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zur Angewandten Mathematik

Mathematical Modeling and Analysis of
Nonlinear Time-Invariant RLC Circuits

Timo Reis

Nr. 2013-11
September 2013





Mathematical Modeling and Analysis of
Nonlinear Time-Invariant RLC Circuits

Timo Reis

Abstract We give a basic and self-contained introduction to the mathematical de-
scription of electrical circuits which contain resistances, capacitances, inductances,
voltage and current sources. Methods for the modeling of circuits by differential-
algebraic equations are presented. The second part of this paper is devoted to
an analysis of these equations.

1 Introduction

It is in fact not difficult to convince scientists and non-scientists of the importance
of electrical circuits; they are nearly everywhere! To mention only a few, electrical
circuits are essential components of power supply networks, automobiles, television
sets, cell phones, coffee machines and laptop computers (the latter two items have
been heavily involved in the writing process of this article). This gives a hint to their
large economical and social impact to the today’s society.

When electrical circuits are designed for specific purposes, there are, in princi-
ple, two ways to verify their serviceability, namely the ’construct,-trial-and-error
approach’ and the ’simulation approach’. While the first method is typically cost-
intensive and may be harmful to the environment, simulationcan be done a pri-
ori on a computer and gives reliable impressions on the dynamic circuit behavior
even before it is physically constructed. The fundament of simulation is the math-
ematical model. That is, a set of equations containing the involved physical quanti-
ties (these are typically voltages and currents along the components) is formulated,
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which is later on solved numerically. The purpose of this article is a detailed and
self-contained introduction to mathematical modeling of the rather simple but nev-
ertheless important class of time-invariant nonlinear RLCcircuits. These are analog
circuits containing voltage and current sources as well as resistances, capacitances
and inductances. The physical properties of the latter three components will be as-
sumed to be independent of time, but they will be allowed to benonlinear. Under
some additional, physically meaningful, assumptions on the components, we will
further depict and discuss several interesting mathematical features of circuit mod-
els and give back-interpretation to physics.

Apart from the high practical relevance, the mathematical treatment of electrical
circuits is interesting and challenging especially due to the fact that various different
mathematical disciplines are involved and combined, such as graph theory, ordinary
and partial differential equations, differential-algebraic equations, vector analysis
and numerical analysis.

This article is organized as follows: In Section 3 we introduce the physical quan-
tities which are involved in circuit theory. Based on the fact that every electrical
phenomenon is ultimately caused by electromagnetic field effects, we present their
mathematical model (namelyMaxwell’s equations) and define the physical variables
voltage, current and energy by means of electric and magnetic field and their inter-
action. We particularly highlight model simplifications which are typically made
for RLC circuits. Section 4 is then devoted to the famousKirchhoff laws, which
can be mathematically inferred from the findings of the preceding section. It will be
shown that graph theory is a powerful tool to formulate theseequations and analyze
their properties. Thereafter, in Section 5, we successively focus on mathematical
description of sources, resistances, inductances and capacitances. The relation be-
tween voltage and current along these components as well as their energetic behav-
ior is discussed. Kirchhoff and component relations are combined in Section 6 to
formulate the overall circuit model. This leads to the modeling techniques ofmod-
ified nodal analysisandmodified loop analysis. Both methods lead todifferential-
algebraic equations (DAEs)whose fundamentals are briefly presented as well. Spe-
cial emphasis is placed on mathematical properties of DAE models of RLC circuits.

2 Nomenclature

Throughout this article we use the following notation.
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N set of natural numbers

R set of real numbers

R
n,m the set of realn×m

In identity matrix of sizen×n

MT ∈R
m,n, xT ∈ R

1,n transpose of the matrixM ∈R
n,m and the vectorx∈R

n

imM, kerM image and kernel of a matrixM, resp.

M > (≥)0, the square matrixM is positive (semi-)definite

‖x‖ =
√

xTx, the Euclidean norm ofx∈ R
n

V⊥ orthogonal space ofV ⊂ R
n

sign(·) sign function, i.e., sign :R→R with sign(x) = 1, if x> 0,
sign(0) = 0, and sign(x) =−1, if x< 0

t time variable(∈ R)

ξ space variable(∈ R
3)

ξx, ξy, ξz components of the space variableξ ∈ R
3

ex, ey, ez canonical unit vectors inR3

n(ξ ) tangential normal vector of a curveS ⊂ R
3 in ξ ∈ S

ν(ξ ) outward normal vector of a surfaceA⊂ R
3 in ξ ∈ A

u× v vector product ofu,v∈ R
3

gradf (t,ξ ) gradient of the scalar-valued functionf with respect to the
spatial variable

div f (t,ξ ), curl f (t,ξ ) divergence and, respectively, curl of theR3-valued func-
tion f with respect to the spatial variable

∂Ω , (∂A) boundary of the setΩ ⊂ R
3 (surfaceA⊂ R

3)
ˆ

S

f (ξ )dS(ξ ) integral of the scalar-valued functionf over the (closed)
curveA⊂ R

3(
˛

S

f (ξ )dS(ξ )
)

¨

A

f (ξ )dA(ξ ) integral of the scalar-valued functionf over the (closed)
surfaceA⊂ R

3(
‹

A

f (ξ )dA(ξ )
)

˚

Ω
f (ξ )dV(ξ ) integral of the scalar-valued functionf over the volume

Ω ⊂ R
3
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The following abbreviations will be furthermore used:

DAE differential-algebraic equation (see Sec. 6)

KCL Kirchhoff’s current law (see Sec. 4 & Sec. 3)

KVL Kirchhoff’s voltage law (see Sec. 4 & Sec. 3)

MLA Modified loop analysis (see Sec. 6)

MNA Modified nodal analysis (see Sec. 6)

ODE ordinary differential equation (see Sec. 6)

3 Fundamentals of electrodynamics

We present some basics of classical electrodynamics. A fundamental role is played
by Maxwell’s equations. The concepts of voltage and current will be derived from
these basics. The derivations will be done by using tools from vector calculus, such
as the Gauss theorem and the Stokes theorem. Note that, in this section (as well as
in Section 5, where the component relations will be derived), we will not present all
derivations with full mathematical precision. For an exactpresentation of smooth-
ness properties on the involved surfaces, boundaries, curves and functions to guar-
antee the applicability of the Gauss theorem and the Stokes theorem as well as
interchanging the order of integration (and differentiation), we refer to textbooks on
vector calculus, such as [MT03,J0̈1].

3.1 The electromagnetic field

The following physical quantities are involved in electromagnetic field.

D : electric displacement, B : magnetic flux intensity,

E : electric field intensity, H : magnetic field intensity,

j : electric current density, ρ : electric charge density.

Current density, flux and field intensities areR
3-valued functions depending on time

t ∈ I ⊂R and spatial coordinateξ ∈ Ω ⊂R
3, whereas electric charge densityρ : I ×

Ω → R is scalar-valued. Their dependencies are expressed byMaxwell’s equations
[PB91,Orf10], which read
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divD(t,ξ ) = ρ(t,ξ ), charge induces electrical fields, (1a)

divB(t,ξ ) = 0, field lines of magnetic flux are closed, (1b)

curlE(t,ξ ) =− ∂
∂ t B(t,ξ ), law of induction, (1c)

curlH(t,ξ ) = j(t,ξ )+ ∂
∂ t D(t,ξ ), magnetic flux law. (1d)

Further algebraic relations between electromagnetic variables are involved. These
are calledconstitutive relationsand are material-dependent, i.e., they express the
properties of the medium in which electromagnetic waves evolve. Typical constitu-
tive relations are

E(t,ξ ) = fe(D(t,ξ ),ξ ), H(t,ξ ) = fm(B(t,ξ ),ξ ), (2a)

j(t,ξ ) = g(E(t,ξ ),ξ ) (2b)

for some functionsfe, fm,g : R3 ×Ω → R
3. In the following we collect some as-

sumptions offe, fm andg which are made in this article. Their practical interpreta-
tion is subject of subsequent parts of this article.

Assumption 3.1(Constitutive relations).

(a) There exists some function Ve : R3 × Ω → R (electric energy density) with
Ve(D,ξ ) > 0, Ve(0,ξ ) = 0 for all ξ ∈ Ω , D ∈ R

3 which is differentiable with
respect to D, and there holds

d
dD

VT
e (D,ξ ) = fe(D,ξ ) for all D ∈ R

3,ξ ∈ Ω . (3)

(b) There exists some function Vm : R3 ×Ω → R (magnetic energy density) with
Vm(B,ξ ) > 0, Vm(0,ξ ) = 0 for all ξ ∈ Ω , B∈ R

3 which is differentiable with
respect to B, and there holds

d
dB

VT
m(B,ξ ) = fm(B,ξ ) for all B ∈ R

3,ξ ∈ Ω . (4)

(c) For all E ∈R
3, ξ ∈ Ω holds ETg(E,ξ )≥ 0.

If fe and fm are linear, assumption (a) and (b) reduce to

Ve(D,ξ ) = DTMe(ξ )−1D, Vm(B,ξ ) = BTMm(ξ )−1B

for some symmetric and matrix-valued functionsMe,Mm : Ω → R
3,3 which are

pointwisely symmetric and positive definite. The functional relations between field
intensities, displacement and flux intensity then read

D(t,ξ ) = Me(ξ )E(t,ξ ) andB(t,ξ ) = Mm(ξ )H(t,ξ ).

A remarkable special case isisotropy. That is,Me andMm are pointwise scalar mul-
tiples of the unit matrix, i.e.
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Me = ε(ξ )I3, Mm = µ(ξ )I3

for positive functionsε,µ : Ω → R. In this case, electromagnetic waves propagate
with velocityc(ξ ) = (ε(ξ ) ·µ(ξ ))−1/2 throughξ ∈ Ω . In vacuum, there holds

ε ≡ ε0 ≈ 8.85·10−12A ·s·V−1 ·m−1,

µ ≡ µ0 ≈ 1.26·10−6m ·kg ·s−2 ·A−2.

Consequently, the quantity

c0 = (ε0 ·µ0)
−1/2 ≈ 3.0m·s−1

is the speed of light [KK93,Jac99].
As we will see soon, the dissipation rateg is responsible for energy transfer to
thermodynamic domain. In the linear case, this function reads

g(E,ξ ) = G(ξ ) ·E,

whereG : Ω →R
3,3 is a matrix-valued function with the property thatG(ξ )+GT(ξ )

is positive semi-definite for allξ ∈ Ω . In perfectly isolating media (such as the vac-
uum) the electric current density vanishes; the dissipation rate consequently van-
ishes there. Using elementary vector calculus, we see that the temporal derivative of
the total energy density fulfills

d
dt

(Ve(D(t,ξ ),ξ )+Vm(B(t,ξ ),ξ ))

=
∂

∂D
Ve(D(t,ξ ),ξ ) · ∂

∂ t
D(t,ξ )+

∂
∂B

Vm(B(t,ξ ),ξ ) ·
∂
∂ t

B(t,ξ )

=ET(t,ξ ) · ∂
∂ t

D(t,ξ )+HT(t,ξ ) · ∂
∂ t

B(t,ξ )

=ET(t,ξ ) ·curlH(t,ξ )−ET(t,ξ ) ·g(E(t,ξ ))−HT(t,ξ ) ·curlE(t,ξ )

= div(E(t,ξ )×H(t,ξ ))−ET(t,ξ ) ·g(E(t,ξ )).

(5a)

By the fundamental theorem of calculus and the Gauss theorem, we obtain the total
energy (which is given by the spatial integral of total energy density) fulfills
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V(t2)−V(t1)

=

ˆ t2

t1

˚

d
dt (Ve(D(t,ξ ),ξ )+Vm(B(t,ξ ),ξ ))dV(ξ )dt

=

ˆ t2

t1

˚

div(E(t,ξ )×H(t,ξ ))dV(ξ )dt

−
ˆ t2

t1

˚

Ω
ET(t,ξ ) ·g(E(t,ξ ))dV(ξ )dt

=

ˆ t2

t1

‹

∂Ω
νT(ξ ) · (E(t,ξ )×H(t,ξ ))dA(ξ )

−
ˆ t2

t1

˚

Ω
ET(t,ξ ) ·g(E(t,ξ ))dV(ξ )dt

≤
ˆ t2

t1

‹

∂Ω
νT(ξ )(E(t,ξ )×H(t,ξ ))dA(ξ ),

(5b)

whereν(ξ ) ∈R
3 denotes the normalized outward normal vector inξ ∈ ∂Ω . A con-

sequence of the above finding is that energy transfer is done by dissipation and via
the outflow of thePoynting vector field E×H.
The electromagnetic field is not uniquely determined by Maxwell’s equations. Be-
sides imposing suitable initial conditions on electric displacement and magnetic
flux, i.e.,

D(0,ξ ) = D0(ξ ), B(0,ξ ) = B0(ξ ), ξ ∈ Ω , (6)

To fully describe the electromagnetic field, we further haveto impose physically
(and mathematically) reasonable boundary conditions [Orf10]: These are typically
zero conditions, ifΩ =R

3 (that is, lim‖ξ‖→∞ E(t,ξ ) = lim‖ξ‖→∞ H(t,ξ ) = 0), or, in
case of bounded domainΩ with smooth boundary, tangential or normal conditions
on electrical or magnetic field, i.e.

ν(ξ )× (E(t,ξ )−Eb(t,ξ )) =0, ν(ξ )× (H(t,ξ )−Hb(t,ξ )) =0,

νT(ξ )(E(t,ξ )−Eb(t,ξ )) =0, νT(ξ )(H(t,ξ )−Hb(t,ξ )) =0, ξ ∈ ∂Ω .
(7)

3.2 Currents and voltages

Here we introduce the physical quantities which are crucialfor circuit analysis.

Definition 3.2 (Electrical current). LetΩ ⊂R
3 describe a medium in which an elec-

tromagnetic field evolves. Let As ⊂ Ω be a two-dimensional surface. Then thecur-
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rent throughAs is defined by the surface integral of the current density, i.e.,

i(t) =
¨

As

νT(ξ ) · j(t,ξ )dA(ξ ). (8)

Remark 3.3 (Electrical current in the case of absent charges/stationary case). Let
A ⊂ R

3 be a surface. If the medium does not contain any electric charges (i.e.,
ρ ≡ 0), then we obtain from Maxwell’s equations that the current through A is fulfills

i(t) =
¨

A

νT(ξ ) · j(t,ξ )dA(ξ )

=

¨

A

νT(ξ ) ·curlH(t,ξ )dA(ξ )−
¨

A

νT(ξ ) · ∂
∂ t

D(t,ξ )dA(ξ )

=

¨

A

νT(ξ ) ·curlH(t,ξ )dA(ξ )− d
dt

¨

A

νT(ξ ) ·D(t,ξ )dA(ξ ).

Elementary calculus implies thatcurlH is divergence free, i.e.

divcurlH(t,ξ ) = 0.

The absence of electric charges moreover gives rise to

divD(t,ξ ) = 0.

Now assume thatΩ ⊂ R
3 is a domain with sufficiently smooth boundary. Applying

the Gauss theorem, we obtain that, under the above assumptions, the integral of the
outward component of the current density vanishes for any closed surface, i.e.,

‹

∂Ω
νT(ξ ) · j(t,ξ )dA(ξ )

=

‹

∂Ω
νT(ξ ) ·curlH(t,ξ )dA(ξ )−

‹

∂Ω
νT(ξ ) · ∂

∂ t
D(t,ξ )dA(ξ )

=

‹

∂Ω
νT(ξ ) ·curlH(t,ξ )dA(ξ )− d

dt

‹

∂Ω
νT(ξ ) ·D(t,ξ )dA(ξ )

=

˚

Ω
divcurlH(t,ξ )︸ ︷︷ ︸

=0

dA(ξ )− d
dt

˚

Ω
divD(t,ξ )︸ ︷︷ ︸

=0

dA(ξ ) = 0.

Further note that, under the alternative assumption that the field of electric dis-
placement is stationary, i.e.,∂∂ t D ≡ 0, the surface integral of the current density
over∂Ω again vanishes due to
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‹

∂Ω
νT(ξ ) · j(t,ξ )dA(ξ )

=

‹

∂Ω
νT(ξ ) ·curlH(t,ξ )dA(ξ )−

‹

∂Ω
νT(ξ ) · ∂

∂ t
D(t,ξ )

︸ ︷︷ ︸
=0

dA(ξ )

=

˚

Ω
divcurlH(t,ξ )︸ ︷︷ ︸

=0

dA(ξ ) = 0.

(9)

In each of the above two cases, we have
‹

∂Ω
νT(ξ ) · j(t,ξ )dA(ξ ) = 0.

Now consider a wire as presented in Fig. 1 which is assumed to be surrounded by
a perfect isolator (that is, the current density is trivial outside the wire). LetA be
a cross-sectional area across the wire. If the wire does not contain any charges or
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A i(t)

Fig. 1: Electrical current through surfaceA

the electric field inside the wire is stationary, an application of the Gauss theorem
implies that the current of a wire is well-defined in the sensethat it does not depend
on the particular choice of a cross-sectional area. This enables to speak about the
current throuh a wire.

Now we focus on a conductor node and assume that no charges arepresent or
that the electric field inside the conductor node is stationary.

i1(t)

i2(t)
i3(t)

i4(t)

iN(t)

Fig. 2: Conductor node

Again assuming that all wires are surrounded by perfect isolators, we can choose
a domainΩ ⊂ R

3 such that, fork = 1, . . . ,N, the boundary∂Ω intersects with the
k-th wire to the cross-sectional areaAk. Then, by making use of the assumption that
the current density is trivial outside the wires, we obtain
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0=

¨

∂Ω
νT(ξ ) ·curlH(t,ξ )dA(ξ ) =

N

∑
k=1

¨

Ak

νT(ξ ) ·curlH(t,ξ )dA(ξ )

=
N

∑
k=1

¨

Ak

νT(ξ ) · j(t,ξ )dA(ξ ) =
N

∑
k=1

ik(t),

whereik is the current of thek-th wire. This is known asKirchhoff ’s current law.

Theorem 3.4(Kirchhoff’s current law (KCL)). Assume that a conductor node is
given which is surrounded by a perfect isolator. Further assume that the electric field
is stationary or the node does not contain any charges. Then the sum of inflowing
currents vanishes.

Next we introduce the concept of electric voltage.

Definition 3.5 (Electrical voltage). LetΩ ⊂R
3 describe a medium in which an elec-

tromagnetic field evolves. LetS ⊂ Ω be a path. Then thevoltage between alongS
is defined by the path integral

u(t) =
ˆ

S

E(t,ξ )dS(ξ ). (10)
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Sξ0

ξ1

u(t)

Fig. 3: Voltage alongS

Remark 3.6 (Electrical current in the stationary case). If the field of magnetic flux
intensity is stationary (∂∂ t B≡ 0), then the Maxwell equations give rise tocurlE ≡ 0.
Moreover, assuming that the spatial domain in which the stationary electromagnetic
field evolves is simply connected [J0̈1], then the electric field intensity is a gradient
field, i.e.,

E(t,ξ ) = gradΦ(t,ξ )

for some differentiable scalar-valued functionΦ, which we callelectric potential.
For an oriented path Ss ⊂ Ω from ξ0 to ξ1 holds

ˆ

Ss

nT(ξ ) ·E(t,ξ )dS(ξ ) = Φ(t,ξ1)−Φ(t,ξ0). (11)

In particular, the voltage along the path Ss is solely depending on the initial and end
point of Ss. This enables to speak about thevoltage between the pointsξ0 andξ1.

Note that the electric potential is unique up to addition of afunction indepen-
dent on the spatial coordinateξ . It can therefore be made unique by imposing the
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Ω

ξg Φ(t,ξg)≡ 0

Fig. 4: Grounding ofξg

additional relationΦ(t,ξg) = 0 for some prescribed positionξg ∈ Ω . In electrical
engineering, this is calledgrounding ofξg.

Now we take a closer look at a loop of conductors in which the field of magnetic
flux is assumed to be stationary:

u1(t)
u2(t)

u3(t)

uN(t)

Fig. 5: Conductor loop

For k = 1, . . . ,N, assume thatSk is a path in thek-th conductor connecting its
nodes. Assume that the field of magnetic flux intensity is stationary and letuk(t)
be the voltage between the initial and terminal point ofSk. Define the number
sk ∈ {1,−1} to be positive, ifSk is in the direction of the loop, andsk =−1, other-
wise. Taking a surfaceA⊂ Ω that is surrounded by the path

S1∪̇ . . . ∪̇SN = ∂A,

we can apply the Stokes theorem to see that

N

∑
k=0

sk ·uk(t) =
N

∑
k=0

sk ·
ˆ

Sk

nT(ξ ) ·E(t,ξ )dS(ξ )

=

˛

∂A
nT(ξ ) ·E(t,ξ )dS(ξ )

=

¨

A

νT(ξ ) ·curlE(t,ξ )dA(ξ ) = 0.

Theorem 3.7(Kirchhoff’s voltage law (KVL)). In an electromagnetic field in which
the magnetic flux is stationary, each conductor loop fulfillsthat the sum of voltages
in direction of the loop equals to the sum of voltages in the opposite direction to the
loop.
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In the following we will make some further considerations concerning energy
and power transfer in stationary electromagnetic fields (∂

∂ t D ≡ ∂
∂ t B ≡ 0) evolving

in simply connected domains. Assuming that we have some electrical device in the
domainΩ ⊂ R

3 that is physically closed in the sense that no current leavesthe
device (i.e.,νT(ξ ) j(t,ξ ) = 0 for all ξ ∈ ∂Ω ), an application of the multiplication
rule

div( j(t,ξ ) Φ(t,ξ )) = div j(t,ξ ) ·Φ(t,ξ )+ jT(t,ξ ) ·gradΦ(t,ξ )

and the Gauss theorem leads to
˚

Ω
jT(t1,ξ ) ·E(t2,ξ )dV(ξ )

=

˚

Ω
jT(t1,ξ ) ·gradΦ(t2,ξ )dV(ξ )

=−
˚

Ω
div j(t1,ξ ) ·Φ(t2,ξ )dV(ξ )+

˚

Ω
div( j(t1,ξ ) ·Φ(t2,ξ ))dV(ξ )

=−
˚

Ω
div j(t1,ξ )︸ ︷︷ ︸

=0

·Φ(t2,ξ )dV(ξ )+
‹

∂Ω
νT(ξ ) j(t1,ξ )︸ ︷︷ ︸

=0

·Φ(t2,ξ )dV(ξ ) = 0.

(12)
In other words, the spatialL2-inner product [Con85] betweenj(t1, ·) and the field
E(t1, ·) vanishes for all timest1, t2 in which the stationary electrical field evolves.

Theorem 3.8(Tellegen’s law for stationary electromagnetic fields). Let a station-
ary electrical field inside the simply connected domainΩ ⊂ R

3 be given, and as-
sume that no electrical current leavesΩ . Then for all times t1, t2 in which the field
evolves, the current density field j(t1, ·) and the electrical field density field E(t, ·)
are orthogonal in the L2-sense.

The concluding considerations in this section are concerned with energy inside
conductors in which stationary electromagnetic fields evolve. Consider an electrical
wire as displayed in Fig. 3. Assume thatS is a path connecting the incidence nodes
ξ0,ξ1. Furthermore, for eachξ ∈ S, let Aξ be a cross-sectional areas containing
ξ and the additional property that the spatial domain of the wire Ω is the disjoint
union of the surfacesAξ , i.e.,

Ω =
•⋃

ξ∈S
Aξ .

The KCL implies that the current throughAξ does not depend onξ ∈ S. Now
making the (physically reasonable) assumptions that the voltage is spatially constant
in each cross-sectional areaAξ , we obtain, by using the Gauss theorem and the
multiplication rule

(curlE)T(t,ξ ) ·H(t,ξ )−ET(t,ξ ) ·curlH(t,ξ ) = div(E(t,ξ )×H(t,ξ )),

that the following holds true for the product between the voltage along and the
current through the wire:
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u(t)i(t) =
ˆ

S

nT(ξ ) ·E(t,ξ )dS(ξ ) ·
¨

Aξ1

νT(ξ ) · j(t,ζ )dA(ζ )

=

ˆ

S

nT(ξ ) ·E(t,ξ ) ·
¨

Aξ

νT(ξ ) · j(t,ζ )dA(ζ )dS(ξ )

=

˚

Ω
ET(t,ξ ) · j(t,ξ )dV(ξ )

=

˚

Ω
ET(t,ξ ) ·curlH(t,ξ )dV(ξ )

=

˚

Ω
(curlE)T(t,ξ ) ·H(t,ξ )−ET(t,ξ ) ·curlH(t,ξ )dV(ξ )

=

˚

Ω
div(E(t,ξ )×H(t,ξ ))dV(ξ )

=

‹

∂Ω
νT(ξ )(E(t,ξ )×H(t,ξ ))dV(ξ ).

In other words, the product betweenu(t) andi(t) therefore coincides with the out-
flow of the Poynting vector field of the wire, whence the integral

W =

ˆ

I
u(t) · i(t)dt

is the energy consumed by the wire.

3.3 Notes and references

(i) The constitutive relations with properties as in Assumptions 3.1 directly con-
stitute an energy balance via (5). Further types of constitutive relations can be
found in [Jac99].

(ii) The existence of global (weak, classical) solutions ofMaxwell’s equations in
the general nonlinear case seems to be not fully worked out sofar. A func-
tional analytic approach to the linear case is, with boundary conditions sightly
different from (7), in [WS12].

4 Kirchhoff’s laws and graph theory

In this part we will approach the systematic description of Kirchhoff’s laws inside
a conductor network. To achieve this aim, we will regard an electrical circuit as
a graph. Each branch of the circuit connects two nodes. To each branch of the circuit
we assign a direction, which is not a physical restriction but rather a definition of
the positive directionof the corresponding voltage and current. This definition is
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Fig. 6: Circuit as a graph

arbitrary, it has to be however done in advance. We assume that the voltage and
current of each branch are equally directed. This is known asload reference-arrow
system[KK93]. This allows to speak about aninitial nodeand aterminal nodeof
a branch.
Such a collection of branches can, in an abstract way, be formulated as a directed
graph.

4.1 Graphs and matrices

We present some mathematical fundamentals of directed graphs.

Definition 4.1 (Graph concepts). A directed graph(or graphfor short) is a triple
G = (V,E,ϕ) consisting of anode setV and abranch setE together with aninci-
dence map

ϕ : E →V ×V, e 7→ ϕ(e) = (ϕ1(e),ϕ2(e)) .

If ϕ(e) = (v1,v2), we call e to bedirected fromv1 to v2. v1 is called theinitial node
and v2 the terminal nodeof e. Two graphsGa = (Va,Ea,ϕa), Gb = (Vb,Eb,ϕb) are
calledisomorphic, if there exist bijective mappingsιE : Ea → Eb, ιV : Va →Vb, such
thatϕa,1 = ι−1

V ◦ϕb,1◦ ιE andϕa,2 = ι−1
V ◦ϕb,2◦ ιE.

Let V′ ⊂V and let E′ be a set of branches fulfilling

E′ ⊂ E|V′ := {e∈ E : ϕ(e) ∈V ′×V′}.

Further let ϕ |E′ be the restriction ofϕ to E′. Then the tripleK := (V ′,E′, ϕ |E′) is
calledsubgraph ofG. In the case where E′ = E|V ′ , we callK the induced subgraph
on V ′. If, E′ = E thenK is called aspanning subgraph. A proper subgraphis one
with E 6= E′.
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G is calledfinite, if both the node and the branch set are finite.
For each branch e, define an additional branch−e being directed from the terminal
to the initial node of e, that isϕ(−e) = (ϕ2(e),ϕ1(e)) for e∈ E. Now define the set
Ẽ = {e,−e : e∈ E}. A tuple w= (w1, . . . ,wr) ∈ Ẽr , where for i= 1, . . . , r −1,

vki := ϕ2(wi) = ϕ1(wi+1)

is calledpath fromvk0 to vkr ; w is calledelementary path, if vk1, . . . ,vkr are distinct.
A loop is an elementary path with vk0 = vkr . Two nodes v,v′ are calledconnected, if
there exists a path from v to v′. The graph itself is called connected, if any two nodes
are connected. A subgraphK := (V ′,E′, ϕ |E′) is calledconnected component, if it
is connected andKc := (V \V′,E \E′, ϕ |E\E′) is a subgraph.
A treeis a is a minimally connected (spanning sub-)graph, i.e. it is connected with-
out having any connected proper spanning subgraph.
For a spanning subgraphK = (V,E′, ϕ |E′), we define thecomplementary spanning
subgraphby G −K := (V,E \E′, ϕ |E\E′). The complementary spanning subgraph
of a tree is calledco-tree. A spanning subgraphK is called acutset, if its branch set
is non-empty,G −K is a disconnected graph and additionally,G−K′ is connected
for any proper spanning subgraphK′ ofK.

For finite graphs we can set up special matrices which will be later on useful to
describe Kirchoff’s laws.

Definition 4.2. Let a finite graphG = (V,E,ϕ) with n branches E= {e1, . . . ,en}
and m nodes V= {v1, . . . ,vm} be given. Then theall-node incidence matrixof G is
given by A0 = (a jk) ∈ R

m,n, where

a jk =





1, if branch k leaves node j,

−1, if branch k enters node j,

0, otherwise.

Let L = {l1, . . . , lb} be the set of loops ofG. Then the all-loop matrix
B0 = (b jk) ∈R

l ,n with

b jk =





1, if branch k belongs to loop j and has the same orientation,

−1, if branch k belongs to loop j and has the contrary orientation,

0, otherwise.

4.2 Kirchhoff’s laws: A systematic description

Let A0 ∈ R
m,n be the all-node incidence matrix of all-node incidence matrix of

a graphG =(V,E,ϕ)with nbranchesE= {e1, . . . ,en} andmnodesV = {v1, . . . ,vm}.
The j-th row ofA0 is, by definition, at thek-th position, equal to 1, if thek-th branch
leaves thej-th node. On the other hand, this entry equals to -1, if thek-th branch



16 Timo Reis

enters thej-th node. If thek-th node is involved in thej-th node, then this entry
will vanish. Hence, definingik(t) to be the current through thek-th branch in the
direction to its terminal node, and defining the vector

i(t) =




i1(t)
...

in(t)


 , (13)

thek-th row vectorak ∈ R
1,n gives rise to Kirchhoff’s current law of thek-th node

via aki(t) = 0. Consequently, the collection of all Kirchhoff laws reads, in compact
form,

A0i(t) = 0. (14)

For k ∈ {1, . . . ,n}, let uk(t) be the voltage between the initial and terminal node of
thek-th branch, and define the vector

u(t) =




u1(t)
...

un(t)


 . (15)

By the same argumentation as before, the construction of theall-loop matrix gives
rise to

B0u(t) = 0. (16)

Since any column ofA0 contains exactly two non-zero entries, namely 1 and -1, we
have

AT
0 ·




1
...
1




︸ ︷︷ ︸
∈Rm

= 0. (17)

This give rise to the fact that the KCL systemA0i(t) = 0 contains redundant equa-
tions. Such redundancies occur more than ever in the KVLB0u= 0.

The next aim is to determine a set of (linearly) independent equations out of
the so far constructed equations. To achieve this, we present several connections
between some properties of the graph and its matricesA0, B0. We generalize the
results in [And91] to directed graphs. As a first observation, we may reorder the
branches and nodes ofG = (V,E,ϕ) into according to connected components, such
that we end up with

A0 =




A0,1
. . .

A0,k


 , B0 =




B0,1
. . .

B0,k


 , (18)
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whereA0,i, B0,i are, respectively, the all-node incidence matrix and all-loop matrix
of the i-th connected component.
A spanning subgraphK of the finite graphG has an all-node incidence matrixAK

which is constructed by deleting rows ofA0 corresponding to the branches of the
complementary spanning subgraphG−K. By a suitable reordering of the branches,
the incidence matrix has a partition

A0 =
[
A0,K A0,G−K

]
. (19)

Theorem 4.3. Let a finite graphG = (V,E,ϕ) with n branches E= {e1, . . . ,en} and
m nodes V= {v1, . . . ,vm} and all-node incidence matrix A0 ∈ R

m,n be given. Then

a) rankA0 = m− k;
b) G contains a cutset, if, and only if,rankA0 = m−1.
c) G is a tree, if, and only if, A0 ∈R

m,m−1 andkerA0 = {0}.
d) G contains loops, if, and only if,kerA0 = {0}.

Proof. a) Since all-loop incidence matrices of non-connected graphs allow a rep-
resentation (18), the general result can be directly inferred, if we prove the state-
ment for the case whereG is connected. Assume thatA0 is the incidence matrix
of a connected graph, and assume thatAT

0 x= 0 for somex∈ R
m. Utilizing (17),

we need to show that all entries ofx are equal for showing that rankA0 = m−1.
By a suitable reordering of the rows ofA0, we may assume that the firstk entries
of x are non-zero, whereas the lastm−k entries are zero, i.e.,x= [xT

1 0]T , where
all entries ofx1 is non-zero. By a further reordering of the columns, we may
assume thatA0 is of the form

A0 =

[
A11 0
A21 A22

]
,

where each column vector ofA11 is not the zero vector. This givesAT
11x1 = 0.

Now take an arbitrary column vectora21,i of A21. Since each column vector of
A0 has exactly two non-zero entries,a21,i either has no, one or two non-zero
entries. The latter case implies that thei-th column vector ofA11 is the zero
vector, which contradicts to the construction ofA21. If a21,i has exactly one non-
zero entry (at thej-th position, relationx1A11 = 0 gives rise to the fact that
the j-th entry of x1 vanishes. Since this is a contradiction, the whole matrix
A21 vanishes. Therefore, the all-node incidence matrix is block-diagonal. This
however consequences that none of the lastm− k nodes is connected to the first
k nodes, which is a contradiction toG being connected.

b) This result follows from a) by using the fact that a graph contains cutsets, if, and
only if, it is connected.

c) By definition,G is a tree, if, and only if, it is connected and the deletion of an ar-
bitrary branch results in a disconnected graph. Using a), this means that the dele-
tion of an arbitrary columnA0 results is a matrix with rank smaller thanm−1.
This is equivalent to the columns ofA0 being linearly independent and spanning
ann−1-dimensional space, in other words rankA0 = m−1 and kerA0 = {0}.
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d) Assume that the kernel ofA0 is trivial. Seeking for a contradiction, assume that
G contains a loopl . Define the vectorbl = [bl1, . . . ,bln] ∈ R

1,n\ {0} with

blk =





1, if branchk belongs tol and has the same orientation,

−1, if branchk belongs tol and has the contrary orientation,

0, otherwise.

Let a1 . . . ,an be the column vectors ofA0. Then, by construction ofbl , each row
of the matrix [

bl1a1 . . . blnan
]

contains exactly one entry 1 and one entry -1 and zeros elsewhere. This implies
A0bT

l = 0.
Conversely, assume thatG contains no loops. By separately considering the con-
nected components and the consequent structure (18) ofA0, it is again no loss
of generality to assume thatG is connected. Lete be a branch ofG and letK be
the spanning subgraph whose only branch ise. ThenG −K results in a discon-
nected graph (otherwise,(e,el1, . . . ,elv) would be a loop, where(el1, . . . ,elv) is
an elementary path inG−K from the terminal node to the initial node ofe). This
however consequences that the deletion of an arbitrary column of A0 results in
a matrix with rank smaller thann−1, which means that the columns ofA0 are
linearly independent, i.e., kerA0 = {0}.

⊓⊔

Since, by the dimension formula, there holds dimkerAT
0 = k, we can infer from

(14) and (17) that kerAT
0 = span{c1, . . . ,ck}, where

ci =




c1i
...

cmi


 with c ji =

{
1, if branch j belongs the thei-th connected component,

0, else.

(20)
Furthermore, using the argumentation of the first part in theproof of d), we obtain
that

A0BT
0 = 0. (21)

We will show that the row vectors ofB0 even generate the kernel ofA0.
Based on a spanning subgraphK of G, we may, by a suitable reordering of columns,
perform a partition the loop matrix according to the branches ofK andG−K, i.e.,

B0 =
[
B0K B0G−K

]
. (22)

If a subgraphT is a tree, then any branche in G − T defines a loop inG via
(e,el1, . . . ,elv), where(el1, . . . ,elv) is an elementary path inT from the terminal
node to the initial node ofe. Consequently, we may reorder the rows ofBT and
BG−T to obtain the form
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B0T =

[
B11

B21

]
, B0G−T =

[
In−m+1

B22

]
. (23)

Such a representation will be crucial for the proof of the following result.

Theorem 4.4. Let a finite graphG = (V,E,ϕ) with n branches E= {e1, . . . ,en}
and m nodes V= {v1, . . . ,vm} and all-node incidence matrix A0 ∈R

m,n and b loops
{l1, . . . , lb} be given. Furthermore, let k be the number of connected components of
G. Then

a) imBT
0 = kerA0;

b) rankB0 = n−m+ k;

Proof. The relation imBT
0 ⊂ kerA0 follows from (21). Therefore, the overall result

follows, if we prove rankB0 ≥n−m+k. Again, by separately considering connected
components and using the block-diagonal representations (18), the overall result
immediately follows, if we prove the casek= 1. Assuming thatG is connected, we
consider a treeT in G. Then we may assume that the all-loop matrix is of the form
B0 =

[
B0T B0G−T

]
with submatrices as is (23). However, since the latter submatrix

has full column rank andn−m+1 columns, we have

rankB0 ≥ rankB0G−T = n−m+1,

which proves the desired result. ⊓⊔

Statement a) implies that the orthogonal spaces of imBT
0 and kerA0 coincide, as

well. Therefore,
imAT

0 = kerB0.

To simplify verbalization, we arrange that, by referring toconnectedness, incidence
matrix, loop matrix etc. of an electrical circuit, we mean the corresponding notions
and concepts for the graph describing the electrical circuit.

It is a reasonable assumption that an electrical circuit is connected; otherwise,
since the connected components do not physically interact,they can be considered
separately.

Since the rows ofA0 sum up to the zero row vector, one might delete an arbitrary
row of A0 to obtain a matrixA having the same rank asA0. We callA the incidence
matrix of G. The property rankA0 = rankA implies imAT

0 = imAT . Consequently,
the following holds true:

Theorem 4.5(Kirchhoff’s current law for electrical circuits). Let a connected elec-
trical circuit with n branches and m nodes be given. Let A∈ R

m−1,n and, for
j = 1, . . . ,n, let ij(t) be the current in branch ej in the direction of initial to ter-
minal node of ej . Let i(t) ∈ R

n be defined as in(13). Then for all times t holds

Ai(t) = 0. (24)



20 Timo Reis

We can furthermore construct theloop matrix B∈R
n−m+1,n by pickingn−m+1

linearly independent rows ofB0. This implies imBT
0 = imBT , and we can formulate

Kirchhoff’s voltage law as follows.

Theorem 4.6(Kirchhoff’s voltage law for electrical circuits). Let a connected elec-
trical circuit with n branches and m nodes be given. Let B∈ R

n−m+1,n and, for
j = 1, . . . ,n, let uj(t) be the voltage in branch ej between the initial and terminal
node of ej . Let u(t) ∈ R

n be defined as in(15). Then for all times t holds

Bu(t) = 0. (25)

A constructive procedure for determining the loop matrixB can be obtained from
the findings in front of Theorem 4.4: Having a treeT in the graphG describing an
electrical circuit, the loop matrix can be determined by

B=
[
BT In−m+1

]
,

where thej-th row of BT contains the information on the path inT between the
initial and terminal node of them−1+ j-th branch ofG.

The formulations (24) and (25) of Kirchhoff’s laws give riseto the fact that a con-
nected circuit includesn = (m− 1) + (n−m+ 1) linearly independent Kirchhoff
equations. Using Theorem 4.4 and imAT

0 = imAT , imBT
0 = imBT , we further have

imBT = kerA.

Kirchhoff’s voltage law may therefore be rewritten asu(t) ∈ imAT . Equivalently,
there exists somee(t) ∈ R

m−1, such that

u(t) = ATφ(t). (26)

The vectorφ(t) is called thenode potential. Its i-th component expresses the voltage
between thei-th node and the node corresponding to the deleted row ofA0. This
relation can therefore be interpreted as a lumped version of(11). The node potential
of the deleted row is set to zero, whence the deletion of a row of A0 can therefore be
interpreted as grounding (compare Sec. 3).
Equivalently, Kirchhoff’s current law may be reformulatedin a way that there exists
someloop currentι(t) ∈ R

n−m+1, such that

i(t) = BT ι(t). (27)

The so far developed graph theoretical results give rise to alumped version of The-
orem 3.8

Theorem 4.7(Tellegen’s law for electrical circuits). With the assumption and nota-
tion of Theorem 4.5 and Theorem 4.6, for all times t1, t2, the vectors i(t1) and u(t2)
are orthogonal in the Euclidean sense, i.e.,

iT(t1)u(t2) = 0.
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Proof. For the incidence matrixA of the graph describing the electrical circuit, let
Φ(t2) ∈ R

m−1 be the corresponding vector of node potentials at timet2. Then

iT(t1)u(t2) = iT(t1)A
Tφ(t2) = (Ai(t1))

T φ(t2) = 0 ·φ(t2) = 0. (28)

⊓⊔

4.3 Auxiliary results on graph matrices

This section closes with some further results on the connection between proper-
ties of subgraphs and linear algebraic properties of corresponding submatrices of
incidence and loop matrices. Corresponding for undirectedgraphs can be found
in [And91]. First we declare some manners of speaking.

Definition 4.8. LetG be a graph and letK be a spanning subgraph.

(i) L is called aK-cutset, if L is a cutset ofG and a spanning subgraph ofK.
(ii) l is called aK-loop, if l is a loop and all branches of l are contained inK.

Lemma 4.9. LetG be a connected graph with n branches and m nodes, incidence
matrix A∈ R

m−1,n and loop matrix B∈ R
n−m+1,n. Further, letK be a spanning

subgraph. Assume that the branches ofG are sorted in a way that

A=
[
AK AG−K

]
, B=

[
BK BG−K

]
.

a) The following three assertions are equivalent:

(i) G does not containK-cutsets;
(ii) kerAT

G−K
= {0};

(iii) kerBK = {0}.

b) The following three assertions are equivalent:

(i) G does not containK-loops;
(ii) kerAK = {0};
(iii) kerBT

G−K = {0}.

Proof. a) The equivalence between (i) and (ii) follows from Theorem4.3 b). To
show that (ii) implies (iii), assume thatBKx= 0. Then

(
x
0

)
∈ ker

[
BK BG−K

]
= im

[
AT
K

AT
G−K

]
,

i.e., there exists somey∈ R
m−1, such that
(

x
0

)
=

[
AT
K

AT
G−K

]
y.
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In particular, we haveAT
G−Ky= 0, whence, by assumption ii), there holdsy= 0.

Thusx= AT
Ky= 0.

To prove that (iii) is sufficient for (ii), we can perform the same argumentation
by interchanging the roles ofAT

G−K andBK.
b) The equivalence between (i) and (ii) follows from Theorem4.3 d). The equiva-

lence between (ii) and (iii) can be proven analogous to part a) (by interchanging
the roles ofK andG−K, and the loop and incidence matrices).

⊓⊔

The subsequent two auxiliary results are concerned with properties of subgraphs
of subgraphs, and gives some equivalent characterizationsin terms of properties of
their incidence and loop matrices.

Lemma 4.10. LetG be a connected graph with n branches and m nodes, incidence
matrix A∈ R

n−1,m and loop matrix B∈ R
n−m+1,n. Further, letK be a spanning

subgraph ofG, and letL be a spanning subgraph ofK. Assume that the branches of
G are sorted in a way that

A=
[
AL AK−L AG−K

]
, B=

[
BL BK−L BG−K

]
,

and define

AK =
[
AL AK−L

]
, BK =

[
BL BK−L

]
,

AG−L =
[
AK−L AG−K

]
, BG−L =

[
BK−L BG−K

]
.

Then the following four assertions are equivalent:

(i) G does not containK-loops except forL-loops;
(ii)

kerAK = kerAL×{0}.
(iii) For a matrix ZL with imZL = kerAT

L holds

kerZT
LAK−L = {0}.

(iv)
kerBT

G−L = kerBT
K−L.

(v) For a matrix YG−K with imYG−K = kerBT
G−K holds

YT
K−LBG−K = 0.

Proof. To show that (i) implies (ii), letB̃K be a loop matrix of the graphK (note
that B̃K andBK do, in general, not coincide). The assumption that allK-loops are
actuallyL-loops implies that̃BK is structured as

B̃K =
[
B̃L 0

]
.
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Since imB̃K = kerAK, we have kerAK = im B̃T
L ×{0}. This further implies that

im B̃T
L = kerAL. in other words, b) holds true.

Now we show that (ii) is sufficient for (i). Letl be a loop inK. Assume thatK hasnK

branches, andL hasnL branches. Define the vectorbl = [bl1, . . . ,blnK ] ∈ R
1,m\ {0}

with

blk =





1, if branchk belongs tol and has the same orientation,

−1, if branchk belongs tol and has the contrary orientation,

0, otherwise.

Then (ii) gives rise toblnL+1 = . . .= bnK = 0, whence the branches ofK−L are not
involved in l , i.e., l is actually anL-loop.
Aiming to show that (iii) holds true, assume (ii). Letx∈ kerZT

LAK−L. Then

AK−Lx∈ kerZT
L = (imZL)

⊥ = (kerAL)
⊥ = imAL.

Thus, there exists a real vectory, such that

AK−Lx= ALy.

This gives rise to
(
−y
x

)
∈ ker

[
AL

AK−L

]
= kerAK = kerAL×{0}

and consequently,x vanishes.
For the converse implication, it suffices to show that c) implies
kerAK ⊂ kerAL×{0} (the reverse inclusion is holding true in any case). Assume
that (

y
x

)
∈ kerAK,

i.e.,ALy+AK−Lx= 0. Multiplying this equation from the left withZT
L, we obtain

x∈ kerZT
LAK−L = {0}, i.e.,x= 0 andALy= 0. Hence,

(
y
x

)
∈ kerAL×{0}.

The following proof concerns the sufficiency of (ii) for (iv): It suffices to show that
(ii) implies

kerBT
G−L ⊂ BT

K−L,

since the converse inclusion holds true in any case. Assume thatBT
G−Lx= 0. Then

BTx=




BT
Lx

BT
K−L

x
0



 ∈ kerAK = kerAL×{0},



24 Timo Reis

whenceBT
K−Lx.

Conversely, assume that (iv) holds true, and let
(

y
x

)
∈ kerAK.

Then 


y
x
0



 ∈ kerA= imBT = im




BT
L

BT
K−L

BT
G−K



 ,

i.e., there exists some real vectorz with y= BT
Lz, x= BT

K−Lz andBT
G−Kz= 0. The

latter implies thatx= BT
K−L

z= 0, i.e., b) holds true.
It remains to be shown that (iv) and (v) are equivalent. Assuming that (iv) holds true.
Then

kerBT
G−K ⊂ kerBT

K−L = imYK−L,

whence
YT
K−LBG−K = (BT

G−KYK−L)
T = 0.

Finally, assume thatYT
K−LBG−K = 0, and letBT

G−Kx = 0. Thenx ∈ imYK−L, i.e.,
there exists a real vectory, such thatx=YK−Ly. This implies

BT
G−Lx=

(
BT
L

x
BT
G−Kx

)
=

(
BT
K−LYK−Ly

BT
G−KYK−Ly

)
=

(
0
0

)
.

So far, we have shown thatYT
K−LBG−K = 0 implies kerBT

G−K ⊂ kerBT
G−L. Since the

other inclusion holds true in any case (BT
G−K is a submatrix ofBT

G−L), the overall
result has been proven. ⊓⊔

Lemma 4.11. LetG be a connected graph with n branches and m nodes, incidence
matrix A∈ R

m−1,n and loop matrix B∈ R
n−m+1,n. Further, letK be a spanning

subgraph ofG, and letL be a spanning subgraph ofL. Assume that the branches of
G are sorted in a way that

A=
[
AL AK−L AG−K

]
, B=

[
BL BK−L BG−K

]
.

Then the following four assertions are equivalent:

(i) G does not containK-cutsets except forL-cutsets;
(ii) The initial and terminal nodes of each branch ofK−L are connected by a path

in G−K.
(iii)

kerAT
G−K = kerAT

G−L.

(iv) For a matrix ZG−K with imZG−K = kerAT
G−K holds

ZT
K−LAG−K = 0.
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(v)
kerBK = kerBL×{0}.

(vi) For a matrix YL with imYL = kerBT
L holds

kerYT
LBK−L = {0}.

Proof. By interchanging the roles of loop and incidence matrices, the proof of
equivalence of the assertions c)–f) is totally analogous tothe proof of equivalence
between (ii)–(v) in Lemma 4.10. Hence, it suffices to show that (i), (ii) and (iii) are
equivalent:
First we show that (i) implies (iii): As a first observation, note that, sinceAK−L

is a submatrix ofAK, (iii) is equivalent to imAK−L ⊂ imAG−K. Now seeking for
a contradiction, assume that (iii) is not fulfilled. Then, bythe preliminary consider-
ation, there exists a column vectora1 of AK−L with a1 /∈ imAG−K. Now, for k as
large as possible, successively construct column vectors ˜a1, . . . , ãk of AK with the
property that

a1 /∈ imAG−K+ span{ã1, . . . , ãi} for all i = 1, . . . ,k (29)

Let a2, . . . ,a j be the set of column vectors ofAK which have not been chosen by
the previous procedure. Since the overall incidence matrixA has full row rank, the
construction of ˜a1, . . . , ãk leads to

AG−K+ span{ã1, . . . , ãk,ai}= R
n−1 for all i = 1, . . . , j. (30)

Now construct the spanning graphC by taking the branchesa1, . . . ,a j . There holds
thatG−C is disconnected due to (29). Furthermore,C contains a branch ofK−L,
namely the one corresponding to the column vectora1. Since, furthermore, (30)
implies that the addition of any branch ofC to G −C results is a connected graph,
we have constructed a cutset inK that contains branches ofK−L.

The next step is to show that (iii) is sufficient for (ii): Assume that the nodes are
sorted by connected components inG−K, i.e.,

AG−K = diag(AG−K,1, . . . ,AG−K,n). (31)

Then the matricesAG−K,i i = 1, . . . ,n are the all-node incidence matrices of the con-
nected components (except for the componentig connected to the grounding node;
thenAG−K,ig is an incidence matrix). Seeking for a contradiction, assume thate is
a branch inK−L whose incidence nodes are not connected by a path inG −K.
Thenak has not more than two non-zero entries and one of the following two cases
holds true:
(a): If e is connected to the grounding node, thenak is the multiple of a unit vec-
tor corresponding to a position not belonging to the grounded component, whence
ak /∈ AG−K.
(b): If econnects two non-grounded nodes, thenak has two non-zero entries, which
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are located at rows corresponding to two different matricesAG−K,i andAG−K, j in
AG−K. This again impliesak /∈ AG−K. This is again a contradiction to (iii).

For the overall statement, it suffices to prove that (ii) implies (i): LetC be a cutset
of G that is contained inK: Assume thate is a branch ofC that is contained in
K−L. Since there exists some path inG −K that connects the incidence nodes of
e, the addition ofe to G−C (which is a supergraph ofG−K) does not connect two
different connected components. The resulting graph is therefore still disconnected,
which is a contradiction toC being a cutset ofG.

⊓⊔

4.4 Notes and references

(i) The representation of the Kirchhoff laws by means of incidence and loop ma-
trices is also callednodal analysisand mesh analysis, respectively [DK69,
CDK87,JJH92].

(ii) The part in Proposition 4.9 about incidence matrices and subgraphs has also
been shown in [ST00]; the parts in Lemma 4.10 and Lemma 4.11 about in-
cidence matrices and subgraphs has also been shown in [ST00]. The parts on
loop matrices is novel.

(iii) The correspondences between subgraph properties andlinear algebraic proper-
ties of the corresponding incidence and loop matrices is an interesting feature.
It can be seen from (20) that the kernel of a transposed incidence matrix can
be computed by a determination of the connected components of a graph. As
well, we can infer from (23) and the preceding argumentationthat loop ma-
trices can be determined by a simple determination of a tree.Conversely, the
computation of the kernel of an incidence matrix leads to thedetermination
of the loops in a (sub)graph. It is further show in [B0̈7, Ipa13] that a matrix
ZT
L

AK−L (see Lemma 4.10) has an interpretation as an incidence matrix of
the graph which is constructed fromK−L by merging those nodes which are
connected by a path inL. The determination of its nullspace thus again leads
a graph theoretical problem.
Note that graph computations are by far preferable to linearalgebraic method
to determine nullspaces. Efficient algorithms for the aforementioned problems
can be found in [Deo74]. Note that the aforementioned graph theoretical fea-
tures have been used in [Sch02, SL01] to analyze special properties of circuit
models.
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5 Circuit components: sources, resistances, capacitances,
inductances

We have seen in the previous section that, for a connected electrical circuit with
n branches andm nodes, the Kirchhoff laws lead ton = (m− 1) + (n− m+ 1)
linearly independent algebraic equations for the voltagesand currents. Since, al-
together, voltages and currents are 2n variables, mathematical intuition gives rise to
the fact thatn further relations are missing to completely describe the circuit. The
behavior of a circuit does indeed not only depend of interconnectivity, the so-called
network topology, but also on the type of electrical components being locatedon the
branches. These can, for instance, be sources, resistances, capacitances and induc-
tances. These will either (such as in case of a source) prescribe the voltage or the
current, or they form a relation between voltage and currentof a certain branch. In
this section we will collect these relations for the aforementioned components.

5.1 Sources

Sources describe physical interaction of an electrical circuit with the environment.
Voltage sources are elements where the voltageuV (·) : I → R is prescribed. In cur-
rent sources, the currentiI(·) : I → R is given beforehand.

uV (t)

iV (t)

Fig. 7: Symbol of a voltage source

uI(t)

iI(t)

Fig. 8: Symbol of a current source

We will see in Section 6 that, the the physical variablesiV (·),uI(·) : I →R (and
therefore also energy flow through sources) are determined by the overall electrical
circuit. Some further assumptions on the prescribed functionsuV (·), iI(·) : I → R



28 Timo Reis

(such as, e.g., smoothness) will also depend on the connectivity of the overall circuit;
this will as well be subject of Section 6.

5.2 Resistances

We make the following ansatz for a resistance: Consider a conductor material in the
cylindric spatial domain (see Fig. 9)

Ω = [0, ℓ]×{(ξy,ξz) : ξ 2
y + ξ 2

z ≤ r2} ⊂ R
3 (32)

with lengthℓ and radiusr.

x

y

z
u(t)

E(t,ξ )

Fig. 9: Model of a resistance

For ξx ∈ [0, ℓ], we define the cross-sectional area by

Aξx = {ξx}×{(ξy,ξz) : ξ 2
y + ξ 2

z ≤ r2}. (33)

To deduce the relation between resistive voltage and current from Maxwell’s equa-
tions, we make the following assumptions.

Assumption 5.1(The electromagnetic field inside resistances).

(a) The electromagnetic field inside the conductor materialis stationary, i.e.,

∂
∂ t D ≡ ∂

∂ t B≡ 0.

(b) Ω does not contain any electric charges.
(c) For all ξx ∈ [0, ℓ], there holds that the voltage between two arbitrary points of

Aξx vanishes.
(d) The conductance function g: R3×Ω → R

3 has the following properties:

(i) g is continuously differentiable.
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(ii) g is homogeneous. That is, g(E,ξ1) = g(E,ξ2) for all E ∈R
3 andξ1,ξ2 ∈

Ω .
(iii) g is strictly incremental. That is,(E1−E2)

Tg(E1−E2,ξ )> 0 for all dis-
tinct E1,E2 ∈ R

3 andξ ∈ Ω .
(iv) g is isotropic. That is, g(E,ξ ) and E are linearly dependent for all E∈R

3

andξ ∈ Ω .

Using the definition of the voltage (10), property c) consequences that the elec-
tric field intensity is directed according to the conductor,i.e., E(t,ξ ) = e(t,ξ ) ·ex,
whereex is the canonical unit vector inx-direction, ande(·, ·) is some scalar-valued
function. Homogeneity and isotropy, smoothness and the incrementation property
of the conductance function then implies that

j(t,ξ ) = g(E(t,ξ ),ξ ) = gx(e(t,ξ )) ·ex

for some strictly increasing and differentiable functiongx : R → R with
gx(0) = 0. Further, by using (9), we can infer from the stationarity of the elec-
tromagnetic field that the field of electric current density is divergence free, i.e.,
div j(·, ·) ≡ 0. Consequently,gx(e(t,ξ )) is spatially constant. The strict monotonic-
ity of gx then implies thate(t,ξ ) is spatially constant, whence we can set up

E(t,ξ ) = e(t) ·ex

for some scalar-valued functioneonly depending on timet (see Fig. 12).
Consider now the straight pathS between(0,0,0) and(ℓ,0,0). The normal of

this path fulfillsn(ξ ) = ex for all ξ ∈ S. As a consequence, the voltage reads

u(t) =
ˆ

S

nT(ξ ) ·E(t,ξ )dS(ξ )

=

ˆ

S

eT
x ·e(t) ·exdS(ξ )

=

ˆ

S

e(t)dS(ξ )

=

ˆ ℓ

0
e(t)dξ = ℓe(t).

(34)

Consider the cross-sectional areaA0 (compare (33)). The normal ofA0 fulfills
ν(ξ ) = ex for all ξ ∈ A0. Then obtain for the voltageu(t) between the ends of
the conductor and the currenti(t) through the conductor that
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i(t) =
¨

A0

νT(ξ ) j(t,ξ )dA(ξ )

=

¨

A0

νT(ξ )gx(e(t)) ·exdA(ξ )

=

¨

A0

eT
x gx(e(t)) ·exdA(ξ )

=

¨

A0

gx(e(t))dA(ξ )

=(πr2) ·gx(e(t)) = (πr2) ·gx

(
u(t)
ℓ

)

︸ ︷︷ ︸
=:g(u(t))

.

As a consequence, we obtain the algebraic relation

i(t) = g(u(t)), (35)

whereg : R → R is a strictly monotonically increasing and differentiablefunction
with g(0) = 0.

R

uR (t)

iR (t)

Fig. 10: Symbol of a resistance

Remark 5.2 (Linear resistance). Note that, in the case where the friction function
is furthermore linear (i.e., g(E(t,ξ ),ξ ) = cg ·E(t,ξ )), the resistance relation(35)
becomes

i(t) = G ·u(t), (36)

where

G =
πr2 ·cg

ℓ
> 0

is the so-calledconductance valueof the linear resistance.
Equivalently, we can write

u(t) = R · i(t), (37)

where

R =
ℓ

πr2 ·cg
> 0
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Remark 5.3 (Resistance, energy balance). The energy balance of a general resis-
tance that is operated in the time interval[t0, t f ]

Er =

ˆ t f

t0

u(τ)i(τ)dτ =

ˆ t f

t0

u(τ)g(u(τ))dτ ≥ 0,

where the latter inequality holds, since the integrand is positive. A resistance is
therefore anenergy-dissipating element, i.e., it consumes energy.
Note that, in the linear case, the energy balance simplifies to

Er = G ·
ˆ t f

t0

u2(τ)dτ ≥ 0.

5.3 Capacitances

We make the following ansatz for a capacitance: Consider again an electromagnetic
medium in a cylindric spatial domainΩ ⊂ R

3 as in (32) with lengthℓ and radius
r (see also Fig. 9). To deduce the relation between capacitivevoltage and current
from Maxwell’s equations, we make the following assumptions.

Assumption 5.4(The electromagnetic field inside capacitances).

(a) The magnetic flux intensity inside the medium is stationary, that is,

∂
∂ t B≡ 0.

(b) The medium is a perfect isolator, that is, j(·,ξ ) ≡ 0 for all ξ ∈ Ω .
(c) In the lateral area

Alat = [0, ℓ]×{(ξy,ξz) : ξ 2
y + ξ 2

z = r2} ⊂ ∂Ω

of the cylindric domainΩ , the magnetic field intensity is directed orthogonal to
Alat . In other words, for allξ ∈ Alat and all times t, the outward normalν(ξ )
and H(t,ξ ) are linearly dependent.

(d) There is no explicit algebraic relation between the electric current density van-
ishes and the electric field intensity.

(e) Ω does not contain any electric charges.
(f) For all ξx ∈ [0, ℓ], there holds that the voltage between two arbitrary points of

Aξx
(compare(33)) vanishes.

(g) The function fe : R3×Ω →R
3 has the following properties

(i) fe is continuously differentiable.
(ii) f e is homogeneous. That is, fe(D,ξ1) = fe(D,ξ2) for all D ∈ R

3 and
ξ1,ξ2 ∈ Ω .

(iii) The function fe(·,ξ ) : R3 → R
3 is invertible for some (and hence any)

ξ ∈ Ω .
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(iv) fe is isotropic. That is, fe(D,ξ ) and D are linearly dependent for all
D ∈R

3 andξ ∈ Ω .

Using the definition of the voltage (10), property c) consequences that the electric
field intensity is directed according to the conductor, i.e., E(t,ξ ) = e(t,ξ ) · ex for
some scalar-valued functione(·, ·). Isotropy, homogeneity and the invertibility offe
then implies that the electrical displacement is as well directed along the conductor,
whence

D(t,ξ ) = f−1
e (E(t,ξ ),ξ ) = qx(e(t,ξ )) ·ex.

for some differentiable and invertible functionqx : R → R. Further, by using that,
by the absence of electric charges, that the field of electricdisplacement is diver-
gence free, we obtain that is even spatially constant. Consequently, the electric field
intensity is as well spatially constant, and we can set up

E(t,ξ ) = e(t) ·ex

for some scalar-valued functione(·) only depending on time.
Using that the magnetic field is stationary, we can, as for resistances, infer that

the electrical field is spatially constant, i.e.,

E(t,ξ ) = e(t) ·ex

for some scalar-valued functione(·) only depending on time, we can use the argu-
mentation in as in (34) to see that the voltage reads

u(t) = ℓe(t).

Assume that the currenti(·) is applied to the capacitor. The current density inside
Ω is additively composed of the current density induced by theapplied current
jappl(·, ·) and the current densityj ind(·, ·) induced by the electric field. Since the
medium inΩ is an isolator, the current density insideΩ vanishes. Consequently,
for all timest and allξ ∈ Ω , there holds

0= jappl(t,ξ )+ j ind(t,ξ ).

The definition of the current implies that

i(t) =
¨

A0

νT(ξ ) jappl(t,ξ )dA(ξ )

The definition of the cross-sectional areaA0 and the lateral surfaceAlat yields
∂A0 ⊂Alat . By Maxwell’s equations, Stokes theorem, stationarity of the magnetic
flux intensity and the assumption that the tangential component magnetic field in-
tensity vanishes in the lateral surface, we obtain
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i(t) =
¨

A0

νT(ξ ) · jappl(t,ξ )dA(ξ )

=−
¨

A0

νT(ξ )︸ ︷︷ ︸
=eT

x

· j ind(t,ξ )dA(ξ )

=

ˆ

A0

eT
x · ∂

∂ t D(t,ξ )−eT
x ·curlH(t,ξ )dA(ξ )

= d
dt

¨

A0

eT
x ·D(t,ξ )dA(ξ )−

˛

∂A
nT(ξ ) ·H(t,ξ )︸ ︷︷ ︸

=0

dS(ξ )

= d
dt

¨

A0

eT
x · f−1

e (E(t,ξ ),ξ )dA(ξ )

= d
dt

¨

A0

eT
x ·qx(e(t)) ·exdA(ξ )

= d
dt πr2 ·qx(e(t))

= d
dt πr2 ·qx

(
u(t)
ℓ

)

︸ ︷︷ ︸
=:q(u(t))

.

That is, we obtain a dynamic relation

i(t) = d
dt q(u(t)) (38)

for some functionq :R→R. Note that the quantityq(u) has the physical dimension
of electric charge, whenceq(·) is calledcharge function. It is sometimes spoken
about the chargeq(u(t)) of the capacitance. Note thatq(u(t)) is a virtual quantity.
Especially, there is no direct relation between the charge of a capacitance and the
electric charge (density) as introduced in Section 3

C

uC (t)

iC (t)

Fig. 11: Symbol of a capacitance

Remark 5.5(Linear capacitance). Note that, in the case where the constitutive rela-
tion is furthermore linear (i.e., fe(D(t,ξ ),ξ ) = cc ·D(t,ξ )), the capacitance relation
(35)becomes

i(t) = C · u̇(t), (39)
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where

C =
πr2

ℓcc
> 0

is the so-calledcapacitance valueof the linear capacitance.

Remark 5.6(Capacitance, energy balance). Isotropy and homogeneity of fe and the
construction of the function qx further implies that the electric energy density fulfills

d
dD

VT
e (qx(e) ·ex,ξ ) = fe(qx(e) ·ex,ξ ) = e·ex.

Hence, the function qx : R→ R is invertible with

q−1
x (q) = eT

x
d

dD
VT

e (q ·ex) =
d
dq

Ve,x(q),

where
Ve,x : R → R,

q 7→Ve(q ·ex).

In particular, this function fulfills Ve,x(0) = 0 and Ve,x(q)> 0 for all q ∈ R\ {0}.
The construction of the capacitance function and the assumption (3)on fe implies

that q: R→R is invertible with

q−1(·) = ℓ ·q−1
x

( ·
πr2

)
=

d
dq

lπr2Ve,x

( ·
πr2

)

︸ ︷︷ ︸
=:VC (·)

.

As well, there holds VC (0) = 0 and VC (qC )> 0 for all qC ∈ R\ {0}.
Now we consider the energy balance of a capacitance that is operated in the time

interval [t0, t f ]

EC =

ˆ t f

t0

u(τ)i(τ)dτ

=

ˆ t f

t0

q−1(q(u(τ)) · d
dτ

q(u(τ))dτ

=

ˆ t f

t0

d
dq

VC (q(u(τ)) ·
d
dτ

q(u(τ))dτ

=

ˆ t f

t0

d
dτ

VC (q(u(τ))dτ

= VC (q(u(τ)))
∣∣∣∣
τ=t f

τ=t0

.

(40)

Consequently, the function VC has the physical interpretation of anenergy storage
function. A capacitance is therefore areactive element, i.e., it stores energy.
Note that, in the linear case, the storage function simplifies to
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VC (q(u)) =
1
2 ·C

−1 ·q2(u) = 1
2 ·C

−1 · (C (u))2 = 1
2 ·C ·u2,

whence the energy balance then reads

EC = 1
2 ·C ·u2(τ)

∣∣∣∣
τ=t f

τ=t0

.

Remark 5.7(Capacitances and differentiation rules). The previous assumptions im-
ply that the function q: R → R is differentiable. By the chain rule,(38) can be
rewritten as

i(t) = C (u(t)) · u̇(t), (41)

where

C (uC ) =
d

duC

q(uC ).

Monotonicity of q further implies thatC (·) is a pointwisely positive function.
By the differentiation rule for inverse functions, we obtain

C (uC ) =
d

duC

q(uC ) =

(
d
dq

VC (q(uC ))

)−1

.

5.4 Inductances

It will turn out in this part that inductances are componentswhich store magnetic
energy. We will see that there are certain analogies to capacitances, if one replaces
electric by accordant magnetic physical quantities. The mode of action of an in-
ductance can be explained by a conductor loop. We further make the (simplifying)
assumption that the conductor forms a circle which is interrupted by an isolator of
width zero (see Fig. 12). Assume that the circle radius is given byr, where the ra-
dius is here defined to be the distance from the circle midpoint to any conductor
midpoint. Further letlh be the conductor width.

To deduce the relation between inductive voltage and current from Maxwell’s
equations, we make the following assumptions.

Assumption 5.8(The electromagnetic field inside capacitances).

(a) The electric displacement inside the medium is stationary, that is,

∂
∂ t D ≡ 0.

(b) The medium is a perfect conductor, that is, E(·,ξ )≡ 0 for all ξ ∈C.
(c) There is no explicit algebraic relation between the electric current density van-

ishes and the electric field intensity.
(d) C does not contain any electric charges.
(e) The function fm : R3×C→R

3 has the following properties
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x

y

z

r

lh

u(t) u(t)

 

H(t,ξ )

Fig. 12: Model of an inductance

(i) fm is continuously differentiable.
(ii) f m is homogeneous. That is, fm(B,ξ1) = fm(B,ξ2) for all B ∈ R

3 and
ξ1,ξ2 ∈C.

(iii) The function fm(·,ξ ) : R3 → R
3 is continuously differentiable for some

(and hence any)ξ ∈C.
(iv) Inverse function f−1

m (·,ξ ) :R3 →R
3 is invertible for some (and hence any)

ξ ∈C.
(v) fm is isotropic. That is, fm(B,ξ ) and B are linearly dependent for all

B∈ R
3 andξ ∈C.

Let ξ = ξxex+ ξyey+ ξzez and leths : R→R be a differentiable function with

hs(x) = 0 for all x∈ [0, r − lh/2]∪ [r + lh/2,∞),

and
hs(x)> 0 for all x∈ (r − lh/2, r + lh/2).

We make the following ansatz for the magnetic flux intensity:

H(t,ξ ) = hs(ξ 2
y + ξ 2

z ) ·h(t) ·ex,

whereh(·) is a scalar-valued function defined on a temporal domain in which the
process evolves (see Fig. 12).

Using the definition of the current (8), Maxwell’s equations, property (c) and the
stationarity of the electric field consequences
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i(t) =
ˆ

{0}×[r−lh/2,r+lh/2]×[0,ld]
νT(ξ ) · j(t,ξ )dS(ξ )

=

ˆ

{0}×[r−lh/2,r+lh/2]×[0,ld]
νT(ξ ) ·curlH(t,ξ )dS(ξ )

=

ˆ

{0}×[r−lh/2,r+lh/2]×[0,ld]
eT

x ·2b′s(ξ
2
y + ξ 2

z ) ·ex ·h(t)dS(ξ )

=2
ˆ

{0}×[r−lh/2,r+lh/2]×[0,ld]
b′s(ξ

2
y + ξ 2

z )dS(ξ )
︸ ︷︷ ︸

=:cm

·h(t).

Assume that the voltageu(·) is applied to the inductor. The electric field inten-
sity inside the conductor is additively composed of the fieldintensity induced by
the applied voltageEappl(·, ·) and the electric field intensityEind(·, ·) induced by
the magnetic field. Since the wire is a perfect conductor, theelectric field intensity
vanishes inside the wire. Consequently, for all timest and allξ ∈ R

3 with

0≤ ξx ≤ ld and(r − lh)
2 ≤ ξ 2

y + ξ 2
z ≤ (r + lh)

2,

there holds
0= Eappl(t,ξ )+Eind(t,ξ ).

Let A⊂ R
3 be a circular area that is surrounded by the midline of the wire, i.e.,

A= {(ξx,ξy,ξz) ∈ R
3 : ξx = ld/2 andξ 2

y + ξ 2
z ≤ r2}.

Isotropy, homogeneity and the invertibility offm then implies that the magnetic flux
is as well directed orthogonal toA, i.e.,

B(t,ξ ) = f−1
m (H(t,ξ ),ξ )

=ψx(hs(ξ 2
y + ξ 2

z ) ·h(t)) ·ex

=ψx

(
hs(ξ 2

y + ξ 2
z )

cm
· i(t)

)
·ex.

for some differentiable functionψx : R→R.
By Maxwell’s equations, Stokes theorem, the definition of the voltage and a trans-
formation to polar coordinates, we obtain
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u(t) =
ˆ

∂A
nT(ξ ) ·Eappl(t,ξ )dS(ξ )

=−
ˆ

∂A
nT(ξ ) ·Eind(t,ξ )dS(ξ )

=−
ˆ

A
νT(ξ )︸ ︷︷ ︸
=eT

x

·curlEind(t,ξ )︸ ︷︷ ︸
=− ∂

∂ t B(t,ξ )

dA(ξ )

=− d
dt

ˆ

A
eT

x · B(t,ξ )︸ ︷︷ ︸
=ψx

(
hs(ξ2

y +ξ2
z )

cm
·i(t)

)
·ex

dA(ξ )

=
d
dt

ˆ

A
ψx

(
hs(ξ 2

y + ξ 2
z )

cm
· i(t)

)
dA(ξ )

=
d
dt

2π
ˆ r+lh/2

r−lh/2
yψx

(
hs(y2)

cm
· i(t)

)
dy

︸ ︷︷ ︸
=:ψ(i(t))

.

That is, we obtain a dynamic relation

u(t) = d
dt ψ(i(t)) (42)

for some functionψ : R→ R, which is calledmagnetic flux function.

Remark 5.9(Linear inductance). Note that, in the case where the constitutive rela-
tion is furthermore linear (i.e., fm(B(t,ξ ),ξ ) = ci ·H(t,ξ )), the inductance relation
(35)becomes

u(t) = L · i̇(t), (43)

where

L =
2πci

cm

ˆ r+lh/2

r−lh/2
s·hs(s

2)dξ > 0

is the so-calledinductance valueof the linear inductance.

L

uL(t)

iL (t)

Fig. 13: Symbol of an inductance
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Remark 5.10 (Inductance, energy balance). Isotropy and homogeneity of fm and
the construction of the functionψx further implies that the magnetic energy density
fulfills

d
dB

VT
m

(
ψx
(
hs(ξ 2

y + ξ 2
z )h(t)

)
·ex,ξ

)

= fm
(
ψx
(
hs(ξ 2

y + ξ 2
z ) ·h(t)

)
·ex,ξ

)
= H(t,ξ )

=hs(ξ 2
y + ξ 2

z ) ·h(t) ·ex.

Hence, the functionψx : R→R is invertible with

ψ−1
x (h) = eT

x
d

dD
VT

e ((h) ·ex) =
d
dq

Vm,x(h),

where
Vm,x : R →R,

h 7→Vm(h ·ex)

In particular, this function fulfillsVm,x(0)=0 andVm,x(h)>0 for all h∈R\{0}. The
latter together with the continuous differentiability of fm(·,ξ ) and f−1

m (·,ξ ) implies
that the derivatives of both the functionψ−1

x andψx are positive and, furthermore,
ψx(0) = 0. Thus, the functionψ : R→ R is differentiable with

ψ ′(i) = 2π
ˆ r+lh/2

r−lh/2
yψ ′

x

(
hs(y2)

cm
· i
)

hs(y2)

cm
dy> 0.

Consequently,ψ possesses a continuously differentiable and strictly monotonically
increasing inverse functionψ−1 : R→R with signψ−1(p) = sign(p) for all p ∈R.
Now consider the function

VL : R →R,

ψL 7→
ˆ ψL

0
ψ−1(p)dp.

The construction of VL implies that VL(0) = 0 and VL(ψL )> 0 for all ψL ∈R\{0}
and, furthermore,

ψ−1(ψL) =
d

dψL

VL(ψL) for all ψL ∈ R.

Now we consider the energy balance of an inductance that is operated in the time
interval [t0, t f ]
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EL =

ˆ t f

t0

u(τ)i(τ)dτ

=

ˆ t f

t0

d
dτ

ψ(i(τ))ψ−1(ψ(i(τ)))dτ

=

ˆ t f

t0

d
dτ

ψ(i(τ))
d

dψ
VL(ψ(i(τ)))dτ

=

ˆ t f

t0

d
dτ

VL(ψ(i(τ))dτ

= VL(ψ(i(τ)))
∣∣∣∣
τ=t f

τ=t0

.

(44)

Consequently, the function VL has the physical interpretation of anenergy storage
function. An inductance is therefore again a reactive element.
In the linear case, the storage function simplifies to

VL(ψ(u)) = 1
2 ·L

−1 ·ψ2(i) = 1
2 ·L

−1 · (L(i))2 = 1
2 ·L · i2,

whence the energy balance then reads

EL = 1
2 ·L · i2(τ)

∣∣∣∣
τ=t f

τ=t0

.

Remark 5.11(Inductances and differentiation rules). The previous assumptions im-
ply that the functionψ : R → R is differentiable. By the chain rule,(42) can be
rewritten as

u(t) = L(i(t)) · i̇(t), (45)

where

L(uL) =
d

diL
ψ(iL).

Monotonicity ofψ further implies that the functionL(·) is pointwisely positive.
By the differentiation rule for inverse functions, we obtain

L(iL ) =
d

diL
ψ(iL ) =

(
d

dψ
VL(ψ(iL ))

)−1

.

5.5 Notes and references

(i) In [KK93,DK69,CDK87,JJH92,Tis], component relationshave also been de-
rived. These however go with an a priori definition of capacitive charge and
magnetic flux as physical quantities. In contrast to this, our approach is based
on Maxwell’s equations with additional assumptions.
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(ii) Note that, apart from sources, resistances and capacitances, there are various
further components which occur in electrical circuits. Such components could,
for instance, becontrolled sources[ST00] (i.e., sources with voltage or cur-
rent explicitly depending on some other physical quantity), semi-conductors
[BT07] (such as diodes and transistors), mem-devices [Ria11,RT11,RT13] or
transmission lines [Rei06].

6 Circuit models and differential-algebraic equations

6.1 Circuit equations in compact form

Having collected all relevant equations describing an electrical circuit, we are now
ready to set up and analyze the overall model. Let a connectedelectrical circuit with
n branches be given; let the vectorsi(t),u(t)∈R

n be defined as in (13) and (15), i.e.,
their components are containing voltages and current of therespective branches. We
further assume that the branches are ordered by the type of component, i.e.,

i(t) =




iR (t)
iC (t)
iL (t)
iV (t)
iI(t)



, u(t) =




uR (t)
uC (t)
uL(t)
uV (t)
uI(t)



, (46)

where

iR (t), uR (t) ∈R
nR , iC (t), uC (t) ∈R

nC , iL(t), uL(t) ∈R
nL ,

iV (t), uV (t) ∈R
nV , iI(t), uI(t) ∈R

nI .

The component relations then read, in compact form,

iR (t) = g(uR (t)), iC (t) =
d
dt q(uC (t)), uL(t) =

d
dt ψ(iL(t)),

for
g : R

nR →R
nR , q : R

nC →R
nC ,




u1
...

unR


 7→




g1(u1)
...

gnR
(unR

)


 ,




u1
...

unC


 7→




q1(u1)
...

qmC
(unC

)


 ,

ψ : R
mL →R

nL ,



i1
...

inL


 7→




ψ1(u1)
...

ψnC
(inC

)


 ,
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where the scalar functionsgi,qi ,ψi :R→R are respectively representing the behav-
ior of the i-th resistance, capacitance and inductance. The assumptions of Section 5
imply thatg(0) = 0, and for allu∈R

mC \ {0}, there holds

uTg(u)> 0. (47)

Further, sinceq−1
k (qCk) =

d
dqCk

VCk(qCk), ψ−1
k (ψLk) =

d
dψLk

VLk(ψLk), the functions

q : RnC →R
nC , ψ : RnL →R

nL posses inverses fulfilling

q−1(qC ) =
d

dqC

VC (qC ), ψ−1(ψL ) =
d

dψL
VL(ψL), (48a)

where

VC (qC ) =
nC

∑
k=1

VCk(qC k), VL(ψL ) =
nL

∑
k=1

VLk(ψLk). (48b)

In particular, there holdsVC (0) = 0,VL(0) = 0 and

VC (qC )> 0, VL(ψL )> 0 for all qC ∈ R
nC , ψL ∈R

nL .

Using the chain rule, the component relations of the reactive elements read (see
Remark 5.7 and Remark 5.11)

iC (t) = C (uC (t)) · u̇C (t), uL(t) = L(iL (t)) · i̇C (t). (49a)

where

C (uC ) =
d

duC

q(uC ), L(iL ) =
d

diL
ψ(iL ). (49b)

In particular, monotonicity of the scalar charge and flux functions implies that the
ranges of the functionsC : RnC → R

nC ,nC L : RnL → R
nL ,nL are contained in the

set of diagonal and positive definite matrices.
The incidence and loop matrices can, as well, be partitionedaccording to the

subdivision ofi(t) andu(t) in (46), i.e.,

A=
[
AR AC AL AV AI

]
, B=

[
BR BC BL BV BI

]
.

Kirchhoff’s laws can now be represented in two alternative ways, namely the
incidence-based formulation (see (24) and (26))

AR iR (t)+AC iC (t)+AL iL(t)+AV iV (t)+AI iI(t) = 0

uR (t) = AT
R φ(t), uC (t) = AT

C φ(t), uL(t) =AT
L φ(t),

uL (t) = AT
Lφ(t), uV (t) = AT

V φ(t), uI(t) =AT
I φ(t)

(50)

or the loop-based formulation (see (25) and (27))
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BR uR (t)+BC uC (t)+BLuL(t)+BV uV (t)+BIuI(t) = 0

iR (t) = BT
R ι(t), iC (t) = BT

C ι(t), iL(t) =BT
L ι(t),

iL(t) = BT
L ι(t), iV (t) = BT

V ι(t), iI(t) =BT
I ι(t).

(51)

Having in mind that the functionsuV (·) andiI(·) are prescribed, the overall circuit
is described by the resistance lawiR (t) = g(uR (t)), the differential equations (49a)
for the reactive elements, and the Kirchhoff laws either in the form (50) or (51). This
altogether leads to a coupled system of equations being of pure algebraic nature
(such as the Kirchhoff laws and the component relations for resistances) together
with a set of differential equations (such as the component relations for reactive
elements). This type of systems is, in general, referred to as differential-algebraic
equations. A more rigorous definition and some general facts on type is presented
in Section 6.2. Since many of the above formulated equationsare explicit in one
variable, several relations can be inserted into one another to obtain a system of
smaller size. In the following we discuss two possibilities:

a) Modified nodal analysis (MNA)
We are now using the component relations together with the incidence-based
formulation of the Kirchhoff laws: Based on the KCL, we eliminate the resistive
and capacitive currents and voltages. Then we obtain

AC C (AT
C φ(t))AT

C φ(t)+AR g(AT
R φ(t))+AL iL (t)+AV iV (t)+AI iI(t) = 0.

Pluggin the KVL for the inductive voltages into the component relation for in-
ductances, we are led to

−AT
Lφ(t)+L(iL (t)) · d

dt iL (t) = 0.

Together with the KVL for the voltage sources, this gives theso-calledmodified
nodal analysis

AC C (AT
C φ(t))AT

C
d
dt φ(t)+AR g(AT

R φ(t))+AL iL (t)+AV iV (t)+AI iI(t) =0,

−AT
L φ(t)+L(iL (t))

d
dt iL(t) =0,

−AT
V φ(t)+uV (t) =0.

(52)
The unknown variables of this system are the functions for node potentials, in-
ductive currents and currents of voltage sources. The remaining physical vari-
ables (such as the voltages and the resistive and capacitivecurrents) can be alge-
braically reconstructed from the solutions of the above system.

b) Modified loop analysis (MLA)
Additionally assuming that the characteristic functionsgk of all resistances are
strictly monotonic and surjective, the conductance function possesses some con-
tinuous and strictly monotonic inverse functionr : RnR →R

nR . This function as
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well fulfills r(0) = 0 and

iR · r(iR )> 0 for all iR ∈ R
nR \ {0}.

Now using the component relations together with the loop-based formulation
of the Kirchhoff laws, we obtain from the KVL, the component relations for
resistances and inductances, and the KCL for resistive and inductive currents
that

BL L(BT
L ι(t))BT

L ι(t)+BR r(BT
R ι(t))+BC uC (t)+BIuI(t)+BV uV (t) = 0.

Moreover, the KCL together with the component relation for capacitances reads

−BT
C ι(t)+C (uC (t)) · d

dt uC (t) = 0.

Using these two relations together with the KVL for the voltage sources, we are
led to themodified loop analysis

BLL(BT
L ι(t))BT

L
d
dt ι(t)+BR r(BT

R ι(t))+BC uC (t)+BIuI(t)+BV uV (t) =0,

−BT
C ι(t)+C (uC (t))

d
dt uC (t) =0,

−BT
I ι(t)+ iI(t) =0.

(53)
The unknown variables of this system are the functions for loop currents, capac-
itive voltages and voltages of current sources.

6.2 Differential-algebraic equations, general facts

Modified nodal analysis and modified loop analysis are systems of equations with
a vector-valued function in one indeterminate as unknown. Some of these equations
contain the derivative of certain components of the to-be-solved function, whereas
other equations are of purely algebraic nature. Such systems are calleddifferential-
algebraic equations. A rigorous definition and some basics of this type are presented
in the following.

Definition 6.1 (Differential-Algebraic Equation, Solution). Let U,V ⊂R
n be open,

let I = [t0, t f ) be an interval for some tf ∈ (t0,∞]. LetF : U ×V× I →R
k be a func-

tion. Then an equation of the form

F(ẋ(t),x(t), t) = 0 (54)

is calleddifferential-algebraic equation (DAE). A function x(·) : [t0,ω)→V is said
to be asolutionof the DAE(54), if it is differentiable withẋ(t) for all t ∈ [t0,ω), and
(54) is pointwisely fulfilled for all t∈ [t0,ω).
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A vector x0 ∈V is calledconsistent initial value, if (54)has a solution with x(t0) =
x0.

Remark 6.2. (i) If F : U ×V× I →R
k is of the formF(ẋ,x, t) = ẋ− f (x, t), then

(54) reduces to an ordinary differential equation (ODE). In thiscase, the as-
sumption of continuity of f: V × I gives rise to the consistency of any initial
value. If, moreover, f is locally Lipschitz continuous withrespect to x (that is,
for all (x, t) ∈V × I, there exists some neighborhoodU and some L> 0, such
that‖ f (x1,τ)− f (x2,τ)‖ ≤ ‖x1−x2‖ for all (x1,τ),(x2,τ) ∈ U), then any ini-
tial condition determines the local solution uniquely [Arn92,§7.3]. Local Lip-
schitz continuiuty is, for instance, fulfilled, if f is continuously differentiable.

(ii) If F(·, ·, ·) is differentiable, andd
dẋF(ẋ0,x0, t0) is an invertible matrix at some

(ẋ0,x0, t0) ∈U ×V × I, then the implicit function theorem [Tao09, Sec. 17.8]
implies that the differential-algebraic equation(54) is locally equivalent to an
ODE.

Since theory of ODEs is well-understood, it is - at least froma theoretical point of
view - desirable to lead back a differential-algebraic equation to an ODE in a certain
way. This is done in what follows.

Definition 6.3 (Derivative array, differentiation index). Let U,V ⊂ R
n be open, let

I = [t0, t f ) be an interval for some tf ∈ (t0,∞]. Let l ∈ N, F : U ×V × I → R
k, and

let a differential-algebraic equation(54) be given. Then theνth derivative array of
(54) is given by the first l formal derivatives of(54)with respect to time, that is

Fµ(x
(ν+1)(t),x(ν)(t), . . . , ẋ(t),x(t), t) =




F(ẋ(t),x(t), t)
d
dtF(ẋ(t),x(t), t)

...
dν

dtν F(ẋ(t),x(t), t)


= 0. (55)

The differential-algebraic equation(54) is said to havedifferentiation indexν ∈ N,
if for all (x, t) ∈ V × I, there exists some uniquėx ∈ V such that there exist some
ẍ, . . . ,x(ν+1) ∈U such thatFµ(x(ν+1),x(ν), . . . , ẋ,x(t), t) = 0. In this case, there ex-
ists some function f: V × I →V with (x, t) 7→ ẋ for t, x andẋ with the above prop-
erties. The ODE

ẋ(t) = f (x(t), t) (56)

is said to beinherent ordinary differential equation of (54).

Remark 6.4.
(i) By the chain rule, there holds

0=
d
dt
F(ẋ(t),x(t), t)

=
∂
∂ ẋ

F(ẋ(t),x(t), t) · ẍ(t)+ ∂
∂x

F(ẋ(t),x(t), t) · ẋ(t)+ ∂
∂ t

F(ẋ(t),x(t), t).
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A further successive application of the chain and product rule leads to deriva-
tive array of higher order.

(ii) Since the inherent ODE is obtained by differentiation of the differential-
algebraic equation, any solution of(54)solves(56)as well.

(iii) The inherent ODE is obtained by picking equations of the ν-th derivative ar-
ray which are explicit for the components ofẋ. In particular, equations in the
Fµ(x(ν+1)(t),x(ν)(t), . . . , ẋ(t),x(t), t) = 0which contain higher derivatives of x
can be abolished. For instance, a so-calledsemi-explicit differential-algebraic
equation, i.e., a DAE of the form

0=

(
ẋ1(t)− f1(x1(t),x2(t), t)

f2(x1(t),x2(t), t)

)
(57)

may be transformed to its inherent ODE by only differentiating the equation
f2(x1(t),x2(t), t) = 0. This yields

0=
∂

∂x1
f2(x1(t),x2(t), t)ẋ1(t)+

∂
∂x2

f2(x1(t),x2(t), t)ẋ2(t)

=
∂

∂x1
f2(x1(t),x2(t), t) f1(x1(t),x2(t), t)+

∂
∂x2

f2(x1(t),x2(t), t)ẋ2(t).
(58)

If ∂
∂x2

f2(x1(t),x2(t), t) is invertible, then the system is of differentiation index
ν = 1, and the inherent ODE reads

(
ẋ1(t)
ẋ2(t)

)
=

(
f1(x1(t),x2(t), t)

−
(

∂
∂x2

f2(x1(t),x2(t), t)
)−1 ∂

∂x1
f2(x1(t),x2(t), t) f1(x1(t),x2(t), t)

)
,

(59)
In this case,(x1(·),x2(·)) solves the differential-algebraic equation(57), if,
and only if, it solves the inherent ODE(59)and the initial value(x10,x20) ful-
fills thealgebraic constraintf2(x10,x20, t0) = 0.
In case of singular ∂

∂x2
f2(x1(t),x2(t), t), some further differentiations are nec-

essary to obtain the inherent ODE. A semi-explicit form may then be ob-
tained by applying a state space transformationx̄(t) = T(x(t), t) for some
differentiable mapping T: V × I → V̄ with the property that T(·, t) : V × V̄
is bijective for all t∈ I, and, additionally, applying some suitable mapping
W : Rk × I × I → R

k to the differential-algebraic equation that consists of
ẋ1(t)− f1(x1(t),x2(t), t) and the differentiated algebraic constraint. The alge-
braic constraint that is obtained in this way is referred to as hidden algebraic
constraint. This procedure is repeated until no hidden algebraic constraint is
obtained anymore. In this case, the solution set of the the differential-algebraic
equation(57)equals to the solution set of its inherent ODE with the additional
property that the initial value fulfills all algebraic and hidden algebraic con-
straints.

The remaining part of this subsection is devoted to a differential-algebraic equa-
tion of special structure comprising both MNA and MLA, namely
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0= Eα(ETx1(t))E
T ẋ1(t) +Aρ(ATx1(t))+B2x2(t)+B3x3(t) + f1(t)

0= β (x2(t))ẋ2(t) −BT
2 x1(t)

0= −BT
3 x1(t) + f3(t),

(60)

with the following assumptions

Assumption 6.5(Matrices and functions in the DAE (60)).
Given are matrices E∈ R

n1,m1, A∈ R
n1,m2, B2 ∈ R

n1,n2, B3 ∈ R
n1,n3 and continu-

ously differentiable functionsα : Rm1 → R
m1,m1, β : Rn2 → R

n2,n2 andρ : Rm2 →
R

m2 with

(a) rank[E , A, B2 , B3 ] = n1;
(b) rankB3 = n3;
(c) α(z1)> 0, β (z2)> 0 for all z1 ∈ R

m1, z2 ∈ R
m2;

(d) ρ ′(z)+ (ρ ′)T(z)> 0 for all z∈ R
n2.

Next we analyze the differentiation index of differential-algebraic equations of
type (60).

Theorem 6.6. Let a differential-algebraic equation(60) be given and assume
that the matrices E∈ R

n1,m1, A ∈ R
n1,m2, B2 ∈ R

n1,n2, B3 ∈ R
n1,n3 and functions

α : Rm1 → R
m1,m1, ρ : Rm2 → R

m2,m2, β : Rn2 → R
n2,n2 have the properties as in

Assumptions 6.5. Then, for the differentiation indexν of (60), there holds

a) ν = 0, if, and only if, n3 = 0 andrankE = n1.
b) ν = 1, if, and only if, it is not zero and

rank[E , A, B3 ] = n1 and ker[ET , B3 ] = kerET ×{0}. (61)

c) ν = 2, if, and only if,ν /∈ {1,2}.

For the proof, we need the following auxiliary results:

Lemma 6.7. Let A∈ R
n1,m, B∈R

n1,n2, C∈ R
m,m with C+CT > 0. Then for

M =

[
ACAT B
−BT 0

]
.

holds
kerM = ker[A, B]T × kerB. (62)

In particular, M is invertible, if, and only if,kerA∩kerBT = {0} andkerB= {0}

Proof. The inclusion “⊂” in (62) is trivial. To show that the converse subset relation
holds true as well, assume thatx∈ kerM and partition

x=

(
x1

x2

)

according to the block structure ofM. Then we obtain
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0= xTMx=
1
2

xT
1 A(C+CT)ATx1 = 0,

whence, by
C+CT > 0,

there holdsATx1 = 0. The equationMx = 0 then implies thatBx2 = 0 and
BTx1 = 0. ⊓⊔

Note that, by settingn2 = 0 in Lemma 6.7, we obtain kerACAT = kerAT .

Lemma 6.8. Let matrices E∈ R
n1,m1, A ∈ R

n1,m2, B2 ∈ R
n1,n2, B3 ∈ R

n1,n3 and
functionsα :Rm1 →R

m1,m1, ρ :Rm2 →R
m2,m2, β :Rn2 →R

n2,n2 with the properties
as in Assumptions 6.5 be given. Further, let

W ∈ R
n1,p, W ∈ R

n1,p̃,

W1 ∈ R
p,p1, W ∈R

p,p̃1,

W2 ∈ R
n3,p2, W2 ∈ R

n3,p̃2

(63a)

be matrices with full column rank and

imW =kerET , imW = imE,

imW1 =ker[A, B3 ]
TW, imW1 = imWT [A, B3 ],

imW2 =kerWTB3, imW2 = imBT
3W.

(63b)

Then the following holds true:

a) The matrices[W ,W ], [W1 ,W1 ] and[W2 ,W2 ] are invertible.
b) kerETW = {0};
c) kerWTB3 = {0} if, and only if,ker[ET , B3 ] = kerET ×{0};
d) WW1 has full column rank andimWW1 = ker[E , A, B3]

T ;
e) kerWT

1 ZTB3W2 = {0};
f) ker[A, B3W2]

TWW1 = {0};
g) kerBT

2WW1 = {0};
h) kerWTB3W2 = {0}.

Proof. a) The statement for[W ,W ] follows by the fact that bothW andW have
full column rank together with

imW = kerET = (imE)⊥ = (imW)⊥.

The invertibility of the matrices[W1 ,W1 ] and [W2 ,W2 ] follows by the same
argumentation.

b) Letx∈ kerETW . Then, by definition ofW andW , there holdsWx∈ kerET and
Wx ∈ imW = imE = (kerET)⊥, and thusWx = 0. SinceW has full column
rank, there holdsx= 0.
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c) Assume that kerWTB3 = {0}, and letx1 ∈R
n1, x3 ∈ R

n3 with

[
ET B3

](x1

x3

)
= 0.

A multiplication of this equation from the left withWT leads toWTB3x3 = 0,
and thusx3 = 0.
To prove the converse direction, assume thatWTB3x3 = 0. Then there holds

B3x3 ∈ kerWT = (imW)⊥ = (kerET)⊥ = imE.

Hence, there exists somex1 ∈ R
m1 such thatEx1 = B3x3, i.e.,

(
−x1

x3

)
∈ ker

[
E B3

]
= kerE×{0},

whencex3 = 0.
d) WW1 has full column rank as a product of matrices with full columnrank.

The inclusion imWW1 ⊂ ker[E , A, B3]
T follows from




ET

AT

BT
3


WW1 =




(ETW)W1([
AT

BT
3

]
W

)
W1


= 0.

To prove imWW1 ⊃ ker[E , A, B3]
T , assume thatx ∈ ker[E , A, B3]

T . Since,
in particular,x∈ kerET , there exists somey∈ R

p with x=Wy, and thus
[
AT

BT
3

]
Wy= 0.

By definition ofW2, there exists somey∈ R
p2 with y=W2z, and thus

x=WW2z∈ imWW2.

e) Assume thatz∈ R
p2 with WT

1 WTB3W2z= 0. Then

WTB3W2z∈ kerWT
1 = (imW1)

⊥

= (imWT [A, B3 ])
⊥ = ker[A, B3 ]

TW ⊂ kerBT
3W = (imWTB3)

⊥,

whence
WTB3W2z∈ (imWTB3)

⊥∩ imWTB3 = {0}.
This impliesWTB3W2z= 0, and thus

W2z∈ kerWTB3 = imW2 = (imW2)
⊥.

Therefore, we haveW2z∈ imW2∩ imW2 = {0}. The property ofW2 having full
column rank then impliesz= 0.
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f) Let z∈ ker(ATW)∩kerBT
3W. Since, by definition ofW, there holdsWz∈ kerE,

we have

Wz∈ ker




ET

AT

BT
3


= {0},

whencez= 0.
g) Letz∈ kerBT

2WW1. ThenWW1 ∈ kerBT
2 and, by assertion d), there holds

WW1z∈ ker[E , A, B2 ]
T .

By the assumption that[E , A, B2 , B3 ] has full row rank, we now obtain that
WW1z= 0. By the property ofWW1 having full column rank (see d)), we may
infer thatz= 0.

h) Assume thatzkerWTB3W2. ThenW2z∈ kerWTB3 and, by definition ofW2, there
holdsW2z∈ kerWTB3. Thus we have

W2z∈ ker[W ,W ]TB3,

and, by the invertibility of[W ,W ] (see a)), we can conclude that

W2z∈ kerB3 = {0}.

The property ofZ2 having full column rank then gives rise toz= 0.
⊓⊔

Now we prove Theorem 6.6.

Proof of Theorem 6.6.a) First assume thatE has full row rank andn3 = 0. Then,
by using Lemma 6.7, we see that the matrixEα(ETx1)ET is be invertible for all
x1 ∈ R

n1. Since, furthermore, the last equation in (60) is trivial, the differential-
algebraic equation (60) is already equivalent to the ordinary differential equation

ẋ1(t) =−(Eα(ETx1(t))E
T)−1(Aρ(ATx1(t))+B2x2(t)+B3x3(t)+ f1(t)

)

ẋ2(t) = β (x2(t))
−1BT

2 x1(t).
(64)

Consequently, the differentiation index of (60) is zero in this case.
To prove the converse statement, assume that kerET 6= {0} or n3 > 0 holds true.
The first statement implies that no derivatives of the components ofx1(t) occur,
which are in the kernel ofET , whereas the latter assumption consequences that
(60) does not contain any derivatives ofx3 (which is now a vector with at least
one component). Hence, some differentiations of the equations in (60) are needed
to obtain an ordinary differential equation, and the differentiation index of (60)
is consequently larger than zero.

b) Here (and in part c)) we will make use of the (trivial) fact that, for invert-
ible matricesW andT of suitable size, the differentiation indices of the DAEs
F(ẋ(t),x(t), t) = 0 andWF(Tż(t),Tz(t), t) = 0 coincide.
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Let W ∈ R
n1,p, W ∈ R

n1,p̃ be matrices with full column rank and properties as
in (63). Using Lemma 6.8, we see that there exists some uniquedecomposition

x1(t) =Wx11(t)+Wx12(t).

By a multiplication of the first equation in (60) respectively from the left with
WT andWT , we can make use of the initial statement to see that the indexof
(60) coincides with the index of the differential-algebraic equation

0=WTEα(ETWTx12(t))E
TW ẋ12(t)+WTAρ(ATWx11(t)+ATWx12(t))

+WTB2x2(t)+WTB3x3(t)+WT f1(t), (65a)

0= β (x2(t))ẋ2(t) −BT
2Wx11(t)−BT

2Wx12(t), (65b)

0= WTAρ(ATWx11(t)+ATWx12(t))

+WTB2x2(t)+WTB3x3(t)+WT f1(t), (65c)

0= −BT
3Wx11(t)+BT

3Wx12(t)+ f3(t),
(65d)

Now we show that, under the assumptions that the index of the differential-
algebraic equation (65) is nonzero and the rank conditions in (61) hold true,
the index of the DAE (65) equals to one:
Using Lemma 6.7, we see that the equations (65a) and (65b) canbe solved for
ẋ12(t) andẋ2(t), i.e.,

ẋ12(t) =−(WTEα(ETWTx12(t))E
TW)−1WT (Aρ(ATWx11(t)+ATWx12(t))

+B2x2(t)+B3x3(t)+ f1(t)) (66a)

ẋ2(t) = β (x2(t))
−1BT

2 (Wx11(t)+Wx12(t)) (66b)

In the following we will, for convenience and better overview, use the following
abbreviations

ρ(ATWx11(t)+ATWx12(t))  ρ ,

ρ ′(ATWx11(t)+ATWx12(t))  ρ ′,

α(ETWTx12(t))  α,

β (x2(t))  β .

The first order derivative arrayF1(x(2)(t), ẋ(t),x(t), t) of the DAE (60) further
contains the time derivatives of (65c) and (65d), which can,in compact form and
my making further use of (66), be written as
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[
WTAρ ′ATW WTB3

−BT
3W 0

]

︸ ︷︷ ︸
=:M

(
ẋ11(t)
ẋ3(t)

)

=−
(

WTAρ ′ATW ẋ12(t)+WTB2ẋ2(t)+WT ḟ2(t)
BT

3W ẋ12(t)+ ḟ3(t)

)

=

(
WTAρ ′ATW(WTEαETW)−1WT (Aρ +B2x2(t)+B3x3(t)+ f1(t))
BT

3W(WTEαETW)−1WT (Aρ +B2x2(t)+B3x3(t)+ f1(t))+ ḟ3(t)

)

−
(

WTB2β−1BT
2 (Wx11(t)+Wx12(t))+WT ḟ2(t)

0

)

(67)
Since, by assumption, there holds (61), we obtain from Lemma6.8 c) and d) that

kerWTB3 = {0} and ker[A, B3 ]
TW = {0}.

Then, by making further use ofρ ′+ρ ′T > 0, we may infer from Lemma 6.7 that
M is invertible. As a consequence, ˙x11(t) andẋ3(t) can be expressed by suitable
functions depending onx12(t), x2(t) and t. This implies that the index of the
differential-algebraic equation equals to one.
Now we show that the conditions (61) are also necessary for the index of the
differential-algebraic equation (60) not exceeding one:
Consider the first order derivative arrayF1(x(2)(t), ẋ(t),x(t), t) of the DAE (60).
Aiming to construct an ordinary differential equation (56)for

x(t) =




x1(t)
x2(t)
x3(t)




from F1(x(2)(t), ẋ(t),x(t), t), it can be seen that the derivatives of the equations
(66a) and (66b) cannot be used to form the inherent ODE (the derivative of these
equations explicitly contain the second derivatives ofx12(t) andx2(t)). As a con-
sequence, the inherent ODE is formed by the equations (66) and (67). Aiming to
seek for a contradiction, assume that one of the conditions in (61) is violated:
In case of rank[E , A, B3 ]< n1, Lemma 6.8 d) implies that

ker[E , B3 ]
TW 6= {0}.

Now consider matricesW1, W1 with full column rank and properties as in (63).
By Lemma 6.8 a), there exists a unique decomposition

x11(t) =W1x111(t)+W1x112(t).

Then the right hand side of equation (67) then reads



Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits 53

[
WTAρ ′ATWW1 0 WTB3

−BT
3WW1 0 0

]


ẋ111(t)
ẋ112(t)
ẋ3(t)


 .

Consequently, it is not possible to use the first order derivative array to ex-
press ˙x112(t) as a function ofx(t). This is a contradiction to the index of the
differential-algebraic equation (60) being at most one.
In case of ker[ET , B3 ] 6= kerET ×{0}, there there holds, by Lemma 6.8 c), that
ker(WTB3) 6= {0}. Consider matricesW2, W2 with full column rank and proper-
ties as in (63). By Lemma 6.8 a), there exists a unique decomposition

x3(t) =W2x31(t)+W2x32(t).

Then the right hand side of the equation (67) reads

[
WTAρ ′ATW WTB3W2 0

−BT
3W 0 0

]


ẋ11(t)
ẋ31(t)
ẋ32(t)


 .

Consequently, it is not possible to use the first order derivative array to express
ẋ32(t) as a function ofx(t). This is a contradiction to the index of the differential-
algebraic equation (60) being at most one.

c) To complete the proof, we have to show that the inherent ODEcan be constructed
from the second order derivative arrayF2(x(3)(t),x(2)(t), ẋ(t),x(t), t) of the DAE
(60). With the matricesW, W , W1, W1, W2, W2 and corresponding decomposi-
tions, a multiplication of (67) from the left with

[
WT

1 0
0 WT

2

]

leads to
[
WT

1 WTAρ ′ATWW1 WT
1 WTB3W2

−WT
2 BT

3WW1 0

]

︸ ︷︷ ︸
=:M1

(
ẋ112(t)
ẋ32(t)

)

=

(
WT

1 WTAρ ′ATW(WTEαETW)−1WT (Aρ +B2x2(t)+B3x3(t)+ f1(t))
WT

2 BT
3W(WTEαETW)−1WT (Aρ +B2x2(t)+B3x3(t)+ f1(t))+WT

2 ḟ3(t)

)

−
(
WT

1 WTB2β−1BT
2 (Wx11(t)+Wx12(t))+WT

1 WT ḟ2(t)
0

)

(68)
By Lemma 6.8 e) and f), there holds

kerWT
1 WTB3W2 = {0} and ker[A, B3W2 ]

T = {0}.
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Lemma 6.7 then implies thatM1 is invertible and, consequently, the vectors
ẋ112(t) andẋ32(t) are expressible by suitable functions ofx111(t), x112(t), x2(t),
x31(t), x32(t) andt. It remains to be shown that the second order derivative array
might also be used to express ˙x111(t) andẋ31(t) as a function ofx111(t), x112(t),
x2(t), x31(t), x32(t) andt: A multiplication of (67) from the left with

[
WT

1 0
0 WT

2

]

yields, by making use ofWT
1 WTA= 0, that

0=WT
1 WTB2β−1BT

2 (WW1x111(t)+WW1x112(t)+Wx12(t))+WT
1 WT ḟ2(t)

(69a)

0=WT
2 BT

3W(WTEαETW)−1WT

· (Aρ +B2x2(t)+B3W2x31(t)+B3W2x32(t)+ f1(t))+WT
2 ḟ3(t).

(69b)

The second order derivative array of (60) contains the derivative of these equa-
tions. Differentiating (69a) with respect to time, we obtain

WT
1 WTB2β−1BT

2W1Wẋ111(t)

=−WT
1 WTB2β−1BT

2 (WW1ẋ112(t)+W ẋ12(t))

−WT
1 WTB2

d
dt (β

−1)BT
2 (WW1x112(t)+Wx12(t))−WT

1 WT f̈2(t)

(70)

Using Lemma 6.8 g) and Lemma 6.7, we see that the matrix

WT
1 WTB2β−1BT

2WW1 ∈ R
p1,p1

is invertible. By using the quotient and chain rule, it can beinferred thatd
dt (β

−1)
is expressible by a suitable function depending onx2(t) andẋ2(t). Consequently,
the derivative ofx111(t) can be expressed as a function depending onx112(t),
x12(t), x2(t), their derivatives andt. Since, on the other hand, ˙x112(t), ẋ12(t) and
ẋ2(t) already have representations as functions depending onx111(t), x112(t),
x12(t), x2(t), x31(t), x32(t) andt, this holds true for ˙x112(t) as well.
Differentiating (69b) with respect tot, we obtain

WT
2 BT

3W(WTEαETW)−1WTB3W2ẋ31

=WT
2 BT

3W(WTEαETW)−1WT

·
(
Aρ ′AWW1ẋ111(t)+Aρ ′AWW1ẋ112(t)+Aρ ′AW ẋ12(t)

+B2ẋ2(t)+B3W2ẋ31(t)+ ḟ1(t)
)

+WT
2 BT

3W d
dt (W

TEαETW)−1WT

· (Aρ +B2x2(t)+B3W2x31(t)+B3W2x32(t)+ f1(t))+WT
2 ḟ3(t).
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By Lemma 6.8 h) and Lemma 6.7, the matrix

WT
2 BT

3W(WTEαETW)−1WTB3W2 ∈ R
p2,p2

is invertible. Then we may the argumentation as for the derivative of equa-
tion (69a) to see that ˙x31 is expressible by a suitable function depending on
x111(t), x112(t), x12(t), x2(t), x31(t), x32(t) andt.
This completes the proof.

⊓⊔

Remark 6.9 (Differentiation index of differential-algebraic equations).
(i) The algebraic constraints of(60)are formed by(69). Note that(69a)is trivial

(i.e., it is an empty set of equations), ifrankE = n1. Accordingly, the hidden
constraint(69a)is trivial in the case where n3 = 0.

(ii) The hidden algebraic constraints of(60)are formed by(69). Note that(69a)is
trivial, if rank[E , A, B3 ] = n1, whereas, in the case where
ker[ET , B3 ] = kerET ×{0}, the hidden constraint(69a)becomes trivial.

(iii) From the computations in the proof of Theorem 6.6, we see that derivatives of
the “right hand side” f1(·), f3(·) enter the solution of the differential-algebraic
equation. The order of these derivatives equals toν −1.

We close the analysis of differential-algebraic equationsof type (60) by formu-
lating the following result on consistency of initial values.

Theorem 6.10. Let a differential-algebraic equation(60) be given and assume
that the matrices E∈ R

n1,m1, A ∈ R
n1,m2, B2 ∈ R

n1,n2, B3 ∈ R
n1,n3 and functions

α : Rm1 → R
m1,m1, ρ : Rm2 → R

m2,m2, β : Rn2 → R
n2,n2 have the properties as in

Assumptions 6.5. Let W,W , W1, W1, W2 andW2 be matrices with full column rank
and properties as in(63). Let f1 : [t0,∞)→R

n1 be continuous such that

WT f : [t0,∞)→ R
p

is continuously differentiable and

WT
1 WT f : [t0,∞)→R

p2

is twice continuously differentiable. Further, assume that f3 : [t0,∞) → R
n3 is con-

tinuously differentiable such that

WT
2 f : [t0,∞)→R

p2

is twice continuously differentiable. Then the initial value



x1(t0)
x2(t0)
x3(t0)



=




x10

x20

x30



 (71)

is consistent if, and only if,
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0=WT(Aρ(ATx10)+B2x20+B3x30+ f1(t0)), (72a)

0= −BT
3 x10+ f3(t0), (72b)

0=WT
1 WTB2β (x20)

−1BT
2 x10+WT

1 WT ḟ1(t0) (72c)

0=WT
2 BT

3W(WTEα(ETx10)E
TW)−1WT

·
(
Aρ(ATx10)+B2x20+B3x30+ f1(t0)

)
+WT

2 ḟ3(t0). (72d)

Proof. First assume that a solution of (60) evolves in the time interval [t0,ω). The
necessity of the consistency conditions (72) follows by thefact that, by (65c), (65c),
(69a), (69a) and the definitions ofx111(t), x112(t), x12(t), x31(t) andx32(t), the rela-
tions

0=WT(Aρ(ATx1(t))+B2x2(t)+B3x3(t)+ f1(t)),

0= −BT
3 x1(t)+ f3(t),

0=WT
1 WTB2β (x2(t))

−1BT
2 x1(t)+WT

1 WT ḟ1(t)

0=WT
2 BT

3W(WTEα(ETx1(t))E
TW)−1WT

·
(
Aρ(ATx1(t))+B2x2(t)+B3x3(t)+ f1(t)

)
+WT

2 ḟ3(t).

hold true for allt ∈ [t0,ω). The special caset = t0 gives rise to (72).
To show that (72) is sufficient for consistency of the initialization, we prove that the
inherent ODE of (72) together with the initial value (71) fulfilling (72) possesses
a solution which is also a solution of the differential-algebraic equation (60):
By the construction of the inherent ODE in the proof of Theorem 6.6, we see that
the right hand side is continuously differentiable. The existence of a unique solution

x(·) =




x1(·)
x2(·)
x3(·)


 : [t0,ω)→R

n1 ×R
n2 ×R

n3

is therefore guaranteed by standard results on the existence and uniqueness of solu-
tions of ordinary differential equations.
The inherent ODE further contains the derivative of the equations in (70) with re-
spect to time. In other words, there holds

0=
d
dt

(
WT

1 WTB2β (x2(t))
−1BT

2 x1(t)+WT
1 WT ḟ1(t)

)
,

0=
d
dt

(
WT

2 BT
3W(WTEα(ETx1(t))E

TW)−1WT

·
(
Aρ(ATx1(t))+B2x2(t)+B3x3(t)+ f1(t)

)
+WT

2 ḟ3(t)
)
.

for all t ∈ [t0,ω). Then we can infer from (72c) and (72d) together with (71) that
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0=WT
1 WTB2β (x2(t))

−1BT
2 x1(t)+WT

1 WT ḟ1(t)

0=WT
2 BT

3W(WTEα(ETx1(t))E
TW)−1WT

·
(
Aρ(ATx1(t))+B2x2(t)+B3x3(t)+ f1(t)

)
+WT

2 ḟ3(t).

for all t ∈ [t0,ω). Since, furthermore, equation (68) is a part of the inherentODE, we
can conclude that the solution pointwisely fulfills equation (67). The latter equation
is however, by construction, equivalent to

0=
d
dt

(
WT(Aρ(ATx1(t))+B2x2(t)+B3x3(t)+ f1(t))

)
,

0=
d
dt

(
−BT

3 x1(t)+ f3(t)
)
.

Analogous to the above argumentation, we can infer from (72a) and (72b) together
with (71) that

0=WT(Aρ(ATx1(t))+B2x2(t)+B3x3(t)+ f1(t),

0= −BT
3 x1(t)+ f3(t)

for all t ∈ [t0,ω). Since these equations together with

0=WT (Eα(ETx1(t))E
T ẋ1(t)+Aρ(ATx1(t))+B2x2(t)+B3x3(t)+ f1(t)

)
,

0= β (x2(t))ẋ2(t)−BT
2x1(t)

form the differential-algebraic equation (60), the desired result is proven. ⊓⊔

Remark 6.11 (Relaxing Assumptions 6.5). The solution theory for differential-
algebraic equations of type(60) can be extended to the case where conditions (a)
and (b) in Assumptions 6.5 are not necessarily fulfilled: Consider matrices

V1 ∈ R
n1,q1, V1 ∈ R

n1,q̃1,

V3 ∈ R
n3,q3, V3 ∈ R

n3,q̃3

be matrices with full column rank and

imV1 =ker[E , A, B2 , B3 ]
T , imV1 = im[E , A, B2 , B3 ],

imV3 =kerB3, imV3 = imBT
3 .

Then, by a multiplication of the first equation in(60) from the left withV1, a multi-
plication of the third equation in(60) from the left withV3, and setting

x1(t) =V1x̄1(t)+V1x̃1(t), x3(t) =V3x̄3(t)+V3x̃3(t),
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we obtain

0= VT
1 Eα(ETV1x̃1(t))E

TV1
˙̃x1(t)+VT

1 Aρ(ATṼ1x̃1(t))+VT
1 B2x2(t)

+VT
1 B3Ṽ

T
3 x̃3(t)+VT

1 f1(t),

0= β (x2(t))ẋ2(t)−BT
2Ṽ1x̃1(t),

0=−VT
3 BT

3V1x̃1(t)+VT
3 f3(t).

(73)

Note that, by techniques similar as in the proof of Lemma 6.8,it can be shown that
(73) is a differential-algebraic equation which fulfills the presumptions of Theo-
rem 6.6 and Theorem 6.10.
On the other hand, a multiplication of the first equation fromthe left with V1, and the
third equation from the left with V3, we obtain some constraints on the right hand
side, namely,

VT
1 f1(t) = 0, VT

3 f3(t) = 0, (74)

or, equivalently,

f1(t) ∈ im[E , A, B2 , B3 ], f3(t) ∈ imBT
3 for all t ∈ [t0,∞). (75)

Solvability of (60) therefore becomes dependent on the property of f1(·) and f3(·)
evolving in certain subspaces. Note that the componentsx̄1(t), x̄3(t) do not occur
in any of the above equations. In case of existence of solutions, this part can be
chosen arbitrarily. Consequently, a violation of (a) or (b)in Assumptions 6.5 causes
non-uniqueness of solutions.

6.3 Circuit equations - structural considerations

Here we will apply our findings on differential-algebraic equations of type (60) to
MNA and MLA equations. It will turn out that the indexstructural propertyof the
circuit. More precisely, it can be characterized by means ofthe circuit topology. The
concrete behavior of the capacitance, inductance and conductance functions will not
influence the differentiation index.

In the following we will use expressions like a “LI-loop” for a loop in the circuit
graph whose branch set consists only of branches corresponding to voltage sources
and/or inductances. Likewise, by aCV -cutset, we mean a cutset in the circuit graph
whose branch set consist only of branches corresponding to current sources and/or
capacitances.

The general assumptions on the electric circuits are formulated below:

Assumption 6.12(Electrical circuits). Given is an electrical circuit with nV voltage
sources, nI current sources, nC capacitances, nL inductances, nR resistances and n
nodes, and the following properties:
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(a) there are noI-cutsets;
(b) there are noV -loops;
(c) the charge functions q1, . . . ,qnC

: R → R are continuously differentiable with
q′1(u), . . . ,q

′
nC
(u)> 0 for all u ∈R;

(d) the flux functionsψ1, . . . ,ψnL
: R → R are continuously differentiable with

ψ ′
1(i), . . . ,ψ

′
nL
(i)> 0 for all i ∈R;

(e) the conductance functions g1, . . . ,gnR
: R → R are continuously differentiable

with g′1(u), . . . ,g
′
nR

(u)> 0 for all u ∈R;

Remark 6.13 (The assumptions on circuits). The absence ofV -loops, means, in
a non-mathematical manner of speaking, that there are no short circuits. Indeed,
a V -loop would cause that certain voltages of the sources cannot be chosen freely
(see below).

uV 1(t) uV 2(t) ⇒ uV 1(t) = uV 2(t)

Fig. 14: Parallel interconnection of voltage sources

Likewise, anI-cutset consequences induces further algebraic constaints on the
currents of the current sources.

iI1(t) iI2(t)

⇒ iI1(t) = iI2(t)

Fig. 15: Serial interconnection of current sources

Note that, by Lemma 4.9 b), the absence ofV -loops is equivalent to

kerAV = {0}, (76)

whereas, by Lemma 4.9 a), the absence ofI-cutsets is equivalent to
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ker
[
AC AR AL AV

]T
= {0}. (77)

Consequently, the MNA equations are differential-algebraic equations of type(60)
with, moreover, the properties as described in Assumptions6.5.
Further, we can use Lemma 4.9 b) to see that the circuit does not contain anyV -
loops, if, and only if,

ker
[
BL BR BC BI

]T
= {0}. (78)

A further use of Lemma 4.9 a) implies that the absence ofI-cutsets is equivalent to

kerBI = {0}. (79)

If one moreover assumes that the functions g1, . . . ,gnR
: R → R possess global in-

verses which are, respectively, denoted by r1, . . . , rnR
: R→ R, then the MLA equa-

tions are as well differential-algebraic equations of type(60) with, moreover, the
properties as described in Assumptions 6.5.

Theorem 6.14(Index of MNA equations). Let an electrical circuit with the prop-
erties as in Assumptions 6.12 be given. Then the differentiation indexν of the MNA
equations(52)exists. In particular, there holds

a) The following statements are equivalent:

(i) ν = 0;
(ii) rankAC = n−1 and nV = 0;
(iii) the circuit neither containsR LI-cutsets nor voltage sources.

b) The following statements are equivalent:

(i) ν = 1;
(ii) rank[AC , AR , AV ] = n−1 andker[AC , AV ] = kerAC ×{0};
(iii) the circuit neither containsLI-cutsets norC V -loops except forC -loops.

c) The following statements are equivalent:

(i) ν = 2;
(ii) rank[AC , AR , AV ]< n−1 or ker[AC , AV ] 6= kerAC ×{0};
(iii) the circuit containsLI-cutsets orC V -loops which are no pureC -loops.

Proof. Since the MNA equations (52) form a differential-algebraicequation of
type (60) with the properties as formulated in Assumptions 6.5, the equivalences
between i) and ii) in a), b) and c) are immediate consequencesof Theorem 6.6.
The equivalence of a) (ii) and a) (iii) follows from the definition of nV and the fact
that, by Lemma 4.9 a), the absence ofR LI-cutsets (which is the same as the ab-
sence ofR LIV -cutsets since the circuit does not contain any voltage sources), is
equivalent to kerAT

C = {0}.
Since, by Lemma 4.9 a), there holds

ker[AC , AR , AV ]T = {0}
⇔ the circuit does not contain anyLI-cutsets,
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and by Lemma 4.10, we have

ker[AC , AV ] = kerAC ×{0}
⇔ the circuit does not contain anyCV -cutsets except forC -cutsets,

assertions b) (ii) and b) (iii) are equivalent. By the same argumentation, we see that
c) (ii) and c) (iii) are equivalent as well. ⊓⊔

Theorem 6.15(Index of MLA equations). Let an electrical circuit with the proper-
ties as in Assumptions 6.12 be given. Moreover, assume that the functions

g1, . . . ,gnR
: R→R

possess global inverses which are, respectively, denoted by

r1, . . . , rnR
: R→ R.

Then the the differentiation indexν of the MLA equations(53)exists. In particular,
there holds

a) The following statements are equivalent:

(i) ν = 0;
(ii) rankBL = n−m+1 and nI = 0;
(iii) the circuit neither containsC R V -loops nor current sources.

b) The following statements are equivalent:

(i) ν = 1;
(ii) rank[BL , BR , BI ] = n−m+1 andker[BL , BI ] = kerBL ×{0};
(iii) the circuit neither containsC V -loops norLI-cutsets except forL-cutsets.

c) The following statements are equivalent:

(i) ν = 2;
(ii) rank[BL , BR , BI ]< n−m+1 or ker[BL , BI ] 6= kerBL ×{0};
(iii) the circuit containsC V -loops orLI-cutsets which are no pureL-loops.

Proof. The MLA equations (52) form a differential-algebraic equation of type (60)
with the properties as formulated in Assumptions 6.5. Hencethe equivalences be-
tween (i) and (ii) in a), b) and c) are immediate consequencesof Theorem 6.6.
The equivalence of a) (ii) and a) (iii) follows from the definition of nI and the fact
that, by Lemma 4.9 b), the absence ofC R V -loops (which is the same as the ab-
sence ofR LIV -cutsets since the circuit does not contain any current sources), is
equivalent to kerBT

L = {0}.
By Lemma 4.11, there holds

ker[BL , BI ] = kerBL ×{0}
⇔ the circuit does not contain anyLI-cutsets except forL -cutsets,



62 Timo Reis

and by Lemma 4.10, we have

ker[BL , BR , BI ]
T = {0}

⇔ the circuit does not contain anyCV -loops.

As a consequence, assertions b) (ii) and b) (iii) are equivalent. By the same argu-
mentation, we see that c) (ii) and c) (iii) are equivalent as well. ⊓⊔

Next we aim to apply Theorem 6.10 to explicitly characterizeconsistency of
the initial values of the MNA and MLA equations. For the result about consistent
initialization of the MNA equations, we introduce the following matrices.

ZC ∈ R
n−1,pC , ZC ∈ R

n−1,p̃C ,

ZR V −C ∈ R
pC ,pR V C , ZR V −C ∈ R

pC ,p̃R V C ,

ZV −C ∈ R
nV ,pV −C , ZV −C ∈ R

nV ,p̃V −C

(80a)

be matrices with full column rank and

imZC =kerAT
C , imZC = imAC ,

imZR V −C =ker[AR , AV ]TZC , imZR V −C = imZT
C [AR , AV ],

imZV −C =kerZT
C AV , imZV −C = imAT

V ZC .

(80b)

The following result (as the corresponding result on MLA equations) is an immedi-
ate consequence of Theorem 6.10.

Theorem 6.16. Let an electrical circuit the properties as in Assumptions 6.12 be
given. Let ZC ,ZC , ZR V −C ,ZR V −C , ZV −C andZV −C be matrices with full column
rank and properties as in(80). Let iI [t0,∞)→R

nI be continuous such that

ZT
C AI iI : [t0,∞)→R

pC

is continuously differentiable, and

ZT
R V −C ZT

C AI iI : [t0,∞)→ R
pR V C

is twice continuously differentiable.
Further, assume that uV : [t0,∞)→ R

nV is continuously differentiable such that

Z
T
V −C uV : [t0,∞)→R

pV −C

is twice continuously differentiable.
Then the initial value 


φ(t0)
iL (t0)
iV (t0)


=




φ0

iL0
iV 0


 (81)

is consistent if, and only if,
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0=ZT
C

(
AR g(AT

R φ0)+AL iL0+AV iV 0+AI iI0

)
, (82a)

0= −AT
V φ0+uV 0, (82b)

0=ZT
R V −C ZT

C ALL(iL0)
−1AT

L φ0+ZT
R V −C ZT

C AI i̇I(t0), (82c)

0=Z
T
V −C AT

V ZC (ZT
C AR g(AT

R φ0)A
T
R ZC )

−1ZT
C

·
(

AR g(AT
R φ0)+AL iL0+AV iV 0+AI iI(t0)

)
+Z

T
V −C u̇V (t0). (82d)

To formulate an according result for the MLA, consider the matrices

YL ∈ R
m−n+1,qL , YL ∈ R

m−n+1,q̃L ,

YR I−L ∈ R
qL ,qR I−L , YR I−L ∈ R

qL ,q̃R I−L ,

YI−L ∈ R
nI ,pI−L , ZI−L ∈ R

nI ,q̃I−L ,

(83a)

which are assumed to have full column rank and

imYL =kerBT
L , imYL = imBL ,

imYR V −C =ker[BR , BI ]
TYL , imYR I−L = imYT

L [BR , BI ],

imYI−L =kerYT
L BI , imYI−L = imBT

IYL .

(83b)

These matrices will be used to characterize consistency of the initial values of the
MLA system.

Theorem 6.17. Let an electrical circuit the properties as in Assumptions 6.12 be
given. Moreover, assume that the functions g1, . . . ,gnR

: R → R possess global in-
verses which are, respectively, denoted by r1, . . . , rnR

: R→ R. Let YL , YL , YR I−L ,

YR I−L , ZI−L andZI−L be matrices with full column rank and properties as in
(80). Let iI : [t0,∞)→R

nI be continuously differentiable such that

Y
T
I−L iI : [t0,∞)→ R

qI−L

is twice continuously differentiable.
Further, assume that uV [t0,∞)→R

nV is continuous such that

ZT
L BV uV : [t0,∞)→R

qL

is continuously differentiable and

YT
R I−LYT

L BV uV : [t0,∞)→ R
qR IL

is twice continuously differentiable.
Then the initial value
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


ι(t0)
uC (t0)
uI(t0)


=




ι0

uC0
uI0


 (84)

is consistent if, and only if,

0=YT
L

(
BR r(BT

R ι0)+BC uC0+BIuI0+BV uV 0

)
, (85a)

0= −BT
I ι0+ iI0, (85b)

0=YT
R I−LYT

L BC C (uC0)
−1BT

C ι0+YT
R I−LYT

L BV u̇V (t0), (85c)

0=Y
T
I−LBT

IYL (YT
L BR r(BT

R ι0)B
T
R YC )

−1YT
C

·
(

BR r(BT
R ι0)+BC uC0+BIuI0+BV uV (t0)

)
+Y

T
I−L i̇I(t0). (85d)

Remark 6.18(V -loops andI-cutsets). If a circuit containsV -loops andI-cutsets
(compare Remark 6.13), we may apply the findings in Remark 6.11 to extract
a differential-algebraic equation of type(60) that satisfies Assumptions 6.5. More
precisely, we consider matrices

ZC R LV ∈ R
n−1,pCR LV , ZC R LV ∈R

n−1,p̃CR LV ,

ZV ∈ R
nV ,pV , ZV ∈R

nV ,p̃V

with full column rank and

imZCR LV = ker[AC , AR , AL , AV ]T , imZC R LV = im[AC , AR , AL , AV ],

imZV = kerAV , imZV = imAT
V .

Then, by making the ansatz

φ(t) = ZC R LV I φ̄ (t)+ZCR LV I φ̃ (t),

iV (t) = ZV īV (t)+ZV ĩV (t),

we see that the functions̄φ(·), ūV (·) can be chosen freely, whereas solvability of the
MNA equations(52) is equivalent to

ZC R LV AI iI(·)≡ 0, ZV uV (·)≡ 0.

The other components then satisfy
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0=ZT
C R LV IAC C (AT

CZCR LV I φ̃(t))AT
CZC R LV I

d
dt φ̃(t)

+ZT
CR LV IAR g(AT

R ZC R LV I φ̃(t))+ZT
CR LV IAL iL (t)

+ZT
CR LV IAV ZV ĩV (t)+ZT

CR LV IAI iI(t),

0= −AT
LZCR LV I φ̃(t)+L(iL (t))

d
dt iL(t),

0= −ZT
V AT

V ZCR LV I φ̃(t)+ZT
V uV (t).

(86)

To perform analogous manipulations to the MLA equations, consider matrices

YLR CI ∈R
m−n+1,qLR CI , YLR CI ∈ R

m−n+1,p̃CR LV ,

YI ∈R
nI ,qI , YI ∈ R

m−n+1,q̃I

with full column rank and

imYLR CI = ker[BL , BR , BC , BI ]
T , imZLR CI = im[BL , BR , BC , BI ],

imYI = kerBI , imYI = imBT
I .

Then, by making the ansatz

ι(t) =YLR CI ῑ(t)+YLR CI ι̃(t),
uI(t) =YI ūI(t)+YI ũI(t),

we see that the functions̄ι(·), īI(·) can be chosen freely, whereas solvability of the
MLA equations(53) is equivalent to

YLR CIBV uV (·)≡ 0, YI iI(·)≡ 0.

The other components then satisfy

0=YT
LR CIBL L(BT

LYLR CI ι̃(t))BT
LYLR CI

d
dt ι̃(t)

+YT
LR CIBR r(BT

R YLR CI ι̃(t))+YT
LR CIBC uC (t)

+YT
LR CIBIYT

I ũI(t)+YT
LR CIBV uV (t),

0= −BT
CYLR CI ι̃(t)+C (uC (t))

d
dt uC (t),

0= −YT
I BT

IYLR CI ι̃(t)+YT
I iI(t).

(87)

Note that both ansatzes have the practical interpretation that for eachV -loop, one
voltage is constrained (for instance by the equationZV uV (·)≡ 0 or equivalently by
YLR CIBV uV (·)≡ 0), and one current can be chosen freely.
An according interpretation can be made forI-cutsets: In eachI-cutset, one cur-
rent is constrained (for instance by the equation ZC R LV AI iI(·)≡ 0 or equivalently
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byYI iI(·)≡ 0), and one voltage can be chosen freely.
To illustrate this by means of an example, the configuration in Fig. 15 causes
iI1(·) = iI2(·), whereas, the reduced MLA equations(87)contain uI1(·)+uI2(·) as
a component of̃uI(·). Likewise, the configuration in Fig. 14 causes uV 1(·) = uV 2(·),
whereas, the reduced MNA equations(86) contain iV 1(·)+ iV 2(·) as a component
of ĩV (·).

Remark 6.19(Index one conditions in MNA and MLA).
(i) The property thatLV -loops andLI-loops cause higher index is quite in-

tuitive from a physical perspective: In aC V -loop, the capacitive currents
are prescribed by the derivatives of the voltages of the voltage sources (see
Fig. 16). In anLI-cutset, the inductive voltages are prescribed by the deriva-
tives of the currents of the current sources (see Fig. 16).

uV (t) uC (t) ⇒ iC 0 = C · u̇V (t0)

Fig. 16: Parallel interconnection of a voltage source and a capacitance

iI(t)
iL (t)

⇒ uL0 = L · i̇I(t0)

Fig. 17: Serial interconnection of a current source and an inductance

(ii) An interesting feature is that,LI-cutsets (including pureL-cutsets) cause
that the MNA system has differentiation index two, whereas the corresponding
index two condition for the MLA system is the existence ofLI-cutsets without
pureL-cutsets.
For C V -loops, situation becomes, roughly speaking, vice versa:C V -loops
(including pureC -loops) cause that the MLA system has differentiation index
two, whereas the corresponding index two condition for the MNA system is the
existence ofCV -loops without pureC -loops.

Remark 6.20 (Consistency conditions for MNA and MLA equations). Note that,
for an electrical circuit that neither containsV -loops norL-cutsets, the following
holds true for the consistency conditions(82)and (85):
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⇒ MNA system has index two

6⇒ MLA system has index two

Fig. 18:L-cutset

⇒ MLA system has index two

6⇒ MNA system has index two

Fig. 19:C -loop

(i) (82a)becomes trivial (that is, it contains no equations), if, andonly if, the
circuit does not contain anyR LIV -cutsets.

(ii) (82b)becomes trivial, if, and only if, the circuit does not contain any voltage
sources.

(iii) (82c) becomes trivial, if, and only if, the circuit does not contain anyLI-
cutsets.

(iv) (82d) becomes trivial, if, and only if, the circuit does not contain anyC V -
loops except for pureC -loops.

(v) (85a)becomes trivial, if, and only if, the circuit does not contain anyR CIV -
loops.

(vi) (85b)becomes trivial, if, and only if, the circuit does not contain any current
sources.

(vii) (85c) becomes trivial, if, and only if, the circuit does not contain anyC V -
loops.

(viii) (85d) becomes trivial, if, and only if, the circuit does not contain anyLI-
cutsets except for pureL -cutsets.

We finally glance at the energy exchange of electrical circuits:

AC
d
dt q(A

T
C φ(t))+AR g(AT

R φ(t))+AL iL (t)+AV iV (t)+AI iI(t) =0

−AT
Lφ(t)+ d

dt ψ(iL (t)) =0

−AT
V φ(t)+uV (t) =0

(88)
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A multiplication of the first equation from the left withφT(t), a multiplication of
the second equation from the left withiTL (t), a multiplication of the third equation
from the left with iTI (t), a summation and according integration of these equations
yields

0=

ˆ t f

t0

φT(t)
(

AC
d
dt q(A

T
C φ(t))+AR g(AT

R φ(t))+AL iL (t)+AV iV (t)+AI iI(t)
)

dt

+

ˆ t f

t0

iTL (t)
(
−AT

Lφ(t)+ d
dt ψ(iL )(t)

)
dt

+

ˆ t f

t0

iTV (t)
(
−AT

V φ(t)+uV (t)
)

dt,

and, due toφT(t)AL iL(t) = iL (t)A
T
Lφ(t), φT(t)AV iV (t) = iV (t)AT

V
φ(t), this equa-

tion simplifies to

0=

ˆ t f

t0

φT(t)AC︸ ︷︷ ︸
=uT

C (t)

d
dt q(A

T
C φ(t)︸ ︷︷ ︸
=uC (t)

)+φT(t)AR︸ ︷︷ ︸
=uT

R
(t)

g(AT
R φ(t)
︸ ︷︷ ︸
=uR (t)

)+φT(t)AI︸ ︷︷ ︸
=uT

I (t)

iI(t)dt

+

ˆ t f

t0

iTL (t)
d
dt ψ(iL )(t)dt+

ˆ t f

t0

iTV (t)uV (t)dt

=

ˆ t f

t0

uT
C (t)

d
dt q(uC (t))dt+

ˆ t f

t0

iTL (t)
d
dt ψ(iL)(t)dt+

ˆ t f

t0

uT
R (t)g(uR (t))dt

+

ˆ t f

t0

uT
I (t)iI(t)dt+

ˆ t f

t0

iTV (t)uV (t)dt

By using the non-negativity ofuT
R (t)g(uR (t)) (see (47)) and, furthermore, the rep-

resentations (40), (44) and (48) for capacitive and inductive energy, we obtain

VC (q(uC (t)))

∣∣∣∣
t=t f

t=t0

+ VL(ψ(iL (t)))

∣∣∣∣
t=t f

t=t0

≤ VC (q(uC (t)))

∣∣∣∣
t=t f

t=t0

+ VL(ψ(iL (t)))

∣∣∣∣
t=t f

t=t0

+

ˆ t f

t0

uT
R (t)g(uR (t))dt

=−
ˆ t f

t0

uT
I (t)iI(t)dt−

ˆ t f

t0

iTV (t)uV (t)dt,

(89)

whereVC : RnC → R, VL : RnL → R are the storage functions for capacitive and,
respectively, inductive energy. Since, the integral of theproduct between voltage
and current represents the energy consumptions of a specificelement, relation (89)
represents an energy balance of a circuit: The energy gain atcapacitances and in-
ductances is less or equal to the energy provided by the voltage and current sources.
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Note that the above deviations can alternatively done on thebasis of the modified
loop analysis.

The difference between consumed and stored energy is given by

ˆ t f

t0

uT
R (t)g(uR (t))dt,

which is nothing but the energy lost at the resistances. Notethat, for circuits without
resistances (the so-calledLC resonators), the balance (89) becomes an equation.
In particular, the sum of capacitive and inductive energiesremains constant, if the
sources are turned off.

Remark 6.21 (Analogies between Maxwell’s and circuit equations). The energy
balance(89) can be regarded as a lumped version of the corresponding property
of Maxwell’s equations, see(5). Note that this is not the only parallelism between
circuits and electromagnetic fields: For instance, Tellegen’s law has a field version
as well as a circuit version, see(12)and(28).

It seems to be an interesting task to work out these and further analogies between
electromagnetic fields and electric circuits. This would, for instance, enable to in-
terpret spatial discretizations of Maxwell’s equations aselectrical circuits to gain
more insight.

6.4 Notes and references

(i) The applicability of differential-algebraic equations is not limited to electrical
circuit theory: The probably most important application field outside circuit
theory is in mechanical engineering [Sim13]. The power of DAEs in (extra-
mathematical) application has led to differential-algebraic equations becom-
ing an own research field inside applied and pure mathematicsand is subject
of several textbooks and monographs [LMT13,KM06,Ria08, IR13,BCP89].
By understanding the notionindexas a measure for the “deviation of a DAE
from an ODE”, various index concepts have been developed which modify and
generalize the differentiation index. To mention only a few, there is, in alpha-
betical order, thegeometric index[RR94], theperturbation index[HLR89],
thestrangeness index[KM06] and thetractability index[LMT13].

(ii) The seminal work on circuit modeling by modified nodal analysis has been
done by BRENNAN, HO and RUEHLI in [HRB75], see also [WJ02, CDK87].
Graph modeling of circuits has however been done earlier in [DK69]. Modi-
fied loop analysis has been introduced for the purpose of model order reduction
in [RS11] and can be seen as an advancement ofmesh analysis[DK69,JJH92].
Further circuit modeling techniques can be found in [Ria13,RE10,Ria06].
There exist various generalizations and modifications of the aforementioned
methods for circuit modelling. For instance, models for circuits including so-
calledmem-deviceshas been considered in [RT11, Ria11]. The incorporation
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of spatially distributed components (i.e., devices which are modelled by partial
differential equations) leads to so-calledpartial differential-algebraic equa-
tions (PDAEs). Such PDAE models of circuits with transmission lines (these
are modeled be theTelegraph equations) have been considered and analyzed
in [Rei06]. Incorporation of semiconductor models (bydrift diffusion equa-
tions) has been done in [BT07].

(iii) The characterization of index properties by means of the circuit topology is
not new: Index determination by means of the circuit topology has been done
in [New81, GF99a, GF99b, ST00, MSF+03, TI10, ITT12]. The first rigorous
proof for the MNA system has been presented by ESTÉVEZ SCHWARZ and
TISCHENDORF in [ST00]. In this work, the result is even shown for circuits
which contain, under some additional assumption on their connectivity, con-
trolled sources.
Not only the index but also stability properties can be characterized by means
of the circuit topology. While it can, by energy considerations (such as in
Sec. 6.3), it can be shown that RLC circuits are stable. However, they are not
necessarily asymptotically stable. Sufficient criteria for asymptotical stability
by means of the circuit topology are presented by RIAZA and TISCHENDORF

in [RT10,RT07]. These conditions are generalized to circuits containing mem-
devices in [RT13] and to circuits containing transmission lines in [Rei06].
The general ideas of the topological characterizations of asymptotic stabil-
ity have been used in [Ber13, BR13] to analyze asymptotic stability of the
so-calledzero dynamicsfor linear circuits. This allows the application of the
funnel controller, a closed-loop control method of striking simplicity.

(iv) A further area in circuit theory is the so-callednetwork synthesis. That is, from
a desired input-output behavior, it is seeked for a circuit whose impedance be-
havior matches the desired one. Network synthesis is a quitetraditional area
and is originated by CAUER [Cau26], who discovered that, in the linear and
time-invariant case, exactly those behaviors are realizable which are repre-
sentable by apositive realtransfer function [Cau32]. After the discovery of
thepositive real lemmaby ANDERSON, some further synthesis methods have
been developed [Wil76, AN67, AN68, AV73, AV70, And73] whichare on the
based on the positive real lemma and argumentations in the time domain. A nu-
merical approach to network synthesis is presented in [Rei10].

(v) An interesting physical and mathematical feature of RLCcircuits is that they
do not produce energy by themselves. ODE systems which provide energy bal-
ances such as (89) are calledport-Hamiltonian(alsopassive), and are treated
from a systems theoretic perspective byVAN DER SCHAFT in [vdS96]. Port-
Hamiltonian systems on graphs have recently be analyzed in [vdSM13], and
DAE system with energy balances in [vdS13]. Note that energyconsiderations
play a fundamental role in model order reduction by passivity-preserving bal-
anced truncation of electrical circuits [RS10].
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[KK93] K. Küpfmüller and G. Kohn. Theoretische Elektrotechnik und Elektronik: eine
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[SL01] D. Estévez Schwarz and R. Lamour. The computation ofconsistent initial values for
nonlinear index-2 differential-algebraic equations.Numer. Algorithms, 26(1):49–75,
2001.
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