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Abstract We consider a single-input-single output systems whose internal dynamics
are described by the heat equation on some domainΩ ⊂Rd with sufficiently smooth
boundary∂Ω . The input is formed by the Neumann boundary values; the output con-
sists of the integral over the Dirichlet boundary values.
We show that the transfer function admits some partial fraction expansion with pos-
itive residuals. The location of transmission and invariant zeros of this system is
furthermore investigated. We prove that the transmission zeros have an interlacing
property in the sense that there is exactly one transmissionzero between two poles
of the transfer function. The set of transmission zeros is shown to be a subset of the
invariant zeros.
Thereafter we consider the zero dynamics of this system. We prove that these are
fully described by a self-adjoint and exponentially stablesemigroup. The eigenval-
ues of the generator of this semigroup are proven to coincidewith the set of invariant
zeros.
Finally, we consider proportional output feedback. We showthat any positive pro-
portional gain results in an exponentially stable system. We further prove the root
locus property: If the proportional gain tends to infinity, then the eigenvalues of the
generator of the closed loop system will converge to the invariant zeros.
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1 Introduction

Let Ω ⊂Rd be a bounded domain with smooth boundary∂Ω . Consider the following
heat equation with Neumann boundary control and observation formed by the spatial
integral of the Dirichlet boundary values

∂x
∂ t

(ξ , t) = ∆ξ x(ξ , t), (ξ , t) ∈ Ω ×R≥0,

u(t) = ∂νx(ξ , t), (ξ , t) ∈ ∂Ω ×R≥0,

y(t) =
∫

∂Ω
x(ξ , t)dσξ , t ∈ R≥0,

x(ξ ,0) = x0(ξ ) ξ ∈ Ω .

(1.1)

By settingx(t) = x(·, t), the boundary controlled heat equation (1.1) can be modeled
as an infinite-dimensional linear system,

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, (1.2a)

y(t) =Cx(t). (1.2b)

Due to the fact that control and observation are at the boundary, the operatorsB and
C are now so-calledunbounded control and observation operators.
This article is organized as follows: In Section 2, we recallthe formulation of (1.1)
as well-posed linear system from [6]. We also collect some known facts about the
Neumann-Laplacian and its operator root. Section 3 deals with the transfer function
of this system, i.e., we are dealing with the expression

G(s) =C(sI−A)−1B.

We find a representation of the transfer function by a partialfraction expansion in
which the poles are real and negative, and the correspondingresiduals are all positive.
This further gives rise to a detailed localization of the zeros of G. These will be
called thetransmission zeros, and they are shown to fulfill an interlacing property:
All transmission zeros are negative and real; between two poles there exists exactly
one transmission zero. Theinvariant zerosof the system are defined in Section 4.
These are, loosely speaking, the numbersλ ∈ C for which the block operator

[
λ I −A B

C 0

]

has a non-trivial kernel. We will prove that the set of invariant zeros consists pre-
cisely of the unobservable eigenvalues and the transmission zeros. In Section 5 we
define thezero dynamics. These are, again loosely speaking, the solutions of (1.1)
with trivial outputy(·) ≡ 0. We show that the zero dynamics are fully described by
an exponentially stable and self-adjoint semigroup. The spectrum of the generator of
this semigroup coincides with the set of invariant zeros of the heat equation system.
In the final Section 6, it is shown that proportional output feedbacku(t) = −k · y(t)
leads to the generator of an exponentially stable semigroupTk(·) for all positive pro-
portional gainsk. For the generatorAk of this semigroup, we prove that withk→ ∞,
the eigenvalues ofAk tend towards the invariant zeros of the heat equation system.
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Let us give some relations to existing literature: The zero dynamics for a bound-
ary controlled heat equation is considered in [4]. There it is presented that the zero
dynamics are represented by a certain semigroup onL2(Ω). A detailed analysis of
the semigroup property and, in particular, the correspondence between eigenvalues of
this generator and the invariant zeros has not been established. The article [3] treats
root-locus for parabolic problems of type ˙x(ξ , t) = Lx(ξ , t), whereξ ∈ [0,1] andL
is some differential operator of even order. Input and output are formed by boundary
values which, in the case whereL is a second-order differential operator, coincide
with our assumptions in the special case whereΩ = [0,1]. Further note that, in [27],
invariant zeros of infinite-dimensional systems with bounded input and output opera-
tors are considered: The interlacing property has been shown for the case whereA is
self-adjoint andB = C∗. Zero dynamics of infinite-dimensional linear systems with
bounded control and observation operators are treated in [12]. There it is shown that
the zero dynamics are, under certain additional boundedness assumptions onB and
C which are intimately connected to the relative degree of thetransfer function, the
zero dynamics are described by a semigroup which is defined onsome closed proper
subspace of the state space.

1.1 Nomenclature and fundamentals

N, N0 set of natural numbers,N0 = N∪{0}, set of
all integers, resp.

R≥0, R>0 = [0,∞), (0,∞), resp.

Reλ , Imλ , λ real part, imaginary part, complex conjugate,
resp. of a complex numberλ ∈ C

kerA, imA kernel and range of a linear operatorA

A|Y restriction of a mappingA : X →H to the sub-
setY ⊂ X

I identity mapping

B(X,Y) the set of bounded linear operator fromX to
Y

ρ(A), σ(A) the resolvent set and spectrum of a linear op-
eratorA

ℓp(N), ℓp(N0) p ∈ [1,∞], the space ofp-summable se-
quences(ak)k∈N, resp.(ak)k∈N0

Lp(Ω ;X) p∈ [1,∞], the Lebesgue space of measurable
functionsx : Ω → X, see [9, Chapter IV]

Lp
loc(Ω ;X) space of measurable functions fromΩ to X

that are locally inLp

Lp(Ω), Lp
loc(Ω) = Lp(Ω ;C), Lp

loc(Ω ;C), resp.
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C k(Ω ;X) k∈N0, the set ofk-times continuously differ-
entiable functions fromΩ to X

C (Ω ;X), C k(Ω), C (Ω) = C 0(Ω ;X), C k(Ω ;C), C 0(Ω ;C), resp.

C ∞
c (Ω) the set of infinite times differentiable func-

tions fromΩ to C with compact support in
Ω

Hk(Ω) k≥ 0 (fractional) Sobolev space of functions
x : Ω →C, see [10, Chapter 4]

The scalar product〈·, ·〉 of a Hilbert H space is defined to be linear in the first and
anti-linear in the second component. On the dual spaceH ′ we define multiplication
such that(λy)(x) := λy(x) for y∈ H ′ andx∈ H. With this definition the dual pairing
〈y,x〉 := y(x) for y ∈ H ′ andx ∈ H becomes linear in the first and anti-linear in the
second component.
In this articleΩ ⊂ Rd is always a bounded open set with a uniformlyC 2-boundary
∂Ω [1, Chapter 4]. Integration on the surface of this manifold is indicated byσξ and
|∂Ω | :=

∫
1dσξ is the surface area of the boundary. Forξ ∈ ∂Ω we denote byν(ξ )

the outward normal of∂Ω and by∂νx(ξ ) the directional derivative of some function
x∈ L2(Rd) alongν at the pointξ , whenever it is well-defined. By∇x, ∆x we denote
the (distributional) gradient, respectively Laplacian ofx.
For the notion of (strongly continuous, contractive, analytic, bounded, exponentially
stable) semigroup we refer to [24]. A definition of sesquilinear forms can be found in
[13].
For the readers convenience, a known but crucial result on the connection between
semigroups and sesquilinear forms is depicted. This fundamental theorem will be
used several times.

Theorem 1.1 Let H be a Hilbert space, which is continuously and densely embed-
ded into the Hilbert space X and let a: H ×H → C be a continuous, symmetric
sesquilinear form. If, for someα > 0, the form fulfills

Rea(x,x) = a(x,x)≥ α‖x‖X ∀x∈ X,

then the following holds

(i) The operator

D(A) :=
{

x∈ H
∣∣ ∃z(x) ∈ X : a(x,ϕ) = 〈z(x),ϕ〉X ∀ϕ ∈ H

}
,

Ax :=−z(x) ∀x∈ D(A)

is well-defined, self-adjoint, non-positive and generatesa contractive, analytic
semigroup in X.

(ii) D(A) is dense in H with respect to‖ · ‖H.
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(iii) For any λ ∈ R≥0, the operator root (in the sense of [13]) ofλ I −A fulfills

D((λ I −A)
1
2 ) = H,

〈(λ I −A)
1
2 ,(λ I −A)

1
2 〉X = λ 〈x,y〉X +a(x,y) ∀x∈ D(A).

We call A theoperator associated to the sesqulinear forma(·, ·).

Proof The first part of this is [2, Theorem 4.2]. Assertions (ii) and(iii) are contained
in Kato’s First and Second Representation Theorem [13, Section VI.2]. ⊓⊔

2 Heat equation as infinite-dimensional linear system

In [6] the partial differential equation (1.1) was put into the framework of infinite-
dimensional well-posed linear systems. This is the framework within which we will
analyse and solve the equation. Therefore, we recollect several facts from [6]: By
takingx(t) := x(·, t)∈ L2(Ω), the heat equation (1.1) can be interpreted as an infinite-
dimensional linear system (1.2) on the state spaceX := L2(Ω) with A, B andC as
presented in the following:

(a) A : D(A)⊂ X → X with

Ax= ∆x ∀x∈ D(A) =
{

x∈ H2(Ω)
∣∣ ∂νx|∂Ω = 0

}
; (2.1a)

(b) B∈ B(C,
(
H1(Ω)

)′
) with

〈Bu,ϕ〉= u ·
∫

∂Ω
ϕ(ξ )dσξ ∀ϕ ∈ H1(Ω); (2.1b)

(c) C : D(C)→ C with

Cx=
∫

∂Ω
x(ξ )dσξ ∀x∈ D(C)⊃ H1(Ω). (2.1c)

Note thatB andC are well-defined, because there exists a continuous linear trace
operator mappingH1(Ω) ontoL2(∂Ω). In fact,C is well defined onH

1
2+ε for any

ε > 0, according to [10, Theorem 4.24 (i)]. The actual domainD(C) is defined pre-
cisely in [6, Equation (6.9)]. For our purposes it suffices toknow thatH1(Ω) is con-
tained inD(C).

2.1 The Neumann Laplacian

The Laplacian with Neumann boundary condition is the main operator of our system.
Since it plays such an important role, we collect several facts about it that are mostly
known, see e.g. [10, 6].

First there is a deep result, which states that weak solutions of the Neumann
problem are in factH2(Ω)-functions.
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Lemma 2.1 [10, Proposition 5.26 (ii)]Let x∈ H1(Ω) and f ∈ L2(Ω), satisfy
∫

Ω
∇x(ξ )∇ϕ(ξ )dξ =

∫

Ω
f (ξ )ϕ(ξ )dξ

for all ϕ ∈C∞(Ω) with ∂ν ϕ |∂Ω ≡ 0. Then x∈ H2(Ω) and∂νx|∂Ω ≡ 0.

Lemma 2.2

(i) The sesquilinear form

D(a) : H1(Ω)×H1(Ω), a(x,z) :=
∫

Ω
∇x(ξ )∇z(ξ )dξ , (2.2)

is symmetric and continuous on the complex Hilbert-space H1(Ω). The opera-
tor associated to a(·, ·) (cf. Theorem 1.1) is A as in(2.1a).

(ii) A is self-adjoint and non-positive and it generates a contractive semigroup T(·)
on X= L2(Ω).

(iii) The space D(A) is densely and continuously embedded into the space H1(Ω)
and there holds

‖x‖2
H1(Ω) = ‖x‖2

L2(Ω)−〈x,Ax〉L2(Ω) ∀x∈ D(A), (2.3)

Proof Statement (i) is proven in [10, Theorem 5.31 (ii)], and statement (iii) in [10,
Proposition 5.28 (i)]. Assertion (ii) can be deduced from Theorem 1.1, or, alterna-
tively, from [6, Statement 1]. ⊓⊔

Fork,s∈ R>0 we define the Banach spaces

Xk := (sI−A)−kX, ‖x‖Xk :=
∥∥∥(sI−A)kx

∥∥∥
X
,

andX−k as the dual space ofXk with respect to the pivot spaceX, see [24, Section 2.9].
The spaceXk is independent of the choice ofs> 0 in this definition andX−k equals the
completion ofX with respect to the norm‖(sI−A)−k · ‖X, [24, Proposition 2.10.2].
For k ∈ (0,1] the semigroupT extends to a strongly continuous semigroup onX−k,
also denoted byT, see [19, Theorem 3.10.11]. The generator of this semigroupis the
continuous extension ofA∈ B(X1;X) to A∈ B (X−k+1;X−k).

Lemma 2.3 Writing ∼ for norm equivalence, the following holds true:

(i) X1 = D(A) and‖ · ‖X1 ∼ ‖ · ‖X + ‖A · ‖X ∼ ‖ · ‖H2(Ω).

(ii) X 1
2
=D(A

1
2 ) =H1(Ω) and‖·‖X1

2
∼‖·‖H1(Ω). Consequently, X− 1

2
=
(
H1(Ω)

)′
.

(iii) The extension of the semigroup T to X− 1
2

is generated by the mapping

A− 1
2

: H1(Ω)→
(
H1(Ω)

)′
, 〈A− 1

2
x,ϕ〉 := a(x,ϕ), ϕ ∈H1(Ω). (2.4)

Proof Regarding (i), it is clear thatX1 = (sI−A)−1X = D(A) and easy to show that
‖x‖X1 := ‖(sI−A)x‖X ∼ ‖x‖L2(Ω)+ ‖∆x‖L2(Ω) for x∈ D(A). Theorem 5.11 of [10]

states that the latter norm is equivalent toH2(Ω) norm. Statements (ii) and (iii) are

consequences of (2.2) and the fact that the domain of the forma equalsD((sI−A)
1
2 )

by KATO’s Second Representation Theorem [13, Section VI.2]. ⊓⊔
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Lemma 2.4 Let A be defined as in(2.1a). The resolvent of A is compact and there is
a real valued sequence(λk)k∈N0 such that

a) (λk) is nondecreasing,λ0 = 0, λ1 > 0, andlimk→∞ λk = ∞;
b) σ(A) = {−λk | k∈N0};

and there is an orthonormal basis(vk)k∈N0 of L2(Ω) with vk ∈ D(A) for all k ∈ N0,
and

Ax=−
∞

∑
k=0

λk 〈x,vk〉L2(Ω) ·vk ∀x∈ D(A). (2.5)

The domain of A can be represented by

D(A) =

{
∞

∑
k=0

ckvk

∣∣∣∣∣ (ck),(λkck) ∈ ℓ2(N0)

}
, (2.6)

∥∥∥∥∥
∞

∑
k=0

ckvk

∥∥∥∥∥

2

D(A)

= ‖(ck)‖
2
ℓ2(N0)

+ ‖(λkck)‖
2
ℓ2(N0)

. (2.7)

Moreover,

H1(Ω) =

{
∞

∑
k=0

akvk

∣∣∣∣∣ (ak),(
√

λkak) ∈ ℓ2(N0)

}
, (2.8)

∥∥∥∥∥
∞

∑
k=0

akvk

∥∥∥∥∥

2

H1(Ω)

= ‖(ak)‖
2
ℓ2(N0)

+
∥∥∥(
√

λkak)
∥∥∥

2

ℓ2(N0)
. (2.9)

Proof Since(λ I −A)−1L2(Ω) =D(A)⊂H2(Ω) andH2(Ω) is compactly embedded
into L2(Ω) by the Rellich-Kondrachov Theorem [10, Theorem 4.17 (i)], the resolvent
of A is compact. The part about the spectrum and the representation (2.5) follow with
the spectral theorem for compact operators and can for example be found in [10,
Theorem 7.13 (ii)].

We haveX1
2
= H1(Ω) by Lemma 2.3, so it remains to prove (2.8): Using (2.3)

and the spectral decomposition (2.5), we see that for allv= ∑∞
k=0 akvk ∈ D(A) holds

‖v‖2
H1(Ω) =‖v‖2

L2(Ω)−〈v,Av〉L2(Ω) = ‖(ak)‖
2
ℓ2(N0)

+

〈
v,

∞

∑
k=0

λk 〈v,vk〉vk

〉

= ‖(ak)‖ℓ2(N0)+
∞

∑
k=0

λkak | 〈v,vk〉 |
2

︸ ︷︷ ︸
=|ak|

2

= ‖(ak)‖
2
ℓ2(N0)

+
∞

∑
k=0

λk|ak|
2

= ‖(ak)‖
2
ℓ2(N0)

+
∥∥∥
(√

λkak

)∥∥∥
2

ℓ2(N0)
.

The representation (2.6) implies that linear combinationsof (vk)k∈N0 are dense in
D(A). Since Lemma 2.2 (iii) states thatD(A) is dense inH1(Ω), we can infer from
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the above computations thatH1(Ω) is equal to the completion of span{ vk | k∈ N0 }
with respect to the the norm

∥∥∥∥∥
∞

∑
k=0

akvk

∥∥∥∥∥

2

:= ‖(ak)‖
2
ℓ2(N0)

+
∥∥∥
(√

λkak

)∥∥∥
2

ℓ2(N0)
,

whence (2.8) holds true. ⊓⊔

2.2 Inputs and outputs

In the sequel we collect some special properties of the system given byA, B andC
in (2.1): As mentioned earlier, the operatorC : D(C) ⊃ H1(Ω)→ C, is well defined
on H1(Ω). The operatorB : C→

(
H1(Ω)

)′
is the adjoint operator ofC|H1(Ω) in the

sense that

〈Bu,ϕ〉= 〈u,Cϕ〉 ∀u∈C,ϕ ∈ H1(Ω). (2.10)

We will often identify the mappingB with the elementB∈
(
H1(Ω)

)′
.

Forx0 ∈ L2(Ω) andu∈ L1
loc(R≥0) the variation of constants formula

x(t) := T(t)x0+
∫ t

0
T(t − τ)Bu(τ)dτ, t ∈R≥0, (2.11)

is well defined asB maps intoX− 1
2
⊂ X−1. The functionx(·) : R≥0 → X−1 defined by

(2.11) is calledmild solutionof (1.2a). Astrong solutionof (1.2a) inXs is a function
x∈ L1

loc(R≥0;Xs+1)∩C(R≥0;Xs), that satisfies

x(t) = x0+

∫ t

0
Ax(τ)+Bu(τ)dτ in Xs.

The following result shows that the mild solution (2.11) is even pointwisely inX and
moreover,x(t) ∈ D(C) for almost allt ∈ R≥0.

Theorem 2.5 Let X= L2(Ω) and the operators A, B and C as in(2.1)be given. Then
the following holds true:

(i) For all u ∈ L2
loc(R≥0), x0 ∈ X, the function defined in(2.11)fulfills

a) x(t) ∈ X for all t ∈ R≥0;
b) x(t) ∈ D(C) for almost all t∈ R≥0.

(ii) For all t ∈ R≥0, there exists some ct ∈ R≥0, such that for all u∈ L2([0, t]),
x0 ∈ X, the solutions of(1.2) fulfill

‖y(·)‖L2([0,t])+ ‖x(t)‖X ≤ ct ·
(
‖u(·)‖L2([0,t])+ ‖x0‖X

)
. (2.12)

Proof All of this is contained in in [6, Corollary 1]. ⊓⊔
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The above statement means that the system (1.2) iswell-posed. This basically
comprises four properties, namely the boundedness of semigroupT(·) on each com-
pact interval[0, t] (which is guaranteed anyway by its strong continuity), as well
as the boundedness of the input-to-state mapsBt , state-to-output mapsCt , and the
input-output mapsDt , which are defined as follows:

Bt : L2([0, t])→ X, Ct : X → L2([0, t]),

u(·) 7→
∫ t

0
T(t − τ)Bu(τ)dτ, x 7→CT(·)x,

Dt : L2([0, t])→ L2([0, t]),

u(·) 7→C
∫ ·

0
T(·− τ)Bu(τ)dτ.

(2.13)

Moreover, we can define the infinite-time state-to-output and input-to-output map-
pings

C : X → L2
loc(R≥0), D : L2

loc(R≥0)→ L2
loc(R≥0),

x 7→CT(·)x, u(·) 7→C
∫ ·

0
T(·− τ)Bu(τ)dτ.

(2.14)

For any input functionu∈ L2
loc(R≥0) and initial valuex0 ∈ X the state and output of

the system (1.2) are defined by

x(t) = T(t)x0+Btu|[0,t], t ∈ R≥0, (2.15a)

y= Cx0+Du. (2.15b)

3 The transfer function

We collect properties of the transfer functionC(sI−A)−1B with A, B andC as in (2.1).
We show that it admits a partial fraction expansion with positive and real residuals and
nonpositive real poles. This representation will be the basis for further investigations
which, in particular, comprise an analysis of the location of the zeros.
We first define transfer functions of infinite-dimensional systems (cf. [26, 23] and the
bibliographies therein).

Definition 3.1 Let X be a Hilbert space and letA, B andC be operators with the
following properties:

(a) A : D(A)⊂ X → X is the generator of a strongly continuous semigroup onX;
(b) B∈ B(C,D(A∗)′);
(c) C : D(C)⊂ X → C for some dense subspaceD(C)⊂ X;
(d) For the space

V = { x∈ X | Ax∈ X+ imB }

with norm

‖x‖2
V = inf

{
‖x‖2

X + ‖Ax+Bu‖2
X

∣∣ u∈ C with Ax+Bu∈ X
}

holds thatV ⊂ D(C) andC restricts to an element ofB(V,C).
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Let r(A,B,C)⊂ σ(A) be the set of removable singularities of the function

ρ(A)→C, s 7→C(sI−A)−1B

Let D(G) = ρ(A)∪ r(A,B,C). We define thetransfer function G: D(G) → C of
(A,B,C) by the analytic extension ofC(sI−A)−1B. A complex numbers∈ C is
calledtransmission zero of(A,B,C) if s∈ D(G) andG(s) = 0.

Remark 3.2 (Transfer function)

a) Existence and uniqueness of the analytic extension ofG to D(G) is guaranteed by
Riemann’s theorem [18, Thm. 10.21].

b) The definition of the spaceV ⊂ X yields im(sI−A)−1B⊂V for all s∈ ρ(A). In
particular, the assumptionV ⊂D(C) implies thatC(sI−A)−1B is well-defined for
all s∈ ρ(A).

In the subsequent results we collect some properties of the transfer function of the
operators(A,B,C) defined in (2.1).

Lemma 3.3 Let X := L2(Ω), define A, B and C by(2.1), and

V := {x∈ X | Ax∈ X+ imB} .

(i) For all x ∈ V there exists exactly one u∈ C such that Ax+Bu∈ X. This u is

given by u=−
∫

Ω ∆x(ξ )dξ
|∂Ω | and there holds Ax+Bu= ∆x∈ L2(Ω).

(ii) V =
{

x∈ H2(Ω)
∣∣ ∃u∈C : ∂ν x|∂Ω ≡ u.

}
, and‖ · ‖V = ‖ · ‖L2(Ω)+ ‖∆ · ‖L2(Ω).

(iii) A, B, C fulfills the prerequisites (a)–(d) in Definition3.1.

Proof (i) If x is in V, then there existz∈ L2(Ω) andu∈C with Ax= z−Bu. Explic-
itly, this means

∫

Ω
x∆ϕdξ =

∫

Ω
zϕdξ −u

∫

∂Ω
ϕdσξ ∀ϕ ∈ D(A). (3.1)

For ϕ ∈C∞
c (Ω) this reduces to

∫

Ω
x∆ϕdξ =

∫

Ω
zϕdξ ,

which shows that∆x= z∈ L2(Ω). Forϕ ≡ 1∈ D(A), equation (3.1) reads
∫

Ω
∆x1dξ +u

∫

∂Ω
1dσξ =

∫

Ω
x∆1dξ = 0,

whenceu=−
∫

Ω ∆x(ξ )dξ
|∂Ω | . In particular,u is uniquely determined for everyx∈V.

(ii) “ ⊃”: Let x∈ H2(Ω) and∂ν x|∂Ω = u∈ C. Then for allϕ ∈ D(A) holds

〈Ax,ϕ〉=
∫

Ω
x∆ϕdξ =

∫

Ω
(∆x)ϕdξ −

∫

∂Ω
(∂νx)ϕdσξ .

HenceAx is represented by the sum of∆x∈ L2(Ω) and−B(∂νx)|∂Ω ∈ imB.
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“⊂”: Let x∈V. Then we haveAx+Bu= ∆x with u as in (i). SinceB maps into
X− 1

2
for someλ > 0 this leads to

(λ I −A)x= λx−∆x+Bu∈ X− 1
2
.

Since(sI−A)−1 is an isomorphism fromX− 1
2

ontoX1
2

by Lemma 2.3, we conclude

x= (λ I −A)−1(λx−∆x+Bu)∈ X1
2
= H1(Ω).

Now pickh∈ H2(Ω) such that∂νh|∂Ω ≡ u. Then for allϕ ∈ D(A) holds

∫

Ω
∇(x−h)∇ϕ dξ =

∫

Ω
(x−h)∆ϕ dξ

=

∫

Ω
∆xϕ dξ −u

∫

∂Ω
ϕ dσξ −

∫

Ω
(∆h)ϕ dξ +

∫

∂Ω
(∂ν h)︸ ︷︷ ︸
=u

ϕ dσξ

=

∫

Ω
(∆x+∆h)ϕ dξ .

Noting∆x+∆h∈ L2(Ω), we conclude from Lemma 2.1 thatx∈ H2(Ω). Hence∂νx
is well-defined almost everywhere on∂Ω and inL2(∂Ω). We claim that it equalsu.
Equation (3.1) implies

∫

∂Ω
(u− ∂νx)ϕ dσξ = 0 ∀ϕ ∈ D(A).

At least for allψ in the dense subsetC ∞(∂Ω) of L2(∂Ω) we can construct functions
ϕ ∈ D(A) with ϕ |∂Ω = ψ . It follows that∂νx= u almost everywhere on∂Ω and the
inclusion is shown.
The considerations above show that the infimum in the definition of‖x‖V is obsolete
and we get the asserted representation of the norm.

(iii) Observe that by Lemma 2.3 (i) the norm in (ii) is equivalent to theH2(Ω)
norm. Therefore,C is continuous fromV intoC. The other prerequisites of Definition
3.1 are satisfied by assumption. ⊓⊔

Lemma 3.4 Let A and B be defined as in(2.1). For all s∈ ρ(A) there holds

(sI−A)−1B=
∞

∑
k=0

∫
∂Ω vk(ξ ) dσξ

s+λk
·vk ∈ H1(Ω). (3.2)

This series converges in H1(Ω) and

∞

∑
k=0

(∫

∂Ω
vk(ξ ) dσξ

)2 λk

(s+λk)2 < ∞. (3.3)
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Proof Since imB ⊂ X− 1
2

and(sI−A)−1 is an isomorphism fromX− 1
2

onto X1
2

by

Lemma 2.3, we have(sI−A)−1B∈H1(Ω). The spectral decomposition (2.5) implies
that for alls∈ ρ(A), x∈ L2(Ω) the representation

(sI−A)−1x=
∞

∑
k=0

〈x,vk〉

s+λk
·vk (3.4)

holds and it extends continuously to allz∈ X−1 via

(sI−A)−1z=
∞

∑
k=0

〈z,vk〉

s+λk
·vk.

Forz= B∈ X−1 this yields the equality in (3.2). This equation and the representation
of H1(Ω) found in (2.8) imply that the series in (3.3) is finite and consequently, that
(3.2) converges inH1(Ω). ⊓⊔

Remark 3.5The expressionx= (sI−A)−1Bu is the solution of the Helmholtz equa-
tion

s·x(ξ ) =∆x(ξ ) ξ ∈ Ω ,

u=∂νx(ξ ) ξ ∈ ∂Ω ,

see [7].

Theorem 3.6 Let A, B and C be defined as in(2.1) and let (λk), (vk) be as in
Lemma 2.4. Define

ck :=

∣∣∣∣
∫

∂Ω
vk(ξ ) dσξ

∣∣∣∣
2

∀k∈N0 and Jc := {k∈ N0 | ck 6= 0}. (3.5)

Then for all s∈ ρ(A) holds

G(s) =
∞

∑
k=0

ck

s+λk
= ∑

k∈Jc

ck

s+λk
. (3.6)

Furthermore, we have0∈ Jc, and
(

ck

λk

)
∈ ℓ1(N). (3.7)

Proof We express(sI−A)−1B using the series in (3.2). Since this series converges
in H1(Ω), we may interchange the order of limit and application ofC to obtain

C(sI−A)−1B=C
∞

∑
k=0

∫
∂Ω vk(ξ ) dσξ

s+λk
·vk =

∞

∑
k=0

∫
∂Ω vk(ξ ) dσξ

s+λk
·Cvk

=
∞

∑
k=0

∣∣∫
∂Ω vk(ξ ) dσξ

∣∣2

s+λk
= ∑

k∈Jc

ck

s+λk
.
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Therefore, (3.6) holds true onρ(A).
We have 0∈ Jc because the first eigenvectorv0 in Lemma 2.4 is the constant function;
more precisely,

v0(·)≡
1√∫

Ω 1 dξ
, whence c0 =

(
∫

∂Ω 1 dσξ )
2

∫
Ω 1 dξ

> 0.

Finally, (3.7) is a consequence of (3.3): Sinceλ0 = 0 is an isolated eigenvalue, we
may pick ans∈ (−λ1,0) that is in the resolvent ofA and get

∞

∑
k=1

ck

λk
≤

∞

∑
k=1

ck

s+λk
≤

∞

∑
k=1

ckλk

|s+λk|2
(3.3)
< ∞.

⊓⊔

Remark 3.7

(i) The self-adjointness ofA and relation (2.10) imply that ifλk ∈ σ(A) is a re-
movable singularity ofC(sI−A)−1, then there exists somex∈ D(A)\{0} with
Ax= λkx andCx= 0. In other words,λk is an unobservable mode. TheHautus
testfor infinite-dimensional systems [19, Corollary 9.6.2] then gives rise to the
property that(A,B,C) is not approximately observable.

(ii) For all u∈ L2
loc(R≥0) with e−α ·u(·) ∈ L2(R≥0) for someα ∈R>0, the output of

(1.2) withx0 = 0 fulfills e−α ·y(·) ∈ L2(R≥0), and the Laplace transformŝu and
ŷ of u andy are related by

ŷ(s) = G(s)û(s) =C(sI−A)−1Bû(s) for all s∈ C with Re(s)> α. (3.8)

The remaining part of this section is devoted to a detailed characterization of the
locations of the transmission zeros of(A,B,C) with A, B andC as in (2.1).

Theorem 3.8 Let G be the transfer function of(A,B,C) in (2.1)and(ck), (λk), Jc as
in Theorem 3.6, i.e.σ(A) = {−λk : k∈ N0}. Then the following holds:

(i) λ ∈ C is a non-removable singularity of G if and only if there exists an index
k∈ Jc with λ =−λk. In this caseλ =−λk is a pole of first order.

(ii) Let λk be a pole of G and letλk̃ be its consecutive pole determined byk̃ :=
min{ j ∈ Jc | j > k∧λ j 6= λk}. Then there is exactly one transmission zeroµ of
(A,B,C) in (−λk̃,−λk). This zero is simple, i.e. G′(µ) 6= 0.

(iii) Every transmission zero is of the form described in (ii). That is, G(µ) = 0 im-
plies thatµ ∈ (−λk̃,−λk) where the two consecutive polesλk,λk̃ are determined

by k:= max{ j ∈ Jc : µ ≤−λ j} andk̃ as in (ii).

Remark 3.9In other words, part (i) states that the set of poles ofG has the character-
ization

C\D(G) = {λ ∈ σ(A) | ∃k∈N0 : λ =−λk ∧ ck 6= 0} .

The property of the singularities ofC(sI−A)−1B being either removable or a pole of
first order implies that the transfer function is meromorphic inC.
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Proof (i) Equation (3.6) shows thatρ(A)⊂ D(G). Let λ be a non-removable singu-
larity of G. Then it lies inσ(A), which means that it equals−λk for somek∈ N0. In
the decomposition

G(s) =
∞

∑
j=0

c j

s+λ j
= ∑

{ j∈N0 | λ j=λk}

c j

s+λk
+ ∑

{ j∈N0 | λ j 6=λk}

c j

s+λ j
(3.9)

the first series is a finite sum and the second series is continuous at the pointλk, since
it converges absolutely by (3.7). If allc j in the first series were zero, thenG could
be extended analytically toλk, a contradiction. So there must be at least onej with
λ j = λk = λ andc j 6= 0, which meansj ∈ Jc. Multiplying (3.9) by(λ +λk) removes
the singularity, hence the poleλk is of first order.

On the other hand, letλk be such thatck 6= 0. Then (3.9) shows that the limit

lim
h↓0

G(−λk+h) = lim
h↓0

∑
{ j∈N0 | λ j=λk}

c j

h
+ ∑

{ j∈N0 | λ j 6=λk}

c j

λ j −λk
, h> 0

does not exist because the second series is a finite number andall summands in the
first sum are strictly positive, with at least one of some diverging to∞. Soλk is a non-
removable singularity.

(ii) Let λk, andλk̃ be as in assertion (ii). Then according to (i), both are polesand
ck,ck̃ 6= 0. Thus, we see

lim
h↓0

G(−λk̃+h) = lim
h↓0

∑
{ j∈Jc | λ j=λk̃}

c j

h
+ ∑

{ j∈Jc | λ j 6=λk̃}

c j

λ j −λk̃
= ∞

and

lim
h↓0

G(−λk−h) = lim
h↓0

∑
{ j∈Jc | λ j=λk}

c j

−h
+ ∑

{ j∈Jc | λ j 6=λk}

c j

λ j −λk
=−∞.

SinceG maps real values to real values, the intermediate value theorem implies that
there exists at least oneµ ∈ (−λk̃,−λk) with G(µ) = 0. Note that for all j with
λ j ≥ 1+2λk̃, and alls∈ (−λk̃,−λk) holds

c j

(s+λ j)2 ≤
c j

(λ j −λk̃)
2 ≤

c j

λ j
.

Together with (3.7) this implies that the derivative ofG along the real axis is given
by the absolutely convergent series

d
ds

G(s) =−
∞

∑
k=0

ck

(s+λk)2 .

Since this expression is greater than zero, we deduce thatG strictly decreasing on the
interval(−λk̃,−λk). Thus,µ is the only zero ofG in this interval, and it is simple.

(iii) Let µ ∈ C be a transmission zero of (1.2). Thenµ ∈ D(G), and

0= ImG(µ) =
∞

∑
k=0

ck Im

(
1

µ +λk

)
=

∞

∑
k=0

ck
− Imµ
|µ +λk|2
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implies that Imµ = 0, whenceµ ∈R. Forµ > 0, the positivity ofc0 > 0 leads to the
contradiction

0<
∞

∑
k=0

ck
1

µ +λk
=

∞

∑
k=0

ck
µ +λk

|µ +λk|2
= G(µ) = 0.

From (i) andc0 > 0 we know that 0/∈ D(G), whenceµ must be inR<0. Sinceλ0 = 0,
the integerk := max{ j ∈ N0 : µ ≤ −λ j ∧ c j 6= 0} exists and the claim (iii) follows
from (ii). ⊓⊔

−λk

µ

−λk̃

s

G(s)

Fig. 3.1 The transfer function on the negative real axis

4 Invariant zeros

The following definition of invariant zeros is a direct generalization of the finite-
dimensional case in [20, 25]. This concept has been introduced byRosenbrock[17],
where it is calledinput-output-decoupling zeros. For infinite-dimensional systems
with bounded input and output operators, invariant zeros have been considered in
[16]. Invariant zeros for boundary control systems are treated in [8].

Definition 4.1 (Invariant zero) Let X and (A,B,C) be as in Definition 3.1. Then
λ ∈ C is called aninvariant zero of(A,B,C) if there existu∈ C andx∈V such that

x 6= 0 ∧ (λ I −A)x= Bu ∧ Cx= 0. (4.1)
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The set of all invariant zeros of(A,B,C) is denoted by inv(A,B,C) and themultiplicity
of an invariant zeroλ is

mult(λ ) := dim{x∈V | (λ I −A)x∈ imB∧Cx= 0} .

It is well-known for finite-dimensional systems that transmission zeros are contained
in the set of invariant zeros. The difference between these two sets consists of eigen-
values ofA. The following result shows that this holds true for systemsthat are subject
in Definition 3.1. We will see that argumentation for the finite-dimensional SISO case
can be used in a straightforward manner.

Proposition 4.2 Let A, B and C be operators satisfying the prerequisites of Defini-
tion 3.1 and letλ ∈ C be an invariant zero of(A,B,C). Then at least one of the
following assertions hold true:

(i) λ is a spectral value of A;
(ii) G(λ ) = 0.

Proof Assume thatλ ∈ ρ(A) and(x,u) ∈V ×C fulfill (4.1). Thenλ ∈ ρ(A) implies
u 6= 0. Multiplication of (λ I −A)x+Bu= 0 from the left with(λ I −A)−1 further
impliesx=−(λ I −A)Bu, and thus

G(λ )u=C(λ I −A)−1Bu=−Cx= 0.

⊓⊔

In other words, Proposition 4.2 states that forλ ∈ C with mult(λ ) > 0, there holds
λ ∈ σ(A)∪ inv(A,B,C). The following stronger result gives a detailed expressionfor
the multiplicity of an invariant zero.

Theorem 4.3 Let A, B, C be as in(2.1). Then

inv(A,B,C) = {µ ∈ C | G(µ) = 0}∪{−λk | k∈ N0\ Jc} , (4.2)

Moreover, the multiplicity of each invariant zeroλ ∈ inv(A,B,C) satisfies

(i) mult(λ ) = dim(ker(λ I −A)∩kerC), if G(λ ) 6= 0,
(ii) mult(λ ) = dim(ker(λ I −A)∩kerC)+1, if G(λ ) = 0.

Proof
(i) Let λ ∈ inv(A,B,C) and assumeG(λ ) 6= 0. By the definition of multiplicity, it
suffices to prove that

{x∈V | (λ I −A)x∈ imB ∧ Cx= 0}= ker(λ I −A)∩kerC.

The subset relation “⊃” is trivial. To prove the reverse inclusion, we have to show
that for allx∈V andu∈ C with (4.1) holdsu= 0. By Proposition 4.2λ must be an
eigenvalue ofA. If there is ak∈ Jc with λ =−λk, then the corresponding eigenvector
vk ∈ D(A) satisfies

〈u,Cvk〉= 〈Bu,vk〉= 〈x,(λ I −A)∗vk〉= 〈x,(−λkI −A)vk〉= 0.
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SinceCvk 6= 0 for k∈ Jc, we obtainu= 0.
Now we consider the case whereλ 6=−λk for all k∈ Jc. Note that we have

0= 〈x,(λ I −A)∗ϕ〉− 〈Bu,ϕ〉 ∀ϕ ∈ D(A).

Choose an arbitraryk∈ Jc. Then the eigenvector 1
λ+λk

vk is in D(A), and

0=

〈
x,(λ I −A)∗

1

λ +λk
vk

〉
−

〈
Bu,

1

λ +λk
vk

〉
= 〈x,vk〉−

〈
u,

Cvk

λ +λk

〉
.

Hence, for allk∈ Jc holds〈x,vk〉=
Cvk

λ+λk
. With this we obtain

0=Cx=C ∑
k∈Jc

〈x,vk〉vk+C ∑
k∈N\Jc

〈x,vk〉vk

︸ ︷︷ ︸
∈kerC

=C ∑
k∈Jc

〈x,vk〉Cvk = ∑
k∈Jc

|Cvk|
2

λ +λk
u= G(λ )u.

ThenG(λ ) 6= 0 impliesu= 0.
(ii) Assume thatλ ∈C with G(λ ) = 0.

Step 1: We show that mult(λ )≥ dimker(λ I −A)+1.
Observe that the assumptionG(λ ) = 0 includes thatλ is not a pole ofG. Define the
setJλ = { k∈N0 | vk ∈ ker(λ I −A) }. Theorem 3.8 (i) implies

ker(λ I −A) = span{vk | k∈ Jλ}= ker(λ I −A)∩ker(C).

This gives rise to ker(λ I −A)⊂V∩kerC. The inequality mult(λ )≥ ker(λ I −A)+1
therefore holds true, if we find some vectorx∈ ker(λ I −A)⊥∩V \{0}with x∈ kerC.
Definex via the series

xp := ∑
k∈N\Jλ

∫
∂Ω vk(ξ ) dσξ

λ +λk
·vk ∈ ker(λ I −A)⊥, (4.3)

which converges inH1(Ω) according to Lemma 3.4. Further,x 6= 0 since the density
of span{ vk | k∈ N } in D(A) and the fact that boundary integration is not the zero
operator onD(A) implies that there exists somek0 ∈N\Jλ with

∫
∂Ω vk0(ξ ) dσξ 6= 0.

Further, the spectral decomposition ofA in Lemma 2.4 and the fact thatvk ∈ kerC for
k∈ Jλ yields for allϕ ∈ D(A) holds

〈(λ I −A)xp,ϕ〉= 〈xp,(λ I −A)ϕ〉

=

〈

∑
k∈N\Jλ

∫
∂Ω vk(ξ ) dσξ

λ +λk
vk , ∑

l∈N

(λ +λl)〈ϕ ,vl 〉vl

〉

= ∑
k∈N\Jλ

∫

∂Ω
vk(ξ ) dσξ 〈ϕ ,vk〉

=

∫

∂Ω
∑
k∈N

〈vk,ϕ〉vk(ξ ) dσξ

= 〈B ·1,ϕ〉 .
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This shows thatxp ∈V. We further obtain

Cxp = ∑
k∈N\Jλ

Cvk

λ +λk
Cvk = ∑

k∈Jc

ck

λ +λk
= G(λ ) = 0.

Altogether, we havexp ∈ V ∩ kerC∩ ker(λ I −A)⊥ \ {0}. This leads to mult(λ ) ≥
dimker(λ I −A)+1.
Step 2:Now we prove the reverse inequality mult(λ )≤ dimker(λ I −A)+1: Assume
that(x,u) ∈V ×C, such thatCx= 0 and(λ I −A)x= Bu. By Lemma 2.4 and Theo-
rem 3.8, we haveλk,λ ∈ R. Then, by using (2.10) and the self-adjointness ofA, we
obtain for alll ∈ N\ Jλ that

(λ +λl) · 〈x,vl 〉= 〈x,(λ I −A)vl 〉= 〈x,(λ I −A)∗vl 〉= 〈(λ I −A)x,vl〉

=〈Bu,vl 〉= 〈u,Cvl 〉= u ·
∫

∂Ω
vk(ξ ) dσξ = u ·Cvk

holds. This yields

〈x,vk〉=
Cvk

λ +λk
u ∀k∈ N\ Jλ .

Hence, forxp as in (4.3), we have

x∈ ker(λ I −A)+ span{xp},

and therefore mult(λ )≤ dimker(λ I −A)+1. ⊓⊔

5 Zero dynamics

Here we study zero dynamics which consist of the trajectories of (1.2) resulting in
a trivial outputy(·)≡ 0. Zero dynamics play a central role in (adaptive) output regu-
lation [15, 11].

Definition 5.1 (Zero dynamics)Let A, B andC be operators with properties as in
Definition 3.1. LetT(·) be the semigroup generated byA. The zero dynamics of
(A,B,C) are the pairs(x,u) ∈ C (R≥0;X)×L1

loc(R≥0) with

x(t) =T(t)x0+

∫ t

0
T(t − τ)Bu(τ)dτ, t ∈ R≥0, and (5.1)

Cx(t) =0 for almost allt ∈ R≥0. (5.2)

In this part we prove that the zero dynamics of the heat equation system (1.1) are com-
pletely described by an exponentially stable, contractiveand analytical semigroup on
L2(Ω). First we consider an operator which turns out to be the generator of this semi-
group. In particular, we show that this operator admits an eigenvalue decomposition;
the spectrum of this operator is the set of invariant zeros of(A,B,C).
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Theorem 5.2 Consider the operator A0 : D(A0)⊂ L2(Ω)→ L2(Ω) with

A0x= ∆x ∀x∈ D(A0) =





x∈ H2(Ω)

∣∣∣∣∣∣∣

∂νx|∂Ω ≡

∫
Ω ∆x(ξ )dξ

|∂Ω |

and
∫

∂Ω
x(ξ ) dσξ = 0.




. (5.3)

Then the following holds true:

(i) A0 is self-adjoint and has compact resolvent;
(ii) A0 generates an analytical, contractive, and exponentially stable semigroup on

L2(Ω);
(iii) For the operators A, B and C as in(2.1)holds

σ(A0) = { λ ∈ C | λ is an invariant zero of(A,B,C) } .

Proof Step 1:We construct an associated sesquilinear form forA0 (cf. Theorem 1.1):
Define the space

H =

{
x∈ H1(Ω)

∣∣∣∣
∫

∂Ω
x(ξ ) dσξ = 0

}
. (5.4)

ThenH is dense inL2(Ω). We obtain from the trace theorem [1, Theorem 5.5.36]
thatH is a closed subspace ofH1(Ω). In other words,H is a Hilbert space inheriting
the inner product ofH1(Ω). We define the sesquilinear form

a0 : H ×H →C, (x,z) 7→
∫

Ω
∇x(ξ ) ·∇z(ξ )dξ , (5.5)

which is continuous and symmetric. We prove that there is anα > 0 with

Rea0(x,x) ≥ α〈x,x〉H ∀x∈ H. (5.6)

Assume that this is false. Then there exists a bounded sequence(xn) in H with

‖xn‖H1(Ω) = 1 ∀n∈ N, (5.7)

and
lim
n→∞

a0(xn,xn) = 0. (5.8)

The Rellich-Kondrachov Theorem [10, Theorem 4.17 (i)] implies that there exists
somez∈ L2(Ω) and a subsequence(xnk) with

lim
k→∞

‖z− xnk‖L2(Ω) = 0.

Together with (5.8) and (5.5) this implies that(xnk) is a Cauchy sequence inH1(Ω),
whencez∈ H1(Ω) and

lim
k→∞

‖z− xnk‖H1(Ω) = 0.

Since differentiation as well as boundary evaluation are continuous with respect to
theH1(Ω) norm, it follows that

∇z= 0 and
∫

∂Ω
z(ξ )dξ = 0.
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Hence,z is a constant function whose boundary integral vanishes. This impliesz= 0,
wich is a contradiction to (5.7).

Step 2:With the definition ofH anda0 as in Step 1 andA0 as in (5.3), we show
that

D(A0) =
{

x∈ H
∣∣∣ ∃z∈ L2(Ω) : a0(x,ϕ) = 〈z,ϕ〉L2(Ω) ∀ϕ ∈ H

}
, (5.9)

and

〈A0x,ϕ〉=−a0(x,ϕ) ∀ϕ ∈ D(A0). (5.10)

For x ∈ D(A0) the equation (5.10) follows by Green’s formula, since for all ϕ ∈ H
holds

a0(x,ϕ) =−

∫

Ω
∇x(ξ ) ·∇ϕ(ξ )dξ

= −

∫

Ω
∆x(ξ ) ·ϕ(ξ )dξ +

∫

∂Ω
∂ν x(ξ ) ·ϕ(ξ )dσξ

= −

∫

Ω
∆x(ξ ) ·ϕ(ξ )dξ +u ·

∫

∂Ω
ϕ(ξ )dσξ

︸ ︷︷ ︸
=0

=−〈∆x,ϕ〉L2(Ω) .

This computation also gives rise to the inclusion “⊂” in (5.9). To prove the converse
inclusion, assume thatx∈ H and there exists somez∈ L2(Ω) with

∫

Ω
∇x(ξ )∇ϕ(ξ )dξ = a0(x,ϕ) = 〈z,ϕ〉L2(Ω) ∀ϕ ∈ H. (5.11)

Then (5.11) holds true for allϕ ∈ C ∞
c (Ω) in particular. Consequently,z= −∆x. We

choose anH2(Ω)-functionh with

∂ν h|∂Ω ≡

∫
Ω ∆x(ξ )dξ

|∂Ω |

and claim thatx−h fulfills

∫

Ω
∇(x−h)(ξ )∇ψ(ξ )dξ =−

∫

Ω
∆(x−h)(ξ )ψ(ξ )dξ ∀ψ ∈ H1(Ω).
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Let ψ ∈ H1(Ω). Thenϕ := ψ −
∫

∂ Ω ψ(ξ )dξ
|∂Ω | is in H and∇ψ = ∇ϕ . Thus we have

∫

Ω
∇(x−h)(ξ )∇ψ(ξ )dξ

=

∫

Ω
∇x(ξ )∇ϕ(ξ )dξ −

∫

Ω
∇h(ξ )∇ψ(ξ )dξ

=

∫

Ω
z(ξ )ϕ(ξ )dξ −

∫

Ω
∇h(ξ )∇ψ(ξ )dξ

=

∫

Ω
z(ξ )ϕ(ξ )dξ +

∫

Ω
∆h(ξ )ψ(ξ )dξ −

∫

∂Ω
∂νh(ξ )ψ(ξ )dξ

=−

∫

Ω
∆x(ξ )ϕ(ξ )dξ +

∫

Ω
∆h(ξ )ψ(ξ )dξ −

∫

∂Ω

∫
Ω ∆x(ζ )dζ

|∂Ω |
ψ(ξ )dξ

=−
∫

Ω
∆x(ξ )

(
ϕ(ξ )+

∫
∂Ω ψ(ξ )
|∂Ω |

)
dξ +

∫

Ω
∆h(ξ )ψ(ξ )dξ

=

∫

Ω
∆(h(ξ )− x(ξ ))ψ(ξ )dξ .

Now Lemma 2.1 implies thatx−h∈H2(Ω) and∂ν(x−h)|∂Ω = 0. Hence,x∈H2(Ω)

and∂νx|∂Ω ≡
∫

Ω ∆xdξ
|∂Ω | .

Step 3:We conclude statement (i) and (ii): The relations (5.6) and (5.10), together
with the symmetry ofa0(·, ·), imply thatA0 is self-adjoint and negative definite. In
particular, 0∈ ρ(A0), and

A−1
0 L2(Ω)⊂ D(A0).

SinceH2(Ω) is compactly embedded inL2(Ω) by the Rellich-Kondrachov Theorem,
we infer thatA0 has compact resolvent. Therefore, its spectrum consists ofisolated
eigenvalues [13, Theorem 6.29, p.187], which must be strictly negative because of
(5.6). This shows thatA0 is a sectorial operator, and by [19, Theorem 3.10.5],A0

generates an analytical semigroupT0(·). The property that its largest eigenvalue−ω0

is negative further implies that

‖T0(t)‖B(L2(Ω)) ≤ e−ω0t ∀t ∈R≥0,

see [24, Proposition 2.6.5]. Hence, the semigroup is contractive and exponentially
stable.

Step 4:We prove (iii): First assume thatλ ∈ C is an invariant zero of(A,B,C).
Then there exists some nontrivial pair(x,u) ∈ V ×C with λx−Ax+Bu= 0 and
Cx= 0. From Lemma 3.3 we obtain thatx∈ H2(Ω) with

u= ∂ν x(ξ ) ∀ξ ∈ ∂Ω , and ∆x= Ax+Bu.

In particular, there holds

(λ I −∆)x= (λ I −A)x−Bu= 0.

The equationCx= 0 furthermore gives rise to the fact that the boundary integral of x
vanishes. Altogether, we obtain thatx∈ D(A0) andA0x= λx, whenceλ ∈ σ(A0).
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Conversely, assumeλ ∈ σ(A0), i.e. there exists somex∈ D(A0)\{0} with A0x= λx.
Lemma 3.3 shows thatx∈V and∆x= A0x= Ax+Bu. Thus,

(λ I −A)x−Bu= (λ I −A0)x= 0,

andλ is an invariant zero of(A,B,C). ⊓⊔

The following result shows that the semigroup generated byA0 indeed gives a full
characterization of the zero dynamics of the heat equation system with boundary
control.

Theorem 5.3 Let A, B, C be given by(2.1) and A0 as in Theorem 5.2. Let T0(·) be
the semigroup generated by A0. Then the following holds true:

(i) If (x,u) ∈ C (R≥0;X)× L1
loc(R≥0) is in the zero dynamics of(A,B,C), then

T0(t)x(0) = x(t) ∀t ∈ R≥0.
(ii) Let x0 ∈ L2(Ω) and define the function x(·) := T0(·)x0. Then there exists some

u∈ L1
loc(R≥0;C) such that(x,u) is in the zero dynamics of the system(A,B,C).

The function u: R>0 →C is analytical.

Proof (i) Assume that(x,u) ∈ C (R≥0;X)× L1
loc(R≥0) is in the zero dynamics of

(A,B,C). SinceB maps into the spaceX− 1
2

andT is an analytic semigroup, the solu-

tion x of (5.1) satisfiesx(t) ∈ X1
2

for all t > 0 [14, Proposition 2.2.2]. Therefore, for

all ϕ ∈ D(A) holds [24, Remark 4.1.2]

〈x(t)− x(0),ϕ〉=
∫ t

0
〈x(t),A∗ϕ〉X + 〈u,B∗ϕ〉dτ =

∫ t

0
−a(x(t),ϕ)+ 〈u,B∗ϕ〉dτ.

Since the right hand side depends continuously onϕ with respect to theX1
2

norm, this

equation extends to allϕ ∈ X1
2
. The assumptionCx(t) = 0 implies that fort > 0, x(t)

is even in the domain ofa0 defined in (5.4). Hence, forϕ ∈ D(A0)⊂ X1
2

the equation
above becomes

〈x(t)− x(0),ϕ〉=−

∫ t

0
a(x(t),ϕ)dτ =−

∫ t

0
a0(x(t),ϕ)dτ =

∫ t

0
〈x(t),A∗

0ϕ〉dτ.

This impliesx(t) = T0(t)x(0).
(ii) Let x0 ∈ L2(Ω) and definex(t) := T0(t)x0. Since the semigroupT0 is analytic

we havex(t) ∈ D(A0) for all t ∈R>0,

‖T0(t)x0‖X ≤ e−ωt , and ‖T0(t)x0‖D(A0) ≤
1
t
e−ωt .

For the interpolation space(X,D(A))θ ,∞ [14, Proposition 2.2.2] there exists some
c> 0 with

‖T0(t)x0‖(X,D(A))θ ,∞
≤ c

(
1
t

e−ωt
)θ (

e−ωt)1−θ
=

c
tθ e−ωt .
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For θ ∈
(

3
4,1
)

it follows that the expression on the left is integrable overfinite in-
tervals. Due to the facts that(X,D(A))θ ,∞ →֒ H2θ (Ω) [21, Theorem 4.3.3, see also
Theorem 4.3.1.1 and Remark 2.4.2.2] and the mapping

trν : H2θ (Ω)→ H2θ− 3
2 (∂Ω), x 7→ (ξ 7→ ∂νx(ξ )) , 2θ ≥ 3/2,

is bounded [10, Theorem 4.24 (ii)], we get thatu(t) := trν x(t) defines aL1
loc(R≥0)-

function.
Furthermore,x(t) ∈ D(A0) implies thatx(t) is an element of the spaceV defined

in Lemma 3.3(ii), and by Lemma 3.3 (i),

A0x(t) = ∆x(t) = Ax(t)+Bu(t).

Thus, we have

x(t)− x0 =
∫ t

0
A0x(τ)dτ =

∫ t

0
Ax(τ)+Bu(τ)dτ,

andCx(t) = 0 for all t > 0. So(x,u) is in the zero dynamics of(A,B,C). ⊓⊔

Remark 5.4 (Zero dynamics for the heat equation)Theorem 5.3 gives rise to an inter-
esting effect for zero dynamics of the heat equation system (1.1): For eachx0 in the
state space, there exists some unique trajectory(x,u) ∈C (R≥0;X)×L1

loc(R≥0) in the
zero dynamics withx(0) = x0. For finite-dimensional SISO systems, this is not true
in general: The zero dynamics evolve in some proper subspaceof the state-space. The
dimension of the zero dynamics is determined by the relativedegree of the transfer
function. The zero dynamics of finite-dimensional systems can be fully characterized
by theByrnes-Isidori form[5].

6 Proportional output feedback and root locus

We consider the heat equation system with output feedbacku(t) = v(t)−ky(t). Here,
the proportional output gain kis given, andv ∈ L2(R≥0) corresponds to the input
of the closed-loop system. We show that for the system with operators as in (2.1),
proportional output feedback results in a well-posed linear system. The evolution
operatorAk of the closed-loop system will turn out to be self-adjoint and to have
a compact resolvent. We moreover prove theroot-locus property: As k tends to∞, the
eigenvalues ofAk move towards the invariant zeros of(A,B,C) in a certain sense.
Well-posedness of infinite-dimensional output feedback systems is well understood
by the results of WEISS in [22]. In this context the notion ofregularity plays an
important role. We recall the following definition from [23].

Definition 6.1 An analytical functionG : D(G) ⊂ C → C is calledregular, if there
exists someD ∈ C such that transfer function fulfills

lim
s>0,s→∞

G(s) = D.
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Proposition 6.2 [6] The transfer function of the operators(A,B,C) given by(2.1) is
regular with D= 0.

We are now able to formulate and prove the result that the heatequation (1.1) with
output feedbacku(t) = v(t)− ky(t) defines a well-posed linear system.

Theorem 6.3 Let (A,B,C) be defined by(2.1), and define T,Bt ,C,D as in (2.13),
(2.14)respectively. Let u∈ L2

loc(R≥0), x0 ∈ L2(Ω), k∈R and set v(t) := u(t)+ky(t),
with y defined in(2.15b). Then the state x defined in(2.15a)satisfies

x(t) = Tk(t)x0+Bk,tv, (6.1)

where Tk is a strongly continuous semigroup on L2(Ω) generated by

Akx= (A− kBC)x, D(Ak) = { x∈ D(C) | (A− kBC)x∈ X } , (6.2)

and

Bk,tv=
∫ t

0
Tk(t − τ)|D(A∗

k)
′Bv(τ)dτ in D(A∗

k)
′.

Here Tk(t)|D(A∗
k)

′ is the extension of Tk(t) to D(A∗
k)

′. In particular, the range of B is
contained in this space.

Proof By Proposition 6.2, the transfer function of(A,B,C) is regular withD = 0.
In particular, 1− k ·D 6= 0 ∀k ∈ R. The overall statement now follows from [22,
Theorem 6.1 & Theorem 7.2]. ⊓⊔

Theorem 6.4 Let (A,B,C) be defined by(2.1)and let G be the corresponding trans-
fer function. The following holds true for the operator Ak in (6.2)with k> 0:

(i) Akx= ∆x, and

D(Ak) =

{
x∈ H2(Ω)

∣∣∣ ∂ν x(ξ ) =−k
∫

∂Ω
x(ζ )dσζ ∀ξ ∈ ∂Ω

}
. (6.3)

(ii) The operator Ak is self-adjoint,σ(Ak)⊂ (−∞,0), and Ak has a compact resol-
vent. For all{s∈ ρ(A) |kG(s) 6=−1} we have s∈ ρ(Ak) and

(sI−Ak)
−1 = (sI−A)−1− (sI−A)−1B

(
1
k
+G(s)

)−1

C(sI−A)−1. (6.4)

(iii) A k generates an exponentially stable semigroup Tk(·) on L2(Ω).

Proof (i) We show that the set defined in (6.3) is a subset of the domain given in (6.2).
Let x be in the former set. Thenx is in D(C) because the trace operator is well-defined
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onH2(Ω). Moreover, we have the following equation for allϕ ∈ D(A∗) = D(A):

〈Ax,ϕ〉− 〈BkCx,ϕ〉=
∫

Ω
x(ξ ) ·∆ϕ(ξ )dξ − k

∫

∂Ω
x(ζ )dσζ

∫

∂Ω
ϕ(ξ )dσξ

=

∫

Ω
∆x(ξ ) ·ϕ(ξ )dξ −

∫

∂Ω
(∂ν x(ξ )) ·ϕ(ξ )dσξ

+

∫

∂Ω
x(ξ ) · (∂νϕ(ξ ))dσξ −

∫

∂Ω
k
∫

∂Ω
x(ζ )dσζ ϕ(ξ )dσξ

=

∫

Ω
∆x(ξ ) ·ϕ(ξ )dξ

−

∫

∂Ω

(
∂νx(ξ )dξ + k

∫

∂Ω
x(ζ )dσζ

)
ϕ(ξ )dσξ

=

∫

Ω
∆x(ξ ) ·ϕ(ξ )dξ .

This shows thatAx−BkCx∈ X because it can be represented by the function∆x ∈
L2(Ω). For the converse inclusion, take anyx∈ D(C) with Ax−BkCx∈ X. Thenx is
by definition an element of the spaceV in Lemma 3.3. Therefore, part (i) and (ii) of
Lemma 3.3 implyx∈ H2(Ω) and∂ν x≡−kCx=−k

∫
∂Ω x(ξ )dξ .

(ii) Let s∈ ρ(A) andkG(s) 6=−1. Then

(sI−Ak)

(
(sI−A)−1− (sI−A)−1B

(
1
k
+G(s)

)−1

C(sI−A)−1

)

= (sI−A+ kBC)

(
(sI−A)−1− (sI−A)−1B

(
1
k
+G(s)

)−1

C(sI−A)−1

)

= I + kBC(sI−A)−1− (I + kBC(sI−A)−1)B

(
1
k
+G(s)

)−1

C(sI−A)−1

= I +

(
kB− (I + kBC(sI−A)−1)B

(
1
k
+G(s)

)−1
)

C(sI−A)−1

= I +

(
kB− (B+ kBG(s))

(
1
k
+G(s)

)−1
)

C(sI−A)−1

= I +

(
kB− kB

(
1
k
+G(s)

)(
1
k
+G(s)

)−1
)

C(sI−A)−1 = I

and
(
(sI−A)−1− (sI−A)−1B

(
1
k
+G(s)

)−1

C(sI−A)−1

)
(sI−Ak)

=

(
(sI−A)−1− (sI−A)−1B

(
1
k
+G(s)

)−1

C(sI−A)−1

)
(sI−A+ kBC)
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= I +(sI−A)−1kBC− (sI−A)−1B

(
1
k
+G(s)

)−1

C(I +(sI−A)−1kBC)

= I +(sI−A)−1kBC− (sI−A)−1B

(
1
k
+G(s)

)−1(1
k
+G(s)

)
kC= I

prove thats∈ ρ(Ak) and (6.4) holds true. Since the resolvent ofA is compact, this
formula shows furthermore that the resolvent ofAk is compact as well. Therefore, the
spectrum ofAk is a countable set of isolated eigenvalues [13, Theorem 6.29, p.187].
With Gauß’s Theorem we get for allx,z∈ D(Ak)

〈Akx,z〉=
∫

Ω
∆x(ξ ) ·z(ξ )dξ =−

∫

Ω
∇x(ξ ) ·∇z(ξ )dξ +

∫

∂Ω
∂νx(ξ ) ·z(ξ )dσξ

=−

∫

Ω
∇x(ξ ) ·∇z(ξ )dξ − k

∫

∂Ω
x(ξ )dσξ

∫

∂Ω
z(ξ )dσξ .

By further reversing the roles ofx andz in the above formula, we can conclude that

〈Akx,z〉 = 〈x,Akz〉 ∀x,z∈ D(Ak).

Since the spectrum ofAk consists of isolated eigenvalues, we haveR∩ρ(Ak) 6= /0. In
other words, there exists someλ ∈R such thatλ I −A is onto. Then we can conclude
from [24, Proposition 3.2.4] thatAk is self-adjoint. Furthermore,Ak is non positive
because for allx∈ D(Ak) holds

〈Akx,x〉=−

∫

Ω
∇x(ξ ) ·∇x(ξ )dξ − k

(∫

∂Ω
x(ξ )dσξ

)2

≤ 0 (6.5)

We show that zero is not an eigenvalue ofAk. Assume thatAkx = 0 for some func-
tion x∈ D(Ak), x 6≡ 0. Then (6.5) implies∇x= 0 everywhere and

∫
∂Ω x(ξ )dσξ = 0.

Hence,x must be the constant zero function, which leads to a contradiction. Conse-
quently zero is not an eigenvalue ofAk.

(iii) With the spectrum containing only isolated eigenvalues, statement (ii) implies
supλ∈σ(Ak)

Re(λ )< 0 and the claim follows with [24, Proposition 3.8.5]. ⊓⊔

Theorem 6.5 Let (A,B,C) be defined by(2.1) with corresponding transfer function
G. Let λn, vn and Jc be as in Theorem 3.6 and define Ak by (6.2) with k> 0. The
eigenvalues of Ak are given by

σ(Ak) =
{
−λn

∣∣∣ n∈ N0\ Jc

}
∪
{

λ ∈ R<0

∣∣∣ G(λ ) =−1/k
}
.

Proof “⊃”: Let n∈ N0 \ Jc, then−λn is an eigenvalue ofA and there exists at least
one corresponding eigenvectorvn ∈ kerC. Hence,vn is in D(Ak) by the definition
(6.2) and the equation

Akvn = Avn+ kBCvn = Avn =−λnvn

shows thatλn is an eigenvalue ofAk.
Now let λ be such thatG(λ ) = − 1

k . We distinguish the casesλ ∈ σ(A) and
λ ∈ ρ(A): First assume thatλ ∈ σ(A). Thenλ = −λn for at least onen ∈ N. If n
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was in Jc, then Theorem 3.8 (i) would imply thatλ is a pole ofG, contradicting
the assumptionG(λ ) = −1/k. So we haven ∈ N0 \ Jc and the first part shows that
λ ∈ σ(Ak). Let us consider the case whereλ ∈ ρ(A): We have for allx∈ D(C)

(λ I −A)−1(λ I −A+ kBC)x= x+(λ I −A)−1kBCx.

Exploiting that(λ I −A)−1B maps intoD(C) by Remark 3.2 and Lemma 3.3, we get

C(λ I −A)−1(λ I −A+ kBC)x=Cx+ kG(λ )Cx=Cx−Cx= 0.

If λ I −A+kBCwas bijective, this would lead to the contradictionCx= 0 for all x in
the dense subset(λ I −A)−1D(C) of D(A). Thus,λ has to be inσ(Ak).

“⊂”: Let λ be an eigenvalue ofAk, i.e. λ ∈ R and some nontrivialx ∈ D(Ak)
satisfies(λ I −Ak)x = (λ I −A+BkC)x = 0. Assume further thatλ 6= −λn for all
n∈N\Jc. Note that this impliesCx 6= 0 because otherwise,x would be an eigenvector
of A contained in the kernel ofC. We are going to show thatG(λ ) =−1/k. First, we
determine the coefficients〈x,vn〉 for n∈ Jc by exploiting that

(λ +λn)〈x,vn〉= 〈x,(λ −A)vn〉=−〈BkCx,vn〉=−k〈Cx,Cvn〉.

Observe thatn∈ Jc impliesCvn 6= 0, and that we haveCx 6= 0. It follows thatλ 6=−λn

and

〈x,vn〉=−k
〈Cx,Cvn〉

λ +λn
∀n∈ Jc.

Thus,

Cx=C ∑
n∈N0

〈x,vn〉vn = ∑
n∈Jc

〈x,vn〉Cvn =−k ∑
n∈Jc

〈Cx,Cvn〉

λ +λn
Cvn =−kG(λ )Cx.

A division of this equation by−k ·Cx 6= 0 givesG(λ ) =−1/k. ⊓⊔

Corollary 6.6 For k→ ∞ the eigenvalues of Ak converge from the right to the eigen-
values of A0 in the following sense:

∀µ ∈ σ(A0) ∀ε > 0 ∃K > 0 ∀k≥ K ∃λ ∈ σ(Ak)∩ [µ ,µ + ε).

Proof Let µ ∈ σ(A0) andJc ⊂ N be defined as in (3.5). By Theorem 5.2 (iii) and
Theorem 4.3, at least one of the following scenarios is valid:

(i) µ =−λn for somen∈ N\ Jc, or
(ii) G(µ) = 0.

In the first case, Theorem 6.5 implies thatµ is an eigenvalue ofAk for all k> 0. In the
second case, there exist two consecutive poles−λñ, −λn of G with µ ∈ (−λñ,−λn)
due to Theorem 3.8 (iii). The partial fraction decomposition (3.6), together with
ck > 0∀k∈ Jc, implies that the functionG|(−λñ,−λn) is real valued and monotonically
decreasing with

lim
h↓0

G(−λñ+h) = ∞, lim
h↓0

G(−λk−h) =−∞,
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(cf. proof of Theorem 3.8 and Figure 3.1). Hence,G̃ := G|(−λñ,−λn) has some con-

tinuous inversẽG−1 : R → (−λñ,−λn). Theorem 6.5 implies that̃G−1(−1/k) is an
eigenvalue ofAk. Further,µ = G̃−1(0) is the only transmission zero in(−λñ,−λn),
whence, by Proposition 4.2 and Theorem 5.2 (iii),µ is an eigenvalue ofA0. Continu-
ity of G̃ on (−λñ,−λn) furthermore implies

lim
k→∞

G̃−1(−1/k) = µ ,

which proves the result. ⊓⊔

References

1. Adams RA (1975) Sobolev Spaces. No. 65 in Pure and Applied Mathematics,
Academic Press, New York, London

2. Arendt W, ter Elst A (2012) From forms to semigroups. In: Spectral Theory,
Mathematical System Theory, Evolution Equations, Differential and Difference
Equations, Operator Theory: Advances and Applications, vol 221. Springer,
Basel, pp 47–69.

3. Byrnes CI, Gilliam DS, He J (1994) Root-locus and boundaryfeedback design
for a class of distributed parameter systems. SIAM J ControlOptim 32(5):1364–
1427

4. Byrnes CI, Gilliam DS, Isidori A, Shubov VI (2006) Zero dynamics modeling
and boundary feedback design for parabolic systems. Math Comput Modelling
44:857–869

5. Byrnes CI, Isidori A (1991) Asymptotic stabilization of minimum phase nonlin-
ear systems. IEEE Trans Autom Control 36(10):1122–1137

6. Byrnes CI, Gilliam DS, Shubov VI, Weiss G (2002) Regular linear systems gov-
erned by a boundary controlled heat equation. J Dyn Control Syst 8(3):341–370

7. Cheng A, Morris KA (2003) Well-posedness of boundary control systems. SIAM
Journal of Control and Optimization 42(4):1244–1265

8. Cheng A, Morris KA (2003) Accurate approximation of invariant zeros for a
class of siso abstract boundary control systems. In: Proc 42rd IEEE Conf Decis
Control, Hawaii, USA, pp 1315–1320

9. Diestel J, Uhl J (1977) Vector Measures, Mathematical Surveys and Mono-
graphs, vol 15. American Mathematical Society, Providence, RI

10. Haroske D, Triebel H (2008) Distributions, Sobolev Spaces, Elliptic Equations,
EMS Textbooks in Mathematics, vol 4. EMS Publishing House, Zürich
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