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Balancing Transformations for Infinite-Dimen-
sional Systems with Nuclear Hankel Opera-
tor

Timo Reis and Tilman Selig

Abstract. We consider balancing and model reduction by balanced trun-
cation for infinite-dimensional linear systems. A functional analytic ap-
proach to state space transformations leading to balanced realizations
is presented. These transformations can be further used to explicitly
construct truncated balanced realizations. The presented approach is
applicable to bounded well-posed linear systems with nuclear Hankel
operator and finite-dimensional input and output space. Controllability
and observability are not required.

Balanced truncation is one of the most popular methods for model re-
duction of asymptotically stable input-output systems of the form 9xptq “
Axptq ` Buptq, yptq “ Cxptq ` Duptq, where A, B, C and D are matrices of
suitable size. Besides preservation of asymptotical stability it also provides
an a priori error bound in the H8-norm in terms of the twice the sum of the
neglected Hankel singular values. The typical approach in the (numerical) de-
termination of balanced realizations works via a state-space transformation
that is constructed from the gramians P and Q of the system (see [1, Sec. 7.3]
for an overview).

The probably most commonly used balancing technique in the finite-
dimensional case has been introduced by Postlethwaite and Tombs in
[19]: Starting from factorizations P “ RRJ and Q “ SSJ of the Gramians,
a singular value decomposition SJR “ V ΣUJ is performed. The construction
Tl “ Σ´1{2V JSJ, Tr “ RUΣ´1{2 and Ab “ TlATr, Bb “ TlB, Cb “ CTr,
Db “ D then leads to a balanced realization. If the system is minimal (i.e.,
it is both controllable and observable), then Tl and Tr are both square and
TlTr is the identity, whence this approach is basically a change of coordinates
in the state space. In fact, this procedure can be also applied to non-minimal
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systems; in this case, the multiplication with Tl and Tr eliminates the non-
observable and non-controllable parts, while the input-output behavior (or,
equivalently, the transfer function) is preserved. The popularity of this bal-
ancing approach is mainly based on two facts: First, there are various nu-
merical methods for the determination of Gramians which directly provide
the factors S and R instead of the Gramians themselves (see [1, Chap. 6] for
an overview). Second, this balancing approach can be easily modified to di-
rectly construct the truncated balanced realization without determining the
parts of Ab, Bb, Cb which are truncated anyway; this can be done by simply
truncating the singular value decomposition of SJR.

The purpose of this article is to consider this balancing approach for
systems with infinite-dimensional state space. Balancing and truncation has
been considered in various articles [2,3,6–9,12–15]. The error bound in terms
of neglected Hankel singular values has been first shown in [6] for the class
of systems with square integrable impulse response, and has recently been
generalized to systems with nuclear Hankel operator [8,9]. All mentioned ap-
proaches to balancing and truncation of infinite-dimensional systems have in
common that they rely on a construction by means of the Schmidt pairs of
the Hankel operator [6, 8, 9] and not on transformations of the state space.
The latter approach has been considered in [18, Chap. 9], where the classi-
cal result that two minimal realizations of the same input-output behavior
are related by a state space transformation, the so-called pseudo-similarity
transformation. These can be unbounded and also may not have a bounded
inverse. The pseudo-similarity approach is powerful since it may be applied
to general bounded well-posed linear systems.

In this article we will make use of the theory of pseudo-similarity to show
that the approach in [19] to balancing and truncation of finite-dimensional
linear systems can be generalized to the infinite-dimensional case. These
transformations can be indeed unbounded; we will show that the operator
products are however defined in a certain sense. It will also turn out that
these transformations eliminate non-controllable and non-observable parts.

This article is organized as follows: Section 1 introduces the notation
and basic functional analytic requisites. In Section 2 we review and develop
some required results from infinite-dimensional linear systems theory. In par-
ticular, we introduce the class of systems which is considered in later parts.
In Section 3 we provide a result about the generators of the well-known
Kalman compression of a system, that could not be found in the existing
literature and is needed in later parts. We give a definition of balanced and
truncated systems in Section 4, where we furthermore show some properties
of the canonical shift realizations for our system class. All the main result
about balancing and normalizing transformations as well as truncation are
collected in Section 5. The remaining sections are devoted to the proofs of
these main theorems, except for the final Section 11, which shows the relation
to the concept of pseudo-similarity if the original system is minimal.
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1. Basic notation and functional analytic framework

The symbol BpX ;Y q stands for the space of bounded linear operators from
a Banach space X into the Banach space Y ; we set BpXq :“ BpX ;Xq. For
the evaluation of the bounded functional f P X 1 :“ BpX ;Cq at x P X

we write 〈f, x〉X1,X . To have sesquilinearity of the mapping X 1 ˆ X Ñ C,

pf, xq ÞÑ xf, xyX1,X , multiplication on the dual space X 1 is defined by

xλf, xyX1,X :“ λxf, xyX1,X .

We define the inner product 〈¨, ¨〉X in a Hilbert space X such that it is
also anti-linear in the first and linear in the second component. The Riesz
isomorphism x ÞÑ xx, ¨yX , which is often used to identify X with its own
dual X 1, becomes linear in this way. Furthermore, we use idX , πZ P BpXq
for the identity on X and the orthogonal projection onto the closed subspace
Z of a Hilbert space X , respectively. If a normed space Z is densely and
continuously embedded into the Banach space X , we write Z ãÑ X .

The domain of an operator T is denoted by domT , the restriction of T
to a subspace Z Ă domT by T |Z; the part of T : domT Ă X Ñ Z in Z is
defined to be the restriction of T to the domain tz P ZXdomT : Tz P Zu. For
the closure of an operator T we use the symbol T . The kernel and range of
a linear operator are denoted by kerT and ranT , respectively. The resolvent
set of T is ρpT q Ă C.

Definition 1.1 (Strongly continuous semigroup, generator). An operator-
valued function A : R` Ñ BpXq is called a strongly continuous semigroup, if
Ap0q “ idX , Apt ` sq “ Aptq ¨ Apsq for all t, s P R`, and

lim
tÑ0,tą0

Aptqx “ x for all x P X.

A strongly continuous semigroup is called bounded, if there exists some M P
R` such that }Aptq}BpXq ď M for all t P R`. The operator A : domA Ă
X Ñ X defined by

domA “
"
x P X

ˇ̌
ˇ̌lim
tÓ0

1
t
pAptqx ´ xq P X

*
, Ax “ lim

tÓ0

1
t
pAptqx ´ xq,

is called the generator of the semigroup Ap¨q.
The domains of A and its adjoint are known to be dense in X ; A is

a closed operator [22, Cor. 2.1.8 & Prop. 2.3.1 & Prop. 2.8.1]. For a strongly
continuous semigroup t ÞÑ Aptq and appropriate operators T and T` we
abbreviate the semigroup t ÞÑ TAptqT` by TAT`. A linear space Z is called
a core for the generator A of A, if it dense in domA with respect to the graph
norm of A. By [5, Proposition II.1.7] Z is already a core for A if it is dense
in domA with respect to the norm of X and A-invariant.

Lemma 1.1. [5, p. 60] Let X, Z be a Banach spaces with Z ãÑ X and A

be the generator of a semigroup A on X. Assume that Z is A invariant and
t ÞÑ Aptq|Z is strongly continuous with respect to the norm of Z, then the
generator of A|Z is the part of A in Z.
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Let V be a Banach space and X be a Hilbert space with V ãÑ X .
Then the dual space of V with respect to X is defined as the completion
of X with respect to the norm }x}V 1 :“ sup}v}V “1 |xx, vyX |. If V is reflexive
than this space is indeed isomorphic to the space of bounded functionals on
V [22, Proposition 2.9.2].

Lemma 1.2. [22, Proposition 2.9.3] Let V1, V2, X1 and X2 be Hilbert spaces
with V1 ãÑ X1 and V2 ãÑ X2. Assume A P BpV1;X2q satisfies A˚V2 Ă V1.
Then A has an extension A´1 : pV1q1 Ñ pV2q1 given by xA´1v

1
1, v2yV 1

2
,V2

:“
xv1

1, A
˚v2yV1,V2

for v1
1 P V 1

1 and v2 P V2.

We use the notation R` “ p0,8q, R´ :“ p´8, 0q and C` :“ tλ P
C : Repλq ą 0u. For p P r1,8s, some interval I P R and a Hilbert space
X , LppI;Xq denotes the Lebesgue space of measurable functions f : I Ñ X

with the property that
ş
I

}fptq}Xdt ă 8. A function f P LppR`, Xq is said

to have a Lebesgue point at 0, if the limit limtÓ0
1
t

şt
0
fpτqdτ exists. The space

L1pI,Xq is embedded into the dual space of L8pI,Xq via the identification
of h P L1pI,Xq with the functional x ÞÑ

ş
I
xhpτq, xpτqyXdτ . For k P N, the

Sobolev space W k,ppI;Xq consists of all functions whose first k distributional

derivatives belong to LppI;Xq. The space W k,p
0 pI;Xq consists of all functions

in W k,ppI;Xq that take the value zero on the boundary of I. W´k,ppI;Xq is

defined to be the dual space of W k,p
0 pI;Xq. By extension of a function defined

on J Ă I to zero on JzI, we regard LppJ ;Xq as a subspace of LppI;Xq. For
t P R, the left shift operators τ t P BpL2pR;Uqq, τ t` P BpL2pR`;Yqq and
τ t´ P BpL2pR´;Uqq are defined by

τ tupsq :“ ups ` tq, s P R, τ t`upsq :“ ups ` tq, s P R`,

τ t´upsq :“
#
ups ` tq, s P p´8,´tq,
0, s P p´t, 0q.

The Hardy spaceH8pU ,Yq consists of all holomorphic and bounded BpU ;Yq-
valued functions defined on C`; this space is provided with the norm

}G}H8 “ sup
sPC`

}Gpsq}H8pU ,Yq.

ℓp stands for the p-summable complex sequences.
A compact operator T P BpX ;Y q acting between two Hilbert spaces X

and Y is known to admit a singular value decomposition

Tx “
8ÿ

n“1

σn 〈x, un〉X vn

for some monotonically decreasing null sequence of pσnqnPN in R` and or-
thonormal systems punqnPN in X and pvnqnPN in Y [16, pp. 203]. The numbers
σn are called singular values and pun, vnq is called Schmidt pair associated
to σn. Note that, for the sake of a better notation, we allow consecutive σn to
be equal, i.e. we ignore the multiplicity of the singular values at this stage. If
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the sequence of singular values fulfills pσnqnPN P ℓ1, then T is called nuclear.
A singular value decomposition of T can also be written as

T “ VΣU˚

with operators Σ P Bpℓ2q, U P Bpℓ2;Xq, V P Bpℓ2;Y q defined by

ΣpxnqnPN “ pσnxnqnPN (1.1)

and

UpxnqnPN :“
8ÿ

n“0

xnun, V pxnqnPN :“
8ÿ

n“0

xnvn. (1.2)

Here, we have assumed that there are infinitely many singular values, or,
equivalently, ranT is infinite-dimensional. In case of k-dimensional range,
ℓ2 is replaced by Ck and obvious modifications have to be made. In any
case, there holds ranV “ ranT , ranU “ kerTK, U˚U “ V ˚V “ idℓ2 ,
V V ˚ “ π

ranT and UU˚ “ πkerTK and, moreover, the restrictions U˚|
ranT

and V ˚|kerTK are both unitary. It can be seen that Σ is injective, has dense
range, and is self-adjoint, whence

Σ “ V ˚TU “ U˚T ˚V.

Since Σ is a bounded self-adjoint operator, Σ
1

2 has a meaning: The spaces

Σ
1

2 ℓ2 :“ ranpΣ 1

2 q, Σℓ2 :“ ranpΣq

become Hilbert spaces with the respective scalar products

xx, yy
Σ

1

2

:“ xΣ´ 1

2x,Σ´ 1

2 yyℓ2 , xx, yyΣ :“ xΣ´1x,Σ´1yyℓ2 . (1.3)

2. The system class

We review some facts from infinite-dimensional linear systems theory which
are needed in later parts. We consider systems, which can formally be written
as

9xptq “ Axptq ` Buptq,
yptq “ Cxptq ` Duptq, (2.1)

where the input up¨q, state xp¨q and the output yp¨q respectively evolve in the
Hilbert spaces U , X and Y. In the sequel we step by step collect conditions
on the operators A, B, C and D involved in (2.1). The assumptions S1-S6
will mean that (2.1) constitutes a bounded well-posed linear system accord-
ing to [18] and thus, a meaningful solution to the equations (2.1) can be
defined. Hypotheses H1-H4 are assumptions on the Hankel operator, finite-
dimensionality of input and output spaces, and regularity of the system.

S1 A : dompAq Ă X Ñ X generates a strongly continuous semigroup A on
X .
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With the aid of A the rigged Hilbert spaces X1 and X´1 are constructed as
follows: Take any λ in the resolvent set ρpAq of A, then } ¨ }1 :“ }pλ´Aq ¨ }X
defines a norm on domA, which is equivalent to the graph norm } ¨ }2domA :“
} ¨ }2X ` }A ¨ }2X . In the other direction, the Hilbert space X´1 is defined by
the completion of X with respect to the norm } ¨ }´1 :“ }pλ ´ Aq´1 ¨ }X and
is isometrically isomorphic to the dual space of pdomA˚, } ¨ }domA˚ q with
respect to the pivot space X [22, Proposition 2.10.2]. The operator A can,
by using Lemma 1.2, be extended to an operator A|X : X Ă X´1 Ñ X´1

that generates the semigroup A|X´1
, which is the extension of A to X´1 [22,

Sec. 2.10].

S2 B P BpU ;X´1q.
The assumption that B maps to a larger space than X is motivated by
boundary control of partial differential equations [22, Chap. 10]. Although
we identify pdomA˚q1 with X´1 instead of domA˚ itself, the bidual space
pdomA˚q2 is again identified with domA˚, so that we have an adjoint oper-
ator B1 P BpdomA˚;Uq. Since B maps to X´1 and A extends to a strongly
continuous semigroup on X´1, the variation of constants formula

xpτq :“ Apτqx0 `
ż τ

0

Apτ ´ σq|X´1
Bupσqdσ

defines for each τ P r0, tq an element of X´1, given initial state x0 P X and
u P L2pr0, ts;Uq. The trajectory x is called solution of 9xptq “ Axptq ` Buptq,
xp0q “ x0.

The output operator C is allowed to map from a subspace of X , which
allows for example for boundary evaluations:

S3 C : domC Ñ Y is linear with X1 Ă domC Ă X and C|X1
P BpX1;Yq.

A further assumption on the domain of C will be made in R1. The operator
D is simply assumed to be bounded, i.e.,

S4 D P BpU ;Yq.
The next assumption will entail that state and output trajectories are well-
defined for any square integrable input.

S5 For all t P R`, u P L2pr0, ts;Uq, x0 P X , the solutions of 9xptq “ Axptq `
Buptq with xp0q “ x0 P X fulfill
a) xpτq P X for all τ P r0, ts;
b) xpτq P domC for almost all τ P r0, ts.

Assumption S5 a) means that the state trajectory, evolving by definition in
X´1, effectively takes values in the state space X ; S5 b) implies that the
expression Cxpτq (and thus ypτq) is meaningful for almost all τ P r0, ts.

We further assume that the system satisfies a certain stability condition:

S6 There exists some c ą 0 such that for all t P R`, u P L2pr0, ts;Uq,
x0 P X , the solutions of (2.1) with xp0q “ x0 P X fulfill

}y}L2pr0,ts;Yq ` }xptq}X ď c ¨
`
}u}L2pr0,ts;Uq ` }x0}X

˘
.
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The above condition on the system basically comprises four properties, name-
ly the global boundedness of the state-to-state map (that is, the boundedness
of the semigroup A), the global boundedness of the input-to-state map, the
global boundedness of the state-to-output map and the global boundedness of
the input-output map. This assumption gives rise to the following mappings
being well-defined and bounded:

B : L2pR´;Uq Ñ X, C : X Ñ L2pR`;Yq,

up¨q ÞÑ
ż 0

´8

Ap´τqBupτq, x ÞÑ CAp¨qx,

D : L2pR;Uq Ñ L2pR;Yq,

up¨q ÞÑ C

ż ¨

´8

Ap¨ ´ τqBupτqdτ ` Dup¨q.

(2.2)

The controllability map B is the operator that maps past input to state at
zero time; the observability map C applied to x P X consists of the output tra-
jectory yp¨q of the system with zero input initialized with x; the input-output
map D maps the input up¨q P L2pR;Uq of the system to the corresponding
output yp¨q. The latter one has the following two properties, namely D is

(i) time-invariant, i.e., τtD “ Dτt for all t P R, and
(ii) causal, i.e. πL2pR´;YqDπL2pR`;Uq “ 0,

The above defined mappings A, B, C and D form a well-posed linear systems
according to [18, Definition 2.2.1]. The definition is recapped below.

Definition 2.1 (Well-posed linear system, realization, generator). Let U , X
and Y be Hilbert spaces. A bounded well-posed linear system on pU , X,Yq
consists of a quadruple pA, B, C, Dq with the following properties:

(i) t ÞÑ Aptq P BpXq is a bounded semigroup on X ;
(ii) B P BpL2pR´;Uq;Xq satisfies AptqB “ Bτ t´ for all t ě 0;
(iii) C P BpX ;L2pR`;Yqq satisfies CAptq “ τ t`C for all t ě 0;
(iv) D P BpL2pR;Uq;L2pR;Yqq is continuous, causal, time-invariant and it

satisfies πL2pR`;YqD|L2pR´;Uq “ CB.

X is called the state space of the system, and since U and Y are fixed in
this paper, we just speak of a system on X . Any bounded well-posed system
pA,B,C,Dq satisfying these conditions is called a realization of its input-
output map D. Furthermore, if a well-posed linear system pA,B,C,Dq is
defined via (2.2) with a quadruple pA,B,C,Dq satisfying S1-S6, then we call
pA,B,C,Dq the generators of pA,B,C,Dq.

A bounded well-posed linear system is called observable, if kerC “ t0u,
controllable, if ranB is dense in X , and minimal, if it is both, controllable
and observable.

Remark 2.1 (Well-posed linear systems). Definition 2.1 actually covers a lar-
ger class than the one fulfill S1-S6. More precisely, the class of systems that
can be described by S1-S6 is called compatible, bounded L2-well posed systems
in [18].
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Definition 2.2 (Hankel operator, Gramians). For a bounded well-posed linear
system pA,B,C,Dq on pU , X,Yq,
(i) H “ CB P BpL2pR´;Uq;L2pR`;Yqq is called Hankel operator,
(ii) P “ BB˚ P BpXq is called controllability Gramian,
(iii) Q “ C˚C P BpXq is called observability Gramian.

While S1–S6 will be permanently presumed throughout this work, the
following assumptions will be optional.

H1 U and Y are finite-dimensional.

The following are compactness assumptions on the Hankel operator of varying
strength.

H2 The Hankel operator is nuclear.
H3 The Hankel operator has a special representation: Namely, there exists

some h P L1pR`;BpU ;Yqq, such that for all u P L2pR´;Uq holds

pHuqptq “
ż 0

´8

hpt ´ τqupτqdτ, for almost all t P R`. (2.3)

H4 The Hankel operator is compact.

Remark 2.2 (Systems with nuclear Hankel operator). a) The Hankel oper-
ator as used here is related to the Hankel operator used in [8] and [6]
via multiplication from the left with the reflection operator

Γ : L2pR´;Yq Ñ L2pR`;Yq yp¨q ÞÑ yp´ ¨q. (2.4)

b) Given H1, the implications H2ñH3ñH4 hold. The first implication has
been proven in [8, Corollary 5.1.18.], the second one in [6, Appendix 1,
p.895].

c) Further characterizations of nuclearity of Hankel operators can be found
in [4].

d) Compactness of the Hankel operator gives rise to the existence of a sin-
gular value decomposition of the Hankel operator, that is,

H “ rV ΣrU˚,

with diagonal operator Σ P Bpℓ2q as in (1.1). The elements of the strictly
decreasing sequence pσnqnPN are called Hankel singular values.

Definition 2.3 (Regular linear system). A well-posed system pA,B,C,Dq is
said to be regular, if there is an operator D P BpU ;Yq, such that for all v P U
holds

lim
tÑ0

1

t

ż t

0

Dpχr0,tsvqpτqdτ “ Dv, (2.5)

where χr0,ts : R Ñ R is the characteristic function on r0, ts. The operator D
with the above property is called feedthrough operator.

The final assumption is again concerned with the output operator C and
closely related to regularity.
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R1 The system pA,B,C,Dq generated by pA,B,C,Dq is regular and for all
x P domC holds

Cx “ CLx :“ lim
tÑ0

1

t

ż t

0

pCxqpτqdτ. (2.6)

Moreover, domC consists of all x P X for which the limit in (2.6) exists.

Definition 2.4. The operator CL from equation (2.6) with its natural domain
is called Lebesgue extension of CL|domA.

Given an arbitrary regular well-posed system pA,B,C,Dq, it is possible
to assign a unique generator pA,B,C,Dq that satisfies S1-S6 and R1 to it:
Obviously, A has to generate the semigroup A. Furthermore, according to [18,
Thm 4.2.1], B can be defined to be

Bu :“ pλ ´ A|XqBpeλuq, u P U (2.7)

where eλ P L2pR´;Cq is the function t ÞÑ eλt for some λ P ρpAq. C and D

are defined via (2.6) and (2.5), where the domain of C is by definition the
set on which which the limit in (2.6) exists.

Remark 2.3 (Regular linear systems, transfer functions). a) In [18], the map-
ping CL|domA is denoted by C and said to be the generator of C. In
contrast to this, we have defined the generator C to be the Lebesgue
extension of C|domA here.

b) There is some redundancy in R1: Assume that S1–S6 hold. Then by [21,
Theorem 5.8], R1 already implies regularity of the generated system and
also that D fulfills (2.5). On the other hand, if the system is regular, C
and D can always be redefined by (2.5) and (2.6) to make (2.6) hold.

c) Regularity is implied by S1–S6 and H2: Using

pDuqptq “
ż t

´8

hpt ´ τqupτqds ` Duptq, for almost all t P R,

and h P L1pR`;BpU ;Yqq, we see that (2.5) holds for all v P U . In
particular, if S1–S6 and H2 are fulfilled, R1 can be assumed without
loss of generality. Relation (c) in particular implies that the input-output
map D is uniquely determined by H and D.

d) It follows from [21, Theorem 5.8] that regularity implies pranpsI ´
Aq´1Bq Ă domC for all s P C`. This gives rise to the existence of
the transfer function G : C` Ñ BpU ;Yq, which is defined by

Gpsq “ CpsI ´ Aq´1B ` D.

There holds G P H8pU ;Yq [20] and

}G}H8 “ }D}BpL2pR;Uq,L2pR;Yqq.

We will very frequently make use of the following basic assertion on
similarity of well-posed linear systems, which can be found in [18, Example
2.3.7].
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Lemma 2.1. Given a well-posed linear system pA1,B1,C1,D1q on pU , X,Yq,
a further Hilbert space Z and a boundedly invertible operator T P BpX ;Zq.
Then A2 : R` Ñ BpZq, t ÞÑ TA1ptqT´1, B2 :“ TB1, C2 :“ C1T

´1 and
D2 :“ D1 constitute a well-posed linear system on pU , Z,Yq. If the system
is regular, the generators of this system are given by pA2, B2, C2, Dq with
domA2 “ T domA1, domC2 “ T domC1 and

A2 “ TA1T
´1, B2 “ T |pdomA˚

1
q1B1, C2 “ C1T

´1, D2 “ D1.

Here, T |pdomA˚
1

q1 is the unique extension of T to an operator from pdomA˚
1 q1

to pdomA˚
2 q1.

A classical result in finite-dimensional linear systems theory is that two
minimal systems with equal input-output map are similar. The concept of
pseudo-similarity generalizes this to well-posed linear systems.

Definition 2.5. Two well-posed linear systems pA1,B1,C1,Dq and (A2,B2,
C2,D2) on pU , X,Yq, respectively pU , Z,Yq are pseudo-similar, if D1 “ D2,
and there exists a closed, densely defined injective linear operator T : domT Ă
X Ñ ranT Ă Z with the following properties: ranB1 Ă domT , ranB2 Ă
ranT , domT is A1-invariant, ranT is A2-invariant and

A2ptqTx1 “ TA1ptqx1, @x1 P domT, t P R`,

B2u “ TB1u, @u P L2pR´;Uq,
C2Tx1 “ C1x1, @x1 P domT.

If T and T´1 are both bounded (unitary), then pA1,B1,C1,D1q and (A2, B2,
C2, D1) are called (unitarily) similar.

3. Kalman compression

The principle of restricting a system to its approximately controllable and ob-
servable subspaces is known for abstract linear systems [18, Corollary 9.1.10].
In addition to this, we need to know what the generators of such a restriction
are.

Theorem 3.1 (Kalman compression). Let pA,B,C,Dq be a regular, bounded
well-posed linear system on pU , X,Yq. With the definitions

M :“ πpkerCqK ranB “ ranpπpkerS˚qKRq
rA :“ πpkerCqKA|M , rB :“ πpkerCqKB rC :“ C|M ,

the quadruple prA, rB, rC,Dq is a regular and minimal, bounded well-posed linear

system on pU ,M,Yq. The generator rA of rA is given by

dom rA “ M X πpkerCqK domA, rAx “ πpkerCqKAz
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for z P domA such that x “ πpkerCqKz P dom rA. The domain of the adjoint

operator rA˚ is πM pdomA˚ X pkerCqKq. The generator rB is given by

x rBu, xypdom rA˚q1,dom rA˚ “ xBu, zypdomA˚q1,domA˚

for z P pkerCqK X domA˚ such that πMz “ x. And rCx “ Cx for all x P
dom rC “ domC X M .

We will divide the proof into two lemmas.

Lemma 3.2. Under the assumptions of Lemma 3.1 define Z :“ kerC. Then´
rA, rB, rC, D

¯
:“

`
πZKA|ZK , πZKB, C|ZK , D

˘

is a regular, bounded well-posed linear system on pU , ZK,Yq. Its generators

are p rA, rB, rC,Dq, where
rAz “ πZKAx for any x P domA with πZKx “ z, dom rA “ πZK domA,

rA˚z “ A˚z @z P dom rA˚ “ ZK X domA˚

x rBu, zypdom rA˚q1,dom rA˚ “ xBu, zypdomA˚q1,domA˚ @z P dom rA˚

rCz “ Cx, for any x P domC with πZKx “ z dom rC “ πZK domC.

Proof. The part about the system operators is shown in [18, Corollary 9.1.10].

Note that Z is an A-invariant, closed subspace. The generator rA of the quo-

tient semigroup rA can be found in [5, Section 2.2.4]. Since we are in a Hilbert

space setting, the adjoint semigroups A˚ and rA˚ are again strongly continu-
ous [18, Theorem 3.5.6] Note that the A-invariance of Z implies the invariance

of ZK under A˚ and therefore a quick calculation shows rA˚ “ A˚|ZK . Thus,

the generators rA˚ and A˚|ZK must coincide and the extension rA|ZK : ZK Ă
pdom rA˚q1 Ñ pdom rA˚q1 reads

x rA|ZKz, yypdom rA˚q1,dom rA˚ “ xz, A˚yyX @y P dom rA˚.

We use this to calculate rB via (2.7). Using that ZK is A˚-invariant we obtain

for all z P dom rA˚

x rBu, zypdom rA˚q1,dom rA˚ “ x rBeλu, pλ ´ rA˚qzyZK “ xπZKBeλu, λz ´ A˚zyX
“ xBeλu, λz ´ A˚zyX “ xpλ ´ A|XqBeλu, zyX
“ xBu, zypdomA˚q1,domA˚ .

Now we turn to rC. First assume that x P domC X ZK, then

1

t

ż t

0

prCxqpsqds “ 1

t

ż t

0

pCxqpsqds tÓ0ÝÑ Cx,

and in particular x P dom rC. Conversely, let x P dom rC. Then, x P ZK by
definition, and the equality

1

t

ż t

0

pCxqpsqds “ 1

t

ż t

0

prCxqpsqds tÓ0ÝÑ rCx,
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shows x P domC. ˝

Lemma 3.3. Under the assumptions of Lemma 3.1, define Z :“ ranB. Then
´
rA, rB, rC, D

¯
:“

`
A|Z , B, C|Z , D

˘

is a regular, bounded well-posed linear system on pU , Z,Yq. Its generators are
p rA, rB, rC,Dq, where
rAz “ Az, dom rA “ Z X domA,

rA˚z “ πZA
˚x for any x P domA˚ with πZx “ z, dom rA˚ “ πZ domA˚

x rBu, zypdom rA˚q1,dom rA˚ “ xBu, xypdomA˚q1,domA˚ for any x P domA˚ with

πZx “ z,

rCz “ Cx, dom rC “ Z X domC.

Proof. The part about the system operators is easy and well-known. Since

we are in a Hilbert space setting, the adjoint semigroups A˚ and rA˚ are

again strongly continuous [18, Theorem 3.5.6], and rA˚ generates the latter.

A short calculation shows that rA˚ “ πZA
˚|Z . So rA˚ can alternatively be

characterized as the quotient generator of the quotient semigroup, which has
by [5, Section 2.2.4] the asserted representation. Therefore, the extension
rA|Z : Z Ă pdom rA˚q1 Ñ pdom rA˚q1 is for all z P Z given by

x rA|Zz, yypdom rA˚q1,dom rA˚ “ xz, πZA
˚xyX @x P domA˚ with πZx “ y.

We use this to resolve for u P U the expression rBu “ pλ ´ rAqrBeλu: We take

an arbitrary z P dom rA˚ and some x P domA˚ with πZx “ z.

x rBu, zypdom rA˚q1,dom rA˚ “ x rBeλu, pλ ´ rA˚qzyZ “ xBeλu, λz ´ πZA
˚xyX

“ xBeλu, λx ´ A˚xyX “ xpλ ´ A|XqBeλu, xyX
“ xBu, xypdomA˚q1,domA˚ .

The part about rC is a direct consequence of the definition (2.6), including
the domain. ˝

Proof of Theorem 3.1. The theorem follows by applying first Lemma 3.2 and
then Lemma 3.3 with Z “ ranπpkerCqKB “ M . The only thing that remains
to be proven is that the projections πM and πpkerCqK coincide on ranB, or,
in other words

πMBu “ πpkerCqKBu @u P L2pR´;Uq

Indeed, from M “ ranpπpkerCqKBq Ă pkerCqK “ pkerCqK we deduce for
arbitrary u

Bu “ πMBu ` πMKBu “ πpkerCqKBu ` πkerCBu

ñ πMBu ´ πpkerCqKBu “ πkerCBu ´ πMKBu P M X MK “ t0u.
˝
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Remark 3.1 (Kalman compression). Theorem 3.1 still holds for the wider
class of (possibly unstable) Lp-well-posed linear systems.

4. Normalized, balanced and truncated realizations

We will now introduce balanced realizations of well-posed linear systems. As
in the finite-dimensional case, this involves both Gramians being equal to
some diagonal operator Σ.

Definition 4.1 (Normalized and balanced systems). A bounded well-posed
linear system pA,B,C,Dq on pU , X,Yq is called input normalized if P :“
BB˚ “ idX , and output normalized if Q :“ C˚C “ idX . The system is called
balanced if X “ ℓ2 and there exists some positive and strictly decreasing
sequence pσnqnPN such that the Gramians P and Q are both equal to the
diagonal operator Σ defined in (1.1). In other words

P “ BB˚ “ Q “ C˚C “ Σ.

Remark 4.1. a) The sequence pσnqnPN in Definition 4.1 consists indeed of
the Hankel singular values of the system.

b) Balanced realizations are minimal.
c) Our definition of a balanced system is stronger than the one in [18,

Sec. 5.5] for general well-posed linear systems. There, a system is al-
ready called balanced if both Gramians are equal. The latter property
is called parbalanced in [15], and does not require the Hankel operator to
possess a singular value decomposition. Our definition is motivated by
the original one for the finite-dimensional case [11], where Σ is assumed
to be a diagonal matrix with decreasing diagonal elements.

We give a definition of the well-known shift realizations. For our pur-
poses we will in particular need the realizations on the range of the Hankel
operator.

Lemma 4.1. Consider a bounded well-posed linear system pA,B,C,Dq on
pU , X,Yq.

(i) Let Z :“ pkerHqK Ă L2pR´;Uq. By the exactly controllable shift real-
ization of D on Z, we mean the system

`
πZτ´|Z , πZ , H|Z , D

˘
(4.1)
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which is bounded and well-posed with state space Z. If, in addition, H3
and R1 hold, the generators of this system are given by

A : domA Ă Z Ñ Z, domA “ πZW
1,2
0 pR´;Uq,

pAzqpξq “ d
dξ
xpξq, for any x P W

1,2
0 pR´;Uq with πZx “ z.

B : U Ñ Z´1, u ÞÑ uxδp0q, ¨y,

C : domC Ñ Y, domC “

$
’&
’%
x P L2pR´;Uq

ż 0

´8

hp¨ ´ τqxpτqdτ has

a Lebesgue point at 0.

,
/.
/-

,

Cx “ lim
tÓ0

1

t

ż t

0

ż 0

´8

hpξ ´ τqxpτqdτdξ.

(ii) Let Z :“ ranH Ă L2pR`;Yq. By the exactly observable shift realization
of D on Z, we mean the system

`
τ`|Z , H, idZ , D

˘
(4.2)

which is bounded and well-posed with state space Z. If, in addition, H3
and R1 hold, then (4.2) is generated by pA,B,C,Dq with D as in (2.5)
and

A : domA Ă Z Ñ Z, domA “ W 1,2pR`;Yq X Z,

pAxqpξq “ d
dξ
xpξq,

B : U Ñ Z´1, xBu, zy “
ż 8

0

hpξquxpξqdξ for any x P W
1,2
0 pR´;Uq

with πZx “ z,

C : domC Ñ Y, domC “ tx P Z : x has a Lebesgue point at 0u ,

Cx “ lim
tÑ0

1

t

ż t

0

xpτqdτ.

For the adjoint of the generator we have

A˚ : domA˚ Ă Z Ñ Z, domA˚ “ πZW
1,2
0 pR`;Yq,

pA˚zqpξq “ ´πZ
d
dξ
xpξq for any x P W

1,2
0 pR´;Uq with πZx “ z.

Proof. The well-posedness of both systems follows from the well-posedness of
the shift realizations on L2pR`;Yq, respectively L2pR´;Uq, described in [18,
Example 2.6.5] and our Lemmas 3.2 and 3.3. The semigroup generators
are a result of Lemma 3.3 applied to the generator of the shift realization
on L2pR´;Uq, respectively L2pR`;Yq, which can be found in [18, Example
3.2.3(ii)]. The operator A˚ is obtained in the same manner, since it is the
generator of the right shift, which is adjoint to the left shift. We only discuss
the generators for piiq: The verification of the operator C is straightforward,
so we only calculate B via (2.7): Let A|L2pR`;Yq be the distributional deriva-

tive on L2pR`;Yq and λ P C`. Then for all z P domA˚ we take an arbitrary
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x P W
1,2
0 pR`;Yq with πZx “ z and

xBu, yypdomA˚q1,domA˚ “ xpλ ´ Aq|L2pR`;YqHeλu, zypdomA˚q1,domA˚

“ xHeλu, pλ ´ A˚qzypdomA˚q1,domA˚

“ xHeλu, λxyL2pR`;Yq ` xHeλu, d
dξ
xyL2pR`;Yq

The last term on the right hand side is

A
Heλu,

d
dξ
x
E
L2pR`;Yq

“
ż 8

0

Bż 0

´8

hpξ ´ τqeλτu dτ, d
dξ
xpξq

F

Y

dξ

“
ż 8

0

Bż 0

´8

hpξ ´ τqeλτu dτ, d
dξ
xpξq

F

Y

dξ

“ ´
ż 8

0

Cż ξ

´8

hpτqeλpξ´τqu dτ, d
dξ
xpξq

G

Y

dξ.

Since the inner integral is differentiable with respect to ξ this becomes

“
ż 8

0

C
d
dξ

ż ξ

´8

hpτqeλpξ´τqu dτ, xpξq
G

Y

dξ

“
ż 8

0

C
hpξqu `

ż ξ

´8

hpτqλeλpξ´τqu dτ, xpξq
G

Y

dξ

“
ż 8

0

B
hpξqu ´ λ

ż 0

´8

hpξ ´ τqeλpτqu dτ, xpξq
F

Y

dξ.

Plugging this into the original equation yields the asserted expression for
Bu. ˝

Remark 4.2. The exactly controllable shift realization on pkerHqK is observ-
able and the exactly observable shift realization on ranH is controllable.

The following definition of a balanced truncation is taken from [8]. One
of our aims is to show that this system is indeed obtained from a given state
space-system by first balancing an then truncating it in an appropriate sense.
That is, the balanced truncation does deserve its name.

Definition 4.2. Let a system (2.1) fulfilling S1-S6, R1, H1 and H3 be given.
Let pσnqnPN be the sequence of singular values with corresponding Schmidt
pairs p rvj , rujq of the Hankel operator H. Choose r such that σr`1 ‰ σr.

(i) The r-th order truncated balanced system is defined to be

9xrptq “ Arxrptq ` Bruptq,
yrptq “ Crxrptq ` Duptq, (4.3)
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where the matrices

Ar “

»
—–
a11 ¨ ¨ ¨ a1r
...

...
ar1 ¨ ¨ ¨ arr

fi
ffifl P C

r,r, Br “

»
—–
b1
...
br

fi
ffifl P BpU ,Crq,

Cr “
“
c1 ¨ ¨ ¨ cr

‰
P BpCr,Yq

have the coefficients

aij “
?
σj?
σi

〈

rvi, d
dξ

rvj
〉

L8pR`;Yq,L1pR`;Yq
P C, (4.4a)

bi “ ?
σi 〈¨, ruip0q〉

U
P BpU ,Cq, (4.4b)

cj “ 1
?
σj

rvjp0q P Y. (4.4c)

(ii) The output-normalized truncation is defined analogously with

aij “
〈

rvi, d
dξ

rvj
〉

L8pR`;Yq,L1pR`;Yq
P C,

bi “ σj 〈¨, ruip0q〉
U

P BpU ,Cq,
cj “ rvjp0q P Y.

Remark 4.3. a) The well-definition of the above dual products and evalua-
tions is guaranteed by the fact that ruj P W 1,1pR´;Uq, rvj P W 1,1pR`;Yq
[8, Theorem 5.2.2]. Furthermore, in the case where the function h in
(2.3) additionally fulfills h P L2pR`,BpU ;Yqq, the Schmidt vectors ful-
fill ruj P W 1,2pR´;Uq, rvj P W 1,2pR`;Yq [8, Lemma 5.2.12]. In this case,
the entries of Ar are indeed inner products in L2.

b) In [8,9], only the output normalized truncation is used as reduced order
model. Note that the output normalized and the balanced truncation
model are related by a state space transformation with

?
σi. In partic-

ular, these two models have the same transfer function (and thus also
the same input-output mapping).

c) The Schmidt pairs of the Hankel operator are, even for finite-dimensional
systems, quite impossible to compute. Instead, one performs coordinate
transformations

Ab “ TAT` :“ pΣ´1{2V ˚S˚qApRUΣ´1{2q,
Bb “ TB :“ pΣ´1{2V ˚S˚qB,

Cb “ CT` :“ CpRUΣ´1{2q.
(4.6)

where, Σ, S, R, U and V can be determined from the Gramians of the
system (2.1), see [1, Sec. 7.3]. It is an aim of this article to consider such
transformations for infinite-dimensional systems of the class described
in Section 2.

d) The Gramians of the truncated balanced realization (4.3) are given by

Pr “ Qr “ Σr “ diagpσnqn“1,...,r,
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whence the Hankel singular values of the truncated balanced realization
(4.3) are given by σ1, . . . , σr. However, the Hankel operator of (4.3)
does in general not coincide with the truncation of a singular value
decomposition of the Hankel operator of the original system (2.1).

Theorem 4.2. [8, Thm 5.0.2] With the prerequisites and notation of Defini-
tion 4.2, there holds that (4.3) is a minimal, bounded well-posed linear sys-
tem on pU ,Cr ,Yq. Moreover, the transfer functions G,Gr : C` Ñ BpU ;Yq of
(4.3) and (2.1) fulfill

}G ´ Gr}H8 ď 2
8ÿ

tnąr|σn‰σk@kănu

σn. (4.7)

It follows from (d) that the error bound (4.7) can be used to estimate
the expression }y ´ yr}L2pR;Yq, where y and yr are the respective outputs of

(2.1) and (4.3) with same input u P L2pR;Uq.

5. Main results

Throughout the rest of the article we will work with the following setup: The
quadruple pA,B,C,Dq is a bounded well-posed linear system generated by
the operators pA,B,C,Dq which satisfy S1 through S6. Moreover, XR and
XS are Hilbert spaces, and R P BpXR, Xq, S P BpXS, Xq are operators such
that the controllability and observability Gramians satisfy

P “ BB
˚ “ RR˚ and Q “ C

˚
C “ SS˚. (5.1)

Of course, these factors might, for instance, be R “ B, S “ C˚, or R “ P 1{2,
S “ Q1{2. Note that the so-called ADI method [17] directly provides factors
R and S of the Gramians. The following results are about the construction
of balanced realizations on the basis of R and S. First we show that the
singular values of the operator S˚R are the Hankel singular values. There-
after, we construct balanced realizations and truncated balanced realization
by using a singular value decomposition of S˚R. We further show that we can
associate, in a certain sense, infinite matrices to the generators of a balanced
realization.

Theorem 5.1. Let a system (2.1) with properties S1–S6 be given. Further, let
XR, XS be Hilbert spaces and let R P BpXR;Xq, S P BpXS;Xq be operators
such that the Gramians of (2.1) satisfy (5.1). Then the following is true for
the Hankel operator H “ CB of (2.1):

a) There exist unitary operators

V : ranH Ă L2pR`;Yq Ñ ranS˚R Ă XS ,

U : pkerHqK Ă L2pR´;Uq Ñ pkerS˚RqK Ă XR,

such that

V˚HUxR “ S˚RxR for all xR P pkerS˚RqK. (5.2)
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b) S˚R P BpXR;XSq is compact, if, and only if, H is compact. In this case,
the singular values of S˚R are the Hankel singular values in Σ.

c) S˚R P BpXR;XSq is nuclear, if, and only if, H is nuclear.

The following theorem shows that the singular value decomposition of
S˚R can be utilized to construct balanced realizations. Thereafter, we con-
sider the generators of balanced realizations.

Theorem 5.2. Let a system (2.1) with properties S1–S6 and H4 be given. Let
R P BpXR;Xq and S P BpXS;Xq be as in (5.1) and, with the notation of
(1.1) and (1.2), let

S˚R “ V ΣU˚ (5.3)

be a singular value decomposition of the operator S˚R P BpXR;XSq. Then
the operators

T : X Ñ ℓ2, T ` : Σℓ2 Ă ℓ2 Ñ X,

x ÞÑ V ˚S˚x, x ÞÑ RUΣ´1x
(5.4)

are well-defined, and the following assertions hold true:

a) There exist a constant c ą 0 such that, for all x P Σℓ2, u P L2pR´;Uq
and t P R`, holds

}T AptqT `x}ℓ2 ď c }x}ℓ2 , }T Bu}ℓ2 ď c }u}L2pR´;Uq,

}CT `x}L2pR`;Yq ď c }x}ℓ2 .
b) With the unique continuous extensions

T AT ` : R` Ñ Bpℓ2q, t ÞÑ T AptqT `, and CT` P Bpℓ2;L2pR`;Yqq,
the quadruple

pAo,Bo,Co,Dq :“ pT AT `, T B,CT `,Dq (5.5)

is a minimal, output-normalized, bounded well-posed linear system on
ℓ2, which is unitarily similar to the exactly observable shift realization
of D on ranH. We call this the output normalized realization of D on
ℓ2.

If, in addition, H3 and R1 are satisfied, a representation of the gen-
erators can essentially be calculated via these transformations T and T`,
similarly to (4.6).

Theorem 5.3. Assume that in Theorem 5.2, the assumptions H3 and R1 hold
in addition. Then the following is true for the generators pAo, Bo, Co, Dq of
(5.5):

a) The space Z :“ T BW
1,2
0 pR´;Uq is a subset of Σℓ2 and a core for Ao.

Moreover, AT `Z Ă ranR and T`Z Ă domC;
b) For all z P Z holds

Aoz “ T rAπpkerS˚qKT `z, (5.6)

Co “ CT `z. (5.7)
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c) The adjoint operator pT |M q˚ of T |M is given by πMSV and maps

domA˚
o into dom rA. Thus, the operator T |M has a continuous extension

T´1 : pdom rAq1 Ñ pdomA˚
o q1 defined by

xT´1x
1, pynqypdomA˚

o q1,domA˚
o

“
@
x1, πMSV pynq

D
ℓ2
, (5.8)

for all x1 P pdom rA˚q1 and pynq P domA˚
o .

d) With the extension from c) holds

Ao|ℓ2x “ T´1
rA|MπpkerS˚qKT `z, @x P Σℓ2 (5.9)

Bo “ T´1
rB. (5.10)

Moreover, Ao and pAoq´1 are obtained by taking the closures of the respective
operators above and the set pT domCq X Σℓ2 contains a core of Ao.

Remark 5.1. In fact, the formulas in b) are valid on larger sets than Z.
Namely (5.6) holds on pT domAq X Σℓ2, and (5.7) on pT domCq X Σℓ2.

Theorem 5.4. Let a system (2.1) with properties S1–S6 and H4 be given. With
R P BpXR;Xq and S P BpXS;Xq as in (5.1) and the notation of (1.1), (1.2),
let (5.3) be a singular value decomposition of the operator S˚R P BpXR;XSq.
Then the mappings

T : ranR Ă X Ñ ℓ2, T` : Σ1{2ℓ2 Ă ℓ2 Ñ X,

x ÞÑ Σ´1{2V ˚S˚x, x ÞÑ RUΣ´1{2x
(5.11)

are well-defined, and the following assertions are true:

a) Aptq ranR Ă ranR for all t P R` and ranB “ ranR;
b) There exists a constant c ą 0 such that, for all x P Σ1{2ℓ2, u P L2pR´;Uq

and t P R`, holds

}TAptqT`x}ℓ2 ď c }x}ℓ2 , }TBu}ℓ2 ď c }u}L2pR´;Uq,

}CT`x}L2pR`;Yq ď c }x}ℓ2 .
c) With the unique continuous extensions

TAT` : R` Ñ Bpℓ2q, t ÞÑ TAptqT`, and CT` P Bpℓ2;L2pR`;Yqq,
the quadruple

pAb,Bb,Cb,Dq :“ pTAT`, TB,CT`,Dq (5.12)

forms a minimal and balanced, bounded well-posed linear system on
pU , ℓ2,Yq.

Theorem 5.5. Assume that in Theorem 5.4 the assumptions S1–S6, H3 and
R1 hold. Then the following is true for the generators pAb, Bb, Cb, Dbq of the
balanced realization (5.12):

a) The space Z :“ TBW
1,2
0 pR´;Uq is a subset of Σ1{2ℓ2 and a core for Ab.

Moreover, AT`Z Ă ranR and T`Z Ă domC;



20 Timo Reis and Tilman Selig

b) For all x P Z holds

Abx “ T rAπpkerS˚qKT`x,

Cbx “ CT`x.

c) There exists a space rZ Ă Σ1{2ℓ2 XdomA˚
b , which is a core for A˚

b , such
that the adjoint

pT |M q˚ : Σ1{2ℓ2 Ă ℓ2 Ñ X,

x ÞÑ πMSVΣ´1{2x

fulfills pT |M q˚ rZ Ă dom rA˚, with rA as in Lemma 3.1.

d) For all z P rZ, u P U holds

〈Bbu, x〉pdomA˚
b

q1,domA˚
b

“ xBu, pT |M q˚xypdomA˚q1,domA˚ . (5.13)

That is, Bbu is obtained by continuous extension of this functional to
domA˚

b .

Remark 5.2. Relation (5.13) is a generalization of the expression Bb “ TB,
in the sense of Lemma 1.2.

Now we present that, in a certain sense, the generators of balanced
realizations can be regarded as infinite matrices.

Theorem 5.6. Under the prerequisites of Theorem 5.5, let pAb, Bb, Cb, Dq be
the generators of the balanced realization (5.12). There exists a space Zb ãÑ ℓ2
such that the following holds true:

a) For all i P N the canonical unit vector ei “ pδi,1, δi,2, . . .q P ℓ2 is an
element of Zb;

b) Ab|ℓ2ei P Z 1
b for all i, ranBb Ă Z 1

b and Zb Ă domCb;
c) For the coefficients aij , bi, cj of the truncated balanced realization in

Definition 4.2 (i) holds

aij “ 〈Abej , ei〉Z1
b
,Zb

P C,

bip¨q “ 〈Bb¨, ei〉Z1
b
,Zb

“
@
u, pB1

bqLei
D
U

P BpU ;Cq,
cj “ Cbej P Y,

where pB1
bqL is the Lebesgue extension of B1

b.

An immediate consequence of this is that a truncated balanced sys-
tem can indeed be obtained by truncating the generators pAb, Bb, Cb, Dbq of
a balanced system.

Theorem 5.7. Under the prerequisites of Theorem 5.3, an analogous state-
ment to Theorem 5.6 holds, when aij , bi, cj are the coefficients of the output
normalized truncation in Definition 4.2 (ii) and pAb, Bb, Cb, Dq are replaced
with the generators pAo, Bo, Co, Dq of the output normalized realization from
Theorem 5.3.
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Remark 5.3. a) Theorem 5.6 and 5.7 also hold when h P L2pR`;BpU ,Yq.
The corresponding spaces Zb, respectively Zo, in b) of these theorems
just have to be adapted, cf. Remark 9.1. In fact, in this case it is possible
to choose Zb “ Σ1{2ℓ2, Z

1
b “ Σ´1{2ℓ2 with x¨, ¨yZ1

b
,Zb

:“ xΣ1{2¨,Σ´1{2¨yℓ2
in Theorem 5.6 and Zo “ Z 1

o “ ℓ2 in Theorem 5.7.
b) For calculating the balanced truncation, it is somewhat easier to deter-

mine the normalized truncation first and then the balanced one via the
finite-dimensional state space transformation mentioned in Remark 4.1
b). Theorem 5.6 shows that this results in the same reduced model as
truncating the balanced realization on ℓ2 would.

Theorem 5.8. Under the prerequisites of Theorem 5.5, let

S˚R “
8ÿ

n“1

σn 〈x, un〉X vn,

be a singular value decomposition of S˚R. Then there exists a space Z ãÑ X

such that the following holds true:

a) ranB Ă Z 1 and Z Ă domC.
b) Svi P Z and A|XRui P Z 1 for all i P N.
c) For the coefficients aij, bi, cj of the balanced and truncated realization

from Definition 4.2 holds:

aij “ 1
?
σiσj

〈A|XRuj , Svi〉Z1,Z
P C,

bip¨q “ 1?
σi

〈B¨, Svi〉Z1,Z “
@

¨, pB1qLSvi
D
U

P BpU ,Cq

cj “ 1?
σi

CRuj P Y,

where pB1qL is the Lebesgue extension of B1.

The forthcoming sections are devoted to the proofs of the main results.

6. Proof of Theorem 5.1

With the assumptions and notation of Theorem 5.1, there holds

ranR “ ranB, ranC˚ “ ranS, (6.1a)

kerB˚ “ kerR˚, kerS˚ “ kerC. (6.1b)

The equations in (6.1a) are consequences of the fact that the operator square
roots fulfill

ranR “ ran
?
RR˚ “ ran

?
BB˚ “ ranB and

ranC˚ “ ran
?
C˚C “ ran

?
SS˚ “ ranS,
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see e.g. [10, pp. 334-336]. The remaining assertions (6.1b) follow by regarding
the orthogonal complements in (6.1a). With this, the restricted operators

R : pkerRqK Ă XR Ñ ranB, S : pkerSqK Ă XS Ñ pkerCqK,

B : pkerBqK Ă L2pR´;Uq Ñ ranB, C : pkerCqK Ă X Ñ ranC.

are injective and have dense range. We denote their inverses (and adjoints
of their inverses) by R´1, B´1, S´1 and C´1 (R´˚, B´˚, S´˚ and C´˚ ).
Note that for any injective, closed and densely defined operator T with dense
range holds pdomT´1q˚ “ ranT ˚ and hence T´˚ :“ pT´1q˚ “ pT ˚q´1, see
e.g. [18, Lemma 3.5.2].

Lemma 6.1. The mappings

V : ranS˚R Ñ ranH, V :“ CS´˚|
ranS˚R

, (6.2)

where CS´˚ is the continuous extension of CS´˚|ranS˚R with respect to the
norms of XS and L2pR`;Yq, and

U : pkerS˚RqK Ñ pkerHqK, U :“ B
´1R|pkerS˚RqK . (6.3)

are unitary with inverses V˚ “ S˚C´1 and U˚ “ R´1B respectively.

Proof. From the fact that ranR “ ranB and

}CS´˚x}2L2pR`;Yq “ xS´˚x,C˚CS´˚xyX “ xS´˚x, SxyX “ }x}2XS

for all x P ranS˚, we deduce that CS´˚ : ranS˚R Ñ ranH is an isometry
with dense range and inverse S˚C´1. Therefore, it can be extended to a
unitary operator U between the closures of these two spaces. Analogously, we
can deduce that the concatenation R˚B´˚ : ranB˚C˚ Ñ ranR˚S satisfies

}R˚B´˚x}XR
“ }x}L2pR´;Uq @x P ranB˚,

and has a unitary extension to the closures U˚ : pkerHqK Ñ pkerS˚RqK.
Furthermore, because of (5.1), the identity R˚B´˚x “ R´1Bx holds for all
x P pkerHqK. But the operator R´1B|pkerHqK is defined on the complete space

pkerHqK and it is closed because R´1 is closed. By the closed graph theorem
it is continuous and hence, it must be equal to the unique unitary extension of
R˚B´˚. This means that both R´1B|pkerHqK and its inverse B´1R|pkerS˚RqK

are bounded with norm 1. ˝

Proof of Theorem 5.1. The equation

H|pkerHqK “ CπpkerS˚qKB|pkerHqK

“ CS´˚S˚RR´1B|pkerHqK

“ VpS˚Rq|pkerS˚RqKU
˚|pkerHqK

shows (5.2). Hence the compactness claim holds, because U andV are unitary.
In particular, we can find a singular value decomposition of the form (5.3) if
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the Hankel operator is compact. Now the equalities

pS˚RqpS˚Rq˚|
ranS˚R

“ V
˚
HH

˚
V|

ranS˚R
and

pS˚Rq˚pS˚Rq|pkerS˚RqK “ U˚H˚HU|pkerS˚RqK

show that vi is an eigenvector of S˚RpS˚Rq˚ to the eigenvalue σ2
i ą 0 if

and only if rvi :“ Vv is an eigenvector of HH˚ corresponding to the same
eigenvalue and, analogously, ui is an eigenvector of pS˚Rq˚S˚R if and only if
rui :“ Uui is an eigenvector of H˚H. Hence it follows that the singular values
of S˚R and H are equal. In particular,

Hu “
8ÿ

i“i

rviσixu, ruiy @u P L2pR´;Uq

is a singular value decomposition of H. ˝

7. Proof of Theorem 5.2 and 5.3

Lemma 7.1. Define M :“ πpkerS˚qK ranR “ πpkerC˚qK ranB as in Theorem
3.1. The mapping T |M : M Ñ Σℓ2 is an isomorphism with inverse given by

πpkerS˚qKT `pxnq “ S´˚V pxnq @pxnq P Σℓ2 (7.1)

Proof. Using equation (5.3) and V V ˚ “ π
ranS˚R

, it is not hard to see that
T |M “ V ˚S˚ is an isomorphism between the claimed spaces with inverse
S´˚V . The important part here is that the correct spaces were chosen. The
singular value decomposition also shows immediately that V ˚S˚ is the left
inverse of πpkerS˚qKRUΣ´1 “ πpkerS˚qKT on Σℓ2. To prove that it is also a
right inverse we calculate for given y “ πpkerS˚qKRx with x P XR

πpkerS˚qKRUΣ´1V ˚S˚y “ πpkerS˚qKRUΣ´1V ˚S˚Rx “ πpkerS˚qKRUU˚x

“ πpkerS˚qKRπpkerS˚RqKx “ πpkerS˚qKRx “ y.

˝

Proof of Theorem 5.2. We are going to show that, with V from Lemma 6.1,
the mapping

rV : ℓ2 Ñ ranH, pxnq ÞÑ VV pxnq “
8ÿ

n“1

xnVvn,

which is unitary with inverse rV ˚ “ V ˚V˚, transforms the shift realization
(4.2) into the system (5.5). Well-posedness of the latter follows immediately
from Lemma 2.1. First note that, due to kerC “ kerS˚ and Definition 2.1
(iii), we have the following expression for all x P ranS˚R

S˚AptqS´˚x “ S˚πpkerCqKAptqπpkerCqKS´˚x “ S˚C´1CAptqC´1CS´˚x “
“ V˚CAptqC´1Vx “ V˚τ t`|

ranH
Vx.
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Furthermore, for all x P ranH we have V˚x P ranS˚R and hence V ˚V˚x P
Σℓ2. By Lemma 7.1 we can substitute

VV T AptqT `V ˚V˚x “ VV V ˚S˚AptqπpkerS˚qKRUΣ´1V ˚V˚x

“ VV V ˚S˚AptqS´˚V V ˚V˚x “
“ Vπ

ran S˚R
S˚AptqS´˚π

ranS˚R
V˚x

“ Vπ
ran S˚R

V˚τ t`Vπ
ran S˚R

V˚x “ τ t`x,

and by continuous extension it follows that this formula holds on the closure
of ranH. Furthermore, one gets

CT `V ˚V˚x “ CRUΣ´1V ˚V˚x “ CπpkerS˚qKRUΣ´1V ˚V˚x

“ CS´˚V V ˚V˚x “ Vπ
ranS˚R

V˚x “ x.

Again, continuous extension yields that CRUΣ´1 is similar to id
ranH

via the
unitary transformation V ˚V˚. Finally,

VV T B “ VV V ˚S˚B “ CS´˚S˚B “ CS´˚π
ranS˚R

S˚B “ CB “ H,

completes the proof of the asserted similarity and well-posedness and applying
Lemma 2.1 proves the Theorem. ˝

Corollary 7.2. If in Theorem 5.2 the assumptions H3 and R1 hold as well,
then the generators of (5.5) are

domAo “
#

pxnq P ℓ2 :
8ÿ

n“1

xnrvn P W 1,2pR`;Yq
+
, (7.2a)

Aopxnq “ ĂV ˚ d
dξ
rV pxnq, (7.2b)

domA˚
o “

#
pxnq P ℓ2 :

8ÿ

n“1

xnrvn P π
ranH

W
1,2
0 pR`;Yq

+
, (7.3a)

A˚
o pxnq “ ´rV ˚ d

dξ
y (7.3b)

for any y P W
1,2
0 pR`;Yq with π

ranH
y “ rV pxnq.

For each u P U , the image Bou is an element of pdomA˚
o q1 acting as

follows:

pBouqpxnq “ xhu, yyL1pR`;Yq,L8pR`;Yq , (7.4)

for any y P W
1,2
0 pR`;Yq with π

ranH
y “ rV pxnq.

Furthermore holds

domCo “
#

pxnq P ℓ2 :
8ÿ

n“1

xnrvn has a Lebesgue point at zero.

+
,

Copxnq “ lim
tÑ0

1

t

ż t

0

8ÿ

n“1

xnrvnpτqdτ. (7.5)

All the series here are limits in the L2pR`;Yq norm.
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Proof. Since we have shown in the proof of Theorem 5.2 that (5.5) is unitary

simliar to (4.2) via rV , the generators of (5.5) are also obtained via unitary
transformation of the operators in Lemma 4.1 (ii). Note that

domAo “
!

pxnq P ℓ2 rV pxnq P pranH X W 1,2pR`;Yq
)
,

which becomes (7.2a) because rV pxnq is always in ranH. ˝

The space Z introduced in Theorem 5.3 a) will play an important role
in the sequel, because it is a core for Ao, as we show in the next proposition.

Proposition 7.3. The space Z :“ T BW
1,2
0 pR´;Uq is a core for Ao and

Aoz “ T rAπpkerS˚qKT `z @z P Z, (7.6)

where rA is as in Lemma 3.1. Consequently, the graph of Ao is the closure of
the graph of the operator (7.6) in ℓ2 ˆ ℓ2 and the graph of Ao|ℓ2 is the closure
of the graph of the operator (7.6) in dompA˚

o q1 ˆ dompA˚
o q1.

Proof. Lemma 4.3.5(i) of [18] states that B maps the set W
1,2
0 pR´;Uq into

domA, so the relation

Z “ V ˚S˚BW
1,2
0 pR´;Uq Ă V ˚S˚pdomA X ranRq Ă Σℓ2

holds. This means that for arbitrary z P Z, we may write z “ V ˚S˚y with
y P domA X ranR. Then S˚y P ranS˚R, and with V V ˚ being the identity
on this set, one gets

πpkerCqKy “ S´˚S˚y “ S´˚V V ˚S˚y “ S´˚V z “ πpkerS˚qKRUΣ´1z

with (7.1). Recall that, according to Lemma 3.1, πpkerCqKA|M is a semigroup

whose generator rA has the domain M X πpkerCqK domA. Since πpkerCqKy P
M X πpkerCqK domA is in this domain, the calculation

lim
tÓ0

1

t

`
T AptqT `z ´ z

˘

“ lim
tÓ0

1

t

`
V ˚S˚fAptqπpkerS˚qKRUΣ´1z ´ z

˘

“ lim
tÓ0

1

t

`
V ˚S˚AptqS´˚V pV ˚S˚qy ´ pV ˚S˚qy

˘

“ lim
tÓ0

1

t
V ˚

`
S˚πpkerS˚qKAptqπpkerS˚qKy ´ S˚πpkerS˚qKy

˘

“ V ˚S˚ lim
tÓ0

1

t

`
πpkerS˚qKAptqπpkerS˚qKy ´ πpkerS˚qKy

˘

“ V ˚S˚πpkerS˚qK rAπpkerS˚qKy

“ V ˚S˚ rAπpkerS˚qKRUΣ´1z

shows Aoz “ V ˚S˚ rAS´˚V z and V ˚S˚pdomA X ranRq Ă domAo. By [5,
Proposition II.1.7], Z is already a core for Ao if it is Ao invariant and dense
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in domAo. It is indeed invariant: We can write any z P Z as z “ V ˚S˚Bu

with u P W
1,2
0 pR´;Uq and the equality

Aoz “ V ˚S˚AptqS´˚V z “ V ˚S˚AptqS´˚V pV ˚S˚Buq
“ V ˚S˚AptqπpkerS˚qKBu “ V ˚S˚AptqBu “ V ˚S˚Bτ t´u

holds. Now the left shift of u is obviously again in W
1,2
0 pR´;Uq and the over-

all expression therefore in Z. Regarding density, we have that the continuous
mapping V ˚S˚B maps the dense subset W

1,2
0 pR´;Uq of L2pR´;Uq into a

dense subset of its image ranV ˚S˚B, which is Σℓ2. Since this is dense in
ℓ2, we conclude that Z is dense in ℓ2 and in particular in domAo. For the
assertion concerning the extended generator observe that any core of a semi-
group generator is also a core for the extended generator, since the density
with respect to the stronger graph norm implies density with respect to the
weaker graph norm. ˝

Remark 7.1. If kerC “ t0u, i.e. the original system is observable, the pro-

jection πpkerS˚qK is just the identity and rA may be replaced by A. In the
non-observable case, one might be tempted to omit the projection in the
expression V ˚S˚AπpkerS˚qKRUΣ´1 as well, since A maps domA X kerS˚

into kerS˚ anyway. However, this is not allowed because for arbitrary z P Z,
RUΣ´1z will in general not be in the domain of A, even though the projected
vector πpkerS˚qKRUΣ´1z lies in πpkerS˚qK domA.

Proof of Theorem 5.3. We start with the poof of c). A simple calculation
shows that the adjoint pT |M q˚ of T |M : M Ñ ℓ2 equals πMSV . In order to

show that pT |M q˚ maps domA˚
o into dom rA˚, we prove the following three

auxiliary statements:

(i) For all pxnq P ℓ2 holds SV pxnq “ C˚ rV pxnq: Due to continuity, the
equality

Sx “ SS˚S´˚x “ C˚CS´˚x “ C˚Vx,

which is true for all x P ranS˚R, must hold on ranS˚R “ ranV as well,

and the assertion follows using rV “ VV .
(ii) The operator C˚ maps W 1,2

0 pR`;Yq into domA˚: This follows because
C˚Γ is the input operator of the adjoint system [18, Section 6.2] when
Γ denotes the reflection operator from (2.4), and therefore, C˚Γ maps

W
1,2
0 pR´;Yq into domA˚, according to Lemma 4.3.5(i) of [18], which

was already used in the proof of Proposition 7.3.
(iii) The last assertion is that πMC˚ “ πMC˚π

ranH
: If we take an arbitrary

y P L2pR`;Yq, then pranHqK “ kerB˚C˚ shows that

ry :“ C˚π
ranHKy P ranC˚ X kerB˚ Ă pkerCqK X pranBqK.

Hence, taking the scalar product with any x P M , which must be of the
form x “ πpkerCqKb for some b P ranB yields

xx, ryyX “ xb ´ πkerCb, ryyX “ xb, ryyX ´ xπkerCb, ryyX “ 0
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It follows ry P MK, and therefore

πMC˚y “ πMC˚π
ranH

y ` πMC˚πpranHqKy

“ πMC˚π
ranH

y ` πMry
“ πMC˚π

ranH
y,

which is what we wanted to show.

In order to prove our original claim, we pick pxnq P domA˚
o . Because rV

was the similarity transformation between (5.5) and the output-normalized

shift realization, we have rV domA˚
o “ π

ranCB
W

1,2
0 pR`;Yq, see (7.3a). Hence,

rV pxnq “ π
ranCB

y for some y P W
1,2
0 pR`;Yq, and with (i) and (iii) we get

pT |M q˚pxnq “ πMSV pxnq “ πMC
˚ rV pxnq “ πMC

˚πranCB
y “ πMC

˚y.

Now, because of (ii), the latter is an element of πM pdomA˚ XpkerCqKq, which
was shown to be dom rA˚ in Lemma 3.1. Finally, Lemma 1.2 implies that (5.8)
is an extension of T |M as claimed in c).

Observe that, on the set Z, the operators Ao|ℓ2 and T´1
rAπpkerS˚qKT `

reduce to their unextended versions and therefore coincide according Proposi-
tion 7.3. Since Z is a core of the closed operator Ao|ℓ2 , whose domain contains

Σℓ2, this shows that T´1
rAπpkerS˚qKT ` is closable and its closure is Ao|ℓ2 . In

particular, both operators coincide on the larger set Σℓ2, hence the assertions
(5.6) and (5.9) are true. We make use of this fact to determine the control

operator via (2.7). For any u P U and λ in ρpAoq X ρp rAq it can be calculated
by

Bou “ pλ ´ Ao|ℓ2qBoeλu “
´
λ ´ T´1

rAπpkerS˚qKT `
¯
T πpkerS˚qKBeλu

“ T´1pλ ´ rAqπpkerS˚qKBeλu “ T´1pλ ´ rAqrBeλu “ T´1
rBu.

Here, we have used that T mapsM into Σℓ2 and πpkerS˚qKT `T is the identity
on M . Now for the output operator Co: We take an element z P Σℓ2 such that
z “ T x for some x P domC. Then in general T `z ‰ x, and the first thing we
have to check is that T `z is in the domain of C. An immediate consequence
of the definition of domC is that kerS˚ “ kerC Ă pdomC X kerCq. Since
domC is a linear space, we deduce

πpkerCqKT `z “ πpkerCqKx “ x ´ πkerCx P domC,

and with this we get indeed

T `z “ πpkerCqKT `z ` πkerCT
`z P domC.

Hence,

Coz “ lim
tÑ0

1

t

ż t

0

pCS´˚V zqpτqdτ “ CS´˚V z “ CπkerCT
`z “ CT `z

and T domC X Σℓ2 Ă domCo. ˝
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8. Proof of Theorem 5.4 and 5.5

The idea behind the proof of Theorem 5.4 is to obtain the balanced sys-
tem by interpolating between the output normalized realization (5.5) of D
on pℓ2, x¨, ¨yℓ2q and its restriction to pΣℓ2, x¨, ¨yΣq. This restriction is an input
normalized realization of D, and it is well-posed because it is unitary equiva-
lent to the input normalized system (4.1). So an important ingredient for the
proof is the following auxiliary result about well-posedness of an interpolated
system.

Lemma 8.1. Let X, X and X be Hilbert spaces with X ãÑ X ãÑ X. Assume
that there exists a positive operator Σ P BpXq such that X “ ranΣ1{2, X “
ranΣ and

xx, yyX “ xΣ1{2x,Σ1{2yyX “ xΣx,ΣyyX @x, y P X.

Let pA,B,C,Dq and pA,B,C,Dq be two bounded well-posed linear systems on
the Hilbert spaces pU , X,Yq and pU , X,Yq respectively, with the same input
map B, the same input/output map D and A “ A|X , C “ C|X . Then X is

invariant under A and pA|X ,B,C|X ,Dq is a bounded well-posed linear system
on pU , X,Yq. Moreover the domain of the generator A of A is the part of A
in X and the domain of A is a core for A.

Proof. The claim about well-posedness is a special case of Lemma 9.5.7 in
[18]. That the generator of a semigroup restricted to an invariant subspace
is given by the part of the generator in the subspace, is Lemma 1.1. To see
that domA is a core, it suffices by [5, Proposition II.1.7] to see that it is
invariant under A and a dense subset of domA. The latter is true because of
X ãÑ X . ˝

Remark 8.1. As an immediate consequence of Lemma 7.1 and the fact that
Σ1{2 : ℓ2 Ñ Σ1{2ℓ2 is an isomorphism the mapping

T |M : M Ă X Ñ Σ1{2ℓ2, T :“ Σ´1{2V ˚S˚.

is an isomorphism with inverse

T` : Σ1{2ℓ2 Ă ℓ2 Ñ M, πpkerS˚qKT` :“ πpkerS˚qKRUΣ´1{2.

Lemma 8.2. Under the conditions of Theorem 5.4 the following holds: The
output normalized system (5.5), restricted to Σℓ2,

pA,B,C,Dq :“ pAo|Σℓ2 ,Bo,Co|Σℓ2 ,Dq (8.1)

defines an input-normalized, bounded well-posed linear system on pΣℓ2, }¨}Σq.
The generator A of A satisfies

domA “ Z “ tx P domAo X Σℓ2 : Aox P Σℓ2u, (8.2)

A : domA Ă Σℓ2 Ñ Σℓ2, Ax “ Aox @x P domA,

with Z as in Theorem 5.3 a).
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Proof. Similar to the proof of Theorem 5.2, we claim that

UUΣ´1 : Σℓ2 Ñ pkerHqK

with inverse ΣU˚U˚ is a unitary similarity transformation between the system
(8.1) and the input normalized shift realization (4.1) on pkerHqK. We know
that U P Bpℓ2; pkerS˚RqKq and U P BppkerS˚RqKq; pkerHqKq are unitary
(Lemma 6.1). Due to the scalar product (1.3) used on Σℓ2, the operator
Σ P Bpℓ2; Σℓ2q is unitary as well. So it only remains to show that (8.1) is
related to (4.1) via these transformations. In Lemma 6.1 we proved that
R´1B : kerBK Ñ kerRK maps pkerHqK into pkerS˚RqK and called the
restriction U˚. Using the readily verified fact that R´1B also maps kerH
into kerS˚R, we therefore have

πpkerS˚RqK pR´1
Bq “ πpkerS˚RqK pR´1

BqπpkerHqK “ U
˚πpkerHqK ,

and consequently for all x P ranB

V ˚S˚x “ V ˚S˚RR´1BB´1x “ V ˚S˚RπpkerS˚RqK pR´1BqB´1x

“ ΣU˚U˚πpkerCBqKB´1x.
(8.3)

Using this and the A-invariance of ranR “ ranB, we have

Aoptq|Σℓ2 “ V ˚S˚
AptqRUΣ´1

“ ΣU˚
U

˚πpkerCBqKB
´1

AptqBUUΣ´1

“ ΣU˚
U

˚πpkerCBqKτ t´|pkerCBqKUUΣ´1

This shows that πpkerS˚RqKR´1AR is unitarily similar to the strongly contin-

uous semigroup of the shift realization on pkerCBqK. For the input operators,
equation (8.3) immediately gives the asserted formula

V ˚S˚
B “ ΣU˚

U
˚πpkerCBqKπpkerBqK “ ΣU˚

U
˚πpkerCBqK ,

and finally, the output operator C equals

CRUΣ´1 “ CBpB´1RqUΣ´1 “ H|pkerHqKUUΣ´1,

which is the output operator the exactly controllable shift realization. So we
have shown that system (8.1) is but a similarity transformation of the system
(4.1). Therefore, well-posedness follows from Lemma 2.1 and moreover, the
unitary transformations keep the system input normalized.

The domain of A is given by the transformations ΣU˚U˚ applied to the
domain of the exactly controllable shift realization. With (8.3) this becomes

domA “ ΣU˚U˚πpkerHqKW
1,2
0 pR´;Uq “ V ˚S˚

BW
1,2
0 pR´,Uq “ Z.

On the other hand, we know that A is the restriction of Ao and strongly con-
tinuous with respect to }¨}Σℓ2

. Hence, Lemma 1.1 tells us that the generator
A is must be the part of Ao in Σℓ2, which is by definition the first term in
(8.2). ˝



30 Timo Reis and Tilman Selig

Remark 8.2. a) We point out that one of the essential properties of the

space Z is that x P BW
1,2
0 pR´;Uq does not only imply x P domA X

ranB, but also Ax P ranB. This explains the fact that V ˚S˚Ax is
again an element of Σℓ2 and thus the relation (8.2).

b) A further similarity transformation with Σ yields an input normalized
system on the state space ℓ2. This gives a completely analogous result
to Theorem 5.2 with output normalization replaced by input normaliza-
tion. For the upcoming interpolation step however, the present system
with state space Σℓ2 is more convenient.

Proof of Theorem 5.4. We apply the interpolation Lemma 8.1 to the output
normalized system (5.5) on ℓ2 and its restriction (8.1) to Σℓ2. This guarantees
the well-posedness of the system

`pA, pB, pC, D
˘
:“

`
Ao|Σ1{2ℓ2

, Bo, Co|Σ1{2ℓ2
, D

˘
(8.4)

on the interpolated state space Σ1{2ℓ2. In particular, Σ1{2 is invariant under
Ao and Ao|Σ1{2ℓ2

is strongly continuous with respect to }¨}Σ1{2ℓ2
.

In order to determine the Gramians of this system, we calculate the
adjoints with respect to x¨, ¨yΣ1{2ℓ2 . For all y P L2pR`;Yq and u P L2pR´;Uq
we have

xCox, yyL2pR`;Yq “ xx,C˚
oyyℓ2

“ xΣ´1{2x,Σ´1{2ΣC˚
oyyℓ2

“ xx,ΣC˚
oyyΣ1{2ℓ2

@x P Σ1{2ℓ2 and

xBou, xyΣ1{2ℓ2 “ xΣ´1{2
Bou,Σ

´1{2xyℓ2
“ xu,B˚

oΣ
´1xyL2pR´;Uq @x P Σℓ2.

Thus, the observability and controllability Gramians with respect to the
scalar product x¨, ¨yΣ1{2ℓ2 are given by

pC˚pC “ ΣC˚
oCo “ Σ idΣ1{2 and

pBpB˚x “ BoB
˚
oΣ

´1x “ V ˚S˚BB˚SVΣ´1x “ V ˚S˚RR˚SVΣ´1x

“ V ˚S˚RπpkerS˚RqKR˚SV Σ´1x “ V ˚S˚RUU˚R˚SV Σ´1x

“ Σx @x P Σℓ2,

where the last equation can be extended to the whole space Σ1{2ℓ2, because

both of the operators pBpB˚ and Σ are in BpΣ1{2ℓ2q.
The last step is just to transfer the system to the favored state space ℓ2

via another unitary transformation Σ´1{2 : Σ1{2ℓ2 Ñ ℓ2. The result of this is
the system
´
Σ´1{2pAΣ1{2, Σ´1{2 pB, pCΣ1{2, D

¯

“
`
Σ´1{2V ˚S˚ARUΣ´1Σ1{2, Σ´1{2V ˚S˚B, CRUΣ´1Σ1{2, D

˘ (8.5)
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on ℓ2. Since we are transforming unitarily with respect to the scalar products
〈¨, ¨〉Σ1{2ℓ2

and 〈¨, ¨〉ℓ2 , the Gramians do not change and the resulting system
is still balanced. In order to complete the proof, it suffices to check that
the operators defined in (5.12) and (8.5) are the same. For Bo and D there
is nothing to prove. For Aoptq and Co it follows since all the operators are
bounded with respect to the ℓ2-norm and coincide on the dense subset Σℓ2
of ℓ2. ˝

Proof of Theorem 5.5 . Lemma 8.1 also tells us that Z “ domA is a core

for pA and that the domain of pA is the part of Ao in Σ1{2ℓ2. This means in
particular

dom pA “
!
x P Σ1{2 X domAo : Aox P Σ1{2ℓ2

)
,

pAz “ Aoz “ V ˚S˚ rAπpkerS˚qKRUΣ´1x @z P Z.

Since the semigroups Ab and pA in the proof of Theorem 5.3 are unitarily
similar via the transformation Σ´1{2 P BpΣ1{2ℓ2; ℓ2q, the same is true for
their generators. So Z “ Σ´1{2Z must be a core for Ab and

domAb “ Σ´1{2 dom pA “ Σ´1{2
!
x P Σ1{2 X domAo : Aox P Σ1{2ℓ2

)

Abz “ Σ´1{2 pAΣ1{2 “ Σ´1{2V ˚S˚ rAπpkerS˚qKRUΣ´1{2z @z P Z.

The claim about the representation of Cb follows from the fact that Cbx “
CoΣ

1{2x for all x P Σ´1{2pV ˚S˚ domC X Σℓ2q and (5.7) via the definition of
the Lebesgue extension in (2.6). So we have proved a) and b).

We do not determine the domain of the adjoint A˚
b exactly, but we will

prove that rZ :“ Σ1{2 domA˚
o is a core for A˚

b . Take y P rZ and x P domAb Ă
Σ´1{2 domAo. Then the equation

xAbx, yyℓ2 “ xΣ´1{2AoΣ
1{2x, yyℓ2 “ xx,Σ1{2A˚

oΣ
´1{2yyℓ2

shows, since the right hand side is continuous in x, that y P domA˚
b and

A˚
b y “ Σ1{2A˚

oΣ
´1{2y @y P rZ. (8.6)

So we have shown rZ Ă domA˚
b . We now prove that rZ is dense in ℓ2 and A˚

b -

invariant. The continuity of Σ1{2 P Bpℓ2q implies that Σ1{2 domA˚
o is dense in

Σ1{2ℓ2 with respect to the topology of ℓ2. Because Σ
1{2ℓ2 itself is dense in ℓ2,

it follows that rZ is dense in ℓ2. Furthermore, for x P ℓ2 and y P rZ Ă Σ1{2ℓ2,
the equation

xAbptqx, yyℓ2 “ xΣ´1{2AoptqΣ1{2x, yyℓ2 “ xx,Σ1{2A˚
o ptqΣ´1{2yyℓ2

shows A˚
b ptqy “ Σ1{2A˚

o ptqΣ´1{2y. This representation together with the def-

inition of rZ show the Ab-invariance of rZ, since the Aoptq maps domA˚
o into

itself. So altogether rZ must be a core of A˚
b . To complete the proof of c), we

observe that pT |M q˚ “ pT |M q˚Σ´1{2 and therefore

pT |M q˚ rZ “ pT |M q˚Σ´1{2Σ1{2 domA˚
o “ pT |M q˚ domA˚

o .



32 Timo Reis and Tilman Selig

The latter is by Theorem 5.3 c) a subset of dom rA˚.
Finally, we prove d). Choose λ in the resolvent sets of Ab and Ao, and

take y still in rZ and u P U . Knowing from a) that y P domA˚
b and using (8.6)

we have

xBbu, yypdomA˚
b

q1,domA˚
b

“ xpλ ´ Ab|ℓ2qBbeλu, yypdomA˚
b

q1,domA˚
b

“ xBbeλu, pλ ´ A˚
b qyyℓ2

“ xΣ´1{2
Boeλu,Σ

1{2pλ ´ A˚
o qΣ´1{2yyℓ2

“ xBoeλu, pλ ´ A˚
o qΣ´1{2yyℓ2

“ xpλ ´ Ao|ℓ2qBou,Σ
´1{2yypdomA˚

o q1,domA˚
o

“ xBou,Σ
´1{2yypdomA˚

o q1,domA˚
o

“ x rBu, pT |M q˚yypdom rA˚q1,dom rA˚ . (8.7)

The functional Bbu P pdomA˚
b q1 is obtained by continuous extension of this

expression to all y P domA˚
b , because the core rZ is dense in domA˚

b with
respect to the graph norm of A˚

b . ˝

Remark 8.3. The generator Ab of Ab is also equal to

domAb “ Σ´1{2

#
pxnq P Σ1{2ℓ2

rV pxnq P W 1,2pR`;Yq and

rV ˚p d
dξ

qrV pxnq P Σ1{2ℓ2

+
,

Abx “ Σ´1{2 rV ˚p d
dξ

qrV Σ1{2x.

9. Proof of Theorem 5.6 and 5.7

We want to give a short explanation as to why it is necessary to define
the spaces Zb, respectively Zo, in Theorem 5.6 and 5.7. The easiest way to
see this is in the latter theorem, when we try to truncate the functional
Ao|ℓ2ej P pdomA˚

o q1 from (7.2b). This functional is, by Lemma 1.2, defined
through the adjoint (7.3b), and can, by partial integration, be shown to equal

xAo|ℓ2ej , pxnqydompA˚
o q1,dompA˚

o q “
ż 8

0

d
dξ
rvjpξq

8ÿ

n“1

rvnpξqxndξ,

with d
dξ
rvj P L1pR`;Yq. This representation is valid for all pxnq in the domain

of A˚
o , which means

ř8
n“1 rvnxn P W

1,2
0 pR`;Yq. At a first glance, it may seem

straight forward to truncate this expression by defining

xpAo|ℓ2ejqr, xyCr :“
ż 8

0

d
dξ
rvjpξq

rÿ

n“1

rvnpξqxndξ

for x :“ rx1, . . . , xrsJ P Cr. To do this properly, however, we need to ex-
tend the functional Ao|ℓ2ej to tpxnq P ℓ2 :

ř8
n“1 rvnxn P W 1,1pR`;Yqu,

because
řr

n“1 rvnxn is an element of W 1,1pR`;Yq and not of W 1,2
0 pR`;Yq.
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Since W
1,1
0 pR`;Yq is not dense in W 1,1pR`;Yq, this extension can not sim-

ply be obtained from continuity. Instead, it is constructed as follows: First,
the subspace of all functionals in pW 1,1

0 pR`;Yqq1 that can be represented by
an L1-function is identified with the actual space L1pR`;Yq, and then it is
embedded into the dual space of W 1,1pR`;Yq. For the operator Bo, which
experiences the same difficulties only with d

dξ
rvj replaced by hu, one can either

proceed in the same way or, more elegantly, by using the Lebesgue extension
of its adjoint.

We only execute the proof for the slightly more difficult Theorem 5.6,
because the one for Theorem 5.6 is analogous up to some simplifications.

Proof of Theorem 5.6. We show that the space

Zb :“
!

pznq P Σ1{2ℓ2 rVΣ´1{2pznq P W 1,1pR`;Yq
)

with the norm }pznq}Zb
:“ }rVΣ´1{2pznq}W 1,1pR`;Yq has the asserted proper-

ties.

Because the Schmidt vectors rvi are in W 1,1pR`;Yq by [8], the vector
rV Σ´1{2ei “ 1{p?

σiqrvi is also in this space. Hence, ei P Zb and a) is true.

We claim that the space

rZb :“

$
’’’’&
’’’’%
f P pdomA˚

b q1

D rf P L1pR`;Yq @pxnq P Σ1{2 domA˚
o :

xf, pxnqy “
ż 8

0

A
rfpξq, ypξq

E
Y
dξ for some

y P W
1,2
0 pR`;Yq with πranH

y “ rV Σ´1{2pxnq.

,
////.
////-

with norm }f} rZb
:“ } rf}L1pR`;Yq is continuously embedded into Z 1

b via the
injection

ι : rZb Ñ Z 1
b, xιf, pznqy :“

ż 8

0

A
rfpξq,

8ÿ

n“1

zn?
σn

rvnpξq
E
Y
dξ @pznq P Zb.

A simple estimate shows |xιf, pznqy| ď }ιf}L1pR`;Yq}pznq}Zb
and hence, ιf is

a functional on Zb. The estimate }ιf}Z1
b

ď }f} rZb
moreover shows the con-

tinuity of the embedding ι. To conclude the injectivity of ι, observe that

xιf, pznqy “ 0 for all pznq P Zb is equivalent to
ş8

0
x rfpξq, wpξqyYdξ “ 0 for all

w P W 1,1pR`;Yq X ranH, which implies rf P pranHqK. Hence, f is the zero
functional on domA˚

b if ιf “ 0.

In order to prove the first part of b), it suffices now to show that Ab|ℓ2ej P
rZb for all j P N. Choose an arbitrary pznq in the set rZ “ Σ1{2 domA˚

o , which
was shown to be a core for A˚

b in the proof of Theorem 5.5 c). Remembering

the formula (7.3b) we choose y P W
1,2
0 pR`;Yq with π

ranH
y “ rV Σ´1{2pznq
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and have

xAb|ℓ2ej, pznqypdomA˚
b

q1,domA˚
b

“ xej, A˚
b pznqyℓ2 “ xej,Σ1{2A˚

oΣ
´1{2pznqyℓ2

“ xej,´Σ1{2 rV ˚ d
dξ
yyℓ2

“
A
rV Σ1{2ej,´ d

dξ
y
E
L2pR`;Yq

“
ż 8

0

@?
σj

d
dξ
rvjpξq, ypξq

D
Y
dξ.

Here, we have used partial integration between a W 1,1- and a W
1,2
0 -function,

which can be justified by approximation with smooth functions. The equation

above shows that Ab|ℓ2ej is an element of rZb with ČAb|ℓ2ej “ ?
σj

d
dξ
rvj . Now

it is merely a matter of definition to plug ei into xιAb|ℓ2ej, eiy and get (4.4a).
To show the first equality in (4.4b), we observe that the equation (8.7)

and (7.4) imply that Bbu P rZb with ĄBbu “ hu for all u. Hence the embedding
ι gives

xBbu, eiyZ1
b
,Zb

“ 1?
σi

ż 8

0

xhpξqu, rvipξqyYdξ “ 1?
σi

xu, pH˚rviqp0qyU

“ 1?
σi

xu, ruip0qyU “ bipuq,

where the representation of H˚ given in [8, Lemma 5.3.3] was used. The
second equality in (4.4b) uses the Lebesgue extension of B1

b, which is defined
as

pB1
bqL :“ lim

tÑ0

1

t

ż t

0

pB˚
b xqp´τqdτ.

Since dompB1
bqL is by definition the set where this limit exists, we conclude

from

B
˚
b ej “ B

˚SV Σ´1{2ej “ 1
?
σj

B
˚
C

˚rvi “ ?
σjruj P W 1,1pR´;Uq

that ei P dompB1
bqL for all i P N and

xu, pB1
bqLejyU “

@
u,

?
σjrujp0q

D
U

“ bjpuqp0q

Finally, by (7.5), the set Σ´1{2Zb is contained in the domain of Co since
W 1,1-functions are continuous and therefore have a Lebesgue point at zero.
Hence Zb Ă domCb “ Σ1{2 domCo and again with (7.5) we conclude

Cbej “ CoΣ
1{2ej “ lim

tÑ0

1

t

ż t

0

ej?
σj

rvjpτqdτ “ 1
?
σj

rvjp0q “ ci.

˝

Proof of Theorem 5.7. The proof is completely analogous to the previous one.
We only give the necessary definitions

Zo :“
!

pznq P ℓ2 rV pznq P W 1,1pR`;Yq
)
, }pznq}Zo

:“ }rV pznq}W 1,1pR`;Yq,
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and

rZo :“

$
’’’’&
’’’’%
f P pdomA˚

o q1

D rf P L1pR`;Yq @pxnq P domA˚
o :

xf, pxnqy “
ż 8

0

A
rfpξq, ypξq

E
Y
dξ for some

y P W
1,2
0 pR`;Yq with πranH

y “ rV pxnq.

,
////.
////-

.

˝

Remark 9.1. In the case when h P L2pR`;BpU ,Yq and the Schmidt vectors
therefore satisfy rvi P W 1,2pR`;Yq and rui P W 1,2pR`;Uq, we have to make
the following adaptions: In the proof of Theorem 5.6, respectively 5.7, replace

W 1,1 by W 1,2 and L1 by L2 in the definitions of Zb and rZb, respectively Zo

and rZo. This way, Zo becomes domAo and rZo becomes ℓ2. In Theorem 5.6,

Zb becomes Σ1{2 domAo and rZb is Σ´1{2ℓ2 :“ tpynq |Σ1{2pynq P ℓ2u, with
Ąpynq “ rV Σ1{2pynq being the required L2-function for each pynq P Σ´1{2ℓ2.

The unitarity of rV than implies

xιpynq, xnqyZ1
b
,Zb

“ xΣ1{2pynq,Σ´1{2pxnqyℓ2 .

10. Proof of Theorem 5.8

Proof of Theorem 5.8. We proceed similar to the proof of Theorem 5.6. De-
fine

Z :“
!
z P ranC˚ rC´˚z P ranH X W 1,1pR`;Yq

)

with norm }z}Z :“ }rC´˚z}W 1,1pR`;Yq. The space

rZ :“

$
’&
’%
f P pdom rA˚q1

D rf P L1pR`;Yq @y P W
1,2
0 pR`;Yq Ă dom rA˚ :

xf, rC˚yy “
ż 8

0

A
rfpξq, ypξq

E
Y
dξ

,
/.
/-

with norm }f} rZ :“ } rf}L1pR`;Yq is continuously embedded into Z 1 via the
injection

ι : rZ Ñ Z 1, xιf, zy :“
ż 8

0

A
rfpξq, rC´˚zpξq

E
Y
dξ @z P Z.

Furthermore, for all @y P W
1,2
0 pR`;Yq we have A˚C˚y “ C˚

9y P ranC˚ and

xA|XRui,C
˚yypdomA˚q1,domA˚ “ xA|XBrui,C

˚yypdomA˚q1,domA˚

“ xC´1
CBrui, A

˚
C

˚yyX
“ xCBrui,C

´˚A˚
C

˚yyL2pR`;Yq

“ ´xrvi, πpkerC˚qK
d
dξ
yyL2pR`;Yq

“ x d
dξ
rvi, yyL1pR`;Yq,L8pR`;Yq.
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This shows A|XRui P rZ Ă Z 1. Together with C´˚Svj “ rvj P ranH X
W 1,1pR`;Yq, this shows b). Our definition of the embedding ι leads to

xA|XRui, Svjy rZ,Z
“ xA|XBrui,C

˚rvjy rZ,Z
“ xιA|XBrui,C

˚rvjyZ1,Z

“ x d
dξ
rvi,C´˚C˚rvjyL1pR`;Yq,L8pR`;Yq “

?
σi?
σj

aij .

With the adjoint B1 P BpdomA˚;Uq of B we obtain for all u P U and

y P W
1,2
0 pR`;Yq

xBu,C˚yypdomA˚q1,domA˚ “ xu,B1C˚yyU “ xu, pH˚yqp0qy
U

“
B
u,

ż 8

0

h˚pτqy dτ
F

U

“
ż 8

0

xhpτqu, yyYdτ.

This shows that ranB Ă rZ Ă Z 1 and therefore

xBu, Sviy rZb,Zb
“ xιBu,C˚rviyZ1

b
,Zb

“ xhu,C´˚C˚rviyL1pR`;Yq,L8pR`;Yq

“ ?
σibipuq.

For the alternative representation, we observe that B˚C˚rvi “ σirui, which is
in W 1,1pR´;Uq. This implies C˚rvi P dompB1qL for all i P N and

biu “ ?
σixu, ruip0qyU “ 1?

σi

xu, pH˚rvjqp0qyU “ 1
?
σj

xu, pB1qLC˚rvjyU .

Finally, the equality

CRuj “ CBrujrvj P W 1,1pR`;Yq
shows that Ruj is in the domain of C and

CRuj “ lim
tÑ0

1

t

ż t

0

pCRujqpτqdτ “ lim
tÑ0

1

t

ż t

0

rvjpτqdτ “ rvjp0q “ ?
σici.

˝

11. Pseudo-similarity in the minimal case

Proposition 11.1. With the preliminaries of Theorem 5.2 and, additionally,
minimality of the system pA,B,C,Dq, the following holds true: The operator
T “ V ˚S˚ is a pseudo-similarity transformation defined on X. The inverse
pseudo-similarity transformation S´˚V : ranV ˚S˚ Ă ℓ2 Ñ ℓ2 is exactly the
closure RUΣ´1 of the operator T ` : Σℓ2 Ă ℓ2 Ñ X. Accordingly, the domain
of RUΣ´1 equals ranV ˚S˚ in this case.

Proof. The properties of a pseudo-similarity required in Definition 2.5 are
readily verified using that

Aoptqpxnq “ V ˚S˚
AS´˚V pxnq @pxnq P ranV ˚S˚,

which follows by a density argument, since both operator coincide on Σℓ2 Ă
ranV ˚S˚. Only the claim about the inverse transformation needs to be
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proven at full length: In the minimal case, the singular value decomposition
(5.3) reads

S˚R|pkerRqK “ V ΣU˚, (11.1)

U P B
`
ℓ2; pkerRqK

˘
, V P B

`
ℓ2; pkerSqK

˘
,

because the density of ranR implies that ranS˚R “ ranS˚ “ pkerSqK, and
kerS˚R “ kerR due to the injectivity of S˚. Another consequence of this
is that V ˚S˚ is injective and the inverse S´˚V : ranV ˚S˚ Ă ℓ2 Ñ X of
this bounded operator is a closed operator. Because πpkerS˚qK is obsolete,

it follows from (7.1) that S´˚V must be a closed extension of RUΣ´1 to
ranV ˚S˚. In order to prove that it is the smallest closed extension, i.e. the
adjoint of the adjoint of RUΣ´1, we have to determine the domains of these
operators.

Our first claim is that dompRUΣ´1q˚ “ ranS. So pick an arbitrary
y P ranS. Then for all pxnq P Σℓ2 holds

xRUΣ´1pxnq, yyX “ xRUΣ´1pxnq, SS´1yyX “ xS˚RUΣ´1pxnq, S´1yyXS

“ xV ΣU˚UΣ´1pxnq, S´1yyXS
“ xV pxnq, S´1yyXS

ď }S´1y}XS
}pxnq}ℓ2 ,

and hence y P dompRUΣ´1q˚. For the other inclusion, take an arbitrary
y P dompRUΣ´1q˚. Then there exists some constant K with

K}pxnq} ě xRUΣ´1pxnq, yyX “ xΣ´1pxnq, U˚R˚yyℓ2 @pxnq P Σℓ2,

showing that U˚R˚y lies in the domain of the self-adjoint operator Σ´1, which
is Σℓ2. (In particular, it follows pRUΣ´1q˚ “ Σ´1U˚R˚.) As a consequence
of the controllability assumption, R˚ is injective, so y can be written as
y “ R´˚UΣx for some x P ℓ2. Adjoining equation (11.1) gives

R˚S|pkerSqK “ pS˚R|pkerRqK q˚ “ UΣV ˚.

and consequently y P R´˚ ranR˚S|pkerSqK “ ranS. So we have indeed shown

ranS “ dompRUΣ´1q˚.

Since we have already seen that S´˚V with its domain ranV ˚S˚ is an
extension of RUΣ´1, it suffices to show

ranV ˚S˚ Ă domRUΣ´1

“
 

pxnq P ℓ2 | DK ą 0 @y P ranS : xpxnq, pRUΣ´1q˚yyℓ2 ď K}y}X
(

in order to complete the proof. So take an arbitrary pxnq P ranV ˚S˚. Then
for all y P ranS holds U˚R˚y P Σℓ2 and, with the representation Σ´1 “
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V ˚S´1R´˚U |Σℓ2 , we obtain

xpxnq, pRUΣ´1q˚yyℓ2 “ xV ˚S˚ S´˚V pxnq, pRUΣ´1q˚yyℓ2
“ xS´˚V pxnq, SV Σ´1U˚R˚yyX
“ xS´˚V pxnq, SS´1R´˚R˚yyX
“ xS´˚V pxnq, yyX
ď }S´˚V pxnq}X}y}X .

This is what we needed to show. ˝

Proposition 11.2. If in Theorem 5.4 the original system is minimal, then T`

is closable and its closure

T` : tx P ℓ2 : Σ1{2x P ranV ˚S˚u Ă ℓ2 Ñ X, T` “ RUΣ´1{2

is a pseudo-similarity transformation. Its inverse transformation is the clo-
sure of T , i.e.,

T : tx P X : V ˚S˚x P Σ1{2ℓ2u Ă X Ñ ℓ2, T :“ Σ´1{2V ˚S˚.

In the proof we make use of the following result which is straightforward
to show:

Lemma 11.3. Let X,Y, Z be Hilbert spaces and G P BpX ;Y q. Furthermore let
F : domA Ă Y Ñ Z be a densely defined, closable operator and F :“ F˚˚

its closure. If we define the operators FG : tx P X : Gx P domF u Ă X Ñ Z

and FG : tx P X : Gx P domF u Ă X Ñ Z, then the closure of FG equals
FG.

Proof of Proposition 11.2. For T` to be closable it is necessary and sufficient
that domT`˚ Ă ℓ2 be dense. As a consequence of the observability assump-
tion, kerS˚ “ t0u, the range of S is dense, and we will show that the latter
is contained in the domain of T`˚, which by definition is

domT`˚ “ ty P X | Dk ą 0 @pxnq P domT` : xT`pxnq, yyX ď k}pxnq}ℓ2u.
So let y P ranS be arbitrary. Then U˚R˚y P Σℓ2 and for pxnq P domT` “
Σ1{2ℓ2 holds

|xT`pxnq, yyX | “ |xΣ´1{2pxnq, U˚R˚yyℓ2| “ |xpxnq,Σ´1{2U˚R˚yyℓ2|
ď }Σ´1{2U˚R˚y}ℓ2}pxnq}ℓ2 ,

showing y P domT`˚. So we may take the closure T` of the operator T` “
RUΣ´1{2 which, according to Lemma 11.3, is equal to the concatenation

RUΣ´1Σ1{2 : tpxnq P ℓ2 : Σ1{2pxnq P ranV ˚S˚u Ă ℓ2 Ñ X

of the two injective operatorsRUΣ´1 : ranV ˚S˚ Ă ℓ2 Ñ X and Σ1{2 P Bpℓ2q.
Thus, T` is injective as well. We remark that its range is in general smaller
then the range of RUΣ´1, which is X . More precisely, we have ranT` “
tx P X : V ˚S˚x P Σ1{2ℓ2u. For if x P ranT , then x “ RUΣ´1Σ1{2pynq for

some pynq P domT` and, remembering that V ˚S˚ is the inverse of RUΣ´1,
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V S˚x “ Σ1{2pynq. On the other hand, if x is such that pynq “ V ˚S˚x P
Σ1{2ℓ2, then pynq P ranV ˚S˚ “ domRUΣ´1 and x “ RUΣ´1pynq is in the

range of T` “ RUΣ´1Σ1{2. And with this we have shown that the inverse of
T` is Σ1{2V ˚S˚.

The invariance properties of Definition 2.5 are not quite as easy to see
as in Proposition 11.1. We need to show the A-invariance of domT . That is,
for all x P X with the property that V ˚S˚x P Σ1{2ℓ2 must hold V ˚S˚Aptqx P
Σ1{2ℓ2. Let x P domT , then pynq :“ V ˚S˚x P Σℓ2, and hence

V ˚S˚Aptqx “ V ˚S˚AptqS´˚V pynq “ Aoptqpynq,
which is again an element of Σ1{2ℓ2, because by Lemma 8.1, Ao leaves this
space invariant. For the Ab invariance of ranT observe that pynq :“ Σ1{2pxnq P
ranV ˚S˚ for all pxnq P ranT and hence

Abptqpxnq “ Σ´1{2V ˚S˚AptqRUΣ´1Σ1{2pxnq “ Σ´1{2V ˚S˚AptqS´˚V pynq.
The right hand side shows that this is again an element of ranT . It is obvious
that Bmaps into domT since it maps into Σℓ2, and that Σ´1{2V ˚S˚B maps
into domT`. ˝
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