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Abstract We consider a single-input-single output systems whoseriat dynamics
are described by the heat equation on some do®ainR? with sufficiently smooth
boundary? Q. The inputis formed by the Neumann boundary values; theubatm-
sists of the integral over the Dirichlet boundary values.

We show that the transfer function admits some partial isacxpansion with pos-
itive residuals. The location of transmission and invarizeros of this system is
furthermore investigated. We prove that the transmissems have an interlacing
property in the sense that there is exactly one transmigsiom between two poles
of the transfer function. The set of transmission zeros ésvshto be a subset of the
invariant zeros.

Thereafter we consider the zero dynamics of this system. keepthat these are
fully described by a self-adjoint and exponentially stagdenigroup. The eigenval-
ues of the generator of this semigroup are proven to coineitthethe set of invariant
zeros.

Finally, we consider proportional output feedback. We sltloat any positive pro-
portional gain results in an exponentially stable systera.fWther prove the root
locus property: If the proportional gain tends to infinityeh the eigenvalues of the
generator of the closed loop system will converge to theriawaizeros.
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1 Introduction

Let Q c RY be a bounded domain with smooth bounda€y. Consider the following
heat equation with Neumann boundary control and observétimned by the spatial
integral of the Dirichlet boundary values

Xen-apxEn.  (EDe@xRu
u(t) = avx(&,1), (&,1) €0Q xRy, 1.1)
y(t) = /mx(f,t)da.f e Rao,
X(£,0) = Xo(€) fca.

By settingx(t) = x(-,t), the boundary controlled heat equatibn{1.1) can be modeled
as an infinite-dimensional linear system,

X(t) = Ax(t) + Bu(t), X(0) = xo, (1.2a)
y(t) =Cx(t). (1.2b)

Due to the fact that control and observation are at the bayntiee operator8 and
C are now so-callednbounded control and observation operators

This article is organized as follows: In Sectigh 2, we rettadl formulation of [[1.11)
as well-posed linear system from [6]. We also collect somanwknfacts about the
Neumann-Laplacian and its operator root. Sedfion 3 dedlstivé transfer function
of this system, i.e., we are dealing with the expression

G(s) =C(sl-A)"1B.

We find a representation of the transfer function by a paftédtion expansion in
which the poles are real and negative, and the corresporebiduals are all positive.
This further gives rise to a detailed localization of theazeof G. These will be
called thetransmission zergsand they are shown to fulfill an interlacing property:
All transmission zeros are negative and real; between tiespthere exists exactly
one transmission zero. Thsvariant zerosof the system are defined in Sectign 4.
These are, loosely speaking, the numbersC for which the block operator

Al—AB

e
has a non-trivial kernel. We will prove that the set of ineati zeros consists pre-
cisely of the unobservable eigenvalues and the transmigsims. In Sectioh]5 we
define thezero dynamicsThese are, again loosely speaking, the solutiong of (1.1)
with trivial outputy(-) = 0. We show that the zero dynamics are fully described by
an exponentially stable and self-adjoint semigroup. Tleespm of the generator of
this semigroup coincides with the set of invariant zerosheftieat equation system.
In the final Sectiof]6, it is shown that proportional outpugdbacku(t) = —k- y(t)
leads to the generator of an exponentially stable semigfgupfor all positive pro-

portional gaink. For the generatok of this semigroup, we prove that with— oo,
the eigenvalues of tend towards the invariant zeros of the heat equation system
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Let us give some relations to existing literature: The zgnaathnics for a bound-
ary controlled heat equation is considered.in [4]. Thers firiesented that the zero
dynamics are represented by a certain semigroup?0f). A detailed analysis of
the semigroup property and, in particular, the correspooglbetween eigenvalues of
this generator and the invariant zeros has not been estadlihe article [3] treats
root-locus for parabolic problems of typg€é't) = Lx(&,t), whereé € [0,1] andL
is some differential operator of even order. Input and oudpe formed by boundary
values which, in the case whekeis a second-order differential operator, coincide
with our assumptions in the special case wh@re: [0, 1]. Further note that, in [27],
invariant zeros of infinite-dimensional systems with boehthput and output opera-
tors are considered: The interlacing property has beensifavthe case wherA is
self-adjoint andB = C*. Zero dynamics of infinite-dimensional linear systems with
bounded control and observation operators are treate@|nThere it is shown that
the zero dynamics are, under certain additional boundedressimptions oB and
C which are intimately connected to the relative degree otrtesfer function, the
zero dynamics are described by a semigroup which is definedmie closed proper
subspace of the state space.

1.1 Nomenclature and fundamentals

N, No set of natural number§jo = NU {0}, set of
all integers, resp.

R>0, Rso = [0,0), (0,), resp.

ReA, ImA, A real part, imaginary part, complex conjugatg,
resp. of a complex numbare C

kerA, imA kernel and range of a linear operator

Aly restriction of a mapping: X — H to the sub-
setY C X

I identity mapping

B(X,Y) the set of bounded linear operator frofrto
Y

p(A), a(A) the resolvent set and spectrum of a linear gp-
eratorA

¢P(N), £P(Np) p € [1,»], the space ofp-summable se-
quencesa)ken, resp.(a)keng

LP(Q;X) p € [1, ], the Lebesgue space of measurahle
functionsx: Q — X, seel[9, Chapter IV]

LE(Q;X) space of measurable functions frathto X

that are locally irL.P
LP(Q), LD (Q) = LP(Q;C),LE.(Q;C), resp.

' “loc
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EX(Q;X) k € N, the set ok-times continuously differ-
entiable functions fronf2 to X

C(Q;X), 6XQ),6(Q) = E°Q;X),€X(Q;C), €°%Q;C), resp.

6 (Q) the set of infinite times differentiable funct
tions from Q to C with compact support in
Q

HK(Q) k > O (fractional) Sobolev space of functions
x: Q — C, seel[1D, Chapter 4]

The scalar product,-) of a HilbertH space is defined to be linear in the first and
anti-linear in the second component. On the dual spHose define multiplication
such tha{Ay)(x) := Ay(x) fory € H” andx € H. With this definition the dual pairing
(y,x) :=y(x) for y € H andx € H becomes linear in the first and anti-linear in the
second component.

In this articleQ ¢ RY is always a bounded open set with a uniforral§-boundary
0Q [1, Chapter 4]. Integration on the surface of this manifsléhdicated byos and
|0Q| := [ 1dag is the surface area of the boundary. Koz dQ we denote by (&)
the outward normal of Q and byd,x(&) the directional derivative of some function
x € L?(RY) alongv at the point, whenever it is well-defined. Byix, Ax we denote
the (distributional) gradient, respectively Laplaciarxof

For the notion of (strongly continuous, contractive, atiaJjpounded, exponentially
stable) semigroup we refer 10 [24]. A definition of sesq@informs can be found in
[13].

For the readers convenience, a known but crucial result ercdimnection between
semigroups and sesquilinear forms is depicted. This fureddah theorem will be
used several times.

Theorem 1.1 Let H be a Hilbert space, which is continuously and denselyezin
ded into the Hilbert space X and let:ad x H — C be a continuous, symmetric
sesquilinear form. If, for some > 0, the form fulfills

Rea(x,x) = a(x,x) > a||x||x vxe X,
then the following holds

(i) The operator

D(A):={xeH|3zx) eX:a(x.9)=(zx),p)x Vo cH},
Ax:= —2(x) Vx € D(A)
is well-defined, self-adjoint, non-positive and generatesntractive, analytic

semigroup in X.
(i) D(A) is dense in H with respect {o- ||1.
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(iii)y Forany A € R, the operator root (in the sense of [13]) &f — A fulfills

D((Al - A)?) =H,
(A1 =A)Z, (Al —=A)2)x = A (X y)x +axy)  VxeD(A).
We call A theoperator associated to the sesqulinear fafm).

Proof The first part of this is [2, Theorem 4.2]. Assertions (ii) diigl are contained
in Kato's First and Second Representation Theorem [13j@evd.2]. O

2 Heat equation as infinite-dimensional linear system

In [6] the partial differential equatioh_(1.1) was put inteetframework of infinite-
dimensional well-posed linear systems. This is the franmkwdthin which we will
analyse and solve the equation. Therefore, we recolleerakfacts from|[6]: By
takingx(t) := x(-,t) € L2(Q), the heat equatiofi{].1) can be interpreted as an infinite-
dimensional linear systeri (1.2) on the state space L?(Q) with A, B andC as
presented in the following:

(@) A:D(A) C X — X with
Ax=Ax  VYxeD(A) ={xeH*Q) | dXsq =0 }; (2.1a)

(b) Be %(C, (HY(Q))) with

(Bu,9) :u-/m @)do; ¥ e HL(Q); (2.1b)
(c) C:D(C) — C with
— 1
Cx= /ag x(&)dog vxe D(C) DHY(Q). (2.1¢c)

Note thatB andC are well-defined, because there exists a continuous linaee t
operator mappingi(Q) ontoL2(4Q). In fact,C is well defined orH 2+¢ for any
€ > 0, according tol[10, Theorem 4.24 (i)]. The actual dona{€) is defined pre-
cisely in [6, Equation (6.9)]. For our purposes it sufficekmow thatH*(Q) is con-
tained inD(C).

2.1 The Neumann Laplacian

The Laplacian with Neumann boundary condition is the maerafor of our system.
Since it plays such an important role, we collect severakfabout it that are mostly
known, see e.g. [10] 6].

First there is a deep result, which states that weak sokitodrthe Neumann
problem are in facH?(Q)-functions.



6 Timo Reis, Tilman Selig

Lemma 2.1 [10, Proposition 5.26 (ii)l.et xc H(Q) and f € L?(Q), satisfy
[ 0x©) 586 = [ 1(6)8(E)ae
Q Q

forall ¢ € C*(Q) withd,¢ |90 = 0. Then xc H?(Q) anddyX|y0 = 0.

Lemma 2.2
(i) The sesquilinear form

D(a) : HL(Q) x HL(Q), a(x,z)::/gmx(s)mdf, 2.2)

is symmetric and continuous on the complex Hilbert-spab@H. The opera-
tor associated to @, -) (cf. Theoreri 111) is A as i@2.14)

(i) Ais self-adjoint and non-positive and it generates atactive semigroup T)
on X=L2(Q).

(iii) The space MA) is densely and continuously embedded into the spa¢@M
and there holds

X121y = X122 — AN 2y VX ED(A), (2.3)

Proof Statement (i) is proven in_[10, Theorem 5.31 (ii)], and staat (iii) in [10,
Proposition 5.28 (i)]. Assertion (ii) can be deduced fronedrem L1, or, alterna-
tively, from |6, Statement 1]. O

Fork,s € R. o we define the Banach spaces
Xci= (s =A%, Xl = [ st - A

andX_y as the dual space &, with respect to the pivot spaeg seel[24, Section 2.9].
The space is independent of the choice ®f 0 in this definition ancK_y equals the
completion ofX with respect to the norrii(sl — A)~%- ||x, [24, Proposition 2.10.2].
Fork € (0,1] the semigroud@ extends to a strongly continuous semigroupXom,
also denoted by, seel[19, Theorem 3.10.11]. The generator of this semigsotine
continuous extension @& € Z(Xy; X) to A € A (X_k+1; X_k).

Lemma 2.3 Writing ~ for norm equivalence, the following holds true:

() X1=D(A) and |- [lx, ~ [|- llx + A+ [lx ~ | 2 c)-

(i) Xy = D(A%) =HY(Q) and||- Iy ~ I lln1(q)- Consequently, X, = (HY(Q))".
(iii) The extension of the semigrouzp T tgg(is generated by the mapping

!

A tHYQ) = (HYQ)),  (Agxd)=a(x¢), ¢eHY(Q). (24

1
2
Proof Regarding (i), it is clear that; = (sl — A)~'X = D(A) and easy to show that
[IXllx, == [I(s1 = A)X[|x ~ [[Xl| 2(0) + [|AX]| 2(q) for x € D(A). Theorem 5.11 o1 [10]
states that the latter norm is equivalentHé(Q) norm. Statements (i) and (iii) are

consequences df(2.2) and the fact that the domain of thedaqualsD((sl — A)%)
by KATO’s Second Representation Theorem [13, Section VI.2]. O
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Lemma 2.4 Let A be defined as if£.1a) The resolvent of A is compact and there is
a real valued sequend@y)ken, such that

a) (Ay) is nondecreasinglp =0, A1 > 0, andlimy_,, Ak = oo;
b) o(A) = {—A« | ke Np};

and there is an orthonormal bas{si)ken, of L?(Q) with i € D(A) for all k € No,
and

— Z A(XVid2(g) Yk VX E D(A). (2.5)
=0

The domain of A can be represented by

D(A){ iCka (Ck)a(Aka)Egz(NO)}a (2.6)
k=
ickvk =601 1 @7)
Moreover,
{ S ac ak>,<mak>e£2(No>}, (2.8)
k=0
o 2
= 2 29
R a0 |2, (2.9)

Proof Since(Al —A)~1L?(Q) = D(A) c H?(Q) andH?(Q) is compactly embedded
into L?(Q) by the Rellich-Kondrachov Theorem [10, Theorem 4.17 (i), tesolvent
of Ais compact. The part about the spectrum and the represen{@ib) follow with
the spectral theorem for compact operators and can for deabgpfound in |[10,
Theorem 7.13 (ii)].

We havex% = H(Q) by LemmdZ3B, so it remains to proie (2.8): Usihg]2.3)
and the spectral decompositi¢n (2.5), we see that farally,’_,axv € D(A) holds

VI ) =IVIIE2 @) — (M ALz ) = Il @0IIF, ) + )‘k (Vi) v
(@) (@)

_ < 2_ 2 2
= @)l ev0) + kZof\kakl Vi) | = (@) 1, 0v) + kZof\klakl

=lay/?

ak)||f22(N0) * H <\//\_kak) sz(No)

The representatiof_(2.6) implies that linear combinatioh$vi)wcr, are dense in
D(A). Since Lemm&Z2]2 (jii) states thB(A) is dense irH(Q), we can infer from
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the above computations thdt (Q) is equal to the completion of spaw | k € Ng }
with respect to the the norm

2

= (@0 100 + | (V)

2

t2(No)’

aVv
kZO “

whence[(2.B) holds true. O

2.2 Inputs and outputs

In the sequel we collect some special properties of the sygieen byA, B andC
in (Z1): As mentioned earlier, the opera®r D(C) > H1(Q) — C, is well defined
onH(Q). The operatoB : C — (H1(Q))" is the adjoint operator &|y1(g) inthe
sense that

(Bu,¢) = (u,Co) VueC,¢ cHY(Q). (2.10)

/

We will often identify the mappin with the elemenB € (H(Q)) .

Forxo € L2(Q) andu € L} .(R>o) the variation of constants formula

X(t) :=T(t)x+ /OIT(t —1)Bu(1)dr, t € Rxo, (2.11)

is well defined a8 maps intaX_; C X_j. The functiorx(-) : R>¢ — X_; defined by

(2.13) is callednild solutionof @). Astrong solutiorof (1.23) inXs is a function
x € LL (R>0; Xs11) NC(R>0; Xs), that satisfies

X(t) = xo—k/ot AX(T)+Bu(t)dt  inX.

The following result shows that the mild solutign (2.11)v&e pointwisely inX and
moreoverx(t) € D(C) for almost allt € Rxo.

Theorem 2.5 Let X=L2(Q) and the operators A, B and C as@.)be given. Then
the following holds true:

(i) Forallu € L2 (Rx0), %o € X, the function defined i@13)fulfills
a) x(t) e X forallt € Rxg;
b) x(t) € D(C) for almost all te Rxo.

(i) For all t € Rso, there exists somg € R-g, such that for all uc L?([0,t]),

Xg € X, the solutions offT.2) fulfill

IYC) oy + IXO)x < e (IUC)lleqog + Iollx) - (212)

Proof All of this is contained in inl[6, Corollary 1]. O
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The above statement means that the sysfem (1.&lsposed This basically
comprises four properties, namely the boundedness of seapd (-) on each com-
pact interval[0,t] (which is guaranteed anyway by its strong continuity), ad we
as the boundedness of the input-to-state nfBpsstate-to-output map®;, and the
input-output map®;, which are defined as follows:

B L2([0,1]) — X, ¢ X —L2([0,t]),

u(-) — /‘tT(t—T)BU(T)dT, X+ CT ()X,
70 (2.13)
D¢ L2([0,1]) — L2([0,1]),
»—>C/ -—T)Bu(T)dr.

Moreover, we can define the infinite-time state-to-outpwt exput-to-output map-
pings

C: X—=Lie(Rz0), D1 Lic(Re0) = Lie(Ro0),

(
X— CT(-)x, u(-) — C/OIT(- — 7)Bu(1)dr. (14)

For any input functionu € L2 .(R>o) and initial valuex € X the state and output of
the system[(1]12) are defined by

X(t) =T+ Biujoy,  tERsg, (2.15a)
y=E&xo+Du. (2.15b)

3 The transfer function

We collect properties of the transfer functiosl — A) B with A, BandC as in [2.1).
We show that it admits a partial fraction expansion with piesiand real residuals and
nonpositive real poles. This representation will be thedfas further investigations
which, in particular, comprise an analysis of the locatibthe zeros.

We first define transfer functions of infinite-dimensionateyns (cf.[26, 23] and the
bibliographies therein).

Definition 3.1 Let X be a Hilbert space and I&t, B andC be operators with the
following properties:

(a) A: D(A) C X — X is the generator of a strongly continuous semigroupXpn
(b) Be B(C,D(A")");
(c) C:D(C) C X — C for some dense subspadéC) C X
(d) Forthe space
V={xeX|Axe X+imB }

with norm
[X[|§ = inf { [|x]|% + [[Ax+Bul% | ue C with Ax+Bue X }
holds thaly ¢ D(C) andC restricts to an element aB(V,C).
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Letr(A,B,C) C g(A) be the set of removable singularities of the function
p(A)—=C, s—C(sl-A)'B

Let D(G) = p(A) Ur(A,B,C). We define thetransfer function G D(G) — C of
(A,B,C) by the analytic extension dE(sl — A)~*B. A complex numbes € C is
calledtransmission zero fA,B,C) if s€ D(G) andG(s) = 0.

Remark 3.2 (Transfer function)

a) Existence and uniqueness of the analytic extensi@tofD(G) is guaranteed by
Riemann’s theorem [18, Thm. 10.21].

b) The definition of the spacé C X yields im(sl — A)~1B c V for all s€ p(A). In
particular, the assumptian c D(C) implies thatC(sl — A) !B is well-defined for
allse p(A).

In the subsequent results we collect some properties offéimsfer function of the
operatorgA,B,C) defined in[(2.11).

Lemma 3.3 Let X:= L?(Q), define A, B and C b@Z.1), and
V:={xeX|Axe X+imB}.

(i) For all x € V there exists exactly oneaiC such that Ax-Bu € X. This u is
given by u= 7% and there holds Ax Bu= Ax € L?(Q).

(i) V = {xe H3(Q) |ueC:aXgo =u.}, and||-|lv = |- i) + 118 liz(q)-
(ii) A, B, C fulfills the prerequisites (a)—(d) in Definiti@1.

Proof (i) If xis inV, then there exist € L?(Q) andu € C with Ax=z— Bu. Explic-
itly, this means

/QxATpdz - /szﬁdz - u/m pdo; Vo € D(A). 3.1)
For ¢ € CZ(Q) this reduces to
| x8gde = [ zpee.
which shows that\x = z€ L?(Q). For¢ = 1 € D(A), equation[(311) reads

[ axadg+u | 1dop = [ xade =o,
Q JoQ JQ

whenceu = —%. In particular,u is uniquely determined for everyc V.

(i) “ D" Let x € H?(Q) anddyX|30 = u € C. Then for all$ € D(A) holds
(AX §) = /QXA_qde _ /Q(Ax)t'ﬁdf - /m(avx)zpdaf.

HenceAxis represented by the sum Ak € L2(Q) and—B(dyX)|9o € imB.
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“C™ Let x € V. Then we havé\x+ Bu= Ax with u as in (i). SinceB maps into
Xi% for someA > 0 this leads to

(Al =A)x=Ax—Ax+Bue X,%-
Since(sl — A)~lis an isomorphism fronxf% ontoX% by LemmdZ.B, we conclude
X= (Al —A)Y(Ax—Ax+Bu) € Xy = H(Q).
Now pickh € H2(Q) such thad, h|;o = u. Then for allp € D(A) holds

[ Do-nEpde = [ (x—nag de
— [ oe-u[ oo~ [ ampdes [ (@ahpdo

=u

_ / (Ax+ Ah)F dE.
JQ

Noting Ax+Ah € L?(Q), we conclude from Lemnfa2.1 that H?(Q). Henced, x
is well-defined almost everywhere a2 and inL?(dQ). We claim that it equals.

Equation[[3:11) implies
/ (U-0,X)9do; =0 Vo ecD(A)
0Q

At least for ally in the dense subs@t®(dQ) of L?(dQ) we can construct functions
¢ € D(A) with ¢ |50 = Y. It follows thatd,x = u almost everywhere 0dQ and the
inclusion is shown.
The considerations above show that the infimum in the defimitif ||x||y is obsolete
and we get the asserted representation of the norm.

(iii) Observe that by Lemma 2.3 (i) the norm in (i) is equigat to theH?(Q)
norm. ThereforeC is continuous fronV into C. The other prerequisites of Definition
[3.7 are satisfied by assumption. O

Lemma 3.4 Let A and B be defined as @.1). For all s€ p(A) there holds

(sIfA)*lB:k;T/\kwk e HYQ). (3.2)

This series converges iniQ) and

00

2
Ak
kZO (/mvk(é) daf) T (3.3)
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Proof Since imB C Xf% and (sl — A)~1 is an isomorphism fron)(% onto X% by

LemmdZ.B, we havesl — A) !B € HY(Q). The spectral decompositidn (2.5) implies
that for alls € p(A), x € L?(Q) the representation

(sl—A) x= i V) (3.4)
k:

“ S+ )\k

holds and it extends continuously to ak X_; via

[ee]

(sl—A)1z= Z) (2 Vi) Vi

&S+ Ak

Forz= B € X_; this yields the equality i (312). This equation and the espntation
of H1(Q) found in [Z.8) imply that the series in (8.3) is finite and cemsently, that
[B.2) converges il(Q). O

Remark 3.5The expressior = (sl — A)~1Buis the solution of the Helmholtz equa-
tion
s x(§)=Ax(E) £eQ,
u=0dvx(¢) §e€0Q,

seel[7].

Theorem 3.6 Let A, B and C be defined as {&1) and let (Ay), (vw) be as in
LemmdZ}. Define

Cx = ‘/mvk(f) dog

Then for all s€ p(A) holds

2
vk € Ng and r:={keNp|c#0}. (3.5

e Gk Ck

G(s) = k; " k;c " (3.6)

Furthermore, we havé € J;, and

(;t) € t1(N). 3.7)

Proof We expresgsl — A)~1B using the series i (3.2). Since this series converges
in HY(Q), we may interchange the order of limit and applicatiol€dab obtain

Jaa V(&) ) dog 2 Jag (&) dog
C(sl-A)B=C -5 AT o
( ; S+ Ak AL - S+ Ak %

& |foaw(§) dog|*
& S+ Ak Z S+/\k
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Therefore,[(316) holds true qu(A).
We have G J. because the first eigenvecterin Lemmd 2.4 is the constant function;
more precisely,

1 ~ (Janl dog )
7\/m, whence cy= 7];; Ta

Finally, (3.7) is a consequence 6f (B.3): Simge= 0 is an isolated eigenvalue, we
may pick ans € (—A4,0) that is in the resolvent oh and get

Vo(-) = > 0.

> Ck > Ck e Ck)\k B3

k;/\_k —k;s“k —k;|s+)\k|2 <

Remark 3.7

(i) The self-adjointness oA and relation[(2.710) imply that iAx € o(A) is a re-
movable singularity o€ (sl — A)~%, then there exists somes D(A) \ {0} with
Ax= Ax andCx = 0. In other words) is an unobservable mode. THautus
testfor infinite-dimensional systemss [19, Corollary 9.6.2]hgives rise to the
property tha{A, B,C) is not approximately observable.

(i) Forallue L2 (Rxo) with e?u(-) € L2(Rxq) for somea € R, the output of
(@I.2) withxo = 0 fulfills e=9y(-) € L2(Rx0), and the Laplace transfornisand
y of u andy are related by

¥(s) = G(s)U(s) = C(sl—A)"1Bl(s) forallse Cwith Re(s) >a. (3.8)

The remaining part of this section is devoted to a detailearatterization of the
locations of the transmission zeros(& B,C) with A, B andC as in [2.1).

Theorem 3.8 Let G be the transfer function ¢f, B,C) in (Z1)and (c), (Ak), k as
in Theoreni 36, i.e0(A) = {—Ak : k € Np}. Then the following holds:

(i) A € Cis a non-removable singularity of G if and only if there exiah index
k € Jo with A = —Ay. In this casel = — A is a pole of first order. B
(i) Let A be a pole of G and led; be its consecutive pole determined lby=
min{j € I | j > KA Aj # Ac}. Then there is exactly one transmission zgrof
(A,B,C) in (—Ag, —Ax). This zero is simple, i.e."Gu) # 0.
(iii) Every transmission zero is of the form described i. (That is, Gu) = 0im-
plies thatu € (—Ag, —Ax) where the two consecutive polas A are determined

byki=max{j e J:u<—Aj} andk as in (ii).
Remark 3.9In other words, part (i) states that the set of pole§dias the character-
ization
C\D(G)={A €0(A) | TkeNg: A =—A A c#0}.

The property of the singularities &f(sl — A) 1B being either removable or a pole of
first order implies that the transfer function is meromoceghiC.
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Proof (i) Equation [[3.6) shows that(A) C D(G). LetA be a non-removable singu-
larity of G. Then it lies ino(A), which means that it equalsAy for somek € Np. In
the decomposition

[ee]

Cj Cj Cj
G(s) = L = ; L+ ; :
JZOS+AJ fieno D= ST fjeng Ty ST

the first series is a finite sum and the second series is cantsat the poindy, since
it converges absolutely by (3.7). If a} in the first series were zero, th@could
be extended analytically td, a contradiction. So there must be at least prgth
Aj = Ax = A andc; # 0, which meang € J.. Multiplying (3.9) by (A + Ax) removes
the singularity, hence the palg, is of first order.

On the other hand, let, be such thaty # 0. Then[[3.8) shows that the limit

(3.9)

lim G(— A+ h) = lim %+ % h>0
hi0 MO eng Th=Ad) {ieNo TAj#AG 71— 7K

does not exist because the second series is a finite numbatlawinmands in the
first sum are strictly positive, with at least one of some rjireg toco. S0Ag is a non-
removable singularity.
(i) Let Ay, andA be as in assertion (ii). Then according to (i), both are pates
Ck,C; # 0. Thus, we see
lim G(—A; +h) = lim 94 G
hio O e fAoag N giea g A~ A

— 00

and
Ci Ci
lim G(—Ax—h) =lim ; il IS ; | .
hi0 O fica A,-:/\k}_h (ick /\j#k}AJ_)‘k

SinceG maps real values to real values, the intermediate valueeheonplies that
there exists at least one € (—Ag, —Ax) with G(u) = 0. Note that for allj with
Aj > 1+ 22, and allse (—Ag, —Ax) holds

Cj Cj

Cj
<
(s+2))2 = (Aj—Ap)

< 2
2= )"
)‘J

Together with[(3]7) this implies that the derivative®falong the real axis is given
by the absolutely convergent series

d . hd Ck
&= _k; (s+ A2’

Since this expression is greater than zero, we deducé&thsictly decreasing on the
interval (—Ag, —Ax). Thus,u is the only zero of5 in this interval, and it is simple.
(iii) Let p € C be a transmission zero ¢f(1.2). Thgre D(G), and

l 1 l —Impu
O=ImG()= Y &Im| —— | =) &k
() k; “ <H+)\k) k; k“HF/\k|2
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implies that Imu = 0, whenceu € R. For > 0, the positivity ofcy > O leads to the
contradiction

[

l 1 M+ Ag
0< Gk—— =Y g———=G =0.
kZO ku+/\k kZO kl“‘"/\k|2 (IJ)

From (i) andcy > 0 we know that G¢ D(G), whenceu must be inRq. SinceAg =0,
the integerk := max{j € No: u < —Aj Acj # 0} exists and the claim (iii) follows
from (ii). O

Fig. 3.1 The transfer function on the negative real axis

4 Invariant zeros

The following definition of invariant zeros is a direct gealézation of the finite-
dimensional case in_[20, 25]. This concept has been intred by Rosenbrockl7],
where it is calledinput-output-decoupling zero$or infinite-dimensional systems
with bounded input and output operators, invariant zera® leeen considered in
[16]. Invariant zeros for boundary control systems aretéean [8].

Definition 4.1 (Invariant zero) Let X and (A,B,C) be as in Definitiod 3]1. Then
A € Cis called arinvariant zero of(A, B,C) if there existu € C andx € V such that

X#0 A (Al =A)x=Bu A Cx=0. (4.1)
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The set of all invariant zeros 0A, B,C) is denoted by infA, B,C) and themultiplicity
of an invariant zerad is

mult(A) :=dim{xeV | (Al —A)x € imBACx=0}.

It is well-known for finite-dimensional systems that transsion zeros are contained
in the set of invariant zeros. The difference between thesesets consists of eigen-
values ofA. The following result shows that this holds true for systeéinasg are subject
in Definition[3.1. We will see that argumentation for the adimensional SISO case
can be used in a straightforward manner.

Proposition 4.2 Let A, B and C be operators satisfying the prerequisites dfribe
tion[3 and letA € C be an invariant zero ofA,B,C). Then at least one of the
following assertions hold true:

(i) A is a spectral value of A;
(i) G(A)=0.

Proof Assume thaf € p(A) and(x,u) € V x C fulfill (). ThenA € p(A) implies
u # 0. Multiplication of (Al — A)x+ Bu = 0 from the left with(Al — A)~1 further
impliesx= —(Al — A)Bu, and thus

G(A)u=C(Al —A)'Bu=-Cx=0.
O

In other words, Propositidn 4.2 states that foe C with mult(A) > 0, there holds
A € g(A)uinv(A,B,C). The following stronger result gives a detailed expresfion
the multiplicity of an invariant zero.

Theorem 4.3 Let A, B, C be as if2.1). Then
inv(A,B,C) ={n € C| G(u) =0}U{—Ac | ke No\ I}, (4.2)
Moreover, the multiplicity of each invariant zedoe inv(A, B,C) satisfies

(i) mult(A) = dim (ker(Al — A)nkerC), if G(A) £0,
(i) mult(A) =dim(ker(Al —A)nkerC)+1,  ifG(A)=0.

Proof
(i) Let A € inv(A,B,C) and assum&(A) # 0. By the definition of multiplicity, it
suffices to prove that

{xeV | (Al =A)xeimB A Cx= 0} = ker(Al —A)NnkerC.

The subset relation$” is trivial. To prove the reverse inclusion, we have to show
that for allx € V andu € C with (Z.1) holdsu = 0. By Propositiof. 4]2A must be an
eigenvalue oA\ If there is &k € J; with A = —Ay, then the corresponding eigenvector
vk € D(A) satisfies

(U,Cw) = (Bu,vi) = (X, (Al —A)"v) = (X, (= Akl —A)v) = 0.
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SinceCvy # 0 fork € J., we obtainu = 0.
Now we consider the case wherez — Ay for all k € J.. Note that we have

0=(x, (Al —A)*¢) — (Bu,§) V¢ € D(A).

Choose an arbitrafy € J.. Then the eigenvectg\%vk isinD(A), and
k

1 1
0= <x, (Al —A)* = vk> — <Bu, - vk> = (X, Vk) — <u,_C—Vk>.
A+ A A+ A A+ Ak

Hence, for alk € J; holds(x, ) = /\i"; With this we obtain

0=Cx=C Y (Xw)w+C (X, Vi) Vi

kede keN\J
————
ckerC
Cwf® |
= A)u.
C%XVKCVk )\+/\k =G(A)u

ThenG(A) # 0 impliesu = 0.
(if) Assume that € C with G(A) =0.
Step 1 We show that mu(A ) > dimkerAl —A) + 1.
Observe that the assumpti@iA ) = 0 includes thaf is not a pole ofG. Define the
setd, ={ ke Np | w € ker(Al —A) }. Theoreni 318 (i) implies

ker(Al —A) = span{vg | ke J, } = ker(Al —A)nker(C).
This gives rise to k€A | — A) C V NkerC. The inequality multA) > ker(Al —A)+1

therefore holds true, if we find some vector ker(Al — A)- NV \ {0} with x € kerC.
Definex via the series

Vi do
Xp 1= Z Joa(8) dog Vi €kerAl —A)L, (4.3)
keN\J, A+ Ak

which converges it (Q) according to Lemma3.4. Furthers# 0 since the density
of span{ v | ke N } in D(A) and the fact that boundary integration is not the zero
operator orD(A) implies that there exists sorkg € N\ J) with [;, Vi, (&) dog # 0.
Further, the spectral decompositionin LemmdZ.# and the fact that € kerC for

k € J, yields for all¢ € D(A) holds

(A1 =A)xp,8) = (xp, (Al — A)9)
Joa (&)

- < > o, 5 +A|><¢,v|>v|>
keN\J, €
kG%JA /ag (§) dog (@, vie)
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This shows thaxp € V. We further obtain

(Wk Ck
Cxp = Cw = Zﬁ =G(A)=0.
keN\J, A+ e ARS

Altogether, we have, € V nkerCnker(Al —A)*\ {0}. This leads to muiA) >
dimkernAl —A) + 1.

Step 2:Now we prove the reverse inequality muly < dimkerAl —A)+1: Assume
that(x,u) € V x C, such thaCx= 0 and(A| — A)x= Bu. By LemmdZ.% and Theo-
rem(3.8, we havady, A € R. Then, by using[{2.10) and the self-adjointnes#pfve
obtain for alll € N\ J, that

A +A) - (xVvi) = XAl =AWV) = (X, (AT =A)'v) = (Al —A)x, i)
=(Bu,v|) = (u,Cy) = u- W (&) dog =u-Cy
holds. This yields

(X, Vi vke N\ J,.

Ve
Hence, forx, as in [4.3), we have
x e kenAl —A) +spafXp},

and therefore mu(f ) < dimker(Al —A) + 1. O

5 Zero dynamics

Here we study zero dynamics which consist of the trajecsanfe{1.2) resulting in
a trivial outputy(-) = 0. Zero dynamics play a central role in (adaptive) outputireg
lation [15,11].

Definition 5.1 (Zero dynamics)Let A, B andC be operators with properties as in
Definition[3.1. LetT(-) be the semigroup generated By The zero dynamics of

(A,B,C) are the pairgx, u) € € (Rx>o; X) x LE (Ro) with
t
X(t) :T(t)xo+/ T(t—1)Bu(1)dr, teRo, and (5.1)
Jo
Cx(t) =0 for almost alt € Rxo. (5.2)

In this part we prove that the zero dynamics of the heat eguatistem(1]1) are com-
pletely described by an exponentially stable, contractive analytical semigroup on
L2(Q). First we consider an operator which turns out to be the geoeof this semi-
group. In particular, we show that this operator admits gemralue decomposition;
the spectrum of this operator is the set of invariant zerq&\d8,C).
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Theorem 5.2 Consider the operatord D(Ag) C L?(Q) — L?(Q) with

_ JoAx(&)d¢
dXoq = 790
Agx=Ax  ¥xeD(A) ={ xeHY(Q) [2e] . (5.3)
and/m X(¢) dogs = 0.

Then the following holds true:

(i) Agis self-adjoint and has compact resolvent;
(i) Ag generates an analytical, contractive, and exponentiatypke semigroup on
L?(Q);
(i) Forthe operators A, B and C as i{2.1) holds

0(Ag) ={ A € C | Aisaninvariant zero ofA,B,C) }.

Proof Step 1We construct an associated sesquilinear fornifpfcf. Theoreni 111):
Define the space

H:{xe HY(Q) ’/ x(z)dafzo}. (5.4)
20
ThenH is dense inL?(Q). We obtain from the trace theorem [1, Theorem 5.5.36]

thatH is a closed subspace Hf(Q). In other wordsH is a Hilbert space inheriting
the inner product oH!(Q). We define the sesquilinear form

a0 HxH=C, (%2 /Q Ox(E) - Tz(E)dé, (5.5)
which is continuous and symmetric. We prove that there ig an0 with
Reap(x,X) > a (X, X)n vxeH. (5.6)
Assume that this is false. Then there exists a bounded seg(»gy) in H with
[Xall1(0) =1 vneN, (5.7)

and
AmaO(X”’X") =0. (5.8)

The Rellich-Kondrachov Theoremn_[10, Theorem 4.17 (i)] ifaplthat there exists
somez € L?(Q) and a subsequen¢s,, ) with

lim [[z— Xl 2(0) =O.
Together with[(5.18) and(8.5) this implies that, ) is a Cauchy sequence ki (Q),

whencez € H1(Q) and
lim [[z—Xnll41() = 0.

Since differentiation as well as boundary evaluation amginaous with respect to
theH(Q) norm, it follows that

0z=0 and /ag z(&)d& =0.
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Hencezis a constant function whose boundary integral vanishes.ifitpliesz= 0,
wich is a contradiction td_(517).

Step 2:With the definition ofH andag as in Step 1 andy as in [5.8), we show
that

D(Ay) = { x€H \ T2 L2(Q): a0(x$) = (2 @)i2q) Y €H } (5.9)

and

For x € D(Ap) the equation[{5.10) follows by Green'’s formula, since fdrdak H

holds
~ [ Ox(®) D6 (E)de
Q

—/AX(E ¢—dE+/ dX(E)- $(&)dog
/Ax ¢—dE+u/ 6 (£)doy
A

— (8%, 9)12(g)

This computation also gives rise to the inclusiar™in (5.9). To prove the converse
inclusion, assume thatc H and there exists sonmzec L?(Q) with

| oXOTRE)dE —a0(x§) = (29)zo)  VBEH. (5.1

Then [B.I1) holds true for a§} € £°(Q) in particular. Consequentlg= —Ax. We
choose am?(Q)-functionh with

_ JoAXx(&§)dE
ovhlso = “eal

and claim thak — h fulfills

| 0c-m@DPEE = - [ Ax-mEPEIdE vy e HAQ).
Q Q
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Lety € HY(Q). Theng := ¢ — f‘m‘g’% isinH andOy = O¢. Thus we have

ff/f‘zAx < fa|(2a‘-£-’2| )dEﬁL/QAh(E)wdE
= [ AhE) - x(E€) P,

Now LemmdZ.]l implies that—he H2(Q) andd, (x—h)| 3o = 0. Hencex € H2(Q)

_ Axdé
andd,x|yo = 1375

Step 3We conclude statement (i) and (ii): The relatidnsl(5.6) &nld), together
with the symmetry ofy(-,-), imply thatAy is self-adjoint and negative definite. In
particular, Oc p(Ag), and

AJIL2(Q) C D(A).

SinceH?(Q) is compactly embedded kf(Q) by the Rellich-Kondrachov Theorem,
we infer thatAg has compact resolvent. Therefore, its spectrum consissolafted
eigenvalues [13, Theorem 6.29, p.187], which must be Btnietgative because of
(5.8). This shows thafy is a sectorial operator, and by [19, Theorem 3.104%],
generates an analytical semigrolyg-). The property that its largest eigenvaluex

is negative further implies that

ITo®)llzz) <€ VteRsy,

see [[24, Proposition 2.6.5]. Hence, the semigroup is cotiteand exponentially
stable.

Step 4:We prove (iii): First assume that € C is an invariant zero ofA, B,C).
Then there exists some nontrivial pdit,u) € V x C with Ax—Ax+ Bu= 0 and
Cx= 0. From Lemm&_3]3 we obtain that H?(Q) with

u=0oyx(§) Vv&eoQ, and Ax= Ax+Bu.
In particular, there holds
(Al =A)X= (Al = A)x—Bu=0.

The equatiorcx = 0 furthermore gives rise to the fact that the boundary iratiegfirx
vanishes. Altogether, we obtain the¢ D(Ag) andAox = Ax, whenceA € g (A).
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Conversely, assumee g(Ay), i.e. there exists somes D(Ag) \ {0} with Agx = Ax.
Lemmd3.8 shows thate V andAx = Agx = Ax+ Bu. Thus,

(Al =A)x—Bu= (Al —Ag)x=0,
andA is an invariant zero ofA, B,C). O

The following result shows that the semigroup generatefljigdeed gives a full
characterization of the zero dynamics of the heat equatjstes with boundary
control.

Theorem 5.3 Let A, B, C be given b2z 1) and A as in Theoreri 512. LetpT) be
the semigroup generated by.AThen the following holds true:

(i) If (x,u) € €(Rx0;X) x LLs(Rx0) is in the zero dynamics dfA,B,C), then

To(t)x(0) = x(t) Vt € Rxo.
(i) Let xo € L2(Q) and define the function(® := To(-)Xo. Then there exists some

u€ LL (R>o;C) such that(x,u) is in the zero dynamics of the systéB,C).
The function u R g — C is analytical.

Proof (i) Assume that(x,u) € €' (Rx0; X) x LL (R>o) is in the zero dynamics of

(A,B,C). SinceB maps into the spadé% andT is an analytic semigroup, the solu-

tion x of (5.1) satisfiex(t) € X% for all t > 0 [14, Proposition 2.2.2]. Therefore, for

all ¢ € D(A) holds [24, Remark 4.1.2]

t

X0 -x(0),0) = [ (XA B)x + 0B 9)dr = [ ~alx(t)6) + (.8'9)

Since the right hand side depends continuously avith respect to the(% norm, this
equation extends to afl € X%. The assumptio@x(t) = 0 implies that fort > 0, x(t)
is even in the domain afy defined in[(5.4). Hence, faf € D(Ag) C X% the equation
above becomes

X0 ~x(0).9) =~ [ axt) 9)dr = [ aolxt) o)t = [ (xt) Apo).
This impliesx(t) = To(t)x(0).

(i) Let xp € L?(Q) and definex(t) := To(t)xo. Since the semigroufy is analytic
we havex(t) € D(Ap) forallt € R,

| =

Mo(t)xollx <€, and [ To(t)xollpiag < v& .

For the interpolation spaceX,D(A))g ., [14, Proposition 2.2.2] there exists some
¢ > 0 with

1w\ 1o C
HTO(t)XOH(X,D(A))Gm §C<{e “’t) (e oot) _ t_ee wt
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For 6 € (%,1) it follows that the expression on the left is integrable ofieite in-
tervals. Due to the facts th@K,D(A))g ., — H20(Q) [21, Theorem 4.3.3, see also
Theorem 4.3.1.1 and Remark 2.4.2.2] and the mapping

try H2(Q) 5 H?®-3(00), x— (E— X&), 20>3/2,

is bounded|[10, Theorem 4.24 (ii)], we get thet) := tr, x(t) defines a.} .(R>0)-
function.

Furthermorex(t) € D(Ap) implies thatx(t) is an element of the spatedefined
in Lemmd3.B(ii), and by Lemnia3.3 (i),

Apx(t) = Ax(t) = AX(t) + Bu(t).

Thus, we have
X(t) —xo = /Ot Apx(T)dT = /Ot AX(T) 4+ Bu(t)dr,

andCx(t) = 0 for allt > 0. So(x,u) is in the zero dynamics ¢fA, B,C). O

Remark 5.4 (Zero dynamics for the heat equatiimoreni 5.8 gives rise to an inter-
esting effect for zero dynamics of the heat equation sydfef):(For eachxg in the
state space, there exists some unique traje¢iory € ¢ (Rxo; X) x L. (R>o) in the
zero dynamics withx(0) = xg. For finite-dimensional SISO systems, this is not true
in general: The zero dynamics evolve in some proper subsgdlece state-space. The
dimension of the zero dynamics is determined by the relatagree of the transfer
function. The zero dynamics of finite-dimensional systearstze fully characterized

by theByrnes-Isidori form5].

6 Proportional output feedback and root locus

We consider the heat equation system with output feedb@gk= v(t) —ky(t). Here,
the proportional output gain ks given, andv € L?(R-o) corresponds to the input
of the closed-loop system. We show that for the system widtratprs as in[(2]1),
proportional output feedback results in a well-posed lir@estem. The evolution
operatorA¢ of the closed-loop system will turn out to be self-adjointian have
a compact resolvent. We moreover provertnat-locus propertyAs k tends towo, the
eigenvalues ofy move towards the invariant zeros (@, B,C) in a certain sense.
Well-posedness of infinite-dimensional output feedbadteays is well understood
by the results of Wiss in [22]. In this context the notion ofegularity plays an
important role. We recall the following definition from [23]

Definition 6.1 An analytical functionG : D(G) ¢ C — C is calledregular, if there
exists somé® < C such that transfer function fulfills

lim G(s)=D.

s>0,5—0
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Proposition 6.2 [6] The transfer function of the operatof8, B,C) given by(Z.1)is
regular with D= 0.

We are now able to formulate and prove the result that the dapadtion[(T.11) with
output feedback(t) = v(t) — ky(t) defines a well-posed linear system.

Theorem 6.3 Let (A,B,C) be defined by2.1), and define TB;,¢,D as in (2.13)
(2I3)respectively. Let & L2 (R>o), %o € L2(Q), ke R and set ¥t) := u(t) +ky(t),
with y defined infZ.15B) Then the state x defined (B.I5&)satisfies

X(t) = Tk(t)Xo + BV, (6.1)
where T, is a strongly continuous semigroup of(KQ) generated by
Ax=(A—kBOx, D(A)={xeD(C)|(A—kBOxeX}, (6.2
and
BV = /O t Tu(t—1)lpga BAT)AT i DAY

Here k(t)|pa:y is the extension ofidt) to D(A)". In particular, the range of B is
contained in this space.

Proof By Propositiorf 6.2, the transfer function & B,C) is regular withD = 0.
In particular, 1- k- D # 0 vk € R. The overall statement now follows frorn_[22,
Theorem 6.1 & Theorem 7.2]. O

Theorem 6.4 Let (A, B,C) be defined by2.T)and let G be the corresponding trans-
fer function. The following holds true for the operatayia (€.2) with k> 0:

(i) Agkx= Ax, and
D(A«) = {xe H2(Q) ] ouX(&) = fk/m x({)do; V&€ ag}. (6.3)

(i) The operator 4 is self-adjoint,g(Ax) C (—,0), and A has a compact resol-
vent. For all{s € p(A) |kG(s) # —1} we have s p(Ay) and

-1
(sl-A) t=(sl-A)1-(sI-A) 1B (% + G(s)) C(sl-A)"1 (6.4)
(i) Ay generates an exponentially stable semigropp)Ton L?(Q).

Proof (i) We show that the set defined [0.(5.3) is a subset of the dogieen in [6.2).
Letx be in the former set. Thenis in D(C) because the trace operator is well-defined
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onH2(Q). Moreover, we have the following equation for glic D(A*) = D(A):
(A 9) — (BKCx9) = [ x(8)-BOEE —k | x@)dor [ $(E)dog

_/Ax )-8 (8)dé — / (0,(&))- B (&)doe
[ X&) (0,900 doff/ k/ (¢)do, $(E)do

-/ (avx<s>dz+k/m X( )d05> #(&)da

This shows thaAx— BKCxe X because it can be represented by the funcfigre
L?(Q). For the converse inclusion, take axg D(C) with Ax— BKCx< X. Thenx is
by definition an element of the spa¢en Lemma3.B. Therefore, part (i) and (ii) of
Lemmd 3.8 imply € H?(Q) andd,x = —kCx= —K [; (&) dé.

(i) Let se p(A) andkG(s) # —1. Then

-1
(sl —Ay) <(s|A)l(s|A) B( ) C(sl— A)1>
(1
:(sI—A+kBC)<(sI A1 (sl-A) B<E+G > C(sl—A)~ )
=1 +kBC(sl—A)~1— (I + kBC(s| — A)~ B(%+G ) C(sl—-A)1
-1
:I—i—(kB—(I—i—kBC(sI—A ( +G(s ) >CS| A~
-1
=1+ <kB— (B+kBG(s)) (E +G(s)) )C(sl -At
=1+ <kB—kB(%+G(S)) (%JrG(s)) ? C(sl—-A) 1=

and
<(s| ~A)t-(sl-A"1B (% + G(s)) 7lc(s| —A)l> (sl — Ay

= <(s| ~A)t-(sl-A"1B (% + G(s)) 7lc(s| — A)1> (sl —A+kBC)
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1 -1
=1+ (sl-A)"kBC—(sI-A)"'B (E + G(s)) C(l + (sl —A)~"kBC)

-1
=1+ (sl—A)"kBC—(sI-A)B (% + G(s)) <% + G(s)> kC=1

prove thats € p(Ay) and [6.4) holds true. Since the resolventois compact, this

formula shows furthermore that the resolventgis compact as well. Therefore, the

spectrum ofdy is a countable set of isolated eigenvalues [13, Theorem £.287].

With GauR’s Theorem we get for allz€ D(Ay)

(A2 :/éAx(f)-ﬁdf:f./f‘z Dx(z).mﬁda/m 0,X(£) - 2(Z) dog
:f/QDx(E)~Dz(E)dEfk/mx(f)daf/mz(_f)daf.

By further reversing the roles afandzin the above formula, we can conclude that
(Ax,2) = (X, Az)  Vx.z€ D(AW).

Since the spectrum & consists of isolated eigenvalues, we hRwe p(As) # 0. In
other words, there exists somez R such thaA | — Ais onto. Then we can conclude
from [24, Proposition 3.2.4] thaky is self-adjoint. Furthermoréy is non positive
because for ak € D(Ax) holds

(A = - [ DX(E)-DX(E)dE—k(/mX(E)dUg)ZSO (6.5)

We show that zero is not an eigenvaluefpf Assume that\xx = 0 for some func-
tion x € D(A), x# 0. Then [(6.5) implie§ix = 0 everywhere andj;, X(¢ ) dog = 0.
Hence x must be the constant zero function, which leads to a cortiadi Conse-
guently zero is not an eigenvalueAf.

(iif) With the spectrum containing only isolated eigenvedustatement (ii) implies
SUP, co(a,) RE(A) < 0 and the claim follows with [24, Proposition 3.8.5]. O

Theorem 6.5 Let (A,B,C) be defined by2.1) with corresponding transfer function
G. LetAn, iy and 1 be as in Theorei 3.6 and defing By (6.2) with k> 0. The
eigenvalues of Aare given by

() = {~A

neNo\Jc} U {)\ c€Rg

G(A) = fl/k}.

Proof “O": Let n€ Np\ J,, then—Ap, is an eigenvalue of and there exists at least
one corresponding eigenvectgy € kerC. Hence,v, is in D(A) by the definition
(6.2) and the equation

AkVn == AVn + kBC\ﬁ = AVn == 7)\nVn

shows thaf\, is an eigenvalue oA.
Now let A be such thatG(A) = —%. We distinguish the cases € o(A) and
A € p(A): First assume that € o(A). ThenA = —A, for at least onen € N. If n
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was inJ, then Theorem 318 (i) would imply thak is a pole ofG, contradicting
the assumptio(A) = —1/k. So we haven € Np \ J; and the first part shows that
A € o(Ax). Let us consider the case wheres p(A): We have for alk € D(C)

(Al =A) YAl — A+ kBC)x=x+ (Al —A)~1kBCx
Exploiting that(A| — A)~1B maps intaD(C) by RemarK3.R and Lemnia 3.3, we get
C(Al —A) YAl = A+ KkBC)x = Cx+kG(A)Cx=Cx—Cx=0.

If Al — A+kBCwas bijective, this would lead to the contradictior= 0 for all x in
the dense subsét| — A)~1D(C) of D(A). Thus,A has to be iro(Ay).

C": Let A be an eigenvalue o, i.e. A € R and some nontriviak € D(Ay)
satisfies(Al — Ax)x = (Al — A4 BKC)x = 0. Assume further thak # —Ap, for all
n e N\ J.. Note that this implie€x+ 0 because otherwisewould be an eigenvector
of A contained in the kernel &. We are going to show th&(A) = —1/k. First, we
determine the coefficients, vy) for n € J; by exploiting that

(A +2An) (X;Vn) = (X, (A = A)Vn) = —(BKCX Vi) = —k(CxX C\h).

Observe than € J; impliesCv, # 0, and that we hav@x# 0. It follows thatA # —A,

and
Cx,Cwvn)

(
<X5Vn> k /\+An

vne J.

Thus,

Cx=C Y (X,Va)Vh= <x Vn)CVh = k (CxCva) CV” Vo = —kG(A)Cx.
R, A+An )\n

A division of this equation by-k-Cx# 0 givesG(A) = —1/k. O

Corollary 6.6 For k — o the eigenvalues ofiAconverge from the right to the eigen-
values of 4 in the following sense:

Vueo(Ag)Ve>03IK>0Vk>K 3IA e o(A)N[U, U+ €).

Proof Let u € g(Ag) andJ. C N be defined as il (3.5). By Theordm15.2 (iii) and
Theoreni 4B, at least one of the following scenarios is valid

(i) u=—A,forsomene N\ J, or

(i) G(u)=0.
In the first case, Theordm 6.5 implies thais an eigenvalue o4 for all k > 0. In the
second case, there exist two consecutive pelég —An of G with 4 € (—Aa, —An)
due to Theoren 318 (iii). The partial fraction decompositi@.6), together with
Cck > 0Vk € J;, implies that the functiof®|_,; _»,) is real valued and monotonically
decreasing with

IA?S G(—Aa+h) = oo, Img G(—Ak—h) = —oo,
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(cf. proof of Theoreni 318 and Figufe B.1). HenGe,= G|(as,—Ay) has some con-
tinuous invers& 1 : R — (—Aa, —An). Theoreni&)b implies tha1(—1/k) is an
eigenvalue of\.. Further,u = G1(0) is the only transmission zero {+-An, —An),
whence, by Propositidn 4.2 and Theorlend 5.2 (jii)s an eigenvalue ofg. Continu-
ity of G on (—As, —An) furthermore implies

lim G 1(—1/k) = u,
k—o0

which proves the result. O
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