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Abstract

The article is concerned with the derivation of a posteriori error estimates for optimiza-
tion problems subject to an obstacle problem. To circumvent the nondifferentiability
inherent to this type of problem, we introduce a sequence of penalized but differentiable
problem. We show differentiability of the central path and derive separate a posteriori
dual weighted residual estimates for the errors due to penalization, discretization, and
iterative solution of the discrete problems. The effectivity of the derived estimates is
demonstrated on two numerical examples.

1. Introduction

This paper is concerned with the adaptive approximation of optimal control problems
governed by the obstacle problem. The construction of the algorithm is based on a
regularization approach in combination with an adaptive finite element discretization
of the regularized problems. The two errors induced in this way, i.e., the regularization
error and the discretization error, are equilibrated by means of suitable error estimators
based on the dual weighted residual (DWR) method.

Regarding the adaptive approximation of the obstacle problem itself, there is a
large amount of contributions regarding a posteriori error estimates available in the
literature, see for instance [6, 28] for dual weighted error estimates, [15, 11, 30, 8, 9]
for residual type estimates. In particular, we refer to [12] where residual type error
estimates for a penalized obstacle problem where derived.

In contrast to the solution of the obstacle problem itself, consideration of optimiza-
tion problems subject to the obstacle problem is complicated by the nondifferentiability
of the solution operator of the obstacle problem, see e.g. [19]. To this end, we consider
a sequence of penalized obstacle problems as constraints for our optimization problem.
Such an approach is classical and has been investigated by various authors before. We
only refer to [3, 13, 27] and the references therein. For the penalized but differen-
tiable problems, we derive DWR error estimates following the pioneering work of [4],
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see also [5, 2]. More precisely, we utilize the DWR estimates for control constrained
problems proposed in [31]. To simultaneously control the error due to penalization
and discretization, we extend the ideas of [34, 33] for optimization problems with reg-
ularized pointwise state constraints to regularization in the constraining equation, see
also the survey [22]. Finally, we include the possibility to balance the former two
errors with the error due to the iterative solution of the problems adapting the work
of [24, 23].

To the best of our knowledge, the only contribution in the field of adaptive approx-
imation of optimal control problems governed by variational inequalities is [14]. This
work is also concerned with an optimal control problem subject to the obstacle prob-
lem, but the authors directly apply the DWR method to the original problem without
regularization and penalization, respectively. In contrast to this, as mentioned before,
our strategy is to regularize the problem by penalization, which allows to derive error
estimates for the penalized problems by the classical DWR method. Afterwards, we
will equilibrate the discretization error and the regularization error by means of a reg-
ularization error estimator which is based on the path derivative of the solution of the
regularized problems w.r.t. the penalization parameter.

The paper is organized as follows: After introducing the specific optimal control
problem under consideration and stating the standing assumptions in Section 2. We
present the regularization, in Section 3, and perform a limit analysis for penalty param-
eter tending to infinity. Section 4 is then devoted to the estimation of the regularization
error by means of the path derivative, while Section 5 deals with the a posteriori error
estimation of the discretization error for the regularized problems. Numerical experi-
ments illustrating the efficiency of our approach are presented in Section 6. The paper
ends with some concluding remarks in Section 7.

2. Problem formulation and standing assumptions

Throughout this paper, we consider the following optimal control problem governed
by the obstacle problem

min J(u, q)

s.t. a(u, v − u) ≥ 〈q, v − u〉 ∀ v ∈ K
u ∈ K, q ∈ L2(Ω)

 (P)

where Ω ⊂ Rd, d = 2, 3, is a bounded domain.
We suppose the following standing assumptions on the data in (P):

The feasible set K is given by

K = {v ∈ H1
0 (Ω) : v ≥ ψ a.e. in Ω}

with ψ ∈ H1
0 (Ω) given. The dual pairing between H1

0 (Ω) and H−1(Ω) := H1
0 (Ω)∗

is denoted by 〈., .〉. Moreover, the bilinear form a : H1
0 (Ω) × H1

0 (Ω) is given by the
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following second-order elliptic operator

a(u, v) =

∫
Ω

d∑
i=1

( d∑
j=1

aij
∂u

∂xj

∂v

∂xj
dx+ bi

∂u

∂xi
v
)

+ a0 u v dx (1)

where aij , bi, a0 ∈ L∞(Ω), i, j = 1, .., d, are such that a is coercive, i.e.,

a(u, u) ≥ β ‖u‖2H1(Ω) ∀u ∈ H1
0 (Ω) (2)

with a constant β > 0. In addition, we require

a0 ≥ 0. (3)

By A : H1
0 (Ω)→ H−1(Ω), we denote the operator induced by a, i.e., 〈Au, v〉 = a(u, v)

for all u, v ∈ H1
0 (Ω). Finally,

J(u, q) = j(u) + g(q), (4)

where g : L2(Ω)→ R and j : H1
0 (Ω)→ R are supposed to be three times continuously

differentiable. Moreover, j is assumed to be bounded from below and, further, that
there is a constant α > 0 such that

g′′(u)h2 ≥ α ‖h‖2L2(Ω) ∀u, h ∈ L2(Ω). (5)

It is well known that the VI in (P), i.e.

u ∈ K, a(u, v − u) ≥ 〈q, v − u〉 ∀ v ∈ K, (6)

can equivalently be reformulated by a complementarity system, since K−ψ is a convex
cone. The optimal control problem then reads

(P) ⇔


min J(u, q)

s.t. Au = q + λ

u ≥ ψ a.e. in Ω, λ ≥ 0 in H−1(Ω), 〈λ, ψ − u〉 = 0,

where λ ∈ H−1(Ω) is the corresponding slack variable.
Based on the maximal monotony of A+ ∂IK , where IK denotes the indicator func-

tional associated with K, one shows by standard arguments that (6) admits for every
q ∈ H−1(Ω) a unique solution u ∈ H1

0 (Ω). Furthermore, it is easily seen that the
corresponding solution operator S : H−1(Ω) 3 q 7→ u ∈ H1

0 (Ω) is globally Lipschitz
continuous. Based on this result and the special structure of J in (4) and (5), it is
shown by standard arguments that (P) admits a least one globally optimal solution.
However, due to the nonlinearity of S, the problem is not convex in general so that
uniqueness of the global minimizer cannot be expected.
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3. Regularization: Known and preliminary results

Although S is globally Lipschitz, it is not Gâteaux-differentiable, since the directional
derivative at q in direction h is itself a solution of a VI of first kind, as shown by
Mignot [19]. Therefore a standard adjoint approach to tackle (P) is not possible and
various regularization approaches have been introduced to smooth the control-to-state
map S. Our regularization of (P) is given by

min J(u, q)

s.t. Au+ r(γ;u) = q

}
(Pγ)

where r : R+ × R→ R is given by

r(γ;u) := −
[
max

(
γ(ψ − u), 0

)]3
. (7)

This choice of r stems from a bi-quadratic penalization of the energy functional as-
sociated with (6). Of course, other choices of r are frequently in use such as e.g.
r(γ;u) = −γmaxγ(ψ − u), where maxγ denotes a suitable smoothed version of the
max-function, see for instance [17]. An advantage of our particular choice for the
regularization is that the Nemyzkii operator associated with the nonlinearity in (7)
is twice continuously Fréchet-differentiable in L∞(Ω), which allows to solve the reg-
ularized optimal control problems by standard second-order methods such as SQP.
Since

H1
0 (Ω) ↪→ L4(Ω) 3 u 7→ r(γ;u) ∈ L4/3(Ω) ↪→ H−1(Ω)

is a locally Lipschitz continuous and monotone operator, Browder and Minty’s theorem
on monotone operators yields existence and uniqueness of a solution to the PDE in
(Pγ), i.e.

Au+ r(γ;u) = q (8)

for every γ > 0. The associated solution operator is denoted by Sγ : H−1(Ω)→ H1
0 (Ω).

Furthermore, using again the monotony of t 7→ max{t, 0}3, one easily deduces that Sγ
is Lipschitz continuous with the same Lipschitz constant as S, hence independent of γ.
Thus, by completely identical arguments as in case of (P), one deduces the existence
of a global solution to (Pγ).

Owing to the monotonicity of r(γ; . ), we can apply Stampacchia’s classical tech-
nique, cf. [16], to prove the following

Lemma 1. For every q ∈ L2(Ω) the unique solution u of (8) is essentially bounded.

The differentiability of r(γ; . ) in L∞(Ω) for fixed γ, then allows to derive first-order
necessary optimality conditions for the regularized problems in a standard way, see,
e.g., [29]. In this way one obtains the following result:

Proposition 1. Let qγ be a local optimum of (Pγ) with associated state uγ = Sγ(qγ).
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Then there exist λγ , µγ ∈ L2(Ω) and pγ , θγ ∈ H1
0 (Ω) such that

Auγ = qγ + λγ , (9a)

λγ + r(γ;uγ) = 0, (9b)

A∗pγ = ∇j(uγ)− µγ , (9c)

pγ +∇g(qγ) = 0, (9d)

pγ − θγ = 0, (9e)

µγ − ∂ur(γ;uγ)θγ = 0. (9f)

Note that pγ and thus θγ and µγ are uniquely defined by (9d).

Observe that pγ is nothing else than the adjoint state. Note further that µγ and
θγ can be eliminated directly from the system, but we introduced them for reasons of
comparison with later optimality systems.

We now address the convergence for γ → ∞. Concerning the state equation, the
following approximation result holds true:

Lemma 2. Let q ∈ H−1(Ω) be given and denote by u, uγ ∈ H1
0 (Ω) the solutions to

(6) and (8), respectively. Then uγ → u strongly in H1
0 (Ω) as γ → ∞. If we further

assume that q, Aψ ∈ L4/3(Ω), then there exists a constant c > 0 so that

‖u− uγ‖H1(Ω) ≤ c
1
√
γ
‖q −Aψ‖2/3

L4/3(Ω)
.

The proof follows by classical arguments and is therefore postponed to Appendix A.
With the above result at hand, it is straightforward to prove the following first-order
necessary optimality conditions for (P), the so-called Clarke(C)-stationarity condi-
tions:

Theorem 1. 1. For every γ > 0 there is a globally optimal solution of (Pγ), de-
noted by qγ . If γ → ∞, then every sequence {qγ} of global minimizers of (Pγ)
admits a weak accumulation point q̄ ∈ L2(Ω). Every weak accumulation point
is also a strong accumulation point, i.e., qγ → q̄ strongly in L2(Ω), and each of
these accumulation points is a global minimizer of (P).

2. If qγ → q̄ in L2(Ω), then the associated sequence of solutions to (9) fulfills

uγ → ū in H1
0 (Ω), (10)

λγ → λ̄ in H−1(Ω), (11)

pγ ⇀ p̄ in H1
0 (Ω), (12)

θγ ⇀ θ̄ in H1
0 (Ω), (13)

µγ ⇀ µ̄ in H−1(Ω), (14)
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and the limit satisfies the following optimality system:

Aū = q̄ + λ̄, (15a)

ū ≥ ψ a.e. in Ω, λ̄ ≥ 0 in H−1(Ω), 〈λ̄, ū− ψ〉 = 0, (15b)

A∗p̄ = ∇j(ū)− µ̄, (15c)

p̄+∇g(q̄) = 0, (15d)

p̄− θ̄ = 0, (15e)

〈θ̄, λ̄〉 = 0, 〈µ̄, ψ − ū〉 = 0, 〈θ̄, µ̄〉 ≥ 0. (15f)

Proof. The proof follows by standard arguments known from other types of regulariza-
tion, cf. e.g. [27]. For our particular regularization, the verification of the complemen-
tarity relations in (15f) becomes astonishingly easy, so we present the proof in detail
for convenience of the reader.

Convergence of the primal variables:
Owing to (4), (5), and the Lipschitz continuity of Sγ from H−1(Ω) to H1

0 (Ω), one
deduces the existence of at least one global minimum of (Pγ) for every γ > 0. Moreover,
due to their optimality and (5), every sequence of global minimizers {qγ} is bounded
in L2(Ω). Hence there exists a weakly converging subsequence, also denoted by {qγ}.
From the Lipschitz continuity of Sγ , independently of γ, and Lemma 2, we infer

‖Sγ(qγ)− S(q̄)‖H1(Ω) ≤ ‖Sγ(qγ)− Sγ(q̄)‖H1(Ω) + ‖Sγ(q̄)− S(q̄)‖H1(Ω)

≤ L ‖qγ − q̄‖H−1(Ω) + c
1
√
γ
‖q̄ −Aψ‖2/3

L4/3(Ω)
.

Thus the compact embedding L2(Ω) ↪→ H−1(Ω) yields strong convergence of the state,
i.e., (10). Thanks to (5), g is continuous and convex, hence weakly lower semicontin-
uous. This and the strong convergence of the states yield

J(S(q̄), q̄) ≤ lim inf
γ→∞

J(Sγ(qγ), qγ) ≤ lim sup
γ→∞

J(Sγ(qγ), qγ)

≤ lim
γ→∞

J(Sγ(q), q) = J(S(q), q) ∀ q ∈ L2(Ω),

which is just global optimality of q̄ for (P). Furthermore, inserting q = q̄ in the
above inequality implies convergence of the objective, which, together with the strong
convergence of the states, gives in turn

g(qγ)− g(q̄) = J(S(qγ), qγ)− J(S(q̄), q̄)−
(
j(S(qγ))− j(S(q̄))

)
→ 0 (16)

as γ →∞. Since g is twice continuously differentiable, there is a t ∈ [0, 1] so that

g(qγ)− g(q̄) = g′(q̄)(qγ − q̄) + g′′
(
q̄ + t(qγ − q̄)

)
(qγ − q̄)2

≥ g′(q̄)(qγ − q̄) + α ‖qγ − q̄‖2L2(Ω),

6



where we used (5) for the last estimate. Thanks to g′(q̄) ∈ L2(Ω)∗, the weak conver-
gence qγ ⇀ q̄ in L2(Ω) and (16) imply strong convergence of qγ to q̄. Since q̄ was an
arbitrary weak accumulation point, this gives the first claim.

Convergence of the dual variables:
The convergence of the slack variables is an easy consequence of the continuity of
A : H1

0 (Ω)→ H−1(Ω) and the compact embedding L2(Ω) ↪→ H−1(Ω):

λγ = −r(γ;uγ) = Auγ − qγ → Aū− q̄ = λ̄ in H−1(Ω).

As ū = S(q̄) is the solution of (6), λ̄ is the associated slack variable fulfilling comple-
mentarity system in (15b).

To prove the weak convergence of the adjoint state, insert θγ and µγ in (9c) to obtain

A∗pγ + ∂ur(γ;uγ)pγ = ∇j(uγ)

with
∂ur(γ;uγ) = 3 γ

[
max

(
γ(ψ − uγ), 0

)]2
. (17)

Testing this equation with pγ itself yields

‖pγ‖H1(Ω) ≤
1

β
‖∇j(uγ)‖H−1(Ω) (18)

and

∫
Ω

[
max

(
γ(ψ − uγ), 0

)
pγ
]2
dx ≤ 1

3γ
〈∇j(uγ), pγ〉 → 0 as γ →∞, (19)

where we used (18) and the boundedness of {uγ} in H1
0 (Ω) for the passage to the limit.

From (18) we infer the existence of a subsequence, weakly converging in H1
0 (Ω) to p̄.

For simplicity we denote this subsequence by pγ , too. Moreover, the convergence of
µγ and (15c) follow from

µγ = ∇j(uγ)−A∗pγ ⇀ ∇j(ū)−A∗p̄ =: µ̄ in H−1(Ω).

As g is assumed to be continuously differentiable, we can pass to the limit in (9d) to
obtain (15d). The weak limit is therefore unique, namely −∇g(q̄), and consequently
the whole sequence {pγ} converges weakly to p̄, i.e., (12) is shown. Hence, the whole
sequence µγ converges weakly, too, which shows (14).

It remains to verify the complementarity relations in (15f). Due to λγ = ∂ur(γ;uγ)
and the construction of r in (7), we find

|〈λγ , pγ〉| =
∣∣∣ ∫

Ω

[
max

(
γ(ψ − uγ), 0

)]3
pγ dx

∣∣∣
≤ ‖max

(
γ(ψ − uγ), 0

)
‖2L4(Ω)‖max

(
γ(ψ − uγ), 0

)
pγ‖L2(Ω).

(20)

To estimate the L4-norm, test (9a) with max(γ(ψ−uγ), 0) ∈ H1
0 (Ω) such that, similarly

to the proof of Lemma 2 in Appendix A,

‖max(γ(ψ − uγ), 0)‖4L4(Ω)

= a
(
uγ − ψ,max(γ(ψ − uγ), 0)

)
− 〈qγ −Aψ,max(γ(ψ − uγ), 0)〉

= −γ a(uγ − ψ, uγ − ψ)− 〈qγ −Aψ,max(γ(ψ − uγ), 0)〉
≤ ‖q −Aψ‖L4/3(Ω)‖max(γ(ψ − uγ), 0)‖L4(Ω).
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is obtained. Thus {max(γ(ψ − uγ), 0)}γ>0 is bounded in L4(Ω) and, in view of (20)
and (19), the strong convergence of λγ in H−1(Ω) and the weak convergence of pγ in
H1

0 (Ω) yield
〈λ̄, p̄〉 = lim

γ→∞
〈λγ , pγ〉 = 0,

i.e., the first equation in (15f). To derive the second equation, observe that the defini-
tion of µγ in (9f) implies

〈µγ , ψ − uγ〉 = 3

∫
Ω

[
max

(
γ(ψ − uγ), 0

)]2
pγ γ(ψ − uγ) dx

= 3

∫
Ω

[
max

(
γ(ψ − uγ), 0

)]3
pγ dx = 3 〈λγ , pγ〉 → 0.

Since µγ ⇀ µ̄ in H−1(Ω) and uγ → ū in H1
0 (Ω), this gives the claim. In order to prove

the sign condition in (15f), we test (9c) and (15c) each with pγ − p̄ and subtract the
arising equations to obtain

〈µγ − µ̄, pγ − p̄〉 =
(
j′(uγ)− j′(ū)

)
(pγ − p̄)− a(pγ − p̄, pγ − p̄)

≤
(
j′(uγ)− j′(ū)

)
(pγ − p̄).

Employing again the definition of µγ in (9f), we find

〈µγ , pγ〉 = 3

∫
Ω

γ
[
max

(
γ(ψ − uγ), 0

)]2
p2
γ dx ≥ 0 ∀ γ > 0.

Thus we arrive at

〈µ̄, p̄〉 = 〈µγ − µ̄, pγ − p̄〉 − 〈µγ , pγ〉+ 〈µγ , p̄〉+ 〈µ̄, pγ〉
≤
(
j′(uγ)− j′(ū)

)
(pγ − p̄) + 〈µγ , p̄〉+ 〈µ̄, pγ〉.

Because of uγ → ū in H1
0 (Ω), pγ ⇀ p̄ in H1

0 (Ω), and µγ ⇀ µ̄ in H−1(Ω), the right
hand side converges to 2〈µ̄, p̄〉, which gives the desired sign condition. Introducing θ̄
by (15e) finally completes the proof.

Remark 1. Using a classical localization argument, see e.g. [10], one can show that
every strict local minimizer of (P) can be approximated by local minimizers of (Pγ).
Thus every strict local minimizer satisfies (15). Furthermore, by using the following
obvious modification of the objective in (Pγ)

J̃(u, q) = J(u, q) +
1

2
‖q − q̄‖2L2(Ω),

one can show that even every local optimum of (P) satisfies the optimality system (15),
cf. [20]. Of course the associated regularized problems are only of academic interest,
and cannot be used numerically, since they involve the unknown solution q̄.

We underline that the complementarity relations as well as the sign condition in
(15f) can be sharpened as shown in [27, Def. 1.1, Thm. 3.9, and 3.10].
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In view of (15e) the multiplier θ̄ can directly be eliminated from the system (15).
We introduced this additional variable for reasons of comparison with C-stationarity
conditions for finite dimensional MPECs, cf., e.g., [26]. This comparison shows that
θ̄ is the MPEC-multiplier for the constraint λ̄ ≥ 0, while µ̄ is the MPEC-multiplier
associated with ū ≥ ψ, cf., also the complementarity relations in (15f). A more rigorous
first-order system is given by the strong stationarity conditions. These involve in
addition to (15) the following sign conditions

θ̄(x) ≥ 0 q.e., where ū(x) = ψ(x) (21a)

〈µ̄, v〉 ≥ 0 ∀ v ∈ H1
0 (Ω) : 〈λ̄, v〉 = 0, v(x) ≥ 0 q.e., where ū(x) = ψ(x). (21b)

Note that the complementarity relations in (15f) together with (21a) and (21b) implies
〈θ̄, µ̄〉 ≥ 0. Indeed strong stationarity is the most rigorous stationarity concept. In
case of (P) it can be verified to be necessary for local optimality as proven in [20],
provided that ū ∈ H1

0 (Ω), which follows from (15d), if g = α/2‖.‖2L2(Ω). However, if, for
instance, additional control constraints are present or boundary control is considered,
this is not true in general. For further details on this topic we refer to [32]. We
point out that our construction of a posteriori error estimators for the regularization
error is only based on the C-stationarity conditions in (15), which can be verified to
be necessary for local optimality in very general situations allowing for instance also
pointwise constraints on the control or boundary control problems.

To complete this introduction, we finally comment on a priori estimates concerning
the regularization error that have been proven in the literature. We only refer to
[27], where the error estimates are shown for the regularization of (P) based on the
locally smoothed version of the max-function. To be more precise, if ū is a strict local
optimum of (P) so that it can be approximated by a sequence of local optima of (Pγ),
then for all γ > 0 sufficiently large this sequence satisfies

|J(ū, q̄)− J(uγ , qγ)| . 1

γ
and ‖q̄ − qγ‖L2(Ω) .

1
√
γ
,

provided that (9) fulfills a certain regularity condition, see [27, 17] for details.

4. A posteriori estimation of the regularization error

In this section, we will derive an identity for the regularization error w.r.t. the objective,
i.e., J(ū, q̄)−J(uγ , qγ). The idea is based on the DWR-method. We begin by defining
the following MPEC-Lagrangian:

L : L2(Ω)×H1
0 (Ω)×H−1(Ω)×H1

0 (Ω)×H−1(Ω)×H1
0 (Ω)→ R;

L (q, u, λ, p, µ, θ) := J(u, q)− 〈Au− q − λ, p〉+ 〈µ, ψ − u〉 − 〈θ, λ〉.
(22)

We will sometimes consider L with different domain denoted by the same symbol for
simplicity. Note that we do not introduce a multiplier associated with the comple-
mentarity relation 〈λ, u − ψ〉 = 0, which is typical for MPECs. In the following, we

9



abbreviate ξ := (q, u, λ, p, µ, θ). Due to (15a) and (15f), we have J(ū, q̄) = L (ξ̄) such
that (9a) yields

J(ū, q̄)− J(uγ , qγ) = L (ξ̄)−L (ξγ) + 〈µγ , ψ − uγ〉 − 〈θγ , λγ〉

=
1

2
L ′(ξ̄)(ξ̄ − ξ̄γ) +

1

2
L ′(ξγ)(ξ̄ − ξ̄γ) +Rpen

+ 〈µγ , ψ − uγ〉 − 〈θγ , λγ〉

with

Rreg =
1

2

∫ 1

0

L ′′′(ξγ + t(ξ̄ − ξγ))(ξ̄ − ξγ)3 t(t− 1) dt

=
1

2

∫ 1

0

(
j′′′(uγ + t(ū− uγ))(ū− uγ)3 + g′′′(qγ + t(q̄ − qγ))(q̄ − qγ)3

)
t(t− 1) dt.

Note that, due to our assumptions on J , the Lagrangian L is three times continuously
Fréchet-differentiable, since every bounded bilinear form does so. If the trilinear forms
j′′′(u) and g′′′(q) are uniformly bounded, say by constants cj and cg, then

|Rreg| ≤
1

12

(
cj ‖uγ − ū‖3H1(Ω) + cg ‖qγ − q̄‖3L2(Ω)

)
such that Rreg can be neglected in a neighborhood of (ū, q̄). We point out that, due to
the non-convexity of (P), multiple local minima can occur such that one can in general
not expect that qγ → q̄ and uγ → ū, cf. Theorem 1. However, if J is of tracking type,
i.e., if j and g are squared norms, then Rreg = 0.

In view of (22), (9), and (15), we arrive at

J(ū, q̄)− J(uγ , qγ) =
1

2
〈ψ − ū, µ̄− µγ〉 −

1

2
〈λ̄, θ̄ − θγ〉

+
1

2
〈ψ − uγ , µ̄+ µγ〉 −

1

2
〈λγ , θ̄ + θγ〉+Rreg

Note that 〈µγ , ψ − uγ〉 and 〈θγ , λγ〉 can be interpreted as complementarity errors, cf.
(15f). Note further that we have not used any of the complementarity conditions in
(15f) so far. Now using these complementarity conditions we can switch the sign of
the multipliers µ̄ and θ̄ in the first two terms on the right to get

J(ū, q̄)− J(uγ , qγ) =

〈
ū− uγ ,

1

2
(µ̄+ µγ)

〉
+

〈
λ̄− λγ ,

1

2
(θ̄ + θγ)

〉
+Rreg. (23)

In view of the convergence results in Theorem 1, this seems to be a reasonable splitting,
since the differences on the left of the duality pairings converge strongly in H1

0 (Ω) and
the sum on the right is bounded in H−1(Ω).

In order to efficiently estimate the differences in the duality pairings in (23), we aim
to exploit a Taylor expansion w.r.t. the regularization parameter γ. To this end, we
show that, under suitable assumptions, the mapping γ 7→ (uγ , λγ) is at least locally

10



differentiable. Comparable path differentiability results have already been proven in
[17] for a different type of regularization. In [17], the authors exploit the equivalence of
the linearized optimality system to a (under suitable assumptions) convex optimization
problem. Here, we proceed along a different path by directly proving the solvability
of the linearized system, leading to comparable results.

We will prove the differentiability of γ 7→ (uγ , λγ) by means of the implicit function
theorem. For this purpose, observe first that λγ , µγ , and θγ are given by simple
algebraic relations and can thus be eliminated directly from optimality conditions (9).
Moreover, because of (5), ∇g : L2(Ω)→ L2(Ω) is a strongly monotone and continuous
operator. Thus, (9d) can be resolved for qγ , i.e., there is a mapping Q : L2(Ω)→ L2(Ω)
such that

pγ +∇g(qγ) = 0 ⇐⇒ qγ = Q(pγ).

This leaves us with the semilinear elliptic system for finding the state uγ and adjoint
pγ solving

Auγ −Q(pγ) + r(γ;uγ) = 0,

A∗pγ −∇j(uγ) + ∂ur(γ;uγ)pγ = 0.
(24)

Since the bilinear form L2(Ω)2 3 (v, w) 7→ g′′(qγ)[v, w] ∈ R is bounded and coercive
by (5), the operator g′′(qγ) : L2(Ω) → L2(Ω)∗ = L2(Ω) is a homeomorphism so that
the implicit function theorem yields that Q is continuously Fréchet differentiable with

Q′(pγ)ṗ = −g′′(Q(pγ))−1ṗ. (25)

To apply the implicit function theorem to (24), we need to show solvability of the
linearized system associated to (24), which is given by

Au̇−Q′(pγ)ṗ+ ∂ur(γ;uγ)u̇ = z1, (26a)

A∗ṗ− j′′(uγ)u̇+ ∂2
ur(γ;uγ)pγ u̇+ ∂ur(γ;uγ)ṗ = z2, (26b)

with arbitrary right hand sides z1, z2 ∈ H−1(Ω). To this end, we require the following

Assumption 1. 1. The first part j of the objective, acting on the state, is supposed
to be convex.

2. We assume that uγ and pγ are such that ∂2
ur(γ;uγ)pγ ≤ 0 a.e. in Ω.

Lemma 3. Given Assumption 1 the linearized system (26) admits a unique solution
u̇ and ṗ for every right hand side z1, z2 ∈ H−1(Ω)2.

Proof. We start by reducing (26) to a single in equation in ṗ. For this purpose, observe
that ∂ur(γ;uγ) ≥ 0, see (17). Moreover, by Lemma 1, we have ∂ur(γ;uγ) ∈ L∞(Ω).
Thus the bilinear form induced by A + ∂ur(γ;uγ) is bounded and coercive in H1

0 (Ω)
giving the existence of an operator S′γ : H−1(Ω)→ H1

0 (Ω) such that

w = S′γ f ⇐⇒ Aw + ∂ur(γ;uγ)w = f.

Then (26a) is equivalent to

u̇ = S′γQ
′(pγ)ṗ+ S′γz1 (27)

11



so that (26b) becomes a single equation in ṗ, namely

A∗ṗ+ ∂ur(γ;uγ)ṗ =
(
j′′(uγ)− ∂2

ur(γ;uγ)pγ
)
S′γQ

′(pγ)ṗ+ z̃

with
z̃ =

(
j′′(uγ)− ∂2

ur(γ;uγ)pγ
)
S′γz1 + z2 ∈ H−1(Ω).

Utilizing that (A∗ + ∂ur(γ;uγ))−1 = (S′γ)∗ =: S∗γ , this equation is equivalent to

ṗ = Kṗ+ S∗γ z̃. (28)

where
K = S∗γ

(
j′′(uγ)− ∂2

ur(γ;uγ)pγ
)
S′γQ

′(pγ).

Since S∗γ : H−1(Ω) → H1
0 (Ω), there holds K : L2(Ω) → H1

0 (Ω) ⊂⊂ L2(Ω) so that K
regarded as an operator with range in L2(Ω) is compact by Rellich’s theorem. Thus
we can apply Fredholm’s alternative, i.e., either (I−K)ṗ = z admits a unique solution
ṗ ∈ L2(Ω) for every z ∈ L2(Ω) or the homogeneous equation

(I −K)ṗ = 0 (29)

has non-trivial solutions in L2(Ω).
By construction of K and S′γ , (29) is equivalent to the homogeneous counterpart

of (26), where z1 = z2 = 0. To see that this homogeneous system only admits the
trivial solution, we test the first equation in (26) with ṗ and the second one with u̇
and subtract the arising equalities to obtain

−(Q′(pγ)ṗ, ṗ) + j′′(uγ)u̇2 −
∫

Ω

∂2
ur(γ;uγ)pγ u̇

2 dx = 0.

Testing (25) with Q′(pγ)ṗ results in

g′′
(
Q(pγ)

)
[Q′(pγ)ṗ]2 = −(Q′(pγ)ṗ, ṗ).

Thus (5) and Assumption 1, i.e., the convexity of j and the sign condition, give

α ‖Q′(pγ)ṗ‖2L2(Ω) ≤
∫

Ω

∂2
ur(γ;uγ)pγ u̇

2 dx ≤ 0.

Consequently Q′(pγ)ṗ = 0 and thus ṗ = −g′′
(
Q(pγ)

)
Q′(pγ)ṗ = 0. Therefore (29)

indeed just admits the trivial solution, and thus Fredholm’s alternative implies that
(28) and hence also (26) are uniquely solvable.

Remark 2. Some comments concerning Assumption 1 are in order. Note first that
our analysis allows, for instance, for objectives of the form j(u) = ‖∇u − z‖2L2(Ω;Rd)

with given z ∈ L2(Ω;Rd) or j(u) = ‖u− w‖2
L2(Γ̃)

, where Γ̃ ⊂ Ω is a smooth manifold.

The sign condition in Assumption 1 is an analogon to [17, Assumption 2]. In view of

∂2
ur(γ;uγ) = −6 γ2 max

(
γ(ψ − uγ), 0

)
,

12



it is fulfilled, if
pγ ≥ 0 a.e. on {uγ < ψ}.

Note that the strong stationarity conditions imply p̄ ≥ 0 q.e., where ū = ψ. As
mentioned above, these conditions hold in case of (P), if ū ∈ H1

0 (Ω), cf., [20].

Corollary 1. Let (qγ , uγ) with corresponding multipliers (pγ , λγ , θγ) satisfy the opti-
mality system (9). Assume that Assumption 1 is satisfied, then (qγ , uγ , pγ , λγ , θγ) is
locally unique. Furthermore, the solution variables are differentiable with respect to γ
and the derivatives (q̇γ , u̇γ , ṗγ , λ̇γ , θ̇γ) solve the following system of linearized equations:

Au̇γ = q̇γ + λ̇γ , (30a)

λ̇γ + ∂γr(γ, uγ) + ∂ur(γ; γ)u̇γ = 0, (30b)

A∗ṗγ = j′′(uγ)u̇γ − µ̇γ , (30c)

ṗγ + g′′(qγ)q̇γ = 0, (30d)

ṗγ − θ̇γ = 0, (30e)

µ̇γ − ∂ur(γ;uγ)θ̇γ − ∂2
uγr(γ;uγ)θγ − pγ∂2

ur(γ;uγ)u̇γ = 0. (30f)

Proof. As demonstrated above, the optimality system (9) is equivalent to (24). Local
uniqueness and differentiability for (24) follow by the implicit function theorem from
invertibility of the linearized operator in (26) as shown in Lemma 3.

The derivative of R 3 γ 7→ (uγ , pγ) ∈ H1
0 (Ω)2 is given by the unique solution (u̇γ , ṗγ)

of the linearized version of (24):

Au̇γ −Q′(pγ)ṗγ + ∂ur(γ;uγ)u̇γ + ∂γr(γ;uγ) = 0,

A∗ṗγ − j′′(uγ)u̇γ + ∂2
ur(γ;uγ)pγ u̇γ + ∂ur(γ;uγ)ṗγ + ∂2

uγr(γ;uγ) = 0.

By setting q̇γ = Q′(pγ)ṗγ = −g(qγ)−1ṗγ , see (25), and introducing λ̇γ , θ̇γ , and µ̇γ
through (30b), (30e), and (30f), respectively, we obtain (30).

To obtain an estimator for the regularization error, which can be evaluated a poste-
riori, we make the following ansatz for the unknown ū, λ̄ based on a first-order Taylor
expansion:

ū ≈ u∞ := uγ + γ u̇γ , (31a)

λ̄ ≈ λ∞ := λγ + γ λ̇γ . (31b)

Then, by (23), we arrive at the following approximation of the difference in the objec-
tive

J(ū, q̄)− J(uγ , qγ) =

〈
ū− uγ ,

1

2
(µ̄+ µγ)

〉
+

〈
λ̄− λγ ,

1

2
(θ̄ + θγ)

〉
+Rreg

≈ γ
(
〈u̇γ , µγ〉+ 〈λ̇γ , θγ〉

)
=: ηt. (32)
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It is to be noted that the above approximation is by far not rigorous. First of all
Assumption 1(2) is fairly ad hoc. Moreover, the minimum of (P) need not be unique
so that convergence uγ → ū and λγ → λ̄ cannot be expected. Therefore the Taylor
approximations in (31) might be quite inaccurate. In addition the replacement of
1/2(µ̄+µγ) and 1/2(θ+ θγ) by µγ and θγ , respectively, is even more critical, since the
dual variables only converge weakly, if they converge at all. Despite all these issues,
the proposed error estimator performs very well in the numerical tests, as we will see
in Section 6.

5. Adaptive finite element discretization

In this section, we describe the adaptive finite element discretization of the reduced
regularized optimality system (24). Let Th be a triangulation of Ω consisting of quadri-
lateral elements for d = 2 and of hexahedral ones for d = 3. In our approach, we allow
hanging nodes of degree one to realize adaptive mesh refinement. For the evaluation
of the later discussed a posteriori error estimate, a special structure of the adaptively
refined finite element mesh is required. This so-called patch-structure is obtained
through the refinement of all sons of a refined element, provided that one of these sons
is actually marked for refinement. It is illustrated in Figure 1. The finite element

(a) Mesh with patch structure (b) Corresponding patch mesh

Figure 1: Illustration of the patch structure of the finite element mesh

ansatz space is given by

Vh :=
{
v ∈ H1

0 (Ω) : v|T ∈ Q1(T )∀T ∈ Th
}
,

where Q1(T ) consists of d-linear basis functions on the element T . This leads us to the
discrete problem: Find the discrete state uγ,h and the discrete adjoint pγ,h as solution
of the semilinear elliptic system

a(uγ,h, ϕh)−Q(pγ,h)(ϕh) + (r(γ;uγ,h), ϕh) = 0 ∀ϕh ∈ Vh
a(χh, pγ,h)−∇j(uγ,h)(χh) + (∂ur(γ;uγ,h)pγ,h, χh) = 0 ∀χh ∈ Vh.

(33)

Furthermore, qγ,h is given by qγ,h = Q(pγ,h). We use Newton’s method to determine
the discrete solution. However, this introduces an additional error such that we only
compute approximate solutions (ũγ,h, q̃γ,h, p̃γ,h).

14



The detailed solution algorithm, Algorithm 1, will be outlined in at the end of this
section. Beforehand, we discuss an a posteriori error estimate of the discretization
error and the numerical error:

Proposition 2. For the error in the cost functional J the following error representa-
tion holds:

J(uγ , qγ)−J(ũγ,h, q̃γ,h)

=
1

2
ρ∗(ũγ,h, q̃γ,h, p̃γ,h)(u− ũγ,h) +

1

2
ρq(q̃γ,h, p̃γ,h)(q − q̃γ,h)

+
1

2
ρ(ũγ,h, q̃γ,h)(p− p̃γ,h)− ρ(ũγ,h, q̃γ,h)(p̃γ,h) +R(3)

h .

(34)

Here, the dual residual is given by

ρ∗(ũγ,h, q̃γ,h, p̃γ,h)(·) := ∇j(uγ,h)(·)− a(·, pγ,h)− (∂ur(γ;uγ,h)pγ,h, ·),

the control residual by

ρq(q̃γ,h, p̃γ,h)(·) := (q̃γ,h, ·)−Q(p̃γ,h)(·),

and the primal residual by

ρ(ũγ,h, q̃γ,h)(·) := −a(uγ,h, ·) + (qγ,h, ·)− (r(γ;uγ,h), ·).

The remainder term R(3)
h arising from the application of the trapezoidal rule is of the

form

R(3)
h =

1

2

∫ 1

0

(
j′′′(ũγ,h + teu)(eu)3 + g′′′(q̃γ,h + teq)(eq)3

)
t(t− 1) dt

+
1

2

∫ 1

0

( ∂3

∂u3
r(γ; ũγh + teu)(eu)3, p̃γ,h + tep

)
t(t− 1) dt

+
3

2

∫ 1

0

( ∂2

∂u2
r(γ; ũγh + teu)(eu)2, ep

)
t(t− 1) dt.

(35)

with the discretization errors eu := uγ − ũγ,h, eq := qγ − q̃γ,h, and ep := pγ − p̃γ,h.

Proof. The assertion, except the explicit form of the remainder term, follows directly
from Proposition 4.1 in [23] using the standard arguments of the DWR approach based
on the Lagrangian

Lγ : L2(Ω)×H1
0 (Ω)×H1

0 (Ω)→ R;

Lγ(qγ , uγ , pγ) := J(uγ , qγ)− a(uγ , pγ) + (qγ − r(γ;uγ), pγ).
(36)

Following Proposition 4.1 in [23], the remainder term is given by

R(3)
h =

1

2

∫ 1

0

L′′′γ (χγ,h + t(χγ − χγ,h))(χγ − χγ,h)3t(t− 1) dt
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with χγ = (qγ , uγ , pγ). Now, we explicitly calculate the remainder term for our con-
crete case. Since the third derivative of a(uγ , pγ) and (qγ , pγ) is vanishing, the only
terms, which have to be considered, are J(uγ , qγ) and (r(γ;uγ), pγ). The first one has
been discussed in the beginning of Section 4. By the same approach, we deduce

1

2

∫ 1

0

J ′′′(ũγ,h + teu, q̃γ,h + teq)(eu, eq)3t(t− 1) dt

=
1

2

∫ 1

0

(
j′′′(ũγ,h + teu)(eu)3 + g′′′(q̃γ,h + teq)(eq)3

)
t(t− 1) dt.

For the second term (r(γ;uγ), pγ), we deduce

1

2

∫ 1

0

(
r(γ; ũγ,h + teu), p̃γ,h + tep

)′′′
(eu, ep)3t(t− 1) dt

=
1

2

∫ 1

0

( ∂3

∂u3
r(γ; ũγh + teu)(eu)3, p̃γ,h + tep

)
t(t− 1) dt

+
3

2

∫ 1

0

( ∂2

∂u2
r(γ; ũγh + teu)(eu)2, ep

)
t(t− 1) dt.

(37)

Using the Lemma of Stampacchia, we get an discontinuous but integrable third deriva-
tive of r,

∂3

∂u3
r(γ;u) =

{
−6γ3, u < ψ
0, else,

(38)

and therewith an bounded remainder term for fixed γ.

Remark 3. If j′′′(u), g′′′(q), ∂2

∂u2 r(γ;u), and ∂3

∂u3 r(γ;u) are bounded uniformly w.r.t.
x, say by constants cj, cg, cr,1, and cr,2, then we obtain∣∣∣R(3)

h

∣∣∣ ≤ 1

12

(
(cj + cr,1)‖eu‖3L2(Ω) + cg‖eq‖3L2(Ω) + cr,2‖eu‖2L2(Ω)‖e

p‖L2(Ω)

)
,

i.e., the remainder term is of third order in the discretization error. Unfortunately, the
constants cr,1 and cr,2 are depending on the regularization parameter γ, and especially
cr,1 might tend to infinity, if γ → ∞, see (38). However, in view of (38), the first
addend on the right hand side of (37) only has to be estimated on the inactive set
{x ∈ Ω : (ũγh + teu)(x) < ψ(x)}. One can easily see that the measure of this set tends
to zero, if eu tends to zero in L1(Ω). It is unclear whether the convergences are such
that the growth in (38) is compensated in such a way, that

|J(uγ , qγ)− J(ũγ,h, q̃γ,h)| � |R(3)
h |.

However, our numerical results indicate, that neglecting the error term is acceptable,
at least in our test cases.

Since the error representation formula (34) is numerically not evaluable, we approx-
imate it using patchwise quadratic interpolation, c.f., e.g., [2, Section 4.1] for this well
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known procedure. Let i
(2)
2h be the corresponding interpolation operator. We obtain

neglecting the remainder term R(3)
h ,

J(uγ , qγ)− J(ũγ,h, q̃γ,h) ≈ ηh + ηn (39)

with the spatial and the numerical error estimator:

ηh :=
1

2
ρ∗(ũγ,h, q̃γ,h, p̃γ,h)(i

(2)
2h ũγ,h − ũγ,h) +

1

2
ρq(q̃γ,h, p̃γ,h)(i

(2)
2h q̃γ,h − q̃γ,h),

+
1

2
ρ(ũγ,h, q̃γ,h)(i

(2)
2h p̃γ,h − p̃γ,h)

ηn := −ρ(ũγ,h, q̃γ,h)(p̃γ,h).

Alternatively, the control residual can also be approximated by

1

2
ρq(q̃γ,h, p̃γ,h)(qd),

since it vanishes for qd ≡ 0, c.f., [31]. Beside the remainder, the terms

1

2
ρ∗(ũγ,h, q̃γ,h, p̃γ,h)(u− i(2)

2h ũγ,h) +
1

2
ρq(q̃γ,h, p̃γ,h)(q − i(2)

2h q̃γ,h)

+
1

2
ρ(ũγ,h, q̃γ,h)(p− i(2)

2h p̃γ,h),

are also neglected. In [2, Section 5.2], it is proven that the corresponding term for
the Poisson problem is of higher order in h assuming smooth solutions and uniform
meshes. In the general case, this is an open question. However, the numerical results
in Section 6 suggest that this approach also works in the situation considered here, as
it does in many other situations, see for instance [5].

Finally, the a posteriori error estimate of the regularization error (32) can not be
evaluated numerically, since it is based on the analytical values. Thus, we use the
discrete counterpart

γ
(
〈u̇γ,h, µγ,h〉+ 〈λ̇γ,h, θγ,h〉

)
=: ηt (40)

as estimator. All in all, we have deduced the a posteriori error estimate

J(ū, q̄)− J(ũγ,h, q̃γ,h) ≈ η := ηt + ηh + ηn.

We note that all of the three indicators are, in fact, functions evaluated in the current
iterate. To ease notation, we neglected the explicit statement of this fact.

To utilize ηh in an adaptive refinement strategy, we have to localize the error con-
tributions given by the primal, dual, and control residuals with respect to the single
mesh elements T ∈ Th leading to local error indicators ηh,T . Here, the filtering tech-
nique developed in [7] is applied, which implies less implementational effort than the
standard approach using integration by parts outlined for instance in [2]. The optimal
mesh strategy developed in [25] is used as adaptive refinement strategy.

The adaptive solution procedure is described in the following Algorithm:
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Algorithm 1. The adaptive solution algorithm consists of the following steps using a
stopping tolerance tol > 0, a safety factor cs ∈ (0, 1), an equilibration constant ce > 1,
and an factor cγ > 1 to steer the growth of γ during the algorithm:

(1) Choose an initial triangulation T 0
h and an initial regularization parameter γ0.

Set l = 0.

(2) Choose an initial value
(
ũl,0γ,h, q̃

l,0
γ,h, p̃

l,0
γ,h

)
and set n = 0.

(3) Perform one step of Newton’s method:
(
ũl,nγ,h, q̃

l,n
γ,h, p̃

l,n
γ,h

)
→
(
ũl,n+1
γ,h , q̃l,n+1

γ,h , p̃l,n+1
γ,h

)
.

(4) Determine ηh and ηn.

(5) If cs|ηh| < |ηn| then increment n and go to (3).

(6) Determine ηt.

(7) If |ηt|+ |ηh|+ |ηn| < tol then quit.

(8) If |ηt| > ce|ηh| then adaptively refine, T lh → T
l+1
h , and set γl+1 = γl.

(9) If ce|ηt| < |ηh| then enhance the regularization, γl+1 = cγγ
l, and set T lh = T l+1

h .

(10) If ce|ηt| ≥ |ηh| ≥ c−1
e |ηt| then adaptively refine, T lh → T

l+1
h , and enhance the

regularization, γl+1 = cγγ
l.

(11) Increment l and go to (2).

Some comments on the adaptive solution algorithm are in order. We use cs = 10−3,
ce = 5, and cγ =

√
10 in our numerical experiments. Especially, the choice of cγ is cru-

cial, since one wants to stay in the quadratic convergence radius of Newton’s method.
In our numerical experiments the mentioned choice has worked well. Furthermore, the
initial values for Newton’s method are determined by extrapolation of the old solution,
if we increase γ, or by interpolation on the new mesh, if an adaptive mesh refinement
is conducted.

6. Numerical results

In this section, we consider two challenging examples to test the presented error estima-
tor and the adaptive algorithm. For comparison, an heuristic patch recovery estimator
of the form

ηzz := ‖P (∇uh)−∇uh‖+ ‖P (∇qh)−∇qh‖+ ‖P (∇ph)−∇ph‖

for the discretization error in combination with the estimator

ηe,t := J(ũ∞,h, q̃∞,h)− J(ũγ,h, q̃γ,h) = γ(ũγ,h − ud, u̇γ,h) + γα(q̃γ,h − qd, q̇γ,h)

of the regularization error is used. Here, P denotes the usual recovery operator de-
scribed for instance in [1].
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6.1. First example

We set Ω = [0, 1]2 with homogeneous Dirichlet boundary conditions on ∂Ω. The obsta-
cle ψ is given by ψ ≡ −0.25 and a volume force f by f = −2π2 sin(πx) sin(πy). As de-
sired state ud, we choose ud = − sin(πx) sin(πy) in the subdomain Ω1 = [0.375, 0.625]2,
i.e.,

J(u, q) =
1

2
‖u− ud‖2L2(Ω1) +

α

2
‖q‖L2(Ω).

Due to ud < ψ in Ω1, the optimal state in Ω1 is given by u = ψ. Because of the volume
force f , the optimal state is achieved at least for all q ≤ 0. Consequently, the optimal
control is q ≡ 0 and for the optimal value it holds

J(u, q) =
1

2
‖ψ − ud‖2L2(Ω1) =

5π2 + 16π
√

2 + 128
√

2− 224

512π2
.

In Figure 2, the solution is depicted. As the optimal control q is included in the discrete

Figure 2: Setting of the first example.

ansatz space, i.e. q ∈ Vh, for all mesh sizes h, the discrete solution is qh = q and does
not depend on the mesh size h. Consequently, the adaptive algorithm should only
increase the regularization parameter without any adaptive mesh refinement. Table 1
shows that the presented error estimator based on the DWR method really gives the
expected behavior, where

Erel :=
J(u, q)− J (ũγ,h, q̃γ,h)

J(u, q)

and

Ieff :=
J(u, q)− J (ũγ,h, q̃γ,h)

η
.

The only adaptive mesh refinements are carried out in the last steps of the solution
algorithm. The corresponding adaptive mesh is depicted in Figure 3. In contrast to
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l N γ Erel Ieff

1 64 101 5.744·10−1 0.272
2 64 103/2 2.238·10−1 0.498
3 64 102 7.446·10−2 0.603
4 64 105/2 2.375·10−2 0.650
5 64 103 7.517·10−3 0.669
6 64 107/2 2.379·10−3 0.675
7 64 104 7.529·10−4 0.674
8 64 109/2 2.376·10−4 0.669
9 64 105 7.439·10−5 0.654
10 64 1011/2 2.275·10−5 0.604
11 64 106 6.415·10−6 0.422
12 208 1013/2 2.250·10−6 0.385
13 400 107 6.353·10−7 1.063
14 400 1015/2 1.159·10−7 2.140

Table 1: Results of the adaptive algorithm based on the DWR error estimator for the
first example with coarse initial mesh.

Figure 3: Adaptive mesh in the 13th step
of the algorithm based on the
DWR estimator with coarse ini-
tial mesh.

Figure 4: Adaptive mesh in the 5th step
of the algorithm based on the
heuristic estimator.

the DWR estimator the heuristic estimator shows a completely different behavior as
outlined in Table 2. We observe mainly mesh refinements and no reductions of the
regularization parameter. Hence, the error is not efficiently reduced. The adaptive
mesh is depicted in Figure 4. The effectivity indices for the presented error estimator
given in Table 1 are not satisfactory due to the very coarse mesh. Using a finer initial
mesh, we obtain much better effectivity indices, c.f., Table 3.
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l N γ Erel

1 64 101 0.574
2 160 101 0.574
3 400 101 0.572
4 1216 101 0.571
5 4624 103/2 0.222
6 13408 103/2 0.222
7 50656 102 0.0741

Table 2: Results of the adaptive algorithm based on the heuristic error estimator for
the first example.

l N γ Erel Ieff

1 16384 101 5.712·10−1 0.467
2 16384 103/2 2.218·10−1 0.688
3 16384 102 7.412·10−2 0.821
4 16384 105/2 2.381·10−2 0.897
5 16384 103 7.564·10−3 0.939
6 16384 107/2 2.396·10−3 0.960
7 16384 104 7.580·10−4 0.971
8 16384 109/2 2.397·10−4 0.975
9 16384 105 7.581·10−5 0.977
10 16384 1011/2 2.397·10−5 0.977
11 16384 106 7.581·10−6 0.977
12 16384 1013/2 2.397·10−6 0.977
13 16384 107 7.578·10−7 0.978
14 16384 1015/2 2.395·10−7 0.979
15 16384 108 7.553·10−8 0.982

Table 3: Results of the adaptive algorithm based on the DWR error estimator for the
first example with fine initial mesh.

6.2. Second example

The second example is mpccdist1 taken from the OPTPDE-problem collection [21], it
was introduced originally in [18, Example 7.1]. We use the domain Ω := [0, 1]2 as well
as the subdomains Ω2 := [0, 0.5]× [0, 0.8] and Ω3 := [0.5, 1]× [0, 0.8]. The subdomain
Ω1 is a square with midpoint x̂ = (0.8, 0.9) and edge length 0.1, which has been rotated
about its midpoint by 30 degrees in counter-clockwise direction. hence, its boundary
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is not resolved by the mesh. The four vertices of Ω1 can thus be obtained from

(
x̂ x̂ x̂ x̂

)
+Q

(
−0.05 0.05 0.05 −0.5
−0.05 −0.05 0.05 0.05

)
≈
(

0.7817 0.8683 0.8183 0.7317
0.8317 0.8817 0.9683 0.9183

)
with the rotation matrix

Q =

(
cos π6 − sin π

6
sin π

6 cos π6

)
.

Note that Ω1 does not intersect Ω2 nor Ω3. The desired state is given by

ud(x) =


−400 (q1(y1) + q2(y2))|y=Q>(x−x̂)+x̂ , x ∈ Ω1,

z1(x1)z2(x2), x ∈ Ω2,
0, elsewhere,

and the desired control by

qd(x) =


p1(Q>(x− x̂), x ∈ Ω1,
−z′′1 (x1)− z′′2 (x2), x ∈ Ω2,
−z1(x1 − 0.5)z2(x2), x ∈ Ω3,
0, elsewhere,

where the remaining pieces of data are

z1(x1) = −4096x6
1 + 6144x5

1 − 3072x4
1 + 512x3

1,

z2(x2) = −244140625x6
2 + 585937500x5

2 − 468750x4
2 + 125x3

2,

q1(x1) = −200(x1 − 0.8)2 + 0.5,

q2(x2) = −200(x2 − 0.9)2 + 0.5,

p1(x1, x2) = q1(x1)q2(x2).

The main characteristics of this example are a biactive set of a measure larger than
zero, low regularity and data not aligned along the finite element mesh. We will show
that the adaptive algorithm can cope with all these aspects and lead to an efficient
solution algorithm. The solution is illustrated in the Figures 5, 6, and 7. In Table
4, the results concerning a uniform mesh refinement are summarized. There, the
regularization parameter γ is chosen as the smallest value, where the results do not
change any more. We observe a coupled decrease of h and increase of γ to obtain
reasonable results. Furthermore, the effectivity indices of the DWR error estimator
are stated, which are close to one but with a minus sign. The results of the adaptive
algorithm based on the DWR error estimator are given in Table 5. We achieve a
similar accuracy as the uniform approach with far less mesh elements and smaller
values of γ, where the error is estimated accurately as well as the estimated error
constituents are properly balanced. The adaptively refined mesh in the 8th iteration
is shown in Figure 8. We observe that mainly the lower left part is refined, whereas
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Figure 5: Optimal control in the second
example.

Figure 6: State in the second example.

Figure 7: Adjoint state in the second example.

l N γ Erel Ieff

1 100 101 -6.549·10−2 -0.327
2 400 103 -3.092·10−3 -0.879
3 1600 105 -1.537·10−4 -0.985
4 6400 106 -7.709·10−6 -1.042
5 25600 107 -4.237·10−7 -1.047
6 102400 1015/2 -3.030·10−8 -0.847
7 409600 109 -1.372·10−9 -1.120

Table 4: Results considering uniform mesh refinement.

the upper right part is much less refined, although one would at first sight expect
refinements due to the problem data not aligned to the grid there. However, the use
of special quadrature rules resolves this problem and so no additional refinements are
needed. For comparison, the results of the adaptive algorithm based on the heuristic
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l N γ Erel Ieff ηr ηh
1 100 101 -6.548·10−2 -0.327 1.865·10−4 8.370·10−0

2 184 101 -2.462·10−2 -0.0985 1.999·10−4 9.477·10−1

3 340 101 -2.592·10−3 -0.512 1.737·10−4 5.193·10−1

4 472 101 -3.641·10−4 -0.840 1.623·10−4 1.194·10−1

5 916 101 -4.882·10−5 -0.954 1.653·10−4 1.805·10−2

6 2248 101 1.390·10−5 0.597 1.714·10−4 3.075·10−3

7 4444 101 1.703·10−5 0.112 1.731·10−4 5.734·10−4

8 9640 101 2.345·10−5 0.0316 1.743·10−4 1.155·10−4

9 20176 103/2 2.107·10−5 0.261 2.133·10−3 2.070·10−5

10 20176 102 1.257·10−5 0.6136 2.992·10−3 2.294·10−5

11 20176 105/2 5.376·10−6 0.875 1.815·10−3 2.544·10−5

12 20176 103 1.736·10−6 1.135 7.444·10−4 2.665·10−5

13 20176 107/2 4.294·10−7 1.509 2.264·10−4 2.695·10−5

14 20176 104 6.175·10−8 3.555 5.886·10−5 2.700·10−5

15 43840 109/2 2.648·10−8 2.077 1.593·10−5 5.571·10−6

16 83512 105 9.670·10−9 1.508 4.379·10−6 1.326·10−6

17 185572 1011/2 -3.079·10−9 -1.221 1.205·10−6 2.663·10−7

Table 5: Results of the adaptive algorithm based on the DWR estimator for the second
example.

Figure 8: Adaptive mesh in the 8th step
of the algorithm based on the
DWR estimator for the second
example.

Figure 9: Adaptive mesh in the 5th step
of the algorithm based on the
heuristic estimator for the sec-
ond example.

error estimator are outlined in Table 6. As in the first example, the regularization
parameter γ is not increased because of the overestimation of the discretization error
by the heuristic estimator. Thus, the error is not optimally reduced. The resulting
adaptive mesh, c.f., Figure 9, shows the same properties as the mesh based on the
DWR error estimator.
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l N γ Erel

1 100 101 -6.549·10−2

2 196 101 -6.486·10−3

3 616 101 -3.537·10−4

4 1516 101 -5.509·10−6

5 2500 101 1.042·10−5

6 4648 101 1.709·10−5

7 9580 101 2.148·10−5

8 22084 101 2.296·10−5

9 38692 101 1.863·10−5

10 88336 101 1.869·10−5

11 155956 101 2.129·10−5

Table 6: Results of the adaptive algorithm based on the heuristic estimator for the
second example.

7. Conclusions

We presented an adaptive algorithm for the finite element approximation of optimal
control problems governed by variational inequalities of obstacle type. The construc-
tion of the algorithm is based on a penalty-type regularization, whose a priori approx-
imation properties can be analyzed by standard techniques. To obtain an efficient
overall algorithm the most crucial point is to design an accurate a posteriori estima-
tor for the regularization error, which can be evaluated with reasonable effort. Our
construction relies on the path derivative, i.e., the derivative of the optimal solution
w.r.t. the penalization parameter. Under additional assumptions on the regularized
solutions, the path can indeed be shown to be differentiable. Unfortunately, these
assumptions cannot be shown to be fulfilled in general. The major advantage of this
regularization error estimator is its low computational costs, since one only has to solve
the linearized system (30), which amounts to the same effort as an additional Newton
step for the nonlinear regularized optimality system (9). The discretization error for
the regularized problems is then estimated by the standard DWR method. For fixed
values of the regularization parameter γ, the classical results are obtained, but the es-
timator depends on γ. It is an open question, whether the remainder term in (35) can
be bounded independently of γ or one has to couple mesh size and γ suitably to keep
this remainder term negligible. This gives rise to future research. Despite these open
questions, the algorithm performs well in two challenging numerical tests. It reliably
detects when to keep the mesh constant and to increase the penalty parameter as the
first example shows. Furthermore, as seen in the second example, the algorithm can
cope with a biactive set of positive measure, which induces a non-differentiability in
the unregularized control-to-state mapping. Finally, both examples show convincing
efficiency indices.
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A. Proof of Lemma 2

Proof of Lemma 2. Although the proof is standard, we present the arguments for con-
venience of the reader. By the Lipschitz continuity of Sγ , the sequence {uγ} is bounded
in H1

0 (Ω) such that there is a weakly converging subsequence, w.l.o.g. the whole se-
quence itself. The weak limit is denoted by u ∈ H1

0 (Ω). Testing (8) with ψ − uγ
yields ∫

Ω

max{ψ − uγ , 0}4 dx =
1

γ3

(
〈q, uγ − ψ〉+ a(uγ , ψ − uγ)

)
.

Thanks to the weak convergence the term in brackets is bounded so that the right
hand side converges to zero for γ →∞. The compactness of H1(Ω)→ L4(Ω) implies
that the left hand side converges to ‖max{ψ − u, 0}‖4L4(Ω), giving in turn that u ≥ ψ

a.e. in Ω, i.e., u ∈ K. Next we test (8) with v − uγ , where v ∈ K is arbitrary. Then,
due to∫

Ω

r(γ;uγ)(v − uγ) dx

= −γ3
(∫

Ω

max{ψ − uγ , 0}3 (v − ψ)︸ ︷︷ ︸
≥0

dx+

∫
Ω

max{ψ − uγ , 0}4 dx
)
≤ 0,

we arrive at
a(uγ , v − uγ) ≥ 〈q, v − uγ〉 ∀ v ∈ K
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and the weak lower semicontinuity of a implies that the weak limit u is indeed the
unique solution of (6). By weak lower semicontinuity, we further infer that

0 ≤ lim inf
γ→∞

(
a(uγ , uγ)− a(u, u)

)
≤ lim sup

γ→∞

(
a(uγ , uγ)− a(u, u)

)
≤ lim
γ→∞

(
a(u, uγ − u)− 〈q, u− uγ〉

)
= 0.

Hence, due to coercivity of a, we have ‖uγ‖H1(Ω) → ‖u‖H1(Ω), and norm and weak
convergence imply strong convergence.

To verify the convergence rate, first note that, by the Stampacchia-Lemma, the
pointwise projection on K yields an element of H1

0 (Ω), i.e., max{v, ψ} ∈ H1
0 (Ω). If

one tests (8) with v = u−max{uγ , ψ} so that

a(uγ , u−max{uγ , ψ})

− γ3

∫
Ω

max{ψ − uγ , 0}3
(
u− (ψ + max{uγ − ψ, 0})

)
dx = 〈q, u−max{uγ , ψ}〉

is obtained. Since max{ψ− uγ , 0}3(u−ψ) ≥ 0 a.e. in Ω (due to u ∈ K) and max{ψ−
uγ , 0}3 max{uγ − ψ, 0} = 0 a.e. in Ω, this implies

a(uγ , u−max{uγ , ψ}) ≥ 〈q, u−max{uγ , ψ}〉.

Adding this inequality to (6) tested with v = max{uγ , ψ} ∈ K gives

a(u− uγ ,max{uγ , ψ} − u) ≥ 0

such that the coercivity of a yields

β ‖u− uγ‖2H1
0 (Ω) ≤ a(u− uγ ,max{uγ , ψ} − uγ)

≤ c ‖u− uγ‖H1
0 (Ω) ‖uγ −max{uγ , ψ}‖H1

0 (Ω).
(41)

It remains to estimate the projection error uγ − max{uγ , ψ}. For this purpose, test
(8) with uγ −max{uγ , ψ} which gives

〈q −Aψ, uγ −max{uγ , ψ}〉
= a(uγ − ψ, uγ −max{uγ , ψ}) + γ3 ‖uγ −max{uγ , ψ}‖4L4(Ω). (42)

By defining –up to sets of zero measure– Ω̂ := {x ∈ Ω : uγ(x) < ψ(x)}, we obtain

uγ −max{uγ , ψ} = 0 a.e. in Ω \ Ω̂ and consequently

a(uγ − ψ, uγ −max{uγ , ψ})

=

∫
Ω̂

d∑
i=1

( d∑
j=1

aij
∂(uγ − ψ)

∂xj

∂(uγ − ψ)

∂xj
dx+ bi

∂(uγ − ψ)

∂xi
(uγ − ψ)

)
+ a0 (uγ − ψ)2 dx

= a(uγ −max{uγ , ψ}, uγ −max{uγ , ψ}).
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Thus, (42) together with the coercivity of a and Young’s inequality yields

β ‖uγ −max{uγ , ψ}‖2H1(Ω)

≤ a(uγ −max{uγ , ψ}, uγ −max{uγ , ψ})

=

∫
Ω

(q −Aψ)
(
uγ −max{uγ , ψ}

)
dx− γ3 ‖uγ −max{uγ , ψ}‖4L4(Ω)

≤ c 1

γ
‖q −Aψ‖4/3

L4/3(Ω)
.

Plugging this into (41) yields the assertion.
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