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Controlled invariance for nonlinear
differential-algebraic systems

Thomas Berger

Abstract—We study the concept of locally controlled invariant
submanifolds for nonlinear differential-algebraic/descriptor sys-
tems. In contrast to classical approaches, we define controlled
invariance as the property of solution trajectories to evolve in a
given submanifold whenever they start in it. It is then proved that
this concept is equivalent to the existence of a feedback which
renders the closed-loop vector field invariant in the descriptor
sense. This result is exploited to show that the outcome of the
differential-algebraic version of the zero dynamics algorithm
yields a maximal output zeroing submanifold. The latter is then
used to characterize the zero dynamics of the system. In order
to guarantee that the zero dynamics are locally autonomous
(i.e., locally resemble the behavior of an autonomous dynamical
system), sufficient conditions involving the locally maximal output
zeroing submanifold are derived.

Index Terms—Differential-algebraic equations, nonlinear sys-
tems, descriptor systems, controlled invariance, output zeroing
submanifold, zero dynamics.

Nomenclature:
N, N0 set of natural numbers, N0 = N∪{0}
Rn×m the set of real n×m matrices

rkA, imA rank and image of A ∈ Rn×m

Gln(R) the group of invertible matrices in Rn×n

A† = (A�A)−1A� for A ∈ Rn×m with rkA = m

C k(X ;Y ) set of k-times continuously differentiable func-

tions f : X → Y , k ∈ N0 ∪ {∞}; if k = ∞ the

function f is called smooth

dom f the domain of the function f

f |I restriction of the function f to the set I

I. INTRODUCTION

We consider nonlinear descriptor systems governed by

differential-algebraic equations (DAEs) of the form

d
dt E(x(t)) = f (x(t))+g(x(t))u(t),

y(t) = h(x(t)),
(1)

where X ⊆ Rn is open, 0 ∈ X , f ∈ C (X ;Rl),h ∈ C (X ;Rp),
E ∈ C 1(X ;Rl) are vector fields such that f (0) = 0, h(0) = 0,

and g ∈ C (X ;Rl×m) is a matrix-valued function. The set of

these systems is denoted by ΣX
l,n,m,p; and we write [E, f ,g,h]∈

ΣX
l,n,m,p. Note that the class ΣX

l,n,m,p encompasses any linear
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singular descriptor system and various important classes of

nonlinear singular descriptor systems (e.g. chemical process

systems [1], mechanical systems [2], [3] and modified nodal

analysis models of electrical circuits [4]). Nonlinear descriptor

systems seem to have been first considered by Luenberger [5];

see also the recent textbooks [6], [7].

The functions u : I → Rm and y : I → Rp are called input
and output of the system, resp. Since solutions not necessarily

exist globally (e.g. finite escape times may arise) we consider

maximal solutions of (1).

Definition I.1 (Solutions). For [E, f ,g,h]∈ΣX
l,n,m,p a trajectory

(x,u,y) ∈ C (I;X ×Rm ×Rp) is called a solution of (1), if

I = domx⊆R is an open interval, E ◦x∈C 1(I;Rl) and (x,u,y)
solves (1) for all t ∈ I. A solution (x,u,y) of (1) is called

maximal, if any other solution (x̃, ũ, ỹ) of (1) satisfies

J := dom x̃∩domx 	= /0 ∧ x̃|J = x|J =⇒ dom x̃ ⊆ domx.

The behavior of (1) is defined as the set of maximal solution

trajectories

B(1) :={(x,u,y) ∈ C (I;X ×Rm ×Rp) | I ⊆ R is an open

interval and (x,u,y) is a maximal solution of (1)}.
In the present paper, we consider questions related to con-

trolled invariance and the zero dynamics of (1). The concept of

(locally) controlled invariant submanifolds has been introduced

by Isidori and Moog [8] (see also the textbooks [9], [10]) as a

counterpart to controlled invariant distributions [11], [12] and

it is an extension of the well-studied concept of controlled

invariant subspaces for linear systems. Loosely speaking, a

locally controlled invariant submanifold M is a connected

submanifold which is invariant under the flow of the closed-

loop vector field f (x)+ g(x)u(x) for some feedback u(x); in

the case of DAEs this invariance has to be formulated with

respect to E(·). In the present paper, we show that the above

“classical” definition in terms of feedback is equivalent to the

“natural” definition, that for any initial value in M there exists

an input such that the corresponding state trajectory remains

in M for all times.

Locally controlled invariant submanifolds which are output

zeroing (i.e., M ⊆ h−1(0)) are related to the zero dynamics

of the system (1). The zero dynamics are, loosely speaking,

those dynamics that are not visible at the output and they are

defined as the set of trajectories

Z D (1) := { (x,u,y) ∈B(1) | y = 0 } .
If the system (1) is governed by an ordinary differential

equation (ODE), i.e., n = l and E(x) = x, then the concept of
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zero dynamics has been introduced by Byrnes and Isidori [13]

and studied extensively since then, see e.g. the textbooks [9],

[10]. For linear DAEs, the zero dynamics are a real vector

space (which is not true for nonlinear systems) and have been

investigated in detail recently [14], [15]; for nonlinear DAEs

some results for a class of semi-explicit systems [16] and for

semi-explicit index-1 systems [17] are available.

The present paper is organized as follows: We consider

the concept of controlled invariant subspaces for linear de-

scriptor systems in Section II and prove characterizations of

it. In Section III we give a brief summary of the differen-

tial geometric concepts used in the remainder of the paper.

Motivated by the results for linear systems, local controlled

invariance of submanifolds for nonlinear DAE systems is

defined and characterized in Section IV; crucial preliminary

results on constant rank matrix functions and the existence

and extension of solutions to an important class of DAEs

are provided. In Section V we consider locally controlled

invariant submanifolds that are output zeroing and derive

an extension of the zero dynamics algorithm (see e.g. [9],

[10]) to DAE systems in order to compute a locally maximal

output zeroing submanifold. This submanifold is exploited

for a characterization of the zero dynamics of the system.

The concept of locally autonomous zero dynamics, which has

been successively used for the analysis of linear time-varying

ODEs in [18] and of linear time-invariant DAEs in [15], is

introduced in Section VI. We prove a sufficient condition for

locally autonomous zero dynamics in terms of the locally

maximal output zeroing submanifold. A conclusion is given

in Section VII.

II. THE LINEAR CASE

In the present section we study controlled invariance for

linear differential-algebraic systems of the form

d
dt Ex(t) = Ax(t)+Bu(t), (2)

where E,A ∈ Rl×n and B ∈ Rl×m. The set of these systems is

denoted by Σl,n,m and we write [E,A,B]∈Σl,n,m. Since [E,A,B]
is linear we consider only global solutions and hence define

the behavior of (2) as the set

B(2) :={(x,u) ∈ C (R;Rn ×Rm) | Ex ∈ C 1(R;Rl)
and (x,u) satisfies (2) for all t ∈ R}.

If (2) is an ODE, i.e., l = n and E = I, then a subspace

V ⊆Rn is called controlled invariant (see e.g. [19]) if, loosely

speaking, for all initial values in V there exists an input such

that the corresponding state trajectory remains in V for all

times. It is well-known that this is the case if, and only if,

there exists a friend F ∈Rm×n such that (A+BF)V ⊆ V , or,

equivalently, AV ⊆ V + imB.

We introduce controlled invariance for linear DAEs (2)

and generalize the above characterizations. To the best of the

author’s knowledge these characterizations are new.

Definition II.1 (Controlled invariant subspaces). Let

[E,A,B] ∈ Σl,n,m and V ⊆Rn be a subspace. Then V is called

controlled invariant, if

∀x0 ∈ V ∃(x,u) ∈B(2) ∀ t ≥ 0 :

x ∈ C 1(R;Rn) ∧ x(0) = x0 ∧ x(t) ∈ V .

In order to prove that controlled invariance is equivalent to

the existence of a friend we need the following crucial lemma

which guarantees existence of solutions to a certain class of

linear DAEs.

Lemma II.2 (Existence lemma). Let E,A ∈Rl×n be such that
imA ⊆ imE. Then, for all x0 ∈Rn, there exists x ∈ C ∞(R;Rn)
such that x(0) = x0 and Eẋ(t) = Ax(t) for all t ∈ R.

Proof. Since imA ⊆ imE there exists R ∈Rn×n such that A =
ER. Let S,T ∈ Gln(R) be such that SET =

[ Ir 0
0 0

]
, where r =

rkE. Then

SAT = SET T−1RT =

[
Ir 0

0 0

]
T−1RT =:

[
T1 T2

0 0

]
.

Now let x0 ∈Rn and let x1 ∈C ∞(R;Rr), x2 ∈C ∞(R;Rn−r) be

such that, for all t ∈ R,

ẋ1(t) = T1x1(t)+T2x2(t), and

(
x1(0)
x2(0)

)
= T−1x0.

Define x(·) := T
(

x1(·)
x2(·)
)
∈ C ∞(R;Rn) and observe that x(0) =

x0 and, for all t ∈ R,

Eẋ(t) = S−1

[
Ir 0

0 0

]
T−1T

(
ẋ1(t)
ẋ2(t)

)

= S−1

(
ẋ1(t)

0

)
= S−1

(
T1x1(t)+T2x2(t)

0

)

= S−1

[
T1 T2

0 0

](
x1(t)
x2(t)

)
= Ax(t).

Note that the solution x in Lemma II.2 is not unique. The

non-uniqueness amounts to the freedom in choosing x2 in the

proof of the lemma.

We are now in the position to state and prove the main result

of the present section. This is the differential-algebraic analog

of [19, Thm. 4.2]; note that its proof is also new in the ODE

case as it uses Lemma II.2.

Theorem II.3 (Controlled invariance). Let [E,A,B] ∈ Σl,n,m
and V ⊆Rn be a subspace. Then the following statements are
equivalent:

(i) V is controlled invariant.
(ii) AV ⊆ EV + imB.

(iii) There exists F ∈ Rm×n such that (A+BF)V ⊆ EV .

Proof. (i)⇒(ii): Let x0 ∈ V . Then there exists (x,u) ∈ �(2)

with x ∈ C 1(R;Rn), x(0) = x0 and x(t) ∈ V for all t ≥ 0. The

latter implies that d
dt Ex(t) ∈ EV for all t > 0 and continuity

gives d
dt Ex(0) ∈ EV , thus Ax0 = d

dt Ex(0) + Bu(0) ∈ EV +
imB. This implies AV ⊆ EV + imB.

(ii)⇒(iii): Let v1, . . . ,vk ∈ Rn be basis vectors of V , where

k = dimV . By assumption there exist wi ∈ Rn and ui ∈ Rm

such that Avi = Ewi + Bui for i = 1, . . . ,k. Now let F ∈
Rm×n be the matrix representation of a linear map which is
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uniquely defined on V by Fvi =−ui, i = 1, . . . ,k. Therefore,

(A+BF)vi = Avi −Bui = Ewi ∈ EV for i = 1, . . . ,k and thus

(A+BF)V ⊆ EV .

(iii)⇒(i): Let x0 ∈V and V ∈Rn×k be such that rkV = k and

imV =V . Then there exists w0 ∈Rk such that x0 =V w0. Since

(A+BF)V ⊆ EV we have that im(A+BF)V ⊆ imEV and by

Lemma II.2 there exists w ∈ C ∞(R;Rk) such that w(0) = w0

and EV ẇ(t) = (A+BF)V w(t) for all t ∈R. Then x(·) :=V w(·)
and u(·) := FV w(·) satisfy (x,u) ∈B(2), x(0) = x0 and x(t) =
V w(t) ∈ V for all t ≥ 0.

Note that a subspace V satisfying property (ii) in The-

orem II.3 is usually called a (A,E,B)-invariant subspace,

see [20] and also the survey [21].

III. DIFFERENTIAL GEOMETRIC PRELIMINARIES

We use the terminology of smooth manifolds and other

differential geometric concepts as in [22]. Apart from that,

by a submanifold we will always mean an embedded smooth

k-submanifold of Rn for some k ≤ n. Furthermore, we define

the tangent space to a submanifold M of Rn at x ∈ M as the

linear subspace

TxM :=

{
v ∈ Rn

∣∣∣∣ ∃ I ⊆ R open interval ∃γ ∈ C ∞(I;M) :

γ(0) = x ∧ γ̇(0) = v

}
.

The above definition is different from the standard concept

of the tangent space, usually introduced as the set of all

derivations at x. However, by [22, Lem. 3.11] the derivations

can be identified with tangent vectors to smooth curves, which

in turn can be embedded into Rn; cf. also [23, Thm. 2.2].

Let X ⊆Rn be an open set (which is a manifold) and M ⊆ X
be submanifold. For any x0 ∈ M there exist U ⊆ X open with

x0 ∈U , W ⊆Rk open for k = dimM ≤ n and a diffeomorphism

ϕ : M ∩U →W . Without loss of generality, W and ϕ can be

chosen such that 0 ∈W and ϕ(x0) = 0. (U,ϕ) is a coordinate
chart for M at x0 and ϕ is a coordinate map. Since ϕ is a

diffeomorphism between submanifolds (in the sense of [22])

and M ⊆ Rn, ϕ is a diffeomorphism in the sense of classical

calculus, i.e., ϕ ∈ C ∞(M ∩U ;W ) and ϕ−1 ∈ C ∞(W ;M ∩U).
We call ψ := ϕ−1 a parametrization for M at x0 and record

the following result which is important in due course.

Lemma III.1 (Parametrization and tangent space). Let M be
a submanifold of an open set X ⊆Rn and let ψ : W → M∩U
be a parametrization of M at x0 ∈ M. Then

∀x ∈ M∩U : TxM = imψ ′(ψ−1(x)).

IV. LOCAL CONTROLLED INVARIANCE

In Section II controlled invariant subspaces have been char-

acterized for linear descriptor systems (2). In the present sec-

tion we extend this approach to nonlinear systems (1) by con-

sidering a local version of controlled invariance for subman-

ifolds of X (instead of subspaces). In classical textbooks [9],

[10] on nonlinear ODE systems a locally controlled invariant

submanifold M is, loosely speaking, defined by the existence

of a feedback u(x) such that the vector field f (x)+ g(x)u(x)
is locally tangent to the M. In the linear case f (x) = Ax,

g(x) = B, as considered in Section II, this is equivalent to

the existence of a friend F such that (A+BF)M ⊆ M, i.e.,

property (iii) in Theorem (II.3). However, the characterization

in terms of solution trajectories as in Definition II.1 is usually

not considered for nonlinear systems.

In the following we extend Definition II.1 to nonlinear DAE

systems (1) by considering controlled invariance locally on a

conected submanifold of X . Then we derive, as a characteriza-

tion, the existence of a feedback which (in some sense) renders

the closed-loop vector field invariant, see Theorem IV.5. The

idea for the proof comes from the consideration of the linear

case discussed in Section II: First we generalize Lemma II.2

to nonlinear DAE systems, where additionally some care must

be taken of the extendability of solutions, which results in

Lemma IV.4. Then we prove the characterizations of locally

controlled invariant submanifolds in Theorem IV.5.

Definition IV.1 (Controlled invariant submanifolds). Let

[E, f ,g,h] ∈ ΣX
l,n,m,p and M be a connected submanifold of X

such that 0 ∈ M. Then M is called locally controlled invariant,
if there exists an open neighborhood U ⊆ X of the origin in

Rn such that

∀x0 ∈ M∩U ∃(x,u,y) ∈B(1) ∃ t0 ∈ domx ∀ t ∈ domx, t ≥ t0 :

x ∈ C 1(domx;Rn) ∧ x(t0) = x0 ∧ x(t) ∈ M∩U.

In Definition IV.1 only the existence of a maximal solution

(x,u,y) with x starting at x0 and staying in M∩U is required.

For DAE systems, this solution is not unique, not even if we

fix x0 and u. Therefore, in contrast to ODE systems, it is

possible to find at the same time solutions staying in M ∩U
and solutions leaving M ∩U generated by the same input.

Furthermore, possible state constraints restrict the set of locally

controlled invariant submanifolds in a natural way (for ODEs,

the whole set X is always locally controlled invariant, but not

necessarily for DAEs) and possible input constraints make it

harder to find a suitable control which establishes evolution

in the submanifold. The following example illustrates the

situation.

Example IV.2. Consider the DAE system (1) with X = R4

and

E(x) =

⎛
⎜⎜⎝

x1

0

x4

0

⎞
⎟⎟⎠ , f (x) =

⎛
⎜⎜⎝

x1 + x2

x3

0

x4

⎞
⎟⎟⎠ , g(x) =

⎡
⎢⎢⎣

1 0

0 0

0 1

0 1

⎤
⎥⎥⎦

for x = (x1,x2,x3,x4)
�; we omit the output equation y(t) =

h(x(t)) here. The state constraint x3(t) = 0 implies that any

locally controlled invariant submanifold must be a subset of

R2 ×{0}×R. We show that the subspace V := im[1,0,0,1]�
is (locally) controlled invariant. To this end, we observe that

the equations ẋ4(t) = u2(t) and 0 = x4(t)+ u2(t) impose an

input constraint of the form u̇2(t) = −u2(t) and this restricts

the choice of input functions. Let (x0,0,0,x0)� ∈ V . We

set x2(·) = 0 and x3(·) = 0 and observe that the remaining

equations read

ẋ1(t) = x1(t)+u1(t), x4(t) =−u2(t),

ẋ4(t) = u2(t), x1(0) = x4(0) = x0.
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Since the solution must evolve in V we get the additional con-

dition x1(t) = x3(t) and we may hence simplify the resulting

system to

u̇2(t) =−u2(t), u2(0) =−x0, u1(t) = 2u2(t),

x1(t) =−u2(t), x3(t) =−u2(t),

thus the choice of inputs u1(t) = −2e−t x0, u2(t) = −e−t x0

yields that x1(t) = −e−t x0 = x3(t) and establishes that V
is indeed (locally) controlled invariant. Note that the state

(x1(t),x2(t),x3(t),x4(t))� corresponding to the initial value

(x0,0,0,x0)� and to the input (u1(t),u2(t))� is not unique:

Any choice of x2 ∈ C (R;R) with x2(0) = 0 does also yields a

solution to this initial value problem. This also shows that it

is in general not possible to ensure that any solution evolves

in V .

We record a result on smooth constant rank matrix functions

as an important lemma. This result is a consequence of

the implicit function theorem. It is also mentioned in [10,

Exercise 2.4], however there the constant transformation S
from the left is missing.

Lemma IV.3 (Constant rank matrix functions). Let U ⊆Rn be
open, x0 ∈U and A ∈ C k(U ;Rp×q), k ∈N∪{∞}, be such that
rkA(x) = r for all x ∈ U. Then there exists an open neigh-
borhood V ⊆ U of x0 and S ∈ Glp(R), T ∈ C k(V ;Glq(R)),
L ∈ C k(V ;R(p−r)×r) such that

∀x ∈V : SA(x)T (x) =
[

Ir 0

L(x) 0

]
.

If moreover rkA(x) = p for all x ∈ U, then there exists T ∈
C k(V ;Glq(R)) such that A(x)T (x) = [Ir,0] for all x ∈V .

The proof of the equivalence between controlled invariance

and the existence of a desired feedback as explained above

relies on the following lemma which guarantees existence and

extendability of solutions to a certain class of DAE systems;

this is the nonlinear version of Lemma II.2.

Lemma IV.4 (Existence and extension lemma). Let U ⊆ Rn

be open and E ∈ C k+1(U ;Rl), f ∈ C k(U ;Rl), k ∈ N∪{∞},
be such that, for all x ∈U, f (x) ∈ E ′(x)TxU and rkE ′(x) = r.
Then the following statements are true:

a) For all (t0,x0)∈R×U, there exists an open interval I ⊆R,
t0 ∈ I, and x ∈C k+1(I;U) such that d

dt E(x(t)) = f (x(t)) for
all t ∈ I and x(t0) = x0.

b) If x ∈ C k+1((a,b);U) is such that d
dt E(x(t)) = f (x(t)) for

all t ∈ (a,b) and x0 := limt→b x(t) ∈ U exists, then there
exists ε > 0 and x̃ ∈ C k+1((a,b+ ε);U) with d

dt E(x̃(t)) =
f (x̃(t)) for all t ∈ (a,b+ ε) and x̃|(a,b) = x.

Proof. a): Lemma IV.3 applied to the transpose of E ′(·)
yields existence of an open neighborhood V ⊆ U of x0 and

S ∈Gln(R), T ∈C k(V ;Gll(R)), L∈C k(V ;Rr×(n−r)) such that

∀x ∈V : T (x)E ′(x)S =

[
Ir L(x)
0 0

]
.

Since f (x) ∈ E ′(x)TxU ⊆ imE ′(x) it follows that[
Ir L(x)
0 0

]
T (x) f (x) = T (x) f (x) for all x ∈ V , and hence

with

w(·) := S
[

Ir L(·)
0 0

]
T (·) f (·) ∈ C k(V ;Rn)

we have that there exists f1 ∈C k(V ;Rr) such that for all x ∈V

T (x) f (x) = T (x)E ′(x)w(x) =
[

Ir L(x)
0 0

]
S−1w(x) =

(
f1(x)

0

)
.

Partition S−1x0 =

(
z0
1

z0
2

)
∈Rr ×Rn−r and let z1 ∈ C k+1(I;Rr),

I ⊆ R an open interval with t0 ∈ I, be a local solution of the

ODE

ż1(t) = f1

(
S
(

z1(t)
z0
2

))
, z1(t0) = z0

1,

which exists since x0 ∈ dom f1 and f1 is continuously differ-

entiable. Then x(·) := S
(

z1(·)
z0
2

)
∈ C k+1(I;Rn) satisfies x(t) ∈

V ⊆U for all t ∈ I by construction and, furthermore,

d
dt E(x(t)) = E ′(x(t))ẋ(t) = T (x(t))−1

[
Ir L(x(t))
0 0

](
ż1(t)

0

)

= T (x(t))−1

(
f1(x(t))

0

)
= f (x(t))

for all t ∈ I as well as x(t0) = x0.

b): Using the notation from a) and choosing V ⊆ U as

a neighborhood of x0, we find that there exists h > 0 such

that
(

z1(·)
z2(·)
)

:= S−1x(·) ∈ C k+1((b−h,b);S−1V ) and it can be

extended continuously to t = b. Let z0
1 := limt→b z1(t). Similar

to a) we obtain that, for all t ∈ (b−h,b),

ż1(t) = f1

(
S
(

z1(t)
z2(t)

))
−L
(

S
(

z1(t)
z2(t)

))
ż2(t). (3)

Now, let h̃> 0 and z̃2 ∈C k+1((b−h,b+ h̃);Rn−r) be such that

z̃2|(b−h,b] = z2 and for all t ∈ (b−h,b+ h̃) there exists v ∈ Rr

such that
( v

z2(t)
)∈ S−1V , which is clearly possible. Then there

exists a local solution z̃1 ∈C k+1((b−ε,b+ε);Rr) of the initial

value problem (3), z̃1(b) = z0
1. Define the continuous function

ẑ1 : (b−h,b+ ε)→ Rr, t �→
{

z1(t), t ∈ (b−h,b]
z̃1(t), t ∈ (b,b+ ε).

Since ẑ1 satisfies (3) on (b−h,b) and on (b,b+ ε) it follows

from continuity of ẑ1, z̃2,
d
dt z̃2, f1 and L that d

dt ẑ1 is continuous

and hence, because ẑ1 is a continuously differentiable solution

of (3), ẑ1 ∈ C k+1((b− h,b+ ε);Rr). Similar to a), we may

now calculate that x̃(·) := S
(

ẑ1(·)
z̃2(·)
)
∈ C k+1((b− h,b− ε);V )

satisfies d
dt E(x̃(t)) = f (x̃(t)) for all t ∈ dom x̃ and x̃|(b−h,b) =

x|(b−h,b). Gluing together x and x̃ yields an extension of x on

(a,b+ ε) and finishes the proof of the lemma.

We are now in the position to prove the main result of this

section. This is the local, nonlinear analog of Theorem IV.5.

Theorem IV.5 (Local controlled invariance). Let [E, f ,g,h] ∈
ΣX

l,n,m,p be such that E ∈ C 2(X ;Rl), f ∈ C 1(X ;Rl) and g ∈
C 1(X ;Rl×m) and let M be a smooth connected submanifold
of X such that 0 ∈ M. Suppose that there exists an open
neighborhood V of 0 ∈ X such that both dimE ′(x)TxM and
dim
(
E ′(x)TxM + img(x)

)
are constant for x ∈ M ∩V . Then

the following statements are equivalent:
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(i) M is locally controlled invariant.

(ii) There exists an open neighborhood U of 0 ∈ X such that
f (x) ∈ E ′(x)TxM+ img(x) for all x ∈ M∩U.

(iii) There exists an open neighborhood U of 0 ∈ X and u ∈
C 1(M∩U ;Rm) such that f (x)+g(x)u(x)∈ E ′(x)TxM for
all x ∈ M∩U.

Proof. (i)⇒(ii): Let U be as in Definition IV.1 and x0 ∈M∩U .

Then there exists (x,u) ∈ B(1) with x ∈ C 1(domx;Rn) and

some t0 ∈ domx such that x(t0) = x0 and x(t) ∈ M∩U for all

t ∈ domx∩ [t0,∞) =: I. Therefore, d
dt E(x(t)) = E ′(x(t))ẋ(t) ∈

E ′(x(t))Tx(t)M for all t ∈ I and hence

f (x0) = d
dt E(x(t))

∣∣
t=0

−g(x0)u(0) ∈ E ′(x0)Tx0M+ img(x0).

(ii)⇒(iii): Let ψ : G → M∩W be a parametrization of M at

0 ∈ M and let U1 :=U ∩V ∩W , G1 := ψ−1(M∩U1). Then, by

Lemma III.1 and the assumption we have

∀x ∈U1 ∩M :

f (x) ∈ imE ′(x)ψ ′(ψ−1(x))+ img(x) = imK(ψ−1(x)),

where K(·) := [E ′(ψ(·))ψ ′(·),g(ψ(·))] ∈ C 1(G1;Rl×(q+m))
and q= dimM. Since dim

(
E ′(x)TxM+ img(x)

)
is constant for

x ∈ M∩V , we have that, for some r ≤ q+m, rkK(z) = r for

all z ∈ G1. From Lemma IV.3 it then follows that there exists

an open neighborhood G2 ⊆ G1 of 0 ∈ Rq and S ∈ Gll(R),
T ∈ C 1(V3;Glq+m(R)), L ∈ C 1(V3;R(l−r)×r) such that

∀z ∈ G2 : SK(z)T (z) =
[

Ir 0

L(z) 0

]
.

Let the open set U2 be such that M∩U2 = ψ(G2) and observe

that 0 ∈U2. Now, we find that

∀x ∈ M∩U2 :

S f (x)∈ imSK(ψ−1(x))= im

[
Ir 0

L(ψ−1(x)) 0

]
T (ψ−1(x))−1,

by which
[

Ir 0
L(x) 0

]
S f (x) = S f (x) for all x ∈ M∩U2. Therefore,

with

v(·) := T (ψ−1(·))
[

Ir 0

L(ψ−1(·)) 0

]
S f (·) ∈ C 1(M∩U2;Rq+m),

we obtain that K(x)v(x) = f (x) for all x ∈ M∩U2. Partitioning

v(x) = (v1(x)�,u(x)�)� with v1(x)∈Rq and u(x)∈Rm for all

x ∈ M∩U2 yields that

∀x ∈ M∩U2 : f (x)+g(x)u(x) ∈ E ′(x)TxM

with u ∈ C 1(M∩U2;Rm).

(iii)⇒(i): Let ψ , U1 and G1 be as above.

Step 1: We show that for all x0 ∈ M ∩U1 there exists a

local solution (x,u,y)∈C 1(I;X ×Rm×Rp) of (1) with x(t)∈
M∩U1 for all t ∈ I. Define

Ẽ : G1 → Rl , x �→ E(ψ(x)),

f̃ : G1 → Rl , x �→ f (ψ(x))+g(ψ(x))u(ψ(x)).

Since ψ : G1 → M ∩U1 is a diffeomorphism, it is immediate

that

∀x ∈ G1 : ψ ′(x)TxG1 = Tψ(x)(M∩U1) = Tψ(x)M.

By assumption we obtain

∀x ∈ G1 :

f̃ (x) ∈ E ′(ψ(x))Tψ(x)M = E ′(ψ(x))ψ ′(x)TxG1 = Ẽ ′(x)TxG1.

Furthermore,

rk Ẽ ′(x) = rkE ′(ψ(x))ψ ′(x)

= dimimE ′(ψ(x))ψ ′(x) Lem. III.1
= dimE ′(ψ(x))Tψ(x)M

for all x ∈ G1 and since ψ(x) ∈ V it follows that Ẽ ′ has

constant rank. We may now conclude from Lemma IV.4 a)

that for arbitrary x0 ∈ M ∩U1 there exists an open interval

I ⊆ R, 0 ∈ I, and z ∈ C 2(I;G1) such that z(0) = ψ−1(x0) and
d
dt Ẽ(z(t)) = f̃ (z(t)). Then x(·) := ψ(z(·))∈C 2(I;U1) satisfies,

for all t ∈ I,

d
dt E(x(t)) = f (x(t))+g(x(t))u(x(t)), x(0) = x0,

and x(t) ∈ im ψ|G1
= M∩U1 for all t ∈ I with t ≥ 0.

Step 2: We show that (x,u ◦ x,h ◦ x) can be extended to a

differentiable maximal solution of (1) of the same structure

which also evolves in M ∩U1. We prove this by using a

standard technique which invokes Zorn’s Lemma (cf. for

instance [24, Thm. 4.8]): Denote I = (a,b) and define

E :=

⎧⎨
⎩ (ω,z)

∣∣∣∣∣∣
ω ≥ b, J = (a,ω), z ∈ C 1(J;X), z(t) ∈
M∩U1 for all 0 ≤ t < ω, (z,u◦ z,h◦ z)
is a solution of (1), z|I = x

⎫⎬
⎭ .

Since (b,x) ∈ E , the set is nonempty. We endow E with a

partial order � defined by

(ω1,z1)� (ω2,z2)

:⇐⇒ ω1 ≤ ω2 ∧ ∀ t ∈ (a,ω1) : z1(t) = z2(t).

Now let O be a totally ordered subset of E . Define ω∗ :=
sup{ ω | (ω,z) ∈ O } and z∗ ∈C 1((a,ω∗);X) by z∗|(a,ω) = z
for all (ω,z) ∈ O; (ω∗,z∗) is well-defined since O is totally

ordered. It is clear that (ω∗,z∗) ∈ E is an upper bound for O .

Zorn’s Lemma now implies existence of at least one maximal

element of E . Let (ω, x̃) denote such an element and let (x̃,u◦
x̃,h◦ x̃) be a corresponding solution of (1). Assume that there

exists a maximal solution (x̂, û, ŷ) ∈ C ((ã, ω̃);X ×Rm ×Rp)
of (1) with ã ≤ a, ω < ω̃ and x̂|(a,ω) = x̃. Since x̃(t) ∈ M∩U1

for all t ∈ (a,ω) and x̃ is extended by x̂, continuity implies

that α := limt→ω x̃(t)∈M∩U1 exists. Then z̃(·) :=ψ−1(x̃(·))∈
C 1((a,ω);G1) and similar to Step 1 we find that d

dt Ẽ(z̃(t)) =
f̃ (z̃(t)) for all t ∈ (a,ω). Since z0 = ψ−1(α) = limt→ω z̃(t) ∈
G1 exists, it follows from Lemma IV.4 b) that there exists

ε > 0 and ẑ ∈ C 1((a,ω + ε);G1) with d
dt Ẽ(ẑ(t)) = f̃ (ẑ(t)) for

all t ∈ (a,ω + ε) and ẑ|(a,ω) = z̃. But then x̌(·) := ψ(ẑ(·)) ∈
C 1((a,ω +ε);M∩U1) satisfies (ω +ε, x̌)∈ E as can be easily

checked and this contradicts the fact that (ω, x̃) is a maximal

element of E .

We have thus proved that there is no maximal solution

(x̂, û, ŷ) of (1) such that x̂ extends x̃ to the right. With a similar
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procedure as above we can extend x̃ to the left preserving

continuous differentiability; here we do not have to ensure

that the solution stays within a certain submanifold. In the

end, we obtain a maximal solution of (1) with continuously

differentiable state that extends (x,u ◦ x,h ◦ x) and evolves in

M∩U1 as desired. This finishes the proof of the theorem.

Remark IV.6. If, under the assumptions of Theorem IV.5,

additionally E is (k+1)- and f ,g,h are k-times continuously

differentiable, then the feedback u(x) for the locally controlled

invariant submanifold M in (iii) can be chosen to be k-

times continuously differentiable, k ∈ N0 ∪{∞}. Furthermore,

the implication (ii)⇒(iii) is true without the assumption that

dimE ′(x)TxM is constant in a certain region, (iii)⇒(i) holds

true without the assumption that dim
(
E ′(x)TxM+ img(x)

)
is

constant in a certain region, and the implication (i)⇒(ii) does

not need any of these assumptions.

V. OUTPUT ZEROING SUBMANIFOLDS

In this section we investigate the concept of output zeroing

submanifolds for nonlinear DAEs (1). This is important for

the characterization of the zero dynamics of the system.

Definition V.1 (Output zeroing submanifold). Let [E, f ,g,h]∈
ΣX

l,n,m,p and M be a connected submanifold of X such that 0 ∈
M. Then M is called output zeroing, if M is locally controlled

invariant and h(x) = 0 for all x ∈ M.

To illustrate the above definition we consider the following

example.

Example V.2. Consider the DAE system (1) with X =R2 and

E(x) =
(

x1

0

)
, f (x) =

(
0

x1

)
, g(x) =

[
0

1

]
,

h(x) = x1 − x2
2 for x =

(
x1

x2

)
.

It is clear that the submanifold M :={
(x1,x2)

� ∈ R2
∣∣ x1 = x2

2

}
is a subset of h−1(0). For

any x0 = (x0
1,x

0
2)

� ∈ M, the choice x1(·) ≡ x0
1, x2(·) ≡ x0

2 and

u(·) ≡ −x0
1 yields a solution ((x1,x2)

�,u,0) ∈ B(1) which

is globally defined, smooth and evolves in M for all times,

starting at x0. Therefore, M is an output zeroing submanifold.

Note that it was necessary to make an appropriate choice of

u(·) so that the algebraic constraint of the DAE system is

satisfied.

In the following we seek an output zeroing submanifold M
that is locally maximal, i.e., there exists an open neighborhood

U of 0 ∈ X such that any output zeroing submanifold M̃
satisfies M̃ ∩U ⊆ M ∩U . To this end, we extend the zero

dynamics algorithm developed in [8], [25] to nonlinear DAE

systems (1), where we stay close to the representation in [9,

Sec. 6.1] and [10, Sec. 11.1].

Theorem V.3 (Zero dynamics algorithm). Let [E, f ,g,h] ∈
ΣX

l,n,m,p be such that E, f ,g and h are smooth. Define M0 :=

h−1(0) and for any k ∈ N the set Mk recursively as follows:
Suppose that for some open neighborhood Uk−1 of 0 ∈ X,

Mk−1 ∩Uk−1 is a submanifold, define

M̃k−1 :=
⋃{

Mk−1 ∩U
∣∣∣∣ U ⊆ X open, Mk−1 ∩U

is a submanifold

}
,

let Mc
k−1 be the connected component of M̃k−1 which contains

0 ∈ X and define

Mk :=
{

x ∈ Mc
k−1

∣∣ f (x) ∈ E ′(x)TxMc
k−1 + img(x)

}
. (4)

Then we have the following:

(i) The sequence (Mk) is nested, terminates and satisfies

∃k∗ ∈ N0 ∀ j ∈ N : M0 � M1 � . . .� Mk∗

⊇ Mc
k∗ = Mk∗+ j = Mc

k∗+ j.

(ii) If Z∗ := Mc
k∗ satisfies, for some open neighborhood U of

0 ∈R, that dimE ′(x)TxZ∗ and dim
(
E ′(x)TxZ∗+ img(x)

)
are both constant for x ∈ Z∗ ∩U, then Z∗ is a locally
maximal output zeroing submanifold.

(iii) There exists an open neighborhood U of 0 ∈ X such
that for all open O ⊆ U and all (x,u,y) ∈ B(1) with
x ∈ C 1(domx;X) and x(t) ∈ O for all t ∈ domx we have

(x,u,y)∈Z D (1) ⇐⇒ x(t)∈Z∗∩O for all t ∈ domx.

Proof. Step 1: We show (i). It is clear that for all k ∈ N0,

Mk ⊇ Mc
k ⊇ Mk+1 ⊇ Mc

k+1.

Step 1a: We show that if, for some k ∈N, dimMc
k = dimMc

k−1,

then Mc
k = Mk+ j = Mc

k+ j for all j ∈N. Let (Ui,ϕi), i ∈ I, be an

atlas for Mc
k . Since dimMc

k = dimMc
k−1, for all i ∈ I, (Ui,ϕi)

is also a coordinate chart for Mc
k−1, and hence Ui is open in

Mc
k−1. Since the Ui cover Mc

k , it follows that each point in Mc
k

has an open neighborhood in Mc
k−1, thus Mc

k is open in Mc
k−1.

This implies that there exists an open subset U of X such that

Mc
k−1 ∩U = Mc

k . Then we find that

x ∈ Mk ∩U

⇔ x ∈ Mc
k−1 ∧ f (x) ∈ E ′(x)TxMc

k−1 + img(x) ∧ x ∈U

⇔ x ∈ Mc
k−1 ∩U ∧ f (x) ∈ E ′(x)Tx(Mc

k−1 ∩U)+ img(x)

⇔ x ∈ Mc
k ∧ f (x) ∈ E ′(x)TxMc

k + img(x)

⇔ x ∈ Mk+1,

by which Mk ∩U = Mk+1. Therefore, Mc
k = Mc

k ∩U ⊆ Mk ∩U
and Mc

k = Mc
k−1 ∩U ⊇ Mk ∩U , thus Mc

k = Mk ∩U = Mk+1.

Hence, Mk+1 is a connected submanifold containing zero, by

which Mc
k+1 = M̃k+1 =Mk+1. By the formula (4) it then follows

that Mc
k+1 =Mk+2 and continuing these arguments finally gives

the assertion.

Step 1b: Since each of the Mc
k is a finite dimensional subman-

ifold and they are nested, there exists some k∗ ∈ N such that

dimMc
k∗ = dimMc

k∗−1. Then, by Step 1a the sequence (Mk)
terminates and the proof of (i) is complete.

Step 2: We show (ii). Since Z∗ = Mk∗+1 it follows from (4)

that

∀x ∈ Z∗ ∩U : f (x) ∈ E ′(x)TxZ∗+ img(x).

Then Theorem IV.5 implies that Z∗ is locally controlled

invariant. As Z∗ ⊆ M0 = h−1(0) it follows that Z∗ is an

output zeroing submanifold. It remains to show that Z∗ is

locally maximal. To this end, let Z′ be any other output
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zeroing submanifold. By local controlled invariance of Z′,
there exists an open neighborhood O of 0 ∈ X with the

property as in Definition IV.1. We show that Z′ ∩O ⊆ Mk by

induction over k ∈ N0. Since Z′ is output zeroing, it follows

that Z′ ⊆ h−1(0) = M0. Assume that Z′ ∩O ⊆ Mk for some

k ∈ N0. Then Z′ ∩O ⊆ Mc
k since Z′ ∩O is a submanifold with

0 ∈ Z′ ∩O. Now, for x0 ∈ Z′ ∩O there exists (x,u,y) ∈ B(1)

with x ∈C 1(I;X), I ⊆R an open interval with t0 ∈ I, such that

x(t0) = x0 and x(t)∈ Z′ ∩O for all t ∈ I with t ≥ t0. Therefore,

ẋ(0) ∈ Tx0Z′ and hence

f (x0) = d
dt E(x(t))

∣∣
t=0

−g(x0)u(0)

∈ E ′(x0)Tx0Z′+ img(x0)⊆ E ′(x0)Tx0Mc
k + img(x0),

thus x0 ∈Mk+1. We may now deduce that in particular Z′ ∩O⊆
Mk∗+1 ∩O = Z∗ ∩O, thus Z∗ is locally maximal.

Step 3: We show (iii). Choose the open set U small enough

so that Mk∩U =Mc
k ∩U for all k = 0, . . . ,k∗. Now, it is easy to

see the implication “⇐”. For “⇒”, observe that since O ⊆U
we have

Mk ∩O = (Mk ∩U)∩O = (Mc
k ∩U)∩O = Mc

k ∩O

for all k = 0, . . . ,k∗. Furthermore, we have from (x,u,y) ∈
Z D (1) and differentiability of x that

f (x(t)) = E ′(x(t))ẋ(t)+g(x(t))u(t) and h(x(t)) = 0

for all t ∈ domx. Therefore, x(t)∈M0∩O=Mc
0 ∩O and ẋ(t)∈

Tx(t)Mc
0 for all t ∈ domx, whence x(t) ∈ M1 ∩ O = Mc

1 ∩ O.

Inductively, we obtain that x(t) ∈ Mc
k∗ ∩ O = Z∗ ∩ O for all

t ∈ domx.

Note that, if the system (1) is linear, then the sequence (Mk)
becomes a modification of the first Wong sequence [26], [27],

see [14, Lem. 4.1.2]. Furthermore, Theorem V.3 (iii) has been

proved in [14, Prop. 4.1.4] in the case of a linear DAE system.

Remark V.4 (Zero dynamics algorithm). We consider the

algorithm for the construction of the sequence (Mk) in The-

orem V.3. Note that in the corresponding algorithm for ODE

systems as in Isidori’s book [9, p. 294] and several other

papers on that topic, usually the statement “suppose that,

for some neighborhood Uk−1 of 0, Mk−1 ∩Uk−1 is a smooth

submanifold, let Mc
k−1 denote the connected component of

Mk−1 ∩Uk−1 which contains the point 0 [...]” can be found,

which defines Mc
k−1 in a different way than in Theorem V.3,

but still the claim is that (i) is true. However, this is not quite

correct, since the “dimensionality argument” used by Isidori

in his proof does not apply to submanifolds; in general his

construction of (Mk) does not lead to a terminating sequence, if

the open sets Uk are not chosen maximal so that Mk∩Uk = M̃k.

For instance, for the system ẋ(t) = x(t)+ u(t), y(t) = 0, we

have M0 =R and the choice Uk = (− 1
k+1 ,

1
k+1 ), k ≥ 0, leads to

Mk+1 =Uk and therefore to a nested sequence of submanifolds

of the same dimension which does not terminate. Hence,

the intermediate step of defining M̃k as in Theorem V.3 is

indispensable.

That the assumption of constant dimension of E ′(x)TxZ∗
and E ′(x)TxZ∗+ img(x) in Theorem V.3 (ii) cannot be omitted

in general has been shown in [10, p. 325]. However, it is not

necessary for Z∗ to be locally maximal output zeroing as the

following example illustrates.

Example V.5 (Example V.2 revisited). Consider the system

[E, f ,g,h] ∈ ΣR2

2,2,1,1 from Example V.2. The output zero-

ing submanifold M =
{
(x1,x2)

� ∈ R2
∣∣ x1 = x2

2

}
is locally

maximal, since M = M0 ⊇ Z∗, which implies M∩U = Z∗ ∩U
for some open U ⊆ X with 0 ∈U by Theorem V.3. A simple

calculation actually yields that M = M0 = M1 = Z∗. However,

dimE ′(x)TxZ∗ = dimim

[
2x2

0

]

and dim
(
E ′(x)TxZ∗+ img(x)

)
= dimim

[
2x2 0

0 1

]

are not constant on Z∗ ∩U for any open neighborhood U of

0 ∈ R2, since there is a drop of dimension in x = 0.

VI. LOCALLY AUTONOMOUS ZERO DYNAMICS

Statement (iii) of Theorem V.3 shows that the submanifold

Z∗ allows to characterize the zero dynamics of (1) locally.

However, this does not imply that the zero dynamics are (lo-

cally) autonomous, i.e., are the (local) behavior of a dynamical

system governed ODEs. This problem is treated in the present

section.

Here we use the behavioral approach [28] to dynamical

systems and treat them as a set of trajectories; the solution

behavior B(1) and the zero dynamics Z D (1) have already

been defined as behaviors. In the following we introduce the

notion of local autonomy for behaviors by generalizing the

concept of autonomy introduced for linear behaviors in [29,

Sec. 3.2]. Note that in the present paper, autonomy always

refers to the autonomy of the underlying behavior and not to

time-invariance of the considered system.

Definition VI.1 (Locally autonomous behavior). A behavior

B⊆ { f ∈ C (I;Rq) | I ⊆ R an open interval }
is called locally autonomous with respect to an open neighbor-

hood U of 0 ∈Rq, if for all f1, f2 ∈B, J := dom f1∩dom f2 	=
/0, and for all open intervals I ⊆ J we have:(∀ t ∈ J : f1(t), f2(t) ∈U ∧ f1|I = f2|I

)
=⇒ f1|J = f2|J .

Remark VI.2 (Locally autonomous zero dynamics and vector

fields).
(i) Let [E, f ,g,h] ∈ ΣX

l,n,m,p. We call the zero dynamics

Z D (1) locally autonomous, if the behavior Z D (1) is

locally autonomous with respect to U ×Rm ×Rp for

some open neighborhood U of 0 ∈ X . The latter is the

case if, and only if, for all (x1,u1,0),(x2,u2,0) ∈Z D (1),

J := domx1∩domx2 	= /0, and for all open intervals I ⊆ J
we have:(

∀ t ∈ J : x1(t),x2(t) ∈U ∧
(

x1

u1

)∣∣∣∣
I
=

(
x2

u2

)∣∣∣∣
I

)

=⇒ domx1 = domx2 ∧
(

x1

u1

)
=

(
x2

u2

)
.
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The equality of the domains in the implication follows

from the fact that (x1,u1,0),(x2,u2,0) are both maximal

solutions of (1) and

(x̃, ũ,0) : domx1 ∪domx2 → X ×Rm ×Rp,

t �→
{

(x1(t),u1(t),0), t ∈ domx1,
(x2(t),u2(t),0), t ∈ domx2,

is well-defined (since the solutions intersect on I) and a

solution of (1) with domxi∩dom x̃= domxi and x̃|domxi
=

xi, i = 1,2, thus domx1 ∪domx2 = domx1 = domx2 = J.

(ii) Consider a vector field F ∈ C (X ;Rn), X ⊆Rn open, 0 ∈
X , with F(0) = 0. Then F is called locally autonomous,

if the behavior

B=

{
x ∈ C 1(I;X)

∣∣∣∣ I ⊆ R open interval,
∀ t ∈ I : ẋi(t) = F(xi(t))

}

is locally autonomous with respect to some open neigh-

borhood U of 0 ∈ X .

Next we show that locally autonomous zero dynamics carry

in a certain sense the structure of a dynamical system.

Remark VI.3 (Locally autonomous zero dynamics are a

dynamical system). Let [E, f ,g,h] ∈ ΣX
l,n,m,p be such that the

zero dynamics Z D (1) are locally autonomous and let U be a

corresponding open subset of X as in Remark VI.2. We show

that, in some sense, the zero dynamics carry the structure

of a dynamical system as defined in [30, Def. 2.1.1]. For

t0 ∈ R, x0 ∈ X , u0 ∈ Rm and (x,u,0) ∈ Z D (1) we will use

the following property in due course:

t0 ∈ domx ∧
(

x(t0)
u(t0)

)
=
(

x0

u0

)
∧ ∀ t ∈ domx : x(t) ∈U. (5)

Define

Z :=

{(
x0

u0

)
∈ Z ×Rm

∣∣∣∣ ∃ t0 ∈ R ∃(x,u,0) ∈ Z D (1) :

(5) holds

}

and

Dϕ :=

{(
t, t0,

(
x0

u0

)
,0
) ∣∣∣∣ ∃(x,u,0) ∈ Z D (1) :

t ∈ domx and (5) holds

}

⊆ R×R×Z ×{0},
which is the domain of the state transition map

ϕ : Dϕ → Z,
(

t, t0,
(

x0

u0

)
,0
)
�→
(

x(t)
u(t)

)
s.t. (x,u,0) ∈ Z D (1) satisfies (5).

We show that ϕ is well-defined. Let
(

t, t0,
(

x0

u0

)
,0
)
∈Dϕ and

(x1,u1,0),(x2,u2,0) ∈ Z D (1) be such that they satisfy (5).

Define

(x̃, ũ) : (inf domx1,sup domx2)→ X ,

t �→
{

(x1(t),u1(t)), t < t0
(x2(t),u2(t)), t ≥ t0.

Then x̃ ∈ C (dom x̃;X) and ũ ∈ C (dom x̃;Rm). Furthermore,

E(x̃(·)) is continuously differentiable everywhere in dom x̃,

except for possibly t0. But then

lim
t↗t0

d
dt E(x̃(t)) = lim

t↗t0
f (x1(t))+g(x1(t))u1(t)

= f (x0)+g(x0)u0 = lim
t↘t0

f (x2(t))+g(x2(t))u2(t)

= lim
t↘t0

d
dt E(x̃(t)),

and hence E(x̃(·)) is also continuously differentiable in t0, thus

(x̃, ũ,0) is a solution of (1). Since (x1,u1,0) and (x2,u2,0) are

both maximal solutions, it follows that (x̃, ũ,0) is maximal and

hence (x̃, ũ,0) ∈ Z D (1) and satisfies (5). But (x̃, ũ) coincides

with (xi,ui), i = 1,2 on some open interval contained in the

intersection of their domains, thus local autonomy of the zero

dynamics implies that domx1 = dom x̃ = domx2 and (x1,u1) =
(x̃,ũ) = (x2,u2). We have hence shown that ϕ is well-defined,

since it is independent of the choice of (x,u,0) ∈ Z D (1).

Now, define the output map by

η : R×Z ×{0}→ Rp,
(

t,
(

x0

u0

)
,0
)
�→ 0.

It is then readily verified that the tuple

(R,Rm,{0},Z,X ,Rp,ϕ,η) satisfies the axioms of a dynamical

system as given in [30, Def. 2.1.1]. Now let t0 ∈R and define

Z DU,t0
(1) :=

{
(x,u,0) ∈ Z D (1)

∣∣∣∣ t0 ∈ domx, ∀ t ∈ domx :

x(t) ∈U

}
.

Then observe that

Z DU,t0
(1) =

⎧⎨
⎩
(

ϕ
(
· , t0,

(
x0

u0

)
,0
)
,0
)∣∣∣∣∣∣

∃
(

x0

u0

)
∈ X ×Rm :(

t0, t0,
(

x0

u0

)
,0
)
∈Dϕ

⎫⎬
⎭ ,

and hence we find that the local zero dynamics Z DU,t0
(1) evolv-

ing through t0 are the set of trajectories of a dynamical system,

and can thus be viewed as a dynamical system themselves.

This justifies to say that the zero dynamics locally carry the

structure of a dynamical system.

In the following, we derive sufficient conditions for locally

autonomous zero dynamics. To this end, we use the submani-

fold Z∗ from Theorem V.3, which is a locally maximal output

zeroing submanifold if dimE ′(x)TxZ∗ and dim
(
E ′(x)TxZ∗ +

img(x)
)

are constant for x ∈ Z∗ ∩U . In order to obtain

uniqueness of the feedback u(x) in the characterization of

local controlled invariance in Theorem IV.5 (iii), we need to

strengthen the latter condition to dim
(
E ′(x)TxZ∗+ img(x)

)
=

q+m for all x ∈ Z∗ ∩U , where q = dimZ∗; in fact, for this

it is sufficient to assume dim
(
E ′(0)T0Z∗+ img(0)

)
= q+m.

Furthermore, we require that, loosely speaking, those compo-

nents of f |Z∗∩U corresponding to the zero dynamics, form

a locally autonomous vector field. It is also necessary to

consider only those trajectories in the zero dynamics which

have a continuously differentiable state trajectory, i.e., under

the above assumptions (specified in the following theorem) we

prove that

Z DC 1

(1) :=
{
(x,u,0) ∈ Z D (1)

∣∣ x ∈ C 1(domx;X)
}

is locally autonomous, using the same definition as for local

autonomy of Z D (1). This requirement seems unsatisfactory
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(since it is not necessary in the linear case) and it is an open

problem whether it can be omitted.

Theorem VI.4 (Sufficient condition for locally autonomous

zero dynamics). Let [E, f ,g,h] ∈ ΣX
l,n,m,p be such that E, f ,g

and h are smooth and assume, for the sets Mk as in (4),
that for some open neighborhood Uk of 0 ∈ X, Mk ∩Uk
is a submanifold, for all k ∈ N0. Use the notation from
Theorem V.3, let ψ : V → Z∗ ∩U be a parametrization of Z∗
at 0 ∈ Z∗, and assume furthermore that
(1) dim

(
E ′(0)T0Z∗+ img(0)

)
= q+m, where q= dimZ∗, and

(2) F :=
(
E ′(ψ(·))ψ ′(·))† f (ψ(·)) ∈ C ∞(V ;Rq) is locally au-

tonomous.
Then the zero dynamics Z DC 1

(1) are locally autonomous.

Proof. By assumption (1) and the fact that by Lemma III.1

TxZ∗ = imψ ′(ψ−1(x)) for all x ∈ Z∗ ∩U , it follows that

[E ′(0)ψ ′(ψ−1(0)),g(0)] has full column rank q + m. From

continuity we may infer existence of an open neighborhood

U1 ⊆U of 0 ∈ X such that rk[E ′(x)ψ ′(ψ−1(x)),g(x)] = q+m
for all x ∈ Z∗ ∩U1. Let V1 := ψ−1(Z∗ ∩U1) and observe that

by full column rank of [E ′(ψ(z))ψ ′(z),g(ψ(z))] for all z ∈V1,

Lemma IV.3 applied to its transpose gives existence of an open

neighborhood V2 ⊆V1 of 0 ∈Rq and S ∈ C ∞(V2;Gll(R)) such

that

∀z ∈V2 : S(z)[E ′(ψ(z))ψ ′(z),g(ψ(z))] =

⎡
⎣Iq 0

0 Im
0 0

⎤
⎦ .

Note that S(·) can be chosen such that [Iq,0]S(·) =(
E ′(ψ(·))ψ ′(·))†

. Let the open neighborhood U2 ⊆U1, 0∈U2,

be such that Z∗ ∩U2 = ψ(V2). Furthermore, let V3 be an

open neighborhood of 0 ∈Rq corresponding to the locally au-

tonomous vector field F as in Remark VI.2 (ii) and let the open

neighborhood U3, 0 ∈ U3, be such that Z∗ ∩U3 = ψ(V ∩V3).
Finally, let U4 be an open neighborhood of 0 ∈ X as in

Theorem V.3 (iii).
Now, define Ũ := U2 ∩U3 ∩U4, let (x1,u1,0),(x2,u2,0) ∈

Z DC 1

(1) be such that J := domx1∩domx2 	= /0 and x1(t),x2(t)∈
Ũ for all t ∈ J, and let I ⊆ J be an open interval such that

( x1
u1
)|I = ( x2

u2
)|I . Let i ∈ {1,2}. Then Theorem V.3 (iii) implies

that xi(t) ∈ Z∗ ∩Ũ for all t ∈ J. Therefore, xi(t) ∈ ψ(V2) and

thus there exists zi(t) ∈ V2 such that xi(t) = ψ(zi(t)), t ∈ J.

Since xi is continuously differentiable and ψ has a smooth

inverse it follows that zi ∈ C 1(J;V2) and

ẋi(t) = ψ ′(zi(t))żi(t), t ∈ J.

Furthermore, by (xi,ui,0) ∈ Z D (1) we find that, for all t ∈ J,

E ′(ψ(zi(t)))ψ ′(zi(t))żi(t)−g(ψ(zi(t)))ui(t) = f (ψ(zi(t))),

and a multiplication from the left by S(zi(t)) yields⎛
⎝ żi(t)
−ui(t)
0l−q−m

⎞
⎠= S(zi(t)) f (ψ(zi(t))) =:

⎛
⎝ f1(zi(t))

f2(zi(t))
f3(zi(t))

⎞
⎠ ,

where f1 ∈ C ∞(V2;Rq), f2 ∈ C ∞(V2;Rm), f3 ∈
C ∞(V2;Rl−q−m). The vector field

f1(·) = [Iq,0]S(·) f (ψ(·)) = (E ′(ψ(·))ψ ′(·))† f (ψ(·)) = F(·)

is locally autonomous by assumption with corresponding open

neighborhood V3. Since

zi(t) = ψ−1(xi(t)) ∈ ψ−1(Z∗ ∩U2 ∩U3 ∩U4)⊆V ∩V3, t ∈ J,

and

z1(t) = ψ−1(x1(t)) = ψ−1(x2(t)) = z2(t), t ∈ I,

it follows that z1|J = z2|J and hence x1|J = x2|J and u1|J =
u2|J . This concludes the proof of the theorem.

Note that it can be shown that the vector field f3 ∈
C ∞(V2;Rl−q−m) in the proof of Theorem VI.4 vanishes on

some open subset V4 ⊆V3 by using local controlled invariance

of Z∗: For all z ∈V4 there exist z̃ ∈ Rq, ũ ∈ Rm such that

(
f1(z)
f2(z)
f3(z)

)
= S(z) f (ψ(z)) =

S(z)
(

E(ψ(z))ψ ′(z)z̃+g(ψ(z))ũ
)
=
( z̃

ũ
0

)
.

In the case of a linear DAE system, (locally) autonomous

zero dynamics are equivalent to the assumption (1) in Theo-

rem VI.4, which is equivalent to the assumptions (A1)–(A3)

in [15]; assumption (2) is always satisfied for linear systems.

Although it is possible to show that locally autonomous zero

dynamics always imply that rkg(0) = m, the converse of the

statement of Theorem VI.4 is not true in general for nonlinear

DAE systems, not even in the case where E ′(·) is constant.

This is illustrated by the following example.

Example VI.5 (Examples V.2, V.5 revisited). Consider the

system [E, f ,g,h] ∈ ΣR2

2,2,1,1 from Examples V.2 and V.5. As

already calculated, the locally maximal output zeroing sub-

manifold Z∗ satisfies

dim
(
E ′(0)T0Z∗+ img(0)

)
= 1 	= 2 = q+m,

and thus assumption (1) in Theorem VI.4 is violated. However,

the zero dynamics are locally autonomous, since the system

equations (1) read

ẋ1(t) = 0, x1(t) =−u(t), x1(t) = x2(t)2,

by which we may infer that any solution satisfies x2 ≡ c for

some c ∈ R, x1 ≡ c2 and u ≡−c2. Note that the system does

not have a solution if the initial value for x1 is negative.

VII. CONCLUSION

In the present paper we have introduced the concept of

local controlled invariance for connected submanifolds as the

property of local solution trajectories to evolve in a given

submanifold whenever they start in it. Motivated by the obser-

vations in the linear case, we have shown that local controlled

invariance is equivalent to the existence of a feedback which

renders the closed-loop vector field invariant. Furthermore, the

zero dynamics algorithm has been extended to DAE systems

and the resulting locally maximal output zeroing submanifold

has been exploited for a characterization of the zero dynamics.

Under some appropriate conditions on the latter submanifold,

the zero dynamics are proved to be locally autonomous.
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The concept of (locally) autonomous zero dynamics can

be used to derive conditions for the application of adaptive

controllers to nonlinear DAE systems. For instance, in [15] it

is shown for linear descriptor systems, that autonomous zero

dynamics and right invertibility of the system are required

for the application of funnel control. Further studies have the

aim to derive a local zero dynamics form for nonlinear DAE

systems (1) under the assumption of locally autonomous zero

dynamics; this normal form would provide the basis for the

application of adaptive control techniques. In particular, it is

our aim to use the results of [31] and show feasibility of funnel

control for nonlinear descriptor systems which encompass

nonlinear electrical circuits, extending the results for the linear

case [32].
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