and there exists a closed, densely defined injective linear operator 7' : domT <
X — ranT < Z with the following properties: ran8; < dom T, ran‘B,
ranT, dom T is 2;-invariant, ranT is As-invariant and

QIQ(t)Txl = TQll(t)xl, Vxl € domT,t € R+,
Bou = TBu, Vue L2(R_;U),
€2Tx1 = €1a:1, Vxl € domT.

If T and T~! are both bounded (unitary), then (21,81, ¢, D;) and (As, Bo,
¢y, D7) are called (unitarily) similar.

3. Kalman compression

The principle of restricting a system to its approximately controllable and ob-
servable subspaces is known for abstract linear systems [18, Corollary 9.1.10].
In addition to this, we need to know what the generators of such a restriction
are.

Theorem 3.1 (Kalman compression). Let (2,8, €, D) be a regular, bounded
well-posed linear system on (U, X,Y). With the definitions

M = T (ker €)+ ran‘d = I'an(’n—(ker S*)LR)

A = T (ker )L 2A| 375 B = TM(ker ¢)- B ¢ = <l

the quadruple (QNl7 %, 6:, D) is a reqular and minimal, bounded well-posed linear
system on (U, M,Y). The generator A of A is given by

dom A = M n T(ker ¢)+ dom A, Az = T(ker )L A2
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for z € dom A such that * = e, ¢)1 2 € dom A. The domain of the adjoint
operator A* is 737 (dom A* A (ker €)1). The generator B is given by
<§U, x>(dom A*)’ dom A* <BU, Z>(domA*)’,dom A
for z € (ker @)t n dom A* such that T3;2 = z. And Cx = Cz for all z €
dom C' = dom C ~ M.
We will divide the proof into two lemmas.

Lemma 3.2. Under the assumptions of Lemma 3.1 define Z := ker €. Then
<§[, %7 &, @) = (sz_ngJ_, 71'21_%, €|ZJ_, @)

is a regular, bounded well-posed linear system on (U,Z*,Y). Its generators
are (A, B,C, D), where

Az = wyi Az for any x € dom A with Tz = 2, dom A = Ty dom A,

A*z = A*2 VzedomA* = Z+ A dom A*

<B'LL, Z>(domg*)’,dom Ak = <B'LL, Z>(d0mA*)'7d0m ax Yz e domA*

Cz = Cz, for any x € dom C with mzix = zdomC = Tz dom C.
Proof. The part about the system operators is shown in [18, Corollary 9.1.10].
Note that Z is an -invariant, closed subspace. The generator A of the quo-
tient semigroup 2 can be found in [5, Section 2.2.4]. Since we are in a Hilbert
space setting, the adjoint semigroups 20* and 2[* are again strongly continu-
ous [18, Theorem 3.5.6] Note that the 2-invariance of Z implies the invariance
of Z+ under A* and therefore a quick calculation shows 2A* = 2*|,.. Thus,

the ger:erators A* aild A*| 7. must coincide and the extension ,Z| g1 7t
(dom A*)" — (dom A*)’ reads
<14~1|le, y>(domﬁ*)',domﬁ* =, A*yyx Vye dom A*.
We use this to calculate B via (2.7). Using that Z1 is A*-invariant we obtain
for all z € dom A*
(Bu, 2) (dom A% dom A% = (Bexu, A — A%)2) 41 = (my0 Beau, \z — A*2)x

= (Beyu,\z — A*2)x = (A — A|x)Beru, 2)x
= (Bu, 2)(dom A%)’,dom A% -

Now we turn to C. First assume that z € dom C N Z*, then

ljot(&x)(s)ds - %Jot(@x)(s)ds 9,

and in particular x € dom C. Conversely, let x € dom C. Then, z € Z* by
definition, and the equality

[ teaonas = [ @opas 1 i

t Jo t Jo
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shows x € dom C. o
Lemma 3.3. Under the assumptions of Lemma 3.1, define Z := ran‘B. Then
(5[, B, ¢, @) = (Alz, B, €[z, D)
isNa Zegylar, bounded well-posed linear system on (U, Z,Y). Its generators are

(A, B,C, D), where
Az = Az, domA = Z n dom A,

~

A*z = 1z A% for any x € dom A* with tzx = 2, dom A* = 7, dom A*
(Bu, Z>(domﬁ*)',domﬁ* = (Bu, T)(dom A*) dom a* for any x € dom A* with
Tz = Z,

Cz = Cr, domC = Z A dom C.

Proof. The part about the system operators is easy and well-known. Since
we are in a Hilbert space setting, the adjoint semigroups 2* and 2A* are
again strongly continuous [18, Theorem 3.5.6], and A* generates the latter.
A short calculation shows that 2* = 7z2*|;. So A* can alternatively be
characterized as the quotient generator of the quotient semigroup, which has

by [5, Section 2.2.4] the asserted representation. Therefore, the extension
Alz : Z < (dom A*) — (dom A*)" is for all z € Z given by

<’Z|szy>(domﬁ*)/,domﬁ* =z, mzA*z)x V€ dom A* with mzx = y.
We use this to resolve for u € U the expression Bu = (\— fl)%exu: We take
an arbitrary z € dom A* and some x € dom A* with 7zx = 2.

(Bu, 2) (dom A%’ dom A% = (Bexu, A — A*)2)y = (Beau, \z — g A*x)x

= (Beyu, \v — A¥x)x = (A — Alx)Beru, )x
= (BU, T) (dom A%’ dom A* -

The part about C is a direct consequence of the definition (2.6), including
the domain. =

Proof of Theorem 3.1. The theorem follows by applying first Lemma 3.2 and
then Lemma 3.3 with Z = ran e, ¢)1 B = M. The only thing that remains
to be proven is that the projections 73; and e ¢)+ coincide on ran‘B, or,
in other words

T3 BU = T(ker o)t Bu Vu € L*(R_;U)

Indeed, from M = ran(m(gere)2B) < (ker &)L = (ker€)* we deduce for
arbitrary u

Bu = m5;Bu + 37, Bu = T (ker €) L Bu + Trer ¢ Bu

= T35 BU — T(ker )L BU = Ter e Bu — 737 Bu € M ~ M*+ = {0}.
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Remark 3.1 (Kalman compression). Theorem 3.1 still holds for the wider
class of (possibly unstable) LP-well-posed linear systems.

4. Normalized, balanced and truncated realizations

We will now introduce balanced realizations of well-posed linear systems. As
in the finite-dimensional case, this involves both Gramians being equal to
some diagonal operator X.

Definition 4.1 (Normalized and balanced systems). A bounded well-posed
linear system (,%B,¢, D) on (U, X,Y) is called input normalized if P :=
BB* = idx, and output normalized if Q := €*€ = idx. The system is called
balanced if X = {9 and there exists some positive and strictly decreasing
sequence (0, )neny such that the Gramians P and @ are both equal to the
diagonal operator ¥ defined in (1.1). In other words

P=3BB*=0Q=C*¢=13%.

Remark 4.1. a) The sequence (0, )nen in Definition 4.1 consists indeed of

the Hankel singular values of the system.

b) Balanced realizations are minimal.

¢) Our definition of a balanced system is stronger than the one in [18,
Sec. 5.5] for general well-posed linear systems. There, a system is al-
ready called balanced if both Gramians are equal. The latter property
is called parbalanced in [15], and does not require the Hankel operator to
possess a singular value decomposition. Our definition is motivated by
the original one for the finite-dimensional case [11], where ¥ is assumed
to be a diagonal matrix with decreasing diagonal elements.

We give a definition of the well-known shift realizations. For our pur-
poses we will in particular need the realizations on the range of the Hankel
operator.

Lemma 4.1. Consider a bounded well-posed linear system (2,B,€, D) on
U, X,¥).

(i) Let Z := (ker )~ = L?(R_;U). By the exactly controllable shift real-
ization of ©® on Z, we mean the system

(rz7-|z, 7z, Hlz, D) (4.1)
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which is bounded and well-posed with state space Z. If, in addition, H3
and R1 hold, the generators of this system are given by

A:domAc Z—Z, domA=mrzWy(R_;U),
(A2)(¢) = d%a:(f), for any x € Wol’Q(]R_;Z/I) with Tzx = 2.
B:U— Z_1, ur u{§(0),),

0
h(-— dr h

C:domC — Y, domC =< zeLl*R_;U) J;OO (- = 7)a(r)dr has ,
a Lebesgue point at 0.

Cor=lim+ J f (7)drde.

(ii) Let Z :=ran$ < L?(R,;Y). By the exactly observable shift realization
of ® on Z, we mean the system

(t+lz, $, idz, D) (4.2)

which is bounded and well-posed with state space Z. If, in addition, H3
and R1 hold, then (4.2) is generated by (A, B,C, D) with D as in (2.5)

and
A:domAc Z —Z, domA=W"2R.;))nZ,

(Az)(€) = fex(8),
o0 W1’2 R_;U
B:U—Z_, {(Bu,z)= Jo h(€)uz(€)de {;;ha:?;ji z a )

C:domC — Y, domC = {xeZ:ux has a Lebesgue point at 0},
t

1
Cz =lim - | z(r)dr.
t—0 t 0

For the adjoint of the generator we have
A* :domA* ¢ Z — Z, dom A* = ;W) (R )),
(A*2)(&) = —ﬂ'zd%x(f) for any x € Wy *(R_;U) with tzx = 2.

Proof. The well-posedness of both systems follows from the well-posedness of
the shift realizations on L?(R,;)), respectively L?(R_;U), described in [18,
Example 2.6.5] and our Lemmas 3.2 and 3.3. The semigroup generators
are a result of Lemma 3.3 applied to the generator of the shift realization
on L?(R_;U), respectively L?(R;Y), which can be found in [18, Example
3.2.3(ii)]. The operator A* is obtained in the same manner, since it is the
generator of the right shift, which is adjoint to the left shift. We only discuss
the generators for (i7): The verification of the operator C is straightforward,
so we only calculate B via (2.7): Let A|z2(g4,y) be the distributional deriva-
tive on L?(R,;Y) and A € C. Then for all z € dom A* we take an arbitrary
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ze Wi?(Ry; V) with mzz = 2 and

<B'LL, y>(domA*)’,dom A¥x = <()\ - A)|L2(R+;y)57)€>\% Z>(dom A%*) dom A*
= <f_)€)\u, (j‘ - A*)Z>(dom A*) dom A%
= (Heau, \eyra(g, ) + (et )2k, )

The last term on the right hand side is
N e
<J h(€ — 1) udr, d%a:(f)> dg
0 -0 y
o0 3
=— j h(r)eNE Dy dr, d%x(f) d¢.
0 —© y

Since the inner integral is differentiable with respect to £ this becomes

= JOO 4 fﬁ h(T)e)‘(EfT)u dr,x(§) dg
o \%J o 7 v
o0 3

= j <h(§)u + f h(T))\eA(g_T)u dr, x(§)> dg
0 —0 v

_ JO ’ <h(§)u - AJ; h(e — 1) Du dr, x(£)>y de.

Plugging this into the original equation yields the asserted expression for
Bu. u}

Remark 4.2. The exactly controllable shift realization on (ker )= is observ-
able and the exactly observable shift realization on ran$) is controllable.

The following definition of a balanced truncation is taken from [8]. One
of our aims is to show that this system is indeed obtained from a given state
space-system by first balancing an then truncating it in an appropriate sense.
That is, the balanced truncation does deserve its name.

Definition 4.2. Let a system (2.1) fulfilling S1-S6, R1, H1 and H3 be given.
Let (0y,)nen be the sequence of singular values with corresponding Schmidt
pairs (05,4 ) of the Hankel operator ). Choose r such that 0,41 # o,.

(i) The r-th order truncated balanced system is defined to be

t.(t) = Arx,. () + Bru(t),

yr(t) = Crap(t) + Du(t), (4.3)
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where the matrices

all PR alf’ b1
a-|: e Bo|:|esuo,
arp Ay by
Co=ler o e]eBE,Y)
have the coefficients
Vi Jn o~
=YL (5 4 , 4.4
Qij \/a <U dEUJ>Lw(]R+;y)7L1(]R+;y) €C ( a)
bi = @ (L B0 SBU.C),  (44D)
1
cj = _%(0) e). (4.4C)

VO

(ii) The output-normalized truncation is defined analogously with

~ d ~
ij = i qg Vi (C’
@ij <U d€UJ>Lw(R+;37),L1(R+?3’) )
bi =0 (- Ui (0))y “ B,
Cj = ﬁj(o) § y

Remark 4.3.  a) The well-definition of the above dual products and evalua-
tions is guaranteed by the fact that @; € WhHH(R_;U), v; e WH(R4;Y)
[8, Theorem 5.2.2]. Furthermore, in the case where the function h in
(2.3) additionally fulfills h € L?(Ry,B(U;Y)), the Schmidt vectors ful-
fill @, € WH2(R_;U), v; € WH2(R4;Y) [8, Lemma 5.2.12]. In this case,
the entries of A, are indeed inner products in L?2.

b) In [8,9], only the output normalized truncation is used as reduced order
model. Note that the output normalized and the balanced truncation
model are related by a state space transformation with ,/o;. In partic-
ular, these two models have the same transfer function (and thus also
the same input-output mapping).

¢) The Schmidt pairs of the Hankel operator are, even for finite-dimensional
systems, quite impossible to compute. Instead, one performs coordinate

transformations
Ay = TATT := (S72V*S*) A(RUS™Y/?),
By, =TB:= (27 Y2V*5%)B, (4.6)

Cy = CT* := C(RUX™Y?).

where, 3, S, R, U and V can be determined from the Gramians of the
system (2.1), see [1, Sec. 7.3]. It is an aim of this article to consider such
transformations for infinite-dimensional systems of the class described
in Section 2.

d) The Gramians of the truncated balanced realization (4.3) are given by

Pr = Qr = Er = diag(on)n=1,...,r7
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whence the Hankel singular values of the truncated balanced realization
(4.3) are given by o1, ...,0,. However, the Hankel operator of (4.3)
does in general not coincide with the truncation of a singular value
decomposition of the Hankel operator of the original system (2.1).

Theorem 4.2. [8, Thm 5.0.2] With the prerequisites and notation of Defini-
tion 4.2, there holds that (4.3) is a minimal, bounded well-posed linear sys-
tem on (U,C",Y). Moreover, the transfer functions G,G, : Cx — B(U;Y) of
(4.3) and (2.1) fulfill
a0
G — Gl <2 > On. (4.7)

{n>r|o,#0,Vk<n}

It follows from (d) that the error bound (4.7) can be used to estimate
the expression |y — y,|r2(r;y), where y and y, are the respective outputs of
(2.1) and (4.3) with same input u € L*(R;U).

5. Main results

Throughout the rest of the article we will work with the following setup: The
quadruple (,9,¢, D) is a bounded well-posed linear system generated by
the operators (A, B,C, D) which satisfy S1 through S6. Moreover, X and
X are Hilbert spaces, and R € B(Xgr, X), S € B(Xg, X) are operators such
that the controllability and observability Gramians satisfy

P =9B%* = RR*  and Q= ¢*¢ = SS*. (5.1)

Of course, these factors might, for instance, be R = 9B, S = ¢*, or R = P!/,
S = Q2. Note that the so-called ADI method [17] directly provides factors
R and S of the Gramians. The following results are about the construction
of balanced realizations on the basis of R and S. First we show that the
singular values of the operator S*R are the Hankel singular values. There-
after, we construct balanced realizations and truncated balanced realization
by using a singular value decomposition of S* R. We further show that we can
associate, in a certain sense, infinite matrices to the generators of a balanced
realization.

Theorem 5.1. Let a system (2.1) with properties S1-S6 be given. Further, let
Xg, Xs be Hilbert spaces and let R € B(Xg; X), S € B(Xs; X) be operators
such that the Gramians of (2.1) satisfy (5.1). Then the following is true for
the Hankel operator $) = €B of (2.1):

a) There exist unitary operators

UK ran$)  L?>(R;;)Y) —» ran S*R c Xg,
U (kerH)t < L2(R_;U) — (ker S*R)* < Xp,
such that

V*O8leg = S*Rapg for all vp € (ker S*R):. (5.2)
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b) S*R e B(Xg; Xs) is compact, if, and only if, ) is compact. In this case,
the singular values of S*R are the Hankel singular values in 3.
¢) S*R e B(Xg; Xs) is nuclear, if, and only if, $) is nuclear.

The following theorem shows that the singular value decomposition of
S*R can be utilized to construct balanced realizations. Thereafter, we con-
sider the generators of balanced realizations.

Theorem 5.2. Let a system (2.1) with properties S1-S6 and H4 be given. Let
R e B(Xgr;X) and S € B(Xg;X) be as in (5.1) and, with the notation of
(1.1) and (1.2), let
S*R=VYU* (5.3)
be a singular value decomposition of the operator S*R € B(Xg; Xs). Then
the operators
TZX—>€2, T+IZ€2C€2—>X7
x> V*S*x, z— RUY 'z
are well-defined, and the following assertions hold true:
a) There exist a constant ¢ > 0 such that, for all x € X, u € L2(R_;U)
and t € Ry, holds
ITAD)T Tz, < |xleys  [TBule, < e |ufr2m w0,

[€T 2l 2y < € 2l

(5.4)

b) With the unique continuous extensions
TATT Ry — B(ls), t—> TAR)T T, and €T e B(la; L*(R4;Y)),
the quadruple
(A5,8,,C,,9) := (TAT+,7B,¢T+,9) (5.5)

is a minimal, output-normalized, bounded well-posed linear system on
Ly, which is unitarily similar to the exactly observable shift realization
of © on ran$). We call this the output normalized realization of ® on

ls.

If, in addition, H3 and R1 are satisfied, a representation of the gen-
erators can essentially be calculated via these transformations 7" and T,
similarly to (4.6).

Theorem 5.3. Assume that in Theorem 5.2, the assumptions H3 and R1 hold
in addition. Then the following is true for the generators (A,, B,,Cy, D) of
(5.5):
a) The space Z := TBW, *(R_;U) is a subset of Sty and a core for A,.
Moreover, AT*Z cranR and TTZ < dom C';
b) For all z € Z holds

A(JZ = Tgﬂ(kers*)J-T+Za (56)
C,=CT"z.
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¢) The adjoint operator (T|z;)* of Tly; is given by w3 SV and maps
dom A* into dom A. Thus, the operator T|3; has a continuous extension

T_1: (dom A) — (dom A*)" defined by
<T_1$/, (yn)>(dom A¥) dom A¥ — <Z‘/, TrMSV(y")>£2 ) (58)

for all 2/ € (dom A*)' and (y,) € dom A*.
d) With the extension from c) holds
Aoleyw = To1 Al (er 592 T 2, Vo € $ly (5.9)
B, = T1B. (5.10)

Moreover, A, and (A,)—1 are obtained by taking the closures of the respective
operators above and the set (T dom C') n Xty contains a core of A,.

Remark 5.1. In fact, the formulas in b) are valid on larger sets than Z.
Namely (5.6) holds on (7 dom A) n ¥¢3, and (5.7) on (T dom C') n X¥s.

Theorem 5.4. Let a system (2.1) with properties S1-S6 and H4 be given. With
ReB(Xg;X) and S € B(Xgs; X) as in (5.1) and the notation of (1.1), (1.2),
let (5.3) be a singular value decomposition of the operator S*R € B(Xg; Xg).

Then the mappings
T: ranRc X — (s, T+:El/2€2Cf2—>Xa (5.11)
x> D2y EGE z— RUX Y%z '

are well-defined, and the following assertions are true:

a) A(t)ran R c ran R for all t € Ry and ranB = ran R;
b) There exists a constant ¢ > 0 such that, for all v € $%4y, u e L>(R_;U)
and t € Ry, holds

ITABOT e, <€ |2er,  [TBule, < ¢ |ull 2@ ),
|€T* 2] p2®, y) < € |2]es-
c¢) With the unique continuous extensions
TAT+ : Ry — B(ly), t — TA()T+, and €T+ € B(ly; L2(Ry:))),
the quadruple
(A, By, €, D) := (TAT+, TV, €T+, D) (5.12)

forms a minimal and balanced, bounded well-posed linear system on

(uae%y)'

Theorem 5.5. Assume that in Theorem 5.4 the assumptions S1-S6, H3 and
R1 hold. Then the following is true for the generators (Ay, By, Cy, Dy) of the
balanced realization (5.12):
a) The space Z := TBW, *(R_;U) is a subset of ¥1/205 and a core for Ay.
Moreover, AT*Z c ran R and T*Z < dom C;
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b) For all x € Z holds
Apr = Tﬁw(ker S*)LT+$,
Cyr = CT .
¢) There exists a space 7 = 242405y A dom A¥, which is a core for Af, such
that the adjoint
(T|5)*: Y2y c ty — X,
T — wMSVE_l/Qa:

fulfills (T|M)*Z < dom A*, with A as in Lemma 3.1.

~

d) For all z€ Z, ue U holds

<Bbu’ x>(dom A:‘)’,dom A:‘ = <BU, (T|M)*x>(domA*)’,domA* : (513)
That is, Byu is obtained by continuous extension of this functional to
dom Aj.

Remark 5.2. Relation (5.13) is a generalization of the expression B, = T'B,
in the sense of Lemma 1.2.

Now we present that, in a certain sense, the generators of balanced
realizations can be regarded as infinite matrices.

Theorem 5.6. Under the prerequisites of Theorem 5.5, let (Ap, By, Cp, D) be
the generators of the balanced realization (5.12). There exists a space Z, — l
such that the following holds true:

a) For all i € N the canonical unit vector e; = (0;1,0i2,...) € {2 is an
element of Zy;

b) Aple,e; € Z) for all i, ran By, © Z] and Z, < dom Cy;

¢) For the coefficients a;j, b;, ¢; of the truncated balanced realization in
Definition 4.2 (i) holds

aij = (Avejs €i) g1 7, .
bi() = (Busei) gy 5 = (s (Byreiy, € BWU;C),
. Cbej € y7

where (By) L, is the Lebesgque extension of By.

An immediate consequence of this is that a truncated balanced sys-
tem can indeed be obtained by truncating the generators (Ay, By, Cy, D) of
a balanced system.

Theorem 5.7. Under the prerequisites of Theorem 5.3, an analogous state-
ment to Theorem 5.6 holds, when a;j, b;, c; are the coefficients of the output
normalized truncation in Definition 4.2 (ii) and (Ap, By, Cp, D) are replaced
with the generators (A,, By, Co, D) of the output normalized realization from
Theorem 5.3.
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Remark 5.3. a) Theorem 5.6 and 5.7 also hold when h € L?(R; B(U,Y).
The corresponding spaces Zy, respectively Z,, in b) of these theorems
just have to be adapted, cf. Remark 9.1. In fact, in this case it is possible
to choose Zy, = X120y, Z} = %7124y with (., D77y = (B2 B2,
in Theorem 5.6 and Z, = Z! = {5 in Theorem 5.7.

b) For calculating the balanced truncation, it is somewhat easier to deter-
mine the normalized truncation first and then the balanced one via the
finite-dimensional state space transformation mentioned in Remark 4.1
b). Theorem 5.6 shows that this results in the same reduced model as
truncating the balanced realization on /s would.

Theorem 5.8. Under the prerequisites of Theorem 5.5, let

0

S*R = Z O (T, Un) x Vns

n=1

be a singular value decomposition of S*R. Then there exists a space Z — X
such that the following holds true:

a) ranB c Z' and Z < domC.

b) Svi € Z and A|xRu; € Z' for all i € N.

¢) For the coefficients a;j, b;, ¢; of the balanced and truncated realization
from Definition 4.2 holds:

1
Q5 = 7 <A|XRUJ‘,SUZ'>Z,’Z e C,
1
bi(-) = N (B-,50i) 3 5 = (- (B")LSvi),, €BU,C)
1

Cj =

CRUJ € ya

ﬂ

0
where (B') 1, is the Lebesgue extension of B'.

The forthcoming sections are devoted to the proofs of the main results.

6. Proof of Theorem 5.1
With the assumptions and notation of Theorem 5.1, there holds

ran R = ran ‘B, ran €* = ran S, (6.1a)
ker B* = ker R*, ker S* = ker €. (6.1b)

The equations in (6.1a) are consequences of the fact that the operator square
roots fulfill

ran R = ran vV RR* = ran vV BB* = ran’B and
ran ¢* = ran VC€*¢ = ranv.SS* = ran S,
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see e.g. [10, pp. 334-336]. The remaining assertions (6.1b) follow by regarding
the orthogonal complements in (6.1a). With this, the restricted operators

R: (ker R)* © X > ran'B, S: (kerS)' ¢ Xg — (ker¢)t,
B (kerB)t < L*(R_;U) »ranB, ¢: (ker®)t c X — ranC.
are injective and have dense range. We denote their inverses (and adjoints
of their inverses) by R=, 87! S~1 and ¢! (R™*, B=* S~* and €% ).
Note that for any injective, closed and densely defined operator 1" with dense

range holds (dom 7~ 1)* = ranT* and hence T—* := (T~1)* = (T*)71, see
e.g. [18, Lemma 3.5.2].

Lemma 6.1. The mappings
U : ran S*R — ran 9, Y= CS™*| ——p, (6.2)

where €S™* 4s the continuous extension of €S™*| ., sxr with respect to the
norms of Xg and L?>(R,;)), and

e (ker S*R)T — (ker ), U= BT R|(er xR - (6.3)
are unitary with inverses V* = S*E=1 and U* = R™1B respectively.
Proof. From the fact that ran R = ran‘B and
[€S™ 275 a1y = (S7F2, € CSFa)x = (¥, Sw)x = |z[k,

for all x € ran S*, we deduce that €S~* : ran S* R — ran$) is an isometry
with dense range and inverse S*@~!. Therefore, it can be extended to a
unitary operator 4 between the closures of these two spaces. Analogously, we
can deduce that the concatenation R*B~* : ran B*€* — ran R*S satisfies

|R*B™ x| xy = |2 2@ 2 Vo €ranB*,

and has a unitary extension to the closures U* : (ker )t — (ker S*R)L.
Furthermore, because of (5.1), the identity R*B~*z = R~!Bx holds for all
z € (ker $)*. But the operator R71%|(kerﬁ)J_ is defined on the complete space
(ker $)+ and it is closed because R~ is closed. By the closed graph theorem
it is continuous and hence, it must be equal to the unique unitary extension of
R*B~*. This means that both R_1%|(ker5)¢ and its inverse %_1R|(ker S*R)L
are bounded with norm 1. =

Proof of Theorem 5.1. The equation
~6|(kerf))l = Qﬂ(kers*)l%kkerf))l-
= @S**S*RRfl%kkerml
= B(S*R)| (ker s 1) - 4™ | (ker 5

shows (5.2). Hence the compactness claim holds, because 4l and U are unitary.
In particular, we can find a singular value decomposition of the form (5.3) if
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the Hankel operator is compact. Now the equalities
(S*R)(S*R)*|iewr = U 99 Vg and
(S*R)*(S™R)|(ker s )t = UFH* HU| (xeer 5% 1) -

show that v; is an eigenvector of S* R(S*R)* to the eigenvalue o? > 0 if
and only if ¥; := v is an eigenvector of HH* corresponding to the same
eigenvalue and, analogously, u; is an eigenvector of (S*R)*S* R if and only if
U; := Uu; is an eigenvector of $H*$). Hence it follows that the singular values

of S*R and $ are equal. In particular,

o0
Hu = Z vioiu, Uiy Yue LA(R_;U)

is a singular value decomposition of $. o

7. Proof of Theorem 5.2 and 5.3

Lemma 7.1. Define M := T g#)r Tan R = T(yer g#)L Tan’B as in Theorem
3.1. The mapping T|a : M — Xly is an isomorphism with inverse given by

W(kers*)LTJr ({En) = Si*V(ifn) V(xn) € Xty (71)

Proof. Using equation (5.3) and VV* = 1+ it is not hard to see that
Ty = V*S* is an isomorphism between the claimed spaces with inverse
S™*V. The important part here is that the correct spaces were chosen. The
singular value decomposition also shows immediately that V*S* is the left
inverse of m(yer S*)LRU271 = T(ker 5%)+ T on Xf3. To prove that it is also a
right inverse we calculate for given y = mye, 5x)1 Rz with z € Xp

Tker %)L RUS TV 5%y = @100 55yt RUST'VFS* Rt = per g3)r RUU
= 71—(kerS*)L-R,]T(kerS*R)L:r = ,]-r(kerS’X‘)L-R:r =Y.

[m]

Proof of Theorem 5.2. We are going to show that, with U from Lemma 6.1,
the mapping

Vily — ran$, (xp) — BV (x,) = T Vv,

18

n=1

which is unitary with inverse VE = V#0* | transforms the shift realization
(4.2) into the system (5.5). Well-posedness of the latter follows immediately
from Lemma 2.1. First note that, due to ker € = ker S* and Definition 2.1
(iii), we have the following expression for all € ran S*R

SEA(E)S™*x = S*Tl'(ker Q:)LQ[(t)ﬂ'(ker ¢)LS_*$ = S*€‘1€Ql(t)€‘1€S‘*a: =
= V*CA(t) ¢ 'V = V*7! | —=Va

ran ) .
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Furthermore, for all € ran $) we have U*z € ran S* R and hence V*U*x €
3l5. By Lemma 7.1 we can substitute

BV TAL)THVFU* 2z = BV V* S*A()T (or 5%y RUS ™ VFT*
=PV V*S*A) S *VV*U*x
=Ym ran S*RS*Ql( )S 7Tran S*Rm*x

= mﬂ-ran S’X‘Rszj ’7—-ﬁ-szj’7r1"anS*RqI €T = Tiif,

and by continuous extension it follows that this formula holds on the closure
of ran $. Furthermore, one gets
CTHV*Y*r = CRUS™'V*U*x = € (ep 55y RUS T VU
=CSTVVIY e = Un 5V = .

Again, continuous extension yields that € RUX ™! is similar to d s via the
unitary transformation V*0*. Finally,

YVTB = YVVES*B = TS *5*B = €515 S*B = €B = 0,

completes the proof of the asserted similarity and well-posedness and applying
Lemma 2.1 proves the Theorem. o

Corollary 7.2. If in Theorem 5.2 the assumptions H3 and R1 hold as well,
then the generators of (5.5) are

dom A, = {(mn) €lsy: i T, 0, € WHE(Ry; :)))} , (7.2a)
n—1
Agl(wn) = V*LV (), (7.2b)
0
dom A% = {(xn) ely: Z Ty Uy € ﬂng’Q(R+;y)} , (7.3a)
n=1
Ak(wn) = —V*y (7.3b)

for any y € W&’Q(RJF;J)) with T gy = V(xn)
For each w € U, the image Bou is an element of (dom A¥)" acting as
follows:

(Bou)(@n) = {hu, y>L1(]R+;y),L°C‘(]R+;y) g (7.4)
for any y € W(}’Q(R+;y) with Tomsy = V(zn).
Furthermore holds

0
domC, = {(xn) €ty : Z TpUpn has a Lebesgue point at zem} ,

1
Co(zp) = lim — T Oy, (T)dT. (7.5)
t—0 t 0,1

All the series here are limits in the L?(R,;)) norm.
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Proof. Since we have shown in the proof of Theorem 5.2 that (5.5) is unitary
simliar to (4.2) via V, the generators of (5.5) are also obtained via unitary
transformation of the operators in Lemma 4.1 (ii). Note that

dom A, = {(mn) € Ly ‘ V(zn) € (tan$ n WH2(Ry; y)} ,
which becomes (7.2a) because V (z,) is always in ran 5. o

The space Z introduced in Theorem 5.3 a) will play an important role
in the sequel, because it is a core for A,, as we show in the next proposition.

Proposition 7.3. The space Z := T%W&’Q(R,;L{) is a core for A, and
Az = Tﬁw(ker S*)LT+Z Vze Z, (7.6)

where A is as in Lemma 3.1. Consequently, the graph of A, is the closure of
the graph of the operator (7.6) in ly x £y and the graph of A,|e, is the closure
of the graph of the operator (7.6) in dom(A%)" x dom(AX)".

Proof. Lemma 4.3.5(i) of [18] states that B maps the set Wy *(R_;U) into
dom A, so the relation
Z = V*S*BW,*(R_;U) c V*S*(dom A nran R) € Yy

holds. This means that for arbitrary z € Z, we may write z = V*S*y with
y € dom A nran R. Then S*y € ran S*R, and with VV* being the identity
on this set, one gets

Tereyry = S*S*y = STHFVV*S*y = §7*Vz = Mo 5% RUS 'z

with (7.1). Recall that, according to Lemma 3.1, 7(ye, o)1 |37 is a semigroup

whose generator A has the domain M A T(ker ¢)+ dom A. Since T(yereyry €
M A T (er )+ dom A is in this domain, the calculation

1 +
lt%l i (TAN) Tz - 2)

.1 _
= 1t1lr(r)1 n (VES* fA()T (ker 5%)- RUS )

~ lim g (V8" R0OS TV (VST)y = (V*5%)y)

o1
= 11‘/1%1 ?V* (S*Tr(ker S*)J-Q[(t)ﬂ-(ker S#)LY — S*Tr(ker S*)J-y)

o1
=V*s* ltlfg n (7 (cer 5% ) L ()T (cer %) LY — T(ker 5%)2Y)
= V*S*ﬂ-(kers*)Lgﬂ-(kerS*)iy
= V*S*gﬂ(kers*)LRUE_lz

shows A,z = V¥S*AS~*Vz and V*S*(dom A n ran R) — dom A,. By [5,
Proposition 11.1.7], Z is already a core for A, if it is 2/, invariant and dense
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in dom A,. It is indeed invariant: We can write any z € Z as z = V*S*Buy
with u € Wy *(R_;U) and the equality

Aoz = VES*AL)S™*Vz = VES*A()S™*V (V*S*Bu)
= VES*A() T (ker 53)2 Bu = VFS*A(t)Bu = V*S*Brl u

holds. Now the left shift of u is obviously again in W, *(R_; ) and the over-
all expression therefore in Z. Regarding density, we have that the continuous
mapping V*S*B maps the dense subset Wol’Q(]R_;Z/{) of L*(R_;U) into a
dense subset of its image ran V*S*9B, which is 3/5. Since this is dense in
{5, we conclude that Z is dense in /5 and in particular in dom A,. For the
assertion concerning the extended generator observe that any core of a semi-
group generator is also a core for the extended generator, since the density
with respect to the stronger graph norm implies density with respect to the
weaker graph norm. o

Remark 7.1. If ker € = {0}, i.e. the original system is observable, the pro-
jection (e %)L is just the identity and A may be replaced by A. In the
non-observable case, one might be tempted to omit the projection in the
expression V*S*Aw(kers*)LRUE_l as well, since A maps dom A N ker S*
into ker S* anyway. However, this is not allowed because for arbitrary z € Z,
RUY "'z will in general not be in the domain of A, even though the projected
Vector Tr(yer g#)L RUY "'z lies in M (ker %)+ dom A.

Proof of Theorem 5.3. We start with the poof of ¢). A simple calculation
shows that the adjoint (7|37)* of T3 : M — fs equals m3;SV. In order to
show that (7|3;)* maps dom A¥ into dom A*_ we prove the following three
auxiliary statements:
(i) For all (z,) € f» holds SV (z,) = €*V(z,): Due to continuity, the
equality

Sx = SS*S™*x = €*ES*r = €* Y,

which is true for all 2 € ran S* R, must hold on ran S* R = ran V as well,
and the assertion follows using vV =9V.

(ii) The operator €* maps W,"*(R,;Y) into dom A*: This follows because
¢*T is the input operator of the adjoint system [18, Section 6.2] when
I" denotes the reflection operator from (2.4), and therefore, €*I" maps
Wy ?(R_; ) into dom A*, according to Lemma 4.3.5(i) of [18], which
was already used in the proof of Proposition 7.3.

(ili) The last assertion is that my;C* = m;€*m_—: If we take an arbitrary

ran )’

y e L%(Ry;)), then (rtan H)* = ker B*€* shows that
Ji=C*rmsiy € ran€* nkerB* < (ker@)t N (ranB)".

Hence, taking the scalar product with any x € M, which must be of the
form & = T (ye; ¢)1 b for some b € ranB yields

(&, 1)x = (b= Trereb, Ppx = 0, P)x — (Mkereb, Ypx =0



Balancing Transformations for Infinite-Dimensional Systems 27

It follows 4 € M ', and therefore
Ty = WMQ:*’lTrTnﬁy + WMC*W(rTnmLy
= 7TMQ:*T(-ran5’)3’/ + 771\_4@
= Trmc:*ﬂ-ranf)z’h

which is what we wanted to show.

In order to prove our original claim, we pick (x,) € dom A¥. Because 1%
was the similarity transformation between (5.5) and the output-normalized
shift realization, we have V dom A} = 755 W) 2(Ry;)), see (7.3a). Hence,
V(xn) = Trmregy for some y € Wy 2(Ry;Y), and with (i) and (iii) we get

(Tlxz)* (@n) = 757V (@n) = 757 €*V (20) = 15 Tiremy = m37CHy.
Now, because of (ii), the latter is an element of 737 (dom A* M (ker €)1), which
was shown to be dom A* in Lemma 3.1. Finally, Lemma 1.2 implies that (5.8)
is an extension of T3; as claimed in ¢).

Observe that, on the set Z, the operators A,|¢, and T_lgﬂ'(ker syt T
reduce to their unextended versions and therefore coincide according Proposi-
tion 7.3. Since Z is a core of the closed operator A,|e,, whose domain contains
¥ {3, this shows that 7" AT (ke g%)1 T is closable and its closure is Aos,. In

particular, both operators coincide on the larger set /5, hence the assertions
(5.6) and (5.9) are true. We make use of this fact to determine the control

~

operator via (2.7). For any u € U and X in p(A,) N p(A) it can be calculated
by

By = (A= Aole)Boeru = (A = 1 Amgr s T ) Trrer sy Beau
=T1(A— g)w(kers*)L%eAu = T_1(A— A)Beyu = T, Bu.

Here, we have used that 7 maps M into X¢y and (e, g#y1 7 T is the identity
on M. Now for the output operator C,: We take an element z € 3¢5 such that
z = T for some z € dom C. Then in general 7tz # z, and the first thing we
have to check is that 7z is in the domain of C'. An immediate consequence
of the definition of dom C' is that ker S* = ker € < (dom C' n ker C). Since
dom C' is a linear space, we deduce

T (ker Q)LT+Z = T(kere)Ll T =T — Tkere® € dom C,
and with this we get indeed

Ttz = T (ker Q)LT+Z + TrereT T2z € dom C.

t

Coz = lim% (€S™*V2)(r)dr = CS™*V2 = OTpereT T2 =CT *2

t—0 0

and 7 dom C n ¥/fy < dom C,. o
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8. Proof of Theorem 5.4 and 5.5

The idea behind the proof of Theorem 5.4 is to obtain the balanced sys-
tem by interpolating between the output normalized realization (5.5) of ©
on (f2,{,)e,) and its restriction to (Xfs,{-,)s;). This restriction is an input
normalized realization of ®, and it is well-posed because it is unitary equiva-
lent to the input normalized system (4.1). So an important ingredient for the
proof is the following auxiliary result about well-posedness of an interpolated
system.

Lemma 8.1. Let X, X and X be Hilbert spaces with X — X — X. Assume
that there exists a positive operator ¥ € B(X) such that X = ranXY?, X =
ranY and

(@, y)¢ = (22, 5%y)x = Sz, Sy)x  Vo,ye X.

Let (A,B, ¢, D) and (A, B, €, D) be two bounded well-posed linear systems on
the Hilbert spaces (U, X,Y) and (U, X,D) respectively, with the same input
map B, the same input/output map ® and A = Ax, € = €|x. Then X is
invariant under A and (A|x,B, €|x, D) is a bounded well-posed linear system
on (U, X,Y). Moreover the domain of the generator A of U is the part of A
i X and the domain of A is a core for A.

Proof. The claim about well-posedness is a special case of Lemma 9.5.7 in
[18]. That the generator of a semigroup restricted to an invariant subspace
is given by the part of the generator in the subspace, is Lemma 1.1. To see
that dom A is a core, it suffices by [5, Proposition II.1.7] to see that it is
invariant under 21 and a dense subset of dom A. The latter is true because of
X — X. o

Remark 8.1. As an immediate consequence of Lemma 7.1 and the fact that
»1/2: ¢y — ¥Y2¢, is an isomorphism the mapping

Tlar: M c X - ¥V, T .= 9 127%g5%,
is an isomorphism with inverse
Tt : 21/282 cly — M, W(kers*)LT+ = W(kers*)LRUzil/Q.

Lemma 8.2. Under the conditions of Theorem 5.4 the following holds: The
output normalized system (5.5), restricted to ¥ls,

(g,@,g,@) = (m0|2427%0a€o|242’9) (81)

defines an input-normalized, bounded well-posed linear system on (Xla, |- |x)-
The generator A of A satisfies

domA = Z = {xedom A, nXly : A,z € Xls}, (8.2)
A:domAc Xly — Xly, Axr=A,xr VredomA,

with Z as in Theorem 5.3 a).
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Proof. Similar to the proof of Theorem 5.2, we claim that
DL Bly — (ker H)*

with inverse X4U*U* is a unitary similarity transformation between the system
(8.1) and the input normalized shift realization (4.1) on (ker ). We know
that U € B(ly; (ker S*R)*) and U € B((ker S*R)™:); (ker $)*) are unitary
(Lemma 6.1). Due to the scalar product (1.3) used on X/5, the operator
Y € B(f2;Xl) is unitary as well. So it only remains to show that (8.1) is
related to (4.1) via these transformations. In Lemma 6.1 we proved that
R71%B : kerBL — ker Rt maps (ker ) into (ker S*R)L and called the
restriction 4*. Using the readily verified fact that R~'B also maps ker §
into ker S* R, we therefore have
Tiker s# )~ (BT'B) = Teer 53yt (BT B) T er )2 = U T cer s9) 15
and consequently for all x € ran‘B
V*S*r = V¥S*RR™'BB v = V*S* R (yep g1 gy (R B)B ' 53)
= EU*u*ﬂ'(ker Q%)J_ %71‘%. '

Using this and the 2-invariance of ran R = ran 8, we have
Ao (t) |50, = VFS*A()RUL ™!
= SUU* M (heor oy B A BUUE !
= SU*I* T (er 98) - T2 | (ker e3) L UT ST
This shows that 7 (er g )+ R~'2R is unitarily similar to the strongly contin-

uous semigroup of the shift realization on (ker €B)+. For the input operators,
equation (8.3) immediately gives the asserted formula

VES*B = EU'*ka,rr(ker ¢B)L T (ker B)L = EU“ki'vk,rr(ker cB)L,
and finally, the output operator &€ equals
CRUS™ = ¢B(B'R)US™ = 6| (ker )~ UWUS T,

which is the output operator the exactly controllable shift realization. So we
have shown that system (8.1) is but a similarity transformation of the system
(4.1). Therefore, well-posedness follows from Lemma 2.1 and moreover, the
unitary transformations keep the system input normalized.

The domain of A is given by the transformations YU*U* applied to the
domain of the exactly controllable shift realization. With (8.3) this becomes

dom A = U U T ger )2 Wy 2 (R_sU) = VFS*BW (R, U) = Z.

On the other hand, we know that 2l is the restriction of 2(, and strongly con-
tinuous with respect to ||y, . Hence, Lemma 1.1 tells us that the generator
A is must be the part of A, in X5, which is by definition the first term in
(8.2). o
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Remark 8.2. a) We point out that one of the essential properties of the
space Z is that x € %Wol’Q(R,;L{) does not only imply € dom A n
ran‘B, but also Az € ran‘B. This explains the fact that V*S*Ax is
again an element of ¥fy and thus the relation (8.2).

b) A further similarity transformation with ¥ yields an input normalized
system on the state space £2. This gives a completely analogous result
to Theorem 5.2 with output normalization replaced by input normaliza-
tion. For the upcoming interpolation step however, the present system
with state space X5 is more convenient.

Proof of Theorem 5.4. We apply the interpolation Lemma 8.1 to the output
normalized system (5.5) on £ and its restriction (8.1) to 3¢s. This guarantees
the well-posedness of the system

(3, B, €, D) = (Wolgi26,, Bos Colsirzg,, D) (8.4)

on the interpolated state space $'/2¢5. In particular, /2 is invariant under
2, and 2, |51/2, is strongly continuous with respect to |||z, -

In order to determine the Gramians of this system, we calculate the
adjoints with respect to (-, )su/2¢,. For all y € L?(Ry;Y) and u € L?(R_;U)
we have

Com, 2w, y) = T, Y0,
= (=712, V25 ),

= (2, 0C¥ Y512y, Yz e V2 and

(Bott, TYsyng, = (V2B ,u, 0712,
= <U, %3271$>L2(R7;u) Va e 262
Thus, the observability and controllability Gramians with respect to the
scalar product (-, )52, are given by

¢*C = N€*¢, = Nidgr2  and

A A

BB*r = B, BIY e = VISHFBB*SVY e = VES*RR*SVY ln
= V*S* Rt (yer 5% p)r R*SVE 'z = V*S*RUU*R*SVE ™'
=Yz Vaxe Xl

where the last equation can be extended to the whole space $1/2¢5, because
both of the operators BB* and ¥ are in B(XV/20,).

The last step is just to transfer the system to the favored state space £
via another unitary transformation N2 . 220, - 5. The result of this is
the system

(zeasye, w0128, 12, )

o . (8.5)
= (RTVAVESRARUL-IEY?, B2V gEB, CRULISY?, D)
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on /5. Since we are transforming unitarily with respect to the scalar products
(' )sy/24, and (-, ), , the Gramians do not change and the resulting system
is still balanced. In order to complete the proof, it suffices to check that
the operators defined in (5.12) and (8.5) are the same. For 8, and © there
is nothing to prove. For 2,(t) and &, it follows since all the operators are
bounded with respect to the ¢s-norm and coincide on the dense subset ¥/5
of 62. m}

Proof of Theorem 5.5 . Lemma 8.1 also tells us that Z = dom A is a core
for A and that the domain of A is the part of A, in %'/2¢. This means in
particular

dom A = {x ex?2 AdomA, : Az € 21/262} ,
Az = Aoz = V*S* A 542 RUS 1z V2 € Z.

Since the semigroups 2, and 2 in the proof of Theorem 5.3 are unitarily
similar via the transformation ©71/2 € B(XY2(y;(5), the same is true for
their generators. So Z = ¥ ~Y2Z must be a core for A4, and

dom 4, = 272 dom A = £71/2 {x ex?2 ndomA,: Az e 21/2&}
AbZ _ 2—1/2121\21/2 _ E_l/QV*S*gW(kerS*)LRUz_l/QZ Vze 7.

The claim about the representation of C follows from the fact that €y =
€, 22z for all z € X712(V*S8* dom C n Xy) and (5.7) via the definition of
the Lebesgue extension in (2.6). So we have proved a) and b).

We do not determine the domain of the adjoint A} exactly, but we will
prove that Z := ¥1/2 dom A* is a core for A¥*. Take y € Z and x € dom A,
»~12dom A,. Then the equation

(Apr, y>€z = <2_1/2A021/2x, y>€2 = <xa 21/2‘4:2_1/29>€2
shows, since the right hand side is continuous in z, that y € dom A; and
Ay = 212 Axn~12y Vye Z. (8.6)

So we have shown Z < dom Ajf. We now prove that Z is dense in ¢, and 2A5-
invariant. The continuity of £'/2 € B({y) implies that /2 dom A* is dense in
»1/2¢, with respect to the topology of £5. Because ¥.1/20, itself is dense in (o,
it follows that Z is dense in {5. Furthermore, for x € {5 and y € 7 c 21/262,
the equation

()2, y)e, = 72U ()22, )0, = (0, ZVPAFO T2 y)e,

shows 20 (¢ )y = R1290%(t)8~Y2y. This representation together with the def-
inition of Z show the 2y-invariance of Z, since the 2, (t) maps dom A* into

itself. So altogether Z must be a core of Ajf. To complete the proof of ¢), we
observe that (T'|57)* = (T|57)*S~Y/? and therefore

(T5)*Z = (T\5)* S~ Y25Y2 dom A* = (T |57)* dom A
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The latter is by Theorem 5.3 ¢) a subset of dom A*.
Finally, we prove d). Choose A in the resolvent sets of A, and A4,, and

take y still in Zanduel. Knowing from @) that y € dom A} and using (8.6)
we have

(Bots ¥) (qom A%y dom AF = (A = Aple)BLAU; U) (dom a%) dom a¥
= (Breau, (A — AF)ye,
= (7B enu, BN = AHT Ty,
= (Boeru, (A = A5 y),
= (A = Asle,)Bou, 2_1/Qy>(domAf)/,(1onlA;k
= (Byu, 2_1/2y>(dom A¥) dom A¥
= <§u, (T|M)*Z/>(domj*)',domﬁ*' (8.7)

The functional Byu € (dom Aj)" is obtained by continuous extension of this

expression to all y € dom A}, because the core Z is dense in dom A with
respect to the graph norm of Aj. o

Remark 8.3. The generator Ay of 2, is also equal to
Vizn) e WH2(RL; ) and}

dom A = »1/2 T, e Y20, | ~
( ) 2 V*(%)V(xn) c 21/262

Ay = STVRPVH (LU,

9. Proof of Theorem 5.6 and 5.7

We want to give a short explanation as to why it is necessary to define
the spaces Zy, respectively Z,, in Theorem 5.6 and 5.7. The easiest way to
see this is in the latter theorem, when we try to truncate the functional
Aole,ej € (dom A%) from (7.2b). This functional is, by Lemma 1.2, defined
through the adjoint (7.3b), and can, by partial integration, be shown to equal

o0 0

<A0|e2ej7 (‘x”)>dom(A3<)’,dom(Af) = f d_dgaﬂ (f) Z 5n(§)$nd§,

0 n=1
with d—dgﬁj € L'(Ry; ). This representation is valid for all (x,,) in the domain
of A%, which means Zf=1 Uy, € W(}’Q(R+; V). At a first glance, it may seem
straight forward to truncate this expression by defining

(Aoltzes)es ycr = f L5,(6) 3 Bul€)rade

n=1
for x := [z1,...,2,]7 € C". To do this properly, however, we need to ex-
tend the functional A,|re; to {(x,) € lo : Do Vpzn, € WHL{(R D)},
because > _ ¥, is an element of W1(Ry;Y) and not of Wy (Ry; ).
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Since W' (R, ;) is not dense in W11 (R ;)), this extension can not sim-
ply be obtained from continuity. Instead, it is constructed as follows: First,
the subspace of all functionals in (Wy''(Ry;)))’ that can be represented by
an L!-function is identified with the actual space L!'(R,;)), and then it is
embedded into the dual space of W11(R, ;). For the operator B,, which
experiences the same difficulties only with d%ﬁj replaced by hu, one can either
proceed in the same way or, more elegantly, by using the Lebesgue extension
of its adjoint.

We only execute the proof for the slightly more difficult Theorem 5.6,
because the one for Theorem 5.6 is analogous up to some simplifications.

Proof of Theorem 5.6. We show that the space

Zyi={(z0) € V2 | VE12(2,) € W R4 D) |

with the norm |(z,)|z, := |“7271/2(Zn)‘|wl,1(]g+;y) has the asserted proper-
ties.
Because the Schmidt vectors ¥; are in WH1(R;;Y) by [8], the vector
VR12e; = 1/(\/07)v; is also in this space. Hence, e; € Z; and a) is true.
We claim that the space

3fe L'R.;Y) Y(x,) € Y2 dom A* :
%= { £ e omApY| <f.@) = | (F©.0(6)) e for some

ye Wy (R V) with mgy = VE~Y(xy,).

with norm | f|z := Hf”y(ﬂh;y) is continuously embedded into Z] via the
injection

Zgn 17n(§)>yd§ Y(zn) € Zb.

D= Zh GF ()= f<f<f>,i N

A simple estimate shows [(¢f, (2n))] < [tfllL1 (. 3)](2n)] 2, and hence, ¢f is
a functional on Zy. The estimate [f]z < |f| 3 moreover shows the con-
tinuity of the embedding ¢. To conclude the injectivity of ¢, observe that
Gf, (zn)y = 0 for all (2,) € Z, is equivalent to S(O)O<f(§), w(&))ydE = 0 for all
w e WHH(R,;Y) mran$), which implies f € (ran$)L. Hence, f is the zero
functional on dom A} if +f = 0.

In order to prove the first part of b), it suffices now to show that Ay e, e; €
Zy for all j € N. Choose an arbitrary (z,) in the set Z = %V/2 dom A¥*, which
was shown to be a core for A} in the proof of Theorem 5.5 ¢). Remembering
the formula (7.3b) we choose y € Wy ?(R,;)) with Teansy = VE2(z,)
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and have
<Ab|52€j, (Z")>(dom A:‘)’,dom A:‘ = <€j7 Alf (Zn)>€2 = <€j7 El/QA;kE_l/Q(Zn)>€2
= <€jv _21/2‘/* a y>€2

B <‘7v21/26j7 _d_y>L2(lR+;)1)
f <\/_d§UJ >yd§

Here, we have used partial integration between a W' and a WO1 ’Q—function,
which can be justified by approximation with smooth El\n_c/tions. The equation
above shows that Ap|,e; is an element of 7, with Aple,e; = \/U—jd%ﬁj. Now
it is merely a matter of definition to plug e; into (tA|r, €5, €;) and get (4.4a).

To show the first equality in (4 4b), we observe that the equation (8.7)
and (7.4) imply that Byu € Z, with Byu = hu for all u. Hence the embedding
L gives

Bovsedzym = —= [ MO )yt = = () O

1
Vi Jo
1
= \/—0—l<u7a’1(0)>u = b7(u)a
where the representation of H* given in [8, Lemma 5.3.3] was used. The
second equality in (4.4b) uses the Lebesgue extension of By, which is defined

as
1 t

(By)r := lim —f (Brx)(—7)dT.
t—0 t 0

Since dom(By)r, is by definition the set where this limit exists, we conclude
from

1
Bie; = B*SVE Ve, = \/—U_j%*c*m = Joji; € WH(R_;U)

that e; € dom(By), for all i € N and
(u, (By)reju = <u Vo5 ( )> = b;(u)(0)

Finally, by (7.5), the set Y127, is contained in the domain of C,, since
WLl functions are continuous and therefore have a Lebesgue point at zero.
Hence Z, © dom Cj = X2 dom C,, and again with (7.5) we conclude

1 1
Cbej = COEl/er = hm ej N‘( )d = —ﬁj (0) = C;.
=0ty Vo N

[m]

Proof of Theorem 5.7. The proof is completely analogous to the previous one.
We only give the necessary definitions

Zoi={(z) € o | V(z) e W RA I )z, = 1V G)lwin o,
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and

3fe L'(R;Y) V(z,) € dom A :

Zoi={ e tdoma) | G.any = [ (F€10(9)) de tor some

Y€ WS’Q(R+; V) with Ty = ‘N/(a:n)

[m]

Remark 9.1. In the case when h € L?>(R.; B(U,Y) and the Schmidt vectors
therefore satisfy ¥; € W12(R,;)) and %; € WH2(R;U), we have to make
the following adaptions: In the proof of Theorem 5.6, respectively 5.7, replace
Wbl by Wh2 and L' by L? in the definitions of Z; and Zb, respectively Z,
and Z). This way, Z, becomes dom A, and Z) becomes f5. In Theorem 5.6,
Zy becomes LY2dom A, and Z, is $205 = {(y,) | Y2 (yn) € £}, with
(yn) = VEY2(y,) being the required L2-function for each (y,) € S1/20,.
The unitarity of V than implies

Wyn)s@n))zy,z, = V2 (yn), T2 (@n))es.

10. Proof of Theorem 5.8

Proof of Theorem 5.8. We proceed similar to the proof of Theorem 5.6. De-
fine

Z = {z g ran¢*

¢ *zeran$ N WH(R,; y)}
with norm ||z z := |\€7*Z\|W1,1(R+;y)~ The space
3fe L'(R.;Y) Vye Wi(Ry;Y) < dom A* :

I e - [ (000,

with norm | f||; := |"f~‘|L1(R+;y) is continuously embedded into Z’ via the
injection

727 Gf, )= fo <f(g), E:—*z(g)>ydg Ve Z.

Furthermore, for all Vy € W&’Q(RJF; V) we have A*C*y = €*y € ran €* and
(Alx Rui, € Y)(dom a%) dom a% = (A|xDBUi, € Y)(dom A%y dom A%
= (CeBU;, A*Cy)x
= (CBU;, € *A*C* Y12, )
= —(Dj, M(ker e*)L d_dgy>L2(]R+;y)

= (Gei WL R4, Lo (R19)-
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This shows A|xRu; € 7 < 7. Together with €"*Sv; = ¥; € ran$ n
WLY(R,;Y), this shows b). Our definition of the embedding ¢ leads to

<A|XRUZ‘, SUJ>Z,Z = <A|X%ﬂi, 6*6j>27z = <LA|X%ﬂi, Q:*@j>zl7z

NG

Qg -
VI3

With the adjoint B’ € B(dom A*;U) of B we obtain for all u € U and
ye Wy (Ry; D)

<BU Q: y>(domA*)’ dom A* = <'LL B €*y>u - <U H*

< f W (r yd7'> f<h Yo, oy

This shows that ran B  Z < Z’ and therefore

= (g0 € ) 1R 3y), L0 (R 1Y) =

(Bu, Svi)z, 5 = (Bu, &)z 7, = (hu, E*EV) 1w, y) Lo(R, )
= Voibi(u).
For the alternative representation, we observe that B*&*v; = o;u;, which is

in WH1(R_;2). This implies €*%; € dom(B’)y, for all i € N and

bite = /&, T (0))yy = % () (0)u = %,_@ (B')1E*%))0.

Finally, the equality
CRuj = €Bu,;v; € WHH(R,;Y)

shows that Ru; is in the domain of C' and
t

1t 1
CRu; = lim f (€Ruy)(7)dr = Tim ~ [ &, (r)dr = 5,(0) = Vaie.
t—0 t 0 t—0 t 0

11. Pseudo-similarity in the minimal case

Proposition 11.1. With the preliminaries of Theorem 5.2 and, additionally,
minimality of the system (A, B, C, D), the following holds true: The operator
T = V*S5* is a pseudo-similarity transformation defined on X. The inverse
pseudo-similarity transformation S™*V : ran V*S* < ly — {5 is exactly the
closure RUY™ of the operator T+ : ¥ly < o — X. Accordingly, the domain
of RUXY equals ran V*S* in this case.

Proof. The properties of a pseudo-similarity required in Definition 2.5 are
readily verified using that

Ao () () = VES*AS™*V (2,,) V(x,) € ran V*S*,

which follows by a density argument, since both operator coincide on ¥/y <
ran V*S*. Only the claim about the inverse transformation needs to be
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proven at full length: In the minimal case, the singular value decomposition
(5.3) reads

S*R|(xer ryr = VIU*, (11.1)
UeB(ly(ker R)Y), Ve B(lo;(ker S)'),

because the density of ran R implies that ran S* R = ran S* = (ker S)*, and
ker S*R = ker R due to the injectivity of S*. Another consequence of this
is that V*S* is injective and the inverse S™*V : ranV*S* < /5 — X of
this bounded operator is a closed operator. Because m(ye, g#)+ is obsolete,
it follows from (7.1) that S™*V must be a closed extension of RUY™! to
ran V*S*. In order to prove that it is the smallest closed extension, i.e. the
adjoint of the adjoint of RUX ™!, we have to determine the domains of these
operators.

Our first claim is that dom(RUX1)* = ranS. So pick an arbitrary
y € ran S. Then for all (x,,) € X¢5 holds

(RUS™H(zn), ypx = (RUZ ™ (20), S~ y)x = (S*RUE™ (z4), S™ ) xs
= (VEU*US ™ (2), S )xs = (V(wn), ST 9)xs
<57 ylxsl(@n)les

and hence y € dom(RUX~!)*. For the other inclusion, take an arbitrary
y € dom(RUX~1)*. Then there exists some constant K with

E|(zn)| = (RUS™ (), ypx = (E7 (a), U R*y)e, V(@) € Bt

showing that U* R*y lies in the domain of the self-adjoint operator ¥, which
is $/5. (In particular, it follows (RUX™1)* = ©71U*R*.) As a consequence
of the controllability assumption, R* is injective, so y can be written as
y = R™*UXz for some x € 5. Adjoining equation (11.1) gives

R*S|(ker5)J_ = (S*R|(kerR)J_)* =UXV*,

and consequently y € R~* ran R*S|(ker g)+ =ranS. So we have indeed shown
ran S = dom(RUL1)*.

Since we have already seen that S™*V with its domain ran V*S5%* is an
extension of RUY ™!, it suffices to show

ran V*¥S* < dom RUY !
= {(a:n) €ly|IK >0 VyeranS : {(x,), (]:ufUZ_l)*ng2 < KHyHX}

in order to complete the proof. So take an arbitrary (z,) € ran V*S*. Then
for all y € ranS holds U*R*y € %y and, with the representation ¥ =1 =
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V*STIR™*U|sy,, we obtain
(), (RUST)*y)e, = (VFS* STV (), (RUS™) ¥y,
= (87*V(x,), SVET'U*R*y)x
={(S™*V(x,),SST' R *R*y)x
={(ST*V(zn), ¥x
< [STFV (@) xlylx-

—_ — — —

This is what we needed to show. o

Proposition 11.2. If in Theorem 5.4 the original system is minimal, then T*
is closable and its closure

T+ :{xely: 22z eranV*S*} c by - X,  TT = RUL™?
s a pseudo-similarity transformation. Its inverse transformation is the clo-
sure of T, i.e.,

T:{zeX :V¥S*zeX 20y c X »t,,  T:=x 12y*s*

In the proof we make use of the following result which is straightforward
to show:

Lemma 11.3. Let XY, Z be Hilbert spaces and G € B(X;Y'). Furthermore let
F :domA cY — Z be a densely defined, closable operator and F := F**
its closure. If we define the operators FG : {xr € X : Gx edomF} c X — Z
and FG : {x € X : Gz e domF} ¢ X — Z, then the closure of FG equals
FG.

Proof of Proposition 11.2. For T to be closable it is necessary and sufficient
that domT'™* < /5 be dense. As a consequence of the observability assump-
tion, ker S* = {0}, the range of S is dense, and we will show that the latter
is contained in the domain of T"*, which by definition is

domT** ={ye X| Ik > 0V(x,) edomT™ : (TF(zn),y)x < k|(xn)]e,}
So let y € ran S be arbitrary. Then U* R*y € X4y and for (x,) € domT+ =
»1/2¢5 holds
[T (@), x| = (ST (@n), U* R¥y)e, | = [{(an), E72U* R¥y ), |
<[=7V2U*R*y|e, | (20) s
showing y € dom T+*. So we may take the closure T+ of the operator T+ =
RUY~Y2 which, according to Lemma 11.3, is equal to the concatenation
RUSISY2 : {(2,) € by : Y% (2,) eran V*S*} c ly — X

of the two injective operators RUY~! : ran V*S* < {5 — X and »12 e B(1s).
Thus, T is injective as well. We remark that its range is in general smaller
then the range of RUX~1, which is X. More precisely, we have ranT+ =
{r e X : V*S*z € ©V/24,}. For if 2 € ranT, then x = RUS-1XY2(y,,) for
some () € dom T+ and, remembering that V*S* is the inverse of RUY 1,
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VS*x = ¥2(y,). On the other hand, if = is such that (y,) = V*S*z e
»1/20y, then (y,) € ranV*S* = dom RUX ! and z = RUX1(y,) is in the
range of T+ = RUX-1X'/2. And with this we have shown that the inverse of
T+ is B12y*8*,

The invariance properties of Definition 2.5 are not quite as easy to see
as in Proposition 11.1. We need to show the 2-invariance of dom 7. That is,
for all € X with the property that V*S*z € /2, must hold V*S*2U(t)z €
»1/20,. Let 2 € dom T, then (yn) := V*S*x € ¥ls, and hence

VES*A(t)r = VES*AM)S ™V (yn) = Ao(t) (yn),

which is again an element of »i/ 20, becauie by Lemma 8.1, 2, leaves this
space invariant. For the 21, invariance of ran T observe that (y,,) := XY2(z,) €
ran V*S* for all (x,,) € ranT and hence

Ap (1) (zn) = DTV2VES* A RUL TNV (2,,) = BTV2VHS*A() STV (yn).-

The right hand side shows that this is again an element of ran T. It is obvious
that 8 maps into dom 7" since it maps into ¥¢5, and that Y12V*5%9B maps
into dom T'+. o
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