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Abstract. We consider the recently published ADI method for algebraic Riccati equations.
We present a new perspective on this algorithm in terms of the underlying linear-quadratic optimal
control problem. This gives rise to a convergence proof. We also consider the rational Krylov–
Galerkin method from the viewpoint of linear-quadratic optimal control. Thereby we can compare the
approximate solutions computed by ADI and rational Krylov–Galerkin in terms of semi-definiteness.
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1. Introduction. We consider an algorithm for the approximation of the unique
nonnegative definite solution of the algebraic Riccati equation

(1.1) A∗X +XA+ C∗C −XBB∗X = 0,

where A ∈ C
n×n is stable (i.e. all its eigenvalues are in the open left half-plane),

B ∈ C
n×m and C ∈ C

p×n.
This algorithm is equivalent to the one recently obtained in [7]. However, our

derivation of the algorithm is very different and this new perspective gives important
properties of the algorithm not obtained in [7]. We show in particular that this
algorithm has a descriptive interpretation in terms of the underlying linear-quadratic
optimal control problem. This gives rise to a convergence proof (which was lacking
in [7]). We also consider the relation between this algorithm and the rational Krylov–
Galerkin method for approximating the solution of the algebraic Riccati equation
(1.1), also obtaining some results not provided in [7].

The considered algorithm is iterative in nature and at step k produces an approx-
imate solution of the form Xk = SkT

−1
k S∗

k , where Sk ∈ C
n×kp and Tk ∈ C

kp×kp is
positive definite. The main computational cost in the algorithm consists of, at each
iteration step, solving a linear system of the form (α − A)x = v, where v ∈ C

n×p

and α ∈ C with Re(α) > 0. These features make this algorithm attractive for the
case where n is large, p is small and A is sparse. This situation arises for example
when considering discretizations of partial differential equations. In fact, our analysis
extends to the case where the coefficients in the algebraic Riccati equation are oper-
ators with suitable properties and includes the case of partial differential equations
rather than only their discretizations. However, in this introduction we will restrict
ourselves to the matrix case.

In the case where the algebraic Riccati equation (1.1) reduces to a Lyapunov
equation (i.e. when B = 0), the considered algorithm reduces to the Alternating
Direction Implicit (ADI) method in its factored algorithmic form [6]. We will therefore
refer to this algorithm as the Riccati-ADI method.
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The algorithm for this Riccati-ADI method is given in Algorithm 1 in Section 7.
We now describe our motivation behind this method and give the important properties
of this method. To this end, we first relate the unique nonnegative definite solution
of the algebraic Riccati equation (1.1) to an optimal control problem and then give
an explicit formula for this solution.

It is well-known that the algebraic Riccati equation (1.1) is intimately connected
to the following optimal control problem: for x0 ∈ C

n find

(1.2) inf
u∈L2(0,∞;Cm)

∫ ∞

0

‖u(t)‖2 + ‖y(t)‖2 dt,

where

(1.3) ẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t),

as the above infimum is given by 〈Xx0, x0〉, whereX is the unique nonnegative definite
solution of the algebraic Riccati equation (1.1). We note that our analysis of the
Riccati-ADI method is completely based on the optimal control problem and not on
the algebraic Riccati equation (1.1).

We will also make extensive use of an explicit formula for X. To give that explicit
formula, we first associate the following maps to the dynamical system (1.3):

• the output map Ψ : Cn → L2(0,∞;Cp) which maps the initial state x0 to the
output y (for control u = 0),

(1.4) Ψx0 = t �→ CeAtx0,

with adjoint Ψ∗ : L2(0,∞;Cp) → C
n given by

Ψ∗y =

∫ ∞

0

eA
∗τC∗y(τ) dτ,

• the input-output map F : L2(0,∞;Cm) → L2(0,∞;Cp) which maps the input
u to the output y (for initial condition x0 = 0),

(1.5) Fu = t �→
∫ t

0

CeA(t−τ)Bu(τ) dτ,

with adjoint F∗ : L2(0,∞;Cp) → L2(0,∞;Cm) given by

F
∗y = t �→

∫ ∞

t

B∗eA
∗(τ−t)C∗y(τ) dτ,

• the complimentary Popov operator Rc : L
2(0,∞;Cp) → L2(0,∞;Cp) defined

by

(1.6) Rc := I + FF
∗ = [I F]

[
I
F
∗

]
.

We note that the complimentary Popov operator is bounded, self-adjoint, positive
definite, and has a bounded inverse. We have that the unique nonnegative definite
solution of the algebraic Riccati equation (1.1) is given by (see Lemma 4.1)

(1.7) X = Ψ∗R−1
c Ψ,
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and that the (unique) optimal control for (1.2) & (1.3) is given by

uopt = −F
∗R−1

c Ψx0.

To relate the matrix calculated by Riccati-ADI to a similar optimal control prob-
lem and a similar explicit formula, we need to introduce a subspace of L2(0,∞) and
give some of its properties. For a sequence (αj)

∞
j=1 with αj ∈ C with Re(αj) > 0

define for k ∈ N

(1.8) Vk := span{t �→ e−α1t, . . . , t �→ e−αkt}.

In this introduction we assume for notational simplicity that the “shift parameters” αj

are distinct (in the main part of the article we drop this assumption; the definition of
Vk has to be modified in case of non-distinct parameters). We show that Vk is not just
any subspace of L2(0,∞), but a rational Krylov subspace (Lemma 2.8). The image
of Vk ⊗C

p under the adjoint of the output map is also a rational Krylov subspace (of
C

n):

(1.9) Xk := Ψ∗(Vk ⊗ C
p) =

k∑
j=1

ran(αj −A∗)−1C∗,

(see Lemma 2.12 and Remark 2.13).
Let Pk : L2(0,∞;Cp) → L2(0,∞;Cp) denote the orthogonal projection onto

Vk ⊗ C
p. The operator computed by Riccati-ADI gives the optimal cost for the

optimal control problem (see Lemma 4.2): for x0 ∈ C
n find

(1.10) inf
u∈L2(0,∞;Cm)

∫ ∞

0

‖u(t)‖2 + ‖(Pky)(t)‖2 dt,

subject to (1.3) and is explicitly given by

(1.11) Xk = Ψ∗
kR−1

c,kΨk,

where

Ψk : C
n → L2(0,∞;Cp), Ψk =PkΨ,(1.12)

Fk : L2(0,∞;Cm) → L2(0,∞;Cp), Fk =PkF,(1.13)

Rc,k : L2(0,∞;Cp) → L2(0,∞;Cp), Rc,k = I + FkF
∗
k = [I Fk]

[
I
F
∗
k

]
.(1.14)

The (unique) optimal control for (1.10) & (1.3) is given by

(1.15) uopt
k = −F

∗
kR−1

c,kΨkx0,

from which we in particular conclude (Corollary 4.3) that uopt
k ∈ Vk ⊗ C

m. This
implies that in (1.10) we can equivalently infimize over Vk ⊗ C

m rather than all of
L2(0,∞;Cm).

It follows from Vk ⊂ Vk+1 that (Theorem 4.4)

Xk ≤ Xk+1, Xk ≤ X,
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i.e. (Xk)
∞
k=1 is a non-decreasing sequence bounded from above by X. It follows that

(Xk)
∞
k=1 converges, but the limit may not necessarily equal X.
From the explicit formula for Xk, we obtain (Theorem 5.1) that Riccati-ADI

converges to X, i.e.

(1.16) lim
k→∞

Xk = X,

provided that the sequence of parameters satisfies the non-Blaschke condition

(1.17)
∞∑
j=1

Re(αj)

1 + |αj |2 = ∞.

We note that this non-Blaschke condition is for example satisfied if the parameters all
belong to a fixed compact set contained in the open right half-plane. This convergence
result was previously obtained for the special case of the Lyapunov equation in [9].
When the state space is infinite-dimensional rather than C

n, we have to specify in what
topology the convergence (1.16) takes place; such results are presented in Theorem 5.2.

As noted above, the approximate solution Xk obtained using the Riccati-ADI
method is identical to that obtained in [7]. That the sequence Xk is non-decreasing
is also obtained in [7, Theorem 4.2] by using very different arguments. Convergence
of Xk to X is not obtained in [7]. Some estimates for the distance between Xk and
X in the gap metric were considered in [7]. These are based on the shift parameters
and the eigenvalues of the associated Hamiltonian matrix.

1.1. Comparison with the rational Krylov–Galerkin method. The dy-
namical system (1.3) can be approximated by using a Galerkin method. Let Wq ⊂ C

n

be a q-dimensional subspace and let Wq ∈ C
n×q be such that the columns of Wq span

Wq and W ∗
q Wq = I. Define

Aq := W ∗
q AWq, Bq := W ∗

q B, Cq := CWq.

We then consider the infimization problem (1.2), where now the dynamical system is

(1.18) ẋq(t) = Aqxq(t) +Bquq(t), xq(0) = W ∗
q x0, yq(t) = Cqxq(t).

The approximation to the state x of the original system (1.3) is Wqxq. As before,
the optimal control problem is related to the algebraic Riccati equation (1.1), but
now with coefficients Aq, Bq and Cq. If A is dissipative (i.e. A + A∗ < 0), then
its Galerkin approximation Aq is also dissipative and therefore stable. The algebraic
Riccati equation associated to (1.2) & (1.18) therefore has a unique nonnegative def-
inite solution which as before gives the optimal cost for (1.2) & (1.18). If q is small,
then this algebraic Riccati equation can be solved using a direct method. Denote this
solution by XG

q ∈ C
q×q. Then X̃q := W ∗

q X
G
q Wq ∈ C

n×n is an approximation of X.

Trivially, X̃n = X.
The Galerkin space Wq can be chosen to be the rational Krylov subspace Xk from

(1.9). The resulting method has been extensively studied, especially in the special
case where the algebraic Riccati equation reduces to a Lyapunov equation (see for
example the review articles [1] and [11]).

We compare the methods Riccati-ADI and rational Krylov–Galerkin. We show
(Lemma 6.1) that Pky = Pkyq for initial condition x0 in the rational Krylov subspace
Xk and input u ∈ L2(0,∞;Cm), where y is the output of the original system (1.3),
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yq is the output of the rational Krylov–Galerkin approximation (1.18) and Pk is the
orthogonal projection introduced earlier. From this it follows that

Xk ≤ X̃k,

i.e., the rational Krylov–Galerkin approximation is always larger than or equal to the
Riccati-ADI approximation with the same shift parameters (Theorem 6.3).

We now consider when Xk = X̃k, i.e. when the rational Krylov–Galerkin approx-
imation and the Riccati-ADI approximation with the same shift parameters coincide.
This happens if and only if for all x0 ∈ Xk we have that yoptq belongs to Vk ⊗ C

p.
By classical linear-quadratic optimal control theory (e.g., cf. [15, Chapter 14]), the
optimal output of (1.2) & (1.18) for x0 ∈ Xk is given by

yoptq (t) = Cqe
Aopt

q tx0,

where Aopt
q := Aq − BqB

∗
qX

G
q . It follows that if the eigenvalues of −Aopt

q are shift
parameters, then the optimal output belongs to Vk ⊗ C

p. That this condition is
also necessary (if XG

q is positive definite) follows from considering a (generalized)
eigenvector of Aopt

q as x0. See Theorem 6.4 for the details.

That Xk = X̃k if and only if the eigenvalues of −Aopt
q are shift parameters is also

obtained in [7, Theorem 4.4] (using a very different argument and with the additional

assumption that p = 1). The inequality Xk ≤ X̃k is not obtained in [7].
The remainder of this article is organized as follows. Section 2 considers the

canonical rational Krylov subspace (the appropriate generalization of the space Vk

from (1.8)) and how the operators Ψ∗ and F
∗ act on various bases of this space. This

is used in Section 3 to determine matrix representations of Ψ∗
k and F

∗
k. Section 4 relates

the operators Ψ∗, F∗, Ψ∗
k and F

∗
k to the already mentioned optimal control problems.

Using this connection, convergence of Riccati-ADI is shown in Section 5. Section
6 considers the connection between Riccati-ADI and the rational Krylov–Galerkin
method. The algorithm for Riccati-ADI, together with some remarks regarding its
implementation, is given in Section 7. Finally, Section 8 illustrates the obtained results
using two numerical examples: one arising from a convection-diffusion equation and
one arising from an Euler–Bernoulli beam equation.

2. Rational Krylov subspaces. In this section we consider rational Krylov
subspaces. In particular, we study what we call the “canonical rational Krylov sub-
space” for a given sequence of parameters (αj)

∞
j=1. The space Vk from (1.8) is the

particular instance of this canonical rational Krylov subspace when the αj are distinct.
To define this space as a rational Krylov subspace we need to consider an unbounded
operator on an infinite-dimensional space rather than just rational Krylov subspaces
originating from matrices.

Remark 2.1. Below we will consider a densely defined closed linear operator
with non-empty resolvent set T : D(T ) ⊂ Z → Z on a Hilbert space Z . For
k ∈ N0, the domain of T k with the graph norm is a Hilbert space which we will denote
by Z(k). The operator T restricts to an operator Tk : Z(k) → Z(k) with domain
Z(k+1). The operator Tk is densely defined, closed and has the same resolvent set
as T . If we identify Z ′ with Z , then the dual of Z(k) is a Hilbert space which we
will denote by Z(−k). The operator T extends by continuity to a bounded operator
T−k−1 : Z(−k) → Z(−k−1). Considered as an unbounded operator on Z(−k−1), the
operator T−k−1 again has the same resolvent set as T . For α ∈ ρ(T ) and k ∈ Z, the
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operator α−Tk is a bijection Z(k+1) → Z(k). See e.g. [12, Section 3.6] or [2, Section
II.5.a] for details.

We are specifically interested in two cases. In the first case Z = C
n in which case

Z(k) = C
n for all k ∈ Z. In the second case Z = L2(R) and T is the first derivative

operator. Then Z(k) equals the Sobolev space Hk(R) for k ∈ Z, and Tk also equals
the first derivative.

Definition 2.2. Let Z be a Hilbert space. Let T : D(T ) ⊂ Z → Z be a densely
defined closed linear operator with non-empty resolvent set. Let b ∈ Z−1 and (αj)

∞
j=1

be such that αj ∈ ρ(T ). The corresponding sequence of rational Krylov subspaces (of
Z ) is defined for k ∈ N by

Kk(T, b, α) := span

⎧⎨⎩
⎛⎝ �∏

j=1

(αj − T−1)
−1

⎞⎠ b : � ∈ {1, . . . , k}
⎫⎬⎭ .

Definition 2.3. Let (αj)
∞
j=1 be such that Re(αj) > 0 for all j. For k ∈ N, we

define the canonical rational Krylov subspace as

Kk(α) := Kk(−D, δ, α),

where D : H1(R) ⊂ L2(R) → L2(R) is the first derivative operator and δ ∈ H−1(R)
is the Dirac delta.

We will consider two bases of the canonical rational Krylov subspace: one or-
thonormal and one not orthonormal. We now first introduce these bases and show in
Lemma 2.8 that they are indeed bases for the canonical rational Krylov subspace.

Definition 2.4. Let (αj)
∞
j=1 be such that Re(αj) > 0 for all j. We define the

corresponding convolution system (ϕj)
∞
j=1, ϕj ∈ L2(0,∞) by

ϕ1 := t �→ e−α1t,

ϕj := e−αj · ∗ ϕj−1,

where ∗ denotes the convolution product, i.e. (g ∗ h)(t) = ∫ t

0
g(t− τ)h(τ) dτ .

Remark 2.5. Let (αj)
k
j=1 be a tuple of numbers in the open right complex half

plane, let (ϕj)
k
j=1 be the corresponding convolution system. Let ϕ̂i be the Laplace

transform of ϕi.
a) Since the Laplace transform turns convolution into multiplication, we obtain

ϕ̂1(s) =
1

s+α1
, ϕ̂j(s) =

1
s+αj

· ϕ̂j−1(s),

and therefore

(2.1) ϕ̂j(s) =

j∏
�=1

1

s+ α�

.

b) Assume that the numbers q1, . . . , qJ are pairwise different with {q1, . . . , qJ} =
{α1, . . . , αk}. Further, let �j be the number of times in which qj appears in (αj)

k
j=1

(thus k = �1 + . . .+ �J). Then

span{ϕ1, . . . , ϕk} =
J⊕

j=1

span
{
t �→ tle−qjt

∣∣ l = 0, . . . , �j − 1
}
.
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The easiest way to see this is by considering (ϕ̂j)
k
j=1 and using partial fractions.

In particular, if the numbers α1, . . . , αk are distinct, then

span{ϕ1, . . . , ϕk} = span{e−α1·, . . . , e−αk·}.

c) It follows from b) that, if (α̃j)
k
j=1 is a permutation of (αj)

k
j=1 and (ϕ̃j)

k
j=1 and

(ϕj)
k
j=1 are the corresponding convolution systems, then

span{ϕ̃1, . . . , ϕ̃k} = span{ϕ1, . . . , ϕk}.

Definition 2.6. Let (αj)
∞
j=1 be such that Re(αj) > 0 for all j ∈ N. We define

the corresponding Takenaka–Malmquist system (ψj)
∞
j=1, ψj ∈ L2(0,∞) by

φ1 = t �→ e−α1t, ψ1 =
√

2Re(α1) · φ1,

φj =φj−1 − (αj + αj−1) · (e−αj · ∗ φj−1), ψj =
√
2Re(αj) · φj ,(2.2)

where ∗ denotes the convolution product, i.e. (g ∗ h)(t) = ∫ t

0
g(t− τ)h(τ) dτ .

Remark 2.7.

a) The Takenaka–Malmquist system is orthonormal (see e.g. [9, Appendix B] for a
proof).

b) Laplace transformation of (2.2) yields that for all s ∈ C with Re(s) > 0 there holds

φ̂1(s) =
1

s+α1
, ψ̂1(s) =

√
2Re(α1) · φ̂1(s),

φ̂j(s) = φ̂j−1(s)− (αj + αj−1) · 1
s+αj

· φ̂j−1(s), ψ̂j(s) =
√
2Re(αj) · φ̂j(s).

(2.3)

Therefore we obtain by induction that

(2.4) ψ̂j(s) =

√
2Re(αj)

(s+ αj)
·
j−1∏
�=1

s− α�

s+ α�

.

Lemma 2.8. Let (αj)
∞
j=1 be such that Re(αj) > 0 for all j. Let (ϕj)

∞
j=1 be

the corresponding convolution system, let (ψj)
∞
j=1 be the corresponding Takenaka–

Malmquist system and let Kk(α) be the corresponding sequence of canonical rational
Krylov subspaces. Then

Kk(α) = span{ϕ1, . . . , ϕk} = span{ψ1, . . . , ψk},

where we view a function in L2(0,∞) as an element of L2(R) by defining it to be zero
on (−∞, 0).

Proof. We note that the extension D−1 : L2(R) → H−1(R) of the operator
defining the canonical rational Krylov subspace is also the first derivative operator.

We have

f = (μ+D−1)
−1δ ⇐⇒ μf + f ′ = δ.

The unique solution of the latter ordinary differential equation is

f = t �→ e−μt1(0,∞)(t) ∈ L2(R).
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Therefore ϕ1 = (α1 +D−1)
−1δ and so span{ϕ1} = K1(α). We have

fj = (αj +D−1)
−1fj−1 ⇐⇒ αjfj + f ′

j = fj−1.

Using that, as just shown, t �→ e−αjt1(0,∞)(t) is the fundamental solution of this
differential equation we have

fj = e−αj ·1(0,∞) ∗ fj−1.

Hence ϕj = fj and we conclude that span{ϕ1, . . . , ϕk} = Kk(α).
The relation span{ϕ1, . . . , ϕk} = span{ψ1, . . . , ψk} follows most readily by considering
the partial fraction expansions of their Laplace transforms, see (2.1) and (2.4).

Now we determine how the operators Ψ∗ and F
∗ act on the considered bases for

the canonical rational Krylov subspaces. We first define the following two operators
(for t ≥ 0)

Φt : L2(0,∞;Cp) → C
n, Φtz :=

∫ ∞

t

eA
∗(τ−t)C∗z(τ) dτ,(2.5)

Λ : L2(0,∞;Cp) → L2(0,∞;Cn), Λz := t �→
∫ ∞

t

eA
∗(τ−t)C∗z(τ) dτ.(2.6)

The significance of these operators is that Ψ∗ = Φ0, F∗ = B∗Λ and Λz = t �→ Φtz.
The following lemma is the crucial technical result in determining how the opera-

tors Ψ∗ and F
∗ act on the considered bases for the canonical rational Krylov subspaces.

Lemma 2.9. Let A ∈ C
n×n be stable, let C ∈ C

p×n and define for t ≥ 0 the
operator Φt by (2.5). Then for μ ∈ C with Re(μ) > 0, v ∈ C

p and z ∈ L2(0,∞;Cp)
there holds

(2.7) Φt(e−μ·v) = (μ−A∗)−1C∗ve−μt,

and

(2.8) Φt(e−μ· ∗ z) = (μ−A∗)−1C∗(e−μ· ∗ z)(t) + (μ−A∗)−1Φt(z).

Proof. We first consider (2.7). We have by the change of variables θ := τ − t

Φt(e−μ·v) =
∫ ∞

t

eA
∗(τ−t)C∗ve−μτ dτ =

∫ ∞

0

eA
∗θC∗ve−μθe−μt dθ

= e−μt

∫ ∞

0

e(A
∗−μ)θC∗v dθ,

and elementary integration then gives the result.
We now consider (2.8). We have

Φt(e−μ· ∗ z) =
∫ ∞

t

eA
∗(τ−t)C∗

∫ τ

0

e−μ(τ−σ)z(σ) dσdτ

=

∫ ∞

t

∫ τ

0

e(μ−A∗)(t−τ)C∗e−μ(t−σ)z(σ) dσdτ.
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Interchanging the order of integration gives that the above equals∫ t

0

∫ ∞

t

e(μ−A∗)(t−τ)C∗e−μ(t−σ)z(σ) dτdσ

+

∫ ∞

t

∫ ∞

σ

e(μ−A∗)(t−τ)C∗e−μ(t−σ)z(σ) dτdσ

=

∫ t

0

[
−(μ−A∗)−1e(μ−A∗)(t−τ)C∗e−μ(t−σ)z(σ)

]∞
τ=t

dσ

+

∫ ∞

t

[
−(μ−A∗)−1e(μ−A∗)(t−τ)C∗e−μ(t−σ)z(σ)

]∞
τ=σ

dσ

=

∫ t

0

(μ−A∗)−1C∗e−μ(t−σ)z(σ) dσ +

∫ ∞

t

(μ−A∗)−1e(μ−A∗)(t−σ)C∗e−μ(t−σ)z(σ) dσ

=(μ−A∗)−1C∗
∫ t

0

e−μ(t−σ)z(σ) dσ + (μ−A∗)−1

∫ ∞

t

eA
∗(σ−t)C∗z(σ) dσ

=(μ−A∗)−1C∗ (e−μ· ∗ z)(t) + (μ−A∗)−1Φt(z),

as claimed.
Corollary 2.10. Let A ∈ C

n×n be stable, C ∈ C
p×n, (αj)

∞
j=1 such that

Re(αj) > 0 for all j, (ϕj)
∞
j=1 as in Definition 2.4 and v ∈ C

p.
a) Let t ≥ 0. With Φt as in (2.5) there holds

Φt(ϕ1v) = (α1 −A∗)−1C∗vϕ1(t),

Φt(ϕjv) = (αj −A∗)−1C∗vϕj(t) + (αj −A∗)−1Φt(ϕj−1v).

b) With Ψ as in (1.4) there holds

Ψ∗(ϕ1v) = (α1 −A∗)−1C∗v,

Ψ∗(ϕjv) = (αj −A∗)−1Ψ∗(ϕj−1v).

c) With Λ as in (2.6) there holds

Λ(ϕ1v) = (α1 −A∗)−1C∗vϕ1,

Λ(ϕjv) = (αj −A∗)−1C∗vϕj + (αj −A∗)−1Λ(ϕj−1v).

Proof. We first prove part a). The first formula follows directly from (2.7)
with μ := α1. The second formula follows from multiplying the iterative defini-
tion of (ϕj)

∞
j=1 from Definition 2.4 by v, applying Φt to the result and using that by

Lemma 2.9,

Φt(e−αj · ∗ ϕj−1v) = (αj −A∗)−1C∗vϕj(t) + (αj −A∗)−1Φt(ϕj−1v).

Part b) follows from part a) by using that Ψ∗ = Φ0, ϕ1(0) = 1 and ϕj(0) = 0 for
j > 1. Part c) follows from part a) using that Λz = t �→ Φtz.

Corollary 2.11. Let A ∈ C
n×n be stable, C ∈ C

p×n, (αj)
∞
j=1 such that

Re(αj) > 0 for all j, (φj)
∞
j=1 and (ψj)

∞
j=1 as in Definition 2.6 and v ∈ C

p.
a) With Ψ as in (1.4) there holds

Ψ∗(φ1v) = (α1 −A∗)−1C∗v,

Ψ∗(φjv) = Ψ∗(φj−1v)− (αj + αj−1)(αj −A∗)−1Ψ∗(φj−1v).
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b) For j > 1 and with Λ as in (2.6) and γj :=
Re(αj)

Re(αj−1)
there holds

Λ(ψjv) = γjΛ(ψj−1v)− γj(αj + αj−1) ·[
(αj −A∗)−1C∗ve−αj · ∗ ψj−1 + (αj −A∗)−1Λ(ψj−1v)

]
.

Proof. We first prove part a). The first equation follows from (2.7) with μ := α1

using that Ψ∗ = Φ0. The second equation is obtained by multiplying (2.2) by v,
applying Ψ∗ to the result and using that by Lemma 2.9 (using that Ψ∗ = Φ0),

(2.9) Ψ∗(e−αj · ∗ φj−1v) = (αj −A∗)−1Ψ∗(φj−1v).

We now prove part b). From (2.2) we obtain

Λ(ψjv) = γjΛ(ψj−1v)− γj(αj + αj−1)Λ(e
−αj · ∗ ψj−1v).

From Lemma 2.9 we obtain that

Λ(e−αj · ∗ ψj−1v) = (αj −A∗)−1C∗ve−αj · ∗ ψj−1 + (αj −A∗)−1Λ(ψj−1v),

and the desired result follows.
The following lemma and the subsequent remark show in what sense the canonical

rational Krylov subspace is canonical: the other rational Krylov subspaces with the
same shift parameters can be obtained from it.

Lemma 2.12. Let (αj)
∞
j=1 be such that Re(αj) > 0 for all j and let k ∈ N. Let

Kk(α) be the canonical rational Krylov subspace from Definition 2.3. Let T ∈ C
n×n

be stable, b ∈ C
n and let Kk(T, b, α) be the rational Krylov subspace from Definition

2.2. With

Φ : L2(0,∞) → C
n, Φu :=

∫ ∞

0

eTtbu(t)dt,

there holds

Φ(Kk(α)) = Kk(T, b, α).

Proof. From Corollary 2.10 b) with A = T ∗, v = 1 and C∗ = b, we have that for
(ϕj)

k
j=1 as in Definition 2.4 there holds

Φ(ϕ1) = (α1 − T )−1b,

Φ(ϕj) = (αj − T )−1Φ(ϕj−1).

From this and the definition of rational Krylov subspace (Definition 2.2) we have

Kk(T, b, α) = Φ(span{ϕ1, . . . , ϕk}).
By Lemma 2.8 we have that

span{ϕ1, . . . , ϕk} = Kk(α),

so that we obtain the desired conclusion.
Remark 2.13. More generally, for b ∈ C

n×m, the operator Φ : L2(0,∞;Cm) →
C

n defined as in Lemma 2.12 satisfies

Φ(Kk(α)⊗ C
m) = span{Kk(T, bv, α) : v ∈ C

m}.
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As in the proof of Lemma 2.12, we obtain for v ∈ C
m

Kk(T, bv, α) = Φ(span{ϕ1v, . . . , ϕkv}),
from which the result follows. In the case where the αj are distinct, this gives (1.9)
from the introduction.

Proposition 2.14. Let A ∈ C
n×n be stable, B ∈ C

n×m, C ∈ C
p×n, (αj)

∞
j=1

such that Re(αj) > 0 for all j and Kk(α) the sequence of canonical rational Krylov
subspaces from Definition 2.3. For k ∈ N, define

(2.10) Xk := Ψ∗(Kk(α)⊗ C
p),

where Ψ is as in (1.4).
a) The following holds for all j ∈ {1, . . . , k} and v ∈ C

p:

(αj −A∗)−1C∗v ∈ Xk.

b) The following holds for all k ∈ N:

(αk+1 −A∗)−1
Xk ⊂ Xk+1.

c) With t ≥ 0 and Φt as in (2.5), the following holds for all k ∈ N:

Φt (Kk(α)⊗ C
p) ⊂ Xk.

d) With F as in (1.5) the following holds for all k ∈ N:

F
∗ (Kk(α)⊗ C

p) ⊂ Kk(α)⊗ C
m.

Proof. We first prove a). We have by (2.7) that (αj − A∗)−1C∗v = Ψ∗(e−αj ·v).
Since by Remark 2.5 b) e−αj · ∈ Kk(α), it follows that (αj −A∗)−1C∗v ∈ Xk.

We now prove b). Since (ϕj)
k
j=1 is a basis for Kk(α), every element of Xk can

be written as a linear combination of elements of the form

Ψ∗(ϕ�v),

for v ∈ C
p and � ∈ {1, . . . , k}. We show that

(2.11) (αk+1 −A∗)−1Ψ∗(ϕ�v) ⊂ Xk+1.

Let (α̃j)
k+1
j=1 be a permutation of (αj)

k+1
j=1 such that α̃j = αj for j ∈ {1, . . . , �} and

α̃�+1 = αk+1. Define for j = 1, . . . , k + 1

X̃j := Ψ∗(Kj(α̃)⊗ C
p).

By Remark 2.5 c) we have Kk+1(α) = Kk+1(α̃), so that X̃k+1 = Xk+1. Define
(ϕ̃j)

k+1
j=1 as in Definition 2.4, but with parameters α̃j rather than αj . Since α̃j = αj

for j ∈ {1, . . . , �} we also have ϕ̃j = ϕj for j ∈ {1, . . . , �}. Therefore (2.11) is
equivalent to

(α̃�+1 −A∗)−1Ψ∗(ϕ̃�v) ⊂ Xk+1.

From Corollary 2.10 b) we have

Ψ∗(ϕ̃�+1v) = (α̃�+1 −A∗)−1Ψ∗(ϕ̃�v).
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Since the left-hand side is in Xk+1, the right-hand side is as well.
We prove part c) by induction on k. Let (ϕj)

∞
j=1 be as in Definition 2.4 and let

v ∈ C
p. For k = 1 we have by Corollary 2.10 parts a) and b)

Φt(ϕ1v) = Ψ∗(ϕ1v)ϕ1(t),

which proves the case k = 1.
For k > 1 we have by Corollary 2.10 a) for j ∈ {1, . . . , k}

Φt(ϕjv) = (αj −A∗)−1C∗vϕj(t) + (αj −A∗)−1Φt(ϕj−1v).

By the induction hypothesis we have Φt(ϕj−1v) ∈ Xj−1. Part b leads to (αj −
A∗)−1Φt(ϕj−1v) ∈ Xj ⊂ Xk. From part a we obtain that (αj − A∗)−1C∗v ∈ Xj ⊂
Xk. This proves that Φ

t(ϕjv) ∈ Xk.
We now prove part d). From Corollary 2.10 c), using that (ϕj)

k
j=1 is a basis for

Kk(α), we obtain by induction Λ (Kk(α)⊗ C
p) ⊂ Kk(α)⊗C

n. Using that F∗ = B∗Λ
then gives the desired result.

3. Matrix representations. In this section we develop matrix representations
of the operators Ψk and Fk from the introduction with respect to the Takenaka–
Malmquist system from Definition 2.6.

Definition 3.1. Let (αj)
∞
j=1 be such that Re(αj) > 0 for all j ∈ N. Let (ψj)

∞
j=1,

ψj ∈ L2(0,∞) be the corresponding Takenaka–Malmquist system (2.2). For k ∈ N,
the mapping ιk is defined by

(3.1)

ιk : C
k →L2(0,∞),

x �→
k∑

j=1

xj · ψj .

Further, for the identity matrix Ip ∈ C
p×p, we identify ιk : Ckp → L2(0,∞;Cp) with

the tensor product ιk ⊗ Ip. We omit an additional subindex for sake of brevity.
It follows immediately from the orthonormality of the Takenaka–Malmquist sys-

tem that ιk defines an isometric embedding. In particular, the operator

Pk = ιkι
∗
k : L2(0,∞;Cp) → L2(0,∞;Cp)

is the orthogonal projection onto Vk ⊗ C
p. With operators Ψ and F as in (1.4) and

(1.5), we define the matrices

Sk = ι∗kΨ ∈ C
kp×n,(3.2)

Fk = ι∗kFιk ∈ C
kp×km,(3.3)

Rc,k = ι∗k(I + FF
∗)ιk ∈ C

kp×kp.(3.4)

It follows from (1.12) that

Ψk = PkΨ = ιkι
∗
kΨ = ιkSk.

We conclude that the matrix Sk as in (3.2) is the matrix representation of Ψk : Cn →
Kk(α)⊗C

p with respect to the basis given by the tensor product of {ψ1, . . . , ψk} and
the canonical basis of Cp.
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With the matrix Fk as in (3.3) and Fk as in (1.13) we have

ιkFk = PkFιk = Fkιk,

which shows that Fk is the matrix representation of Fk|Kk(α)⊗Cm : Kk(α) ⊗ C
m →

Kk(α)⊗C
p with respect to the basis given by the tensor product of {ψ1, . . . , ψk} and

the canonical basis of Cm (respectively, Cp).
By Proposition 2.14 d) we have

PkF
∗ιk = F

∗ιk.

It follows that

(3.5)

Rc,k = Ikp + (F∗ιk)∗ · (F∗ιk)

= Ikp + (F∗ιk)∗Pk(F
∗ιk)

= Ikp + (F∗ιk)∗ιk(ι∗kF
∗ιk)

= Ikp + (ι∗kF
∗ιk)∗ · (ι∗kF∗ιk)

= Ikp + FkF
∗
k .

Note that, by

Pk(I + FkF
∗
k)

−1Pk = ιk(I + FkF
∗
k )

−1ι∗k,

we see that Xk as in (1.11) can be written as

(3.6) Xk = Ψ∗
kR−1

c,kΨk = S∗
k(I + FkF

∗
k )

−1Sk.

By the same argumentation, we see that uopt
k as in (1.15) reads

(3.7) uopt
k = −F

∗
kR−1

c,kΨkx0 = −ιkF
∗
kR

−1
c,kSkx0.

Further details on the connection to the optimal control problem will be given in
Section 4.

We now proceed to develop an algorithm for efficiently computing Sk and Fk.
The algorithm for computation of Sk is straightforward. Corollary 2.11 a) together
with the definition of the Takeneka-Malmquist system implies that

Sk =
[√

2Re(α1) · V1 . . .
√

2Re(αk) · Vk

]∗
,

where the sequence (Vk) is recursively defined by

(3.8) V1 = (α1 −A∗)−1C∗, Vk = Vk−1 − (αk + αk−1) · (αk −A∗)−1Vk−1.

We note that this was already established in [9], where the case B = 0 (for which the
Riccati equation becomes a Lyapunov equation) was considered.

Using that, by Proposition 2.14 d), the invariance F∗ (Kk−1(α)⊗ C
p) ⊂ Kk−1(α)⊗

C
m holds true, we see that

ιkF
∗ιk−1 =

[
F ∗
k−1

0

]
.

Thus we obtain that Fk has the form

(3.9) Fk =

[
[Fk−1, 0]

Nk

]
,
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for some Nk ∈ C
p×km. Note that Nk is determined by F

∗(ψkv) for v ∈ C
p and

that this in turn is determined by Λ(ψkv). Therefore we first express Λ(ψkv) in an
appropriate form.

Lemma 3.2. Let A ∈ C
n×n be stable, C ∈ C

p×n, (αj)
∞
j=1 such that Re(αj) > 0

for all j, (ϕj)
∞
j=1 as in Definition 2.4, v ∈ C

p, Ψ as in (1.4) and Λ as in (2.6). Then,

for each k ∈ N, there exists some Lk ∈ C
k×k such that

(3.10) Λ(ψkv) =

k∑
j=1

Ψ∗(ψjv)

k∑
�=1

(Lk)j�ψ� ∀v ∈ C
p.

Moreover, the matrix Lk can be calculated as in Algorithm 1.
Proof. We prove this by induction. For k = 1 we have by Corollary 2.10 c) that

Λ(ψ1v) = ψ1(α1−A∗)−1C∗v and by Corollary 2.10 b) that Ψ∗(ψ1v) =
√

2Re(α1)(α1−
A∗)−1C∗v. Hence for k = 1, (3.10) is satisfied with L1 = 1√

2Re(α1)
.

With γk :=
√

Re(αk)
Re(αk−1)

we obtain from Corollary 2.11 b) that

(3.11) Λ(ψkv) = γkΛ(ψk−1v)− γk(αk + αk−1)

· ((αk −A∗)−1C∗v · (e−αk· ∗ ψk−1) + (αk −A∗)−1Λ(ψk−1v)
)
.

From (2.7) with μ := αk and t = 0 (noting that Ψ∗ = Φ0) and (2.9), we have

(3.12)
(αk −A∗)−1C∗v = Ψ∗(e−αk·v),

(αk −A∗)−1Ψ∗(ψjv) = Ψ∗(e−αk· ∗ ψjv) ∀v ∈ C
p, j = 1, . . . , k − 1.

By inserting (3.10) and (3.12) in (3.11), we obtain

(3.13) Λ(ψkv) = γkΛ(ψk−1v)− γk(αk + αk−1)

·
⎛⎝Ψ∗(e−αk·v) · (e−αk· ∗ ψk−1) +

k−1∑
j=1

Ψ∗(e−αk· ∗ ψjv)

k−1∑
�=1

(Lk−1)j� · ψ�

⎞⎠ .

Utilizing the bases

(z1, . . . , zk−1, zk) := (ψ1, . . . , ψk−1, e
−αk· ∗ ψk−1),

(x1, . . . , xk−1, xk) := (e−αk· ∗ ψ1, . . . , e
−αk· ∗ ψk−1, e

−αk·),

this can be written as

(3.14) Λ(ψkv) = γkΛ(ψk−1v)− γk(αk + αk−1)

k∑
j=1

Ψ∗(xjv)

k∑
�=1

(L̃k−1)j�z�,

where

L̃k−1 :=

[
Lk−1 0
0 1

]
.

At this point, we need a change of coordinates between the bases (ψ1, · · · , ψk) and
(e−αk· ∗ ψ1, · · · , e−αk· ∗ ψk−1, e

−αk·), as well as a transformation between the bases
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(ψ1, · · · , ψk−1, e
−αk·∗ψk−1) and (ψ1, · · · , ψk). Applying Laplace transform, this prob-

lem reduces to the determination of invertible matrices Tk,Mk ∈ C
k×k with

Tk

[
ψ̂1(s) . . . ψ̂k−1(s) ψ̂k(s)

]�
=

[
ψ̂1(s) . . . ψ̂k−1(s)

ψ̂k−1(s)
s+αk

]�
(3.15) [

ψ̂1(s) . . . ψ̂k−1(s) ψ̂k(s)
]
Mk =

[
ψ̂1(s)
s+αk

. . . ψ̂k−1(s)
s+αk

1
s+αk

]
.(3.16)

We can immediately conclude from the recursion formula (2.3) that

(3.17) Tk =

[
Ik−1 0[

0 1
αk+αk−1

]
−1

γk(αk+αk−1)

]
.

To obtain the matrix Mk, we use an argumentation similar to the proof of [7, Propo-
sition 3.2.]. Namely, we show that

Mk = (Mk,5Mk,4Mk,3Mk,2Mk,1)
−1

with

Mk,1 :=

⎡⎢⎣
1√

2Re(α1)

. . .
1√

2Re(αk)

⎤⎥⎦ , Mk,2 :=

⎡⎣ α1+αk

α1−αk α2+αk

. . .
αk−1−αk αk+αk

⎤⎦ ,

Mk,3 :=

[
1 ... 1

. . .
...
1

]
, Mk,4 := [ 0 I

1 0 ] , Mk,5 :=

⎡⎢⎣−
√

2Re(α1)

. . .
−
√

2Re(αk−1)

1

⎤⎥⎦ .

We have, by (2.4),

Ek :=
[
ψ̂1(s)
s+αk

. . . ψ̂k−1(s)
s+αk

1
s+αk

]
=

[ √
Re(α1)

(s+αk)(s+α1)
, . . . ,

√
2Re(αk−1)

(s+αk)(s+αk−1)

k−2∏
�=1

s−α�

s+α�
, 1

s+αk

]
.

Consecutive application of the matrices (Mk,j)
5
j=1 to Ek results in

EkMk,5 =

[
−2Re(α1)

(s+αk)(s+α1)
, . . . , −2Re(αk−1)

(s+αk)(s+αk−1)

k−2∏
�=1

s−α�

s+α�
, 1

s+αk

]
.

EkMk,5Mk,4 =

[
1

s+αk
, −2Re(α1)

(s+αk)(s+α1)
, . . . , −2Re(αk−1)

(s+αk)(s+αk−1)

k−2∏
�=1

s−α�

s+α�

]
.

EkMk,5Mk,4Mk,3 =

[
1

s+αk
, s−α1

(s+αk)(s+α1)
, . . . , 1

(s+αk)

k−1∏
�=1

s−α�

s+α�

]
.

EkMk,5Mk,4Mk,3Mk,2 =

[
2Re(α1)
s+α1

, 2Re(α2)(s−α1)
(s+α2)(s+α1)

, . . . , 2Re(αk)
(s+αk)

k−1∏
�=1

s−α�

s+α�

]
.

EkM
−1
k =

[√
2Re(α1)

s+α1
,

√
2Re(α2)(s−α1)

(s+α2)(s+α1)
, . . . ,

√
2Re(αk)

(s+αk)

k−1∏
�=1

s−α�

s+α�

]
,

=
[
ψ̂1(s) . . . ψ̂k−1(s) ψ̂k(s)

]
,
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which establishes (3.16).
Denote by (e�) the standard basis in C

p and in C
n (which space is intended will

be clear from the context). Define the tensors Rk,Wk ∈ C
n×k×p by

Λ(ψk ⊗ eq) =

n∑
i=1

k∑
j=1

(Rk)ijqψj ⊗ ei, q = 1, . . . , p,(3.18)

Ψ∗(ψj ⊗ eq) =

n∑
i=1

(Wk)ijqei, j = 1, . . . , k, q = 1, . . . , p.(3.19)

In terms of these tensors, the induction hypothesis (3.10) can be written as

(3.20) (Rk)ijq =

k∑
�=1

(Wk)i�q(Lk)�j .

We now write all the terms in (3.14) in terms of these tensors.
We have by (3.18)

Λ(ψk−1 ⊗ eq) =

m∑
i=1

k−1∑
j=1

(Rk−1)ijqψj ⊗ ei, q = 1, . . . , p,

which by (3.20) can be written as

Λ(ψk−1 ⊗ eq) =
m∑
i=1

k−1∑
j=1

k−1∑
�=1

(Wk−1)i�q(Lk−1)�jψj ⊗ ei, q = 1, . . . , p.

Defining

L̂k−1 =

[
Lk−1 0
0 0

]
∈ C

k×k,

and using that (Wk−1)i�q = (Wk)i�q for i = 1, . . . , n, q = 1, . . . , p and � = 1, . . . , k− 1,
we then have

(3.21) Λ(ψk−1 ⊗ eq) =
m∑
i=1

k∑
j=1

k∑
�=1

(Wk)i�q(L̂k−1)�jψj ⊗ ei, q = 1, . . . , p.

We now consider the term Ψ∗(xjv) in (3.14). By (3.16) we have for v ∈ C
p

xj ⊗ v =

k∑
�=1

(MT
k )j�ψ� ⊗ v.

Substituting this in (3.19) gives

Ψ∗(xj ⊗ eq) =
k∑

�=1

(MT
k )j�Ψ

∗(ψ� ⊗ eq) =
n∑

i=1

k∑
�=1

(MT
k )j�(Wk)i�qei

=

n∑
i=1

k∑
�=1

(Wk)i�q(Mk)�jei.(3.22)
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By (3.15) we have

z� =

k∑
β=1

(Tk)�βψβ .

It follows that

(3.23)

k∑
�=1

(L̃k−1)j�z� =

k∑
�=1

k∑
β=1

(L̃k−1)j�(Tk)�βψβ =

k∑
β=1

(L̃k−1Tk)jβψβ .

From (3.22) and (3.23) we obtain that

k∑
j=1

Ψ∗(xj ⊗ eq)

k∑
�=1

(L̃k−1)j�z� =

k∑
j=1

n∑
i=1

k∑
�=1

(Wk)i�q(Mk)�jei

k∑
β=1

(L̃k−1Tk)jβψβ

=

k∑
j=1

n∑
i=1

k∑
�=1

k∑
β=1

(Wk)i�q(Mk)�j(L̃k−1Tk)jβψβ ⊗ ei

=

n∑
i=1

k∑
�=1

k∑
β=1

(Wk)i�q(MkL̃k−1Tk)�βψβ ⊗ ei.(3.24)

Substituting (3.18), (3.20), (3.21) and (3.24) in (3.14) gives

(3.25)

n∑
i=1

k∑
j=1

k∑
�=1

(Wk)i�q(Lk)�jψj ⊗ ei = γk

m∑
i=1

k∑
j=1

k∑
�=1

(Wk)i�q(L̂k−1)�jψj ⊗ ei

− γk(αk + αk−1)
n∑

i=1

k∑
�=1

k∑
j=1

(Wk)i�q(MkL̃k−1Tk)�jψj ⊗ ei.

We conclude that (3.25) is satisfied if Lk satisfies

(3.26) Lk = γk(L̂k−1)− γk(αk + αk−1)MkL̃k−1Tk.

This recursively defines Lk and therefore, with this choice of Lk, the proof by induction
of (3.10) (or equivalently (3.20)) is complete. Note that (3.26) is implemented in
Algorithm 1.

Corollary 3.3. The matrix Nk, from (3.9) is given by Algorithm 1.
Proof. We use the notation of the proof of Lemma 3.2. To complete the description

of the algorithm, it only remains to re-formulate the tensors Rk and Wk and their
relation (3.20) in matrix terms. Define the matrices

R̃k :=

⎡⎢⎢⎢⎣
R·1·
R·2·
...

R·k·

⎤⎥⎥⎥⎦ ∈ C
kn×p, W̃k :=

⎡⎢⎢⎢⎣
W·1·
W·2·
...

W·k·

⎤⎥⎥⎥⎦ ∈ C
kn×p,

where (R·j·)iq = Rijq, (W·j·)iq = Wijq for i = 1, . . . , n and q = 1, . . . , p. Then (3.20)
is equivalent to

(3.27) (LT
k ⊗ In)W̃k = R̃k.



18 A. MASSOUDI, M.R. OPMEER AND T. REIS

We have that Nk, from (3.9), satisfies

N∗
k =

⎡⎢⎢⎢⎣
B∗R·1·
B∗R·2·

...
B∗R·k·

⎤⎥⎥⎥⎦ .

Algorithm 1 doesn’t store W̃k but instead the matrix Qk ∈ C
p×km defined through

Q∗
k =

⎡⎢⎢⎢⎣
B∗W·1·
B∗W·2·

...
B∗W·k·

⎤⎥⎥⎥⎦ .

The relation (3.27) gives rise to (LT
k ⊗ Im)Q∗

k = N∗
k , or equivalently (as it appears in

Algorithm 1)

Nk = Qk(Lk ⊗ Im),

where Lk is the complex conjugate matrix of Lk.
From Corollary 2.11 a) we have

Ψ∗(ψj ⊗ eq) =
√
2Re(αj)

n∑
i=1

(Vj)iqei,

where Vj (j = 1, . . . , k) is as in (3.8). When compared with (3.19) this shows that

(Wk)ijq =
√

2Re(αj)(Vj)iq,

i.e. W·j· =
√

2Re(αj)Vj . Combining all of the above results gives Algorithm 1.

4. The optimal control problem. In this section we consider the optimal
control problem (1.2) & (1.3) and the optimal control problem (1.10) & (1.3).

Lemma 4.1. Let A ∈ C
n×n be stable, B ∈ C

n×m, C ∈ C
p×n. Define Ψ, F and Rc

by (1.4), (1.5), (1.6). The optimization problem (1.2) & (1.3) has a unique solution
given by

uopt = −F
∗R−1

c Ψx0.

The optimal cost is given by

〈Xx0, x0〉, X = Ψ∗R−1
c Ψ.

Proof. It is proven in [14, Proposition 7.2] that the optimal control is unique and
is given by

uopt = −(I + F
∗
F)−1

F
∗Ψx0,

and that the operator given the optimal cost is given by

X = Ψ∗Ψ−Ψ∗
F(I + F

∗
F)−1

F
∗Ψ.
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Using that (I + F
∗
F)−1

F
∗ = F

∗R−1
c , the given formulas follow.

Lemma 4.2. Let A ∈ C
n×n be stable, B ∈ C

n×m, C ∈ C
p×n. Define Ψk, Fk

and Rck by (1.12), (1.13), (1.14), where Pk : L2(0,∞;Cp) → L2(0,∞;Cp) is the
orthogonal projection onto Kk(α) ⊗ C

p and Kk(α) is the canonical rational Krylov
subspace from Definition 2.3.

The optimization problem (1.10) & (1.3) has a unique solution given by

uopt
k = −F

∗
kR−1

c,kΨkx0.

The optimal cost is given by

〈Xkx0, x0〉, Xk = Ψ∗
kR−1

c,kΨk.

Proof. Noting that Pky = Ψkx0+Fku, we use a “completing the square” argument
similar to [14, Proposition 7.2]. That is, we make use of

F
∗
kR−1

c,k = F
∗
k(I + FkF

∗
k)

−1 = (I + F
∗
kFk)

−1
F
∗
k,

to see that

‖u‖2L2 + ‖Pky‖2L2 = ‖u‖2L2 + 〈Ψkx0 + Fku,Ψkx0 + Fku〉L2

= 〈Ψ∗
kR−1

c,kΨkx0, x0〉+ 〈(I + F
∗
kFk)(u+ F

∗
kR−1

c,kΨkx0), (u+ F
∗
kR−1

c,kΨkx0)〉L2 .

In particular, we have for Xk = Ψ∗
kR−1

c,kΨk that ‖u‖2L2 +‖Pky‖2L2 ≥ 〈Xkx0, x0〉. In the

case where the input reads u = −F
∗
kR−1

c,kΨkx0, the second summand vanishes. Thus,

we have equality between ‖u‖2L2 + ‖Pky‖2L2 and the quadratic form 〈Xkx0, x0〉 in this
case.

Corollary 4.3. Under the assumptions and with the notation of Lemma 4.2,
we have

uopt
k ∈ Kk(α)⊗ C

m.

Proof. By Lemma 4.2 we have uopt
k = F

∗z for z := −PkR−1
c,kΨkx0 ∈ Kk(α)⊗ C

p.
From Proposition 2.14 d) we see that F∗ maps Kk(α)⊗C

p into Kk(α)⊗C
m. Therefore

uopt
k ∈ Kk(α)⊗ C

m, as desired.
Theorem 4.4. Let A ∈ C

n×n be stable, B ∈ C
n×m, C ∈ C

p×n. Define Ψ, F
and Rc by (1.4), (1.5), (1.6) and X = Ψ∗R−1

c Ψ. Define Ψk, Fk and Rc,k by (1.12),
(1.13), (1.14), where Pk : L2(0,∞;Cp) → L2(0,∞;Cp) is the orthogonal projection
onto Kk(α)⊗C

p and Kk(α) is the canonical rational Krylov subspace from Definition
2.3. Define Xk = Ψ∗

kR−1
c,kΨk. Then

Xk ≤ Xk+1, Xk ≤ X.

Proof. For x0 ∈ C
n and u ∈ L2(0,∞;Cm) with corresponding output y defined

through (1.3) we have

‖Pky‖2L2(0,∞;Cp) ≤ ‖Pk+1y‖2L2(0,∞;Cp),
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since Kk(α) ⊂ Kk+1(α). It follows that

〈Xkx0, x0〉 = inf
u∈L2(0,∞;Cm)

‖u‖2 + ‖Pky‖2

≤ inf
u∈L2(0,∞;Cm)

‖u‖2 + ‖Pk+1y‖2 = 〈Xk+1x0, x0〉.

Similarly, using that

‖Pky‖2L2(0,∞;Cp) ≤ ‖y‖2L2(0,∞;Cp),

we obtain

〈Xkx0, x0〉 ≤ 〈Xx0, x0〉.

5. Convergence of Riccati-ADI. In this section we prove convergence of the
Riccati-ADI method.

Theorem 5.1. Let A ∈ C
n×n be stable, B ∈ C

n×m, C ∈ C
p×n. Let (αj)

∞
j=1 be

such that Re(αj) > 0 for all j. For k ∈ N, let Xk be the operator obtain by Riccati-
ADI. Then Xk converges as k → ∞. If (αj)

∞
j=1 satisfies the non-Blaschke condition

(1.17), then Xk converges to X, the nonnegative definite solution of the algebraic
Riccati equation (1.1).

Proof. This is a special case of Theorem 5.2 where by finite-dimensionality the
topology in which convergence occurs is irrelevant.

We formulate the following theorem in the infinite-dimensional context. In the
finite-dimensional case it simply reduces to Theorem 5.1. We refer to [12] for the
terminology used in the statement of the following theorem (readers not familiar with
this may simply consider the proof of the following theorem as a proof of Theorem
5.1).

Theorem 5.2. Consider a well-posed linear system on Hilbert spaces U , Y and
X that is output stable and input-output stable and whose semigroup is uniformly
bounded. Denote its output map by Ψ and its input-output map by F. Let (αj)

∞
j=1 be

such that Re(αj) > 0 for all j and for k ∈ N let Pk : L2(0,∞;Y ) → L2(0,∞;Y )
be the orthogonal projection onto Kk(α)⊗ Y , where Kk(α) is the canonical rational
Krylov subspace from Definition 2.3. Define Xk by (1.11). Then Xk converges in the
strong operator topology as k → ∞. Let X be given by (1.7) and assume that (αj)

∞
j=1

satisfies the non-Blaschke condition (1.17). Then Xk converges to X in the strong
operator topology as k → ∞. If moreover X is compact, then Xk converges to X in
the uniform operator topology and if X is in the Schatten class Sp(X ) for p ∈ [1,∞],
then Xk converges to X in the topology of Sp(X ).

Proof. We first note that the results proven in the earlier parts of this article hold
in the setting of this theorem (with essentially the same proofs).

Since, by Theorem 4.4, Xk is a non-decreasing sequence which is bounded from
above, we obtain convergence in the strong operator topology.

Since Kk(α) ⊂ Kk+1(α) we have Pk ≤ Pk+1. Since Pk is an orthogonal projection,
we have Pk ≤ I. It follows that Pk converges in the strong operator topology to some
orthogonal projection P . It was shown in [9, Lemma 4.4] that P = I if and only
if the non-Blaschke condition is satisfied (this result is shown there actually only
for the case Y = C, but the behavior of tensor products under the strong operator
topology [5, Theorem 1 part b] gives the general case).
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From now on we assume the non-Blaschke condition, so that P = I. Then
Rc,k = I+FPkF

∗ → I+FF
∗ = Rc in the strong operator topology. It follows from [3,

Theorem 7.6.1] that R−1
c,k → R−1

c in the strong operator topology. By sequential
continuity of the strong operator topology we then have

Xk = Ψ∗PkR−1
c,kPkΨ → Ψ∗R−1

c Ψ = X,

in the strong operator topology.

If X is compact, then (since Rc is self-adjoint and invertible), Ψ is compact.
As above we have that PkR−1

c,kPk converges in the strong operator topology to R−1
c .

From [9, Theorem A.2 part a] (which is a slight modification of [4, Thm. III.6.3]) we
then obtain that PkR−1

c,kPkΨk converges to R−1
c Ψ in the uniform operator topology.

It follows that Xk → X in the uniform operator topology. The argument for Schatten
class convergence is similar (see e.g. [9, Appendix A] for the needed relation between
Schatten class membership of X and of Ψ).

6. Comparison with the rational Krylov–Galerkin method. More gener-
ally than in the introduction (to allow for non-distinct αj), we choose the Galerkin
space

(6.1) Xk := Ψ∗(Kk(α)⊗ C
p),

which we characterized in terms of rational Krylov subspaces for A∗ in Lemma 2.12
and Remark 2.13. We recall that in this section we make a dissipativity assumption
on A (rather than just a stability assumption as done previously) so as to ensure
stability of the Galerkin approximation Aq.

Lemma 6.1. Let A ∈ C
n×n be dissipative (i.e. A + A∗ < 0), B ∈ C

n×m,
C ∈ C

p×n. Let Xk be the rational Krylov–Galerkin trial space from (6.1). For
x0 ∈ Xk and u ∈ L2(0,∞;Cm), let yq be the output of (1.18) and let y be the output
of (1.3). Let Pk : L2(0,∞;Cp) → L2(0,∞;Cp) be the orthogonal projection onto
Kk(α)⊗ C

p. Then Pky = Pkyq.

Proof. We first note that Pky = Pkyq holds if and only if for all v ∈ C
p and

j = 1, . . . , k

〈y, ψjv〉 = 〈yq, ψjv〉,

where (ψj)
k
j=1 is the Takenaka–Malmquist system defined in Definition 2.6. This in

turn is equivalent to

〈y, ϕjv〉 = 〈yq, ϕjv〉,

where (ϕj)
k
j=1 is the convolution system defined in Definition 2.4.

Let Ψ be the output map and F be the input-output map of (1.3). For Ψq the
output map and Fq the input-output map of (1.18), we have y = Ψx0 + Fu and
yq = ΨqW

∗
q x0 + Fqu so that the above equalities are implied by

(6.2) Ψ∗(ϕjv) = WqΨ
∗
q(ϕjv), F

∗(ϕjv) = F
∗
q(ϕjv).

Both of these equalities are implied by

(6.3) Φt(ϕjv) = WqΦ
t
q(ϕjv),
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for all t ≥ 0, where Φt is defined in (2.5) and Φt
q is defined similarly. The first

equation in (6.2) is obtained by putting t = 0 in (6.3) and the second equality in (6.2)
is obtained from

F
∗
q(ϕjv) = t �→ B∗

qΦ
t
q(ϕjv) = t �→ B∗WqΦ

t
q(ϕjv) = t �→ B∗Φt(ϕjv) = F

∗(ϕjv).

We now show that (6.3) is implied by

(6.4) W ∗
q Φ

t(ϕjv) = Φt
q(ϕjv).

This can be seen by applying Wq to (6.4) to obtain

WqW
∗
q Φ

t(ϕjv) = WqΦ
t
q(ϕjv),

using that WqW
∗
q is the orthogonal projection onto Xk and that Φt(ϕjv) ∈ Xk by

Proposition 2.14 c), so that (6.2) is obtained as desired.
We now prove (6.4) by induction. By Proposition 2.14 a) we have (α1−A∗)−1C∗v ∈

Xk. Using that WqW
∗
q is the orthogonal projection onto Xk we then obtain

W ∗
q (α1 −A∗)WqW

∗
q (α1 −A∗)−1C∗v = W ∗

q C
∗v.

Using that W ∗
q Wq = I and the definitions of Aq and Cq this gives

(α1 −Aq)W
∗
q (α1 −A∗)−1C∗v = C∗

q v.

It follows that

W ∗
q (α1 −A∗)−1C∗v = (α1 −Aq)

−1C∗
q v.

We have by Corollary 2.10 a)

Φt(ϕ1v) = (α1 −A∗)−1C∗vϕ1(t), Φt
q(ϕ1v) = (α1 −A∗

q)
−1C∗

q vϕ1(t),

so that by the earlier computations we have W ∗
q Φ

t(ϕ1v) = Φt
q(ϕ1v), as desired.

Utilizing ϕj rather than ϕ1 we similarly obtain

W ∗
q (αj −A∗)−1C∗v = (αj −A∗

q)
−1C∗

q v.

By Corollary 2.10 a), to show W ∗
q Φ

t(ϕjv) = Φt
q(ϕjv) it therefore only remains to

show that

(6.5) W ∗
q (αj −A∗)−1Φt(ϕj−1v) = (αj −A∗

q)
−1Φt

q(ϕj−1v).

Define

z := (αj −A∗)−1Φt(ϕj−1v).

Since Φt(ϕj−1v) ∈ Xj−1 by Proposition 2.14 c) and using Proposition 2.14 b), we
have z ∈ Xj ⊂ Xk. Since WqW

∗
q is the orthogonal projection onto Xk we then have

z = WqW
∗
q z and WqW

∗
q Φ

t(ϕj−1v) = Φt(ϕj−1v). We therefore have

WqW
∗
q (αj −A∗)WqW

∗
q z = Φt(ϕj−1v),

which by definition of Aq and the fact that W ∗
q Wq = I is equivalent to

Wq(αj −A∗
q)W

∗
q z = Φt(ϕj−1v).
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Applying W ∗
q and using that W ∗

q Wq = I we obtain

(αj −A∗
q)W

∗
q z = W ∗

q Φ
t(ϕj−1v),

which gives

W ∗
q z = (αj −A∗

q)
−1W ∗

q Φ
t(ϕj−1v).

By the induction hypothesis we have W ∗
q Φ

t(ϕj−1v) = Φt
q(ϕj−1v); using this and the

definition of z we obtain from the above

W ∗
q (αj −A∗)−1Φt(ϕj−1v) = (αj −A∗

q)
−1Φt

q(ϕj−1v),

which is (6.5).
Remark 6.2. Lemma 6.1 in particular implies that applying Riccati-ADI with pa-

rameters (αj)
k
j=1 to the original system and applying it to the rational Krylov–Galerkin

approximation (with Galerkin space obtained using the same parameters (αj)
k
j=1) gives

the same answer.
Theorem 6.3. Let A ∈ C

n×n be dissipative (i.e. A + A∗ < 0), B ∈ C
n×m,

C ∈ C
p×n. Let k ∈ N, (αj)

k
j=1 be such that Re(αj) > 0 for all j, let Xk be the operator

obtained by Riccati-ADI and let X̃k ∈ C
n×n be the operator obtained from solving

the Riccati equation for the rational Krylov–Galerkin approximation with parameters
(αj)

k
j=1. Then

Xk ≤ X̃k.

Proof. For x0 ∈ Xk, u ∈ L2(0,∞;Cm), y the output of the original system (1.3),
yq the output of the rational Krylov–Galerkin system (1.18), and Pk : L2(0,∞;Cp) →
L2(0,∞;Cp) the orthogonal projection onto Kk(α)⊗ C

p, we have from Lemma 6.1

‖u‖2L2(0,∞;Cm) + ‖Pky‖2L2(0,∞;Cp) = ‖u‖2L2(0,∞;Cm) + ‖Pkyq‖2L2(0,∞;Cp)

≤ ‖u‖2L2(0,∞;Cm) + ‖yq‖2L2(0,∞;Cp).

By infimizing over u ∈ L2(0,∞;Cm) we conclude that for x0 ∈ Xk

(6.6) 〈Xkx0, x0〉 ≤ 〈X̃kx0, x0〉.

We note that Rc,k maps Kk(α)⊗C
p into itself and that hence R−1

c,k maps Kk(α)⊗C
p

into itself as well. Since ΨkC
n ⊂ Kk(α)⊗C

p, it follows that R−1
c,kΨkC

n ⊂ Kk(α)⊗C
p

and therefore Ψ∗
kR−1

c,kΨkC
n ⊂ Xk. So Xk maps Cn into Xk. We conclude that

〈Xkx0, x0〉 = 0 for x0 ∈ X
⊥
k .

By definition of X̃k we also have 〈X̃kx0, x0〉 = 0 for x0 ∈ X ⊥
k . Combined with (6.6)

this gives the desired conclusion.
Theorem 6.4. Let A ∈ C

n×n be dissipative (i.e. A + A∗ < 0), B ∈ C
n×m,

C ∈ C
p×n. Let k ∈ N, (αj)

k
j=1 be such that Re(αj) > 0 for all j, let Xk be the operator

obtained by Riccati-ADI and let X̃k ∈ C
n×n be the operator obtained from solving

the Riccati equation for the rational Krylov–Galerkin approximation with parameters



24 A. MASSOUDI, M.R. OPMEER AND T. REIS

(αj)
k
j=1. Let XG

q ∈ C
q×q be the nonnegative definite solution of the Riccati equation

for the rational Krylov–Galerkin approximation. We have

Xk = X̃k,

if α = −σ(Aopt
q ), where Aopt

q := Aq−BqB
∗
qX

G
q and eigenvalues are repeated according

to algebraic multiplicity. The converse holds provided that XG
q is positive definite.

Proof. By standard optimal control theory, the optimal output of (1.2) & (1.18)
for x0 ∈ Xk is given by:

(6.7) yoptq (t) = Cqe
Aopt

q tx0.

So if α = −σ(Aopt
q ), we have yoptq ∈ Kk(α) ⊗ C

p. It then follows that Pky
opt
q = yoptq

and from the proof of Theorem 6.3 we then obtain that 〈Xkx0, x0〉 = 〈X̃kx0, x0〉. In
that same proof it was already remarked that equality holds for x0 ∈ X ⊥

k (both sides

being equal to zero), so that we have Xk = X̃k.

For the converse, we see from the proof of Theorem 6.3 that Xk = X̃k implies
that yoptq ∈ Kk(α) ⊗ C

p for all initial conditions x0 ∈ Xk. From that proof we
also see, by infimizing over u ∈ Kk(α) ⊗ C

m instead and using Corollary 4.3, that
uopt
q ∈ Kk(α)⊗C

m. Let x0 be an eigenvector of Aopt
q with corresponding eigenvalue λ.

Then, using (6.7) and the similar formula uopt
q (t) = −B∗

qX
G
q eA

opt
q tx0 for the optimal

control, we have

yoptq (t) = Cqx0e
λt, uopt

q (t) = −B∗
qX

G
q x0e

λt.

Since XG
q is positive definite it follows that at least one of Cqx0 �= 0 and B∗

qX
G
q x0 �= 0

holds true (since otherwise the optimal cost for initial condition x0 would be zero).
We conclude that t �→ eλt is in Kk(α), which implies that −λ ∈ α. If Aopt

q is not
diagonalizable, then a similar argument using generalized eigenvectors shows that an
eigenvalue must occur in the sequence α according to its algebraic multiplicity.
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7. Algorithm.

Algorithm 1 ADI iteration for Riccati equations.

Input: A ∈ C
n×n a stable matrix, B ∈ C

n×m, C ∈ C
p×n and shift parameters

α1, . . . , αk ∈ C with Re(αi) > 0.
Output: Sk ∈ C

kp×n, Fk ∈ C
kp×km such that S∗

k(Ikp +FkF
∗
k )

−1Sk ≈ X, where X
is the unique nonnegative definite solution of the algebraic Riccati equation

A∗X +XA+ C∗C −XBB∗X = 0.

1: V1 = (α1 −A∗)−1C∗

2: S1 =
√

2Re(α1) · V ∗
1

3: Q1 =
√

2Re(α1) · V ∗
1 B

4: L1 = 1√
2Re(α1)

5: F1 = Q1L1

6: for i = 2, 3, . . . , k do

7: Vi = Vi−1 − (αi + αi−1) · (αi −A∗)−1Vi−1

8: Si = [S∗
i−1 ,

√
2Re(αi) · Vi ]

∗

9: Qi = [Qi−1 ,
√
2Re(αi) · V ∗

i B ]

9: γi :=
√

Re(αj)
Re(αj−1)

10: Mi,1 :=

⎡⎢⎣
1√

2Re(α1)

. . .
1√

2Re(αi)

⎤⎥⎦, Mi,2 =

⎡⎣ α1+αi

α1−αi α2+αi

. . .
αi−1−αi αi+αi

⎤⎦,
Mi,3 =

[
1 ... 1

. . .
...
1

]
, Mi,4 =

[
0 I
1 0

]
, Mi,5 =

⎡⎢⎣−
√

2Re(α1)

. . .
−
√

2Re(αi−1)

1

⎤⎥⎦
11: Mi = M−1

i,1 M
−1
i,2 M

−1
i,3 M

−1
i,4 M

−1
i,5

12: Li =

[
γiLi−1 0

0 0

]
−Mi

[
Li−1 0
0 1

] [
γi(αi + αi−1)I 0

[0, γi] −1

]
13: Fi =

[
[Fi−1, 0]

Qi

(
Li ⊗ Im

)]
14: end for

Remark 7.1. For the optimal control problem (1.2) subject to

(7.1) Eẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t),

with invertible E ∈ C
n×n, the above procedure can be done without explicit inversion

of E: We have to make the replacements
1: V1 = (α1E −A∗)−1C∗

7: Vi = Vi−1 − (αi + αi−1) · (αiE −A∗)−1EVi−1

in the above algorithm (cf. [7, Remark 3.3]).
Remark 7.2. The choice of shift parameters is essential for the speed of conver-

gence. In [7, Section 3.2] it is stated that a choice based on the stable eigenvalues of
the Hamiltonian

H =

[
A −BB∗

−C∗C −A∗

]
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is effective. Our approach gives an alternative interpretation of this fact as follows.
Since the stable eigenvalues of the Hamiltonian H are the eigenvalues of A− BB∗X
[15, Chap. 13], we have, in case where the first n shifts are (counted by multiplicity)
the stable eigenvalues of H, that the output corresponding to the optimal control for
the optimal control problem (1.2) & (1.3) fulfills

yopt ∈ Kn(α)⊗ C
p.

As a consequence, this particular choice gives rise to the fact that our projected opti-
mal control problem (1.10) coincides with the original optimal control problem, which
gives X = Xn (for this particular choice of shift parameters).
In [7, Section 5] the following reasonable approach to shift parameter selection is pro-
posed. Choose N ∈ N. Then perform N iterations with N shift parameters chosen by
using the method of Wachspress [13] on the basis of the eigenvalues of A. Thereafter,
determine N Wachspress parameters on the basis of the eigenvalues of A−BB∗XN ,
and perform the next N iterations with these shift parameters. After that, compute N
Wachspress parameters on the basis of the eigenvalues of A−BB∗X2N , and perform
the next N iterations with these shift parameters; repeat this approach any N steps.
By convergence of (Xk) to X (established in Section 5), these parameters converge to
the eigenvalues of A−BB∗X.
The efficient numerical computation of dominant stable eigenvalues of a Hamiltonian
matrix seems not to have been explored so far. The ADI method for Riccati equations
would be an application for this research area.

8. Numerical Results. We present two numerical examples to show the ap-
plicability of our algorithm and to demonstrate the expected performance of the
Riccati-ADI iteration in terms of monotonicity and convergence behavior. All the
calculations are done using MATLAB 7.10.0 (R2010a).

8.1. Two Dimensional Convection-Diffusion Equation. Let Ω := [0, 1] ×
[0, 1] be the unit square with boundary ∂Ω := Γ1∪Γ2∪Γ3∪Γ4, where Γ1 := {0}×[0, 1],
Γ2 := [0, 1]× {0}, Γ3 := [0, 1]× {1}, and Γ4 := {1} × [0, 1].

We consider the two-dimensional convection-diffusion equation

(8.1) ∂x
∂t
(ξ, t) = Δx(ξ, t) + b�∇x(ξ, t), (ξ, t) ∈ Ω× R≥0,

with Robin boundary conditions

u(t) = ν(ξ)�∇x(ξ, t) + αx(ξ, t), (ξ, t) ∈ (Γ1 ∪ Γ2)× R≥0,

0 = ν(ξ)�∇x(ξ, t) + αx(ξ, t), (ξ, t) ∈ (Γ3 ∪ Γ4)× R≥0.

and two-dimensional output

y(t) =

[∫
Γ1

x(ξ, t)dσξ∫
Γ3

x(ξ, t)dσξ

]
,

where σξ denotes the surface measure and ν(ξ) denotes the outward normal.
We consider b = [ 1010 ] and set α = 1. To discretize the PDE (8.1), we apply a finite

element discretization with uniform triangular elements of fixed size h = 1
N−1 , where

N ∈ N is the number of points in each coordinate direction. In addition, we define the
subspace Vh ⊂ H1(Ω) using piecewise-linear basis functions. As a result, we obtain a
finite dimensional dynamical system (7.1) with state-space dimension n = N2. The
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matrix E ∈ R
n×n is a symmetric positive definite mass matrix, A ∈ R

n×n is a non-
symmetric stiffness matrix, B ∈ R

n×1 is the input matrix, and C ∈ R
2×n the output

matrix.

In order to find an approximate solution of the corresponding algebraic Riccati
equation, we apply Algorithm 1 with the modifications in Remark 7.1.

The choice of the shift parameters has a major effect on the convergence speed of
the Riccati-ADI algorithm. In this example, we show that if the shift parameters do
not satisfy the non-Blaschke condition (1.17), then the matrix Xk obtained by Algo-
rithm 1 may converge to a nonnegative matrix which is not the solution of algebraic
Riccati equation corresponding to the system (7.1) (cf. Theorem 5.1). To this end,
we choose the following two different sets of shift parameters to use in our example.

1. The first set of shift parameters is chosen using Penzl’s heuristic procedure
[10] on the matrix pencil λE − A. By this choice we generate a set of 10
shift parameters, which we re-use every 10 iterations. We sort these 10 shift
parameters in an increasing order with respect to the values of their real parts
in order to obtain a smooth convergence in Algorithm 1. This cyclic choice
of shift parameters satisfies the non-Blaschke condition (1.17).

2. As a second set of shift parameters, we choose the infinite sequence pi = i3,
i = 1, 2, . . ., for which the non-Blaschke condition is not satisfied.

We have performed the simulation using several values of the state space di-
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Figure 1. Comparison of two sets of shift parameters for Riccati-ADI: convection-diffusion

equation with the state space dimension n = 3600
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mension and with the two sets of shift parameters which we introduced above. At
each iteration k, we observe the residual norm using the approach proposed in [7,
Sec. 3.3]. That is, we exploit the low-rank form of the approximate solution Xk =
Sk(I+FkF

∗
k )

−1S∗
k to calculate the residual norm. Figure 1 shows the absolute residual

norm with respect to the iteration for problem dimension n = 3600.

Considering Figure 1, we observe that by choosing the second set of shift pa-
rameters, pi = i3, our sequence converges to a matrix which is not the solution of
the corresponding algebraic Riccati equation. In addition, with a tolerance of 10−14

on the residual norm, the first choice of shift parameters provides convergence to
the desired solution in less than 45 iterations for state space dimensions satisfying
n ≤ 3600. We use the first set of shift parameters to continue with further analyses
in our example.

In order to illustrate Theorem 6.3, we have implemented the rational Krylov
subspace method (RKSM) based on [16, 17] and compared the iteration history of
this method with that of Riccati-ADI by using the same set of shift parameters for
both algorithms. Specifically, we use the first set of shift parameters which we have
already computed in the previous analysis. At each iteration k, we compute the
traces of Xk (the solution obtained using Riccati-ADI) and X̃k (the solution obtained

using RKSM) denoted by tr (Xk) and tr
(
X̃k

)
, respectively. The trace of Xk (and
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Figure 2. Trace of the solution using RKSM and Riccati-ADI: convection-diffusion equation

with the state space dimension n = 3600
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similarly that of X̃k) can be computed efficiently as follows. We compute the Cholesky
factorization of Ikp + FkF

∗
k = U∗

kUk and therefore we obtain

tr (Xk) = tr
(
Sk(U

∗
kUk)

−1S∗
k

)
= tr

(
SkU

−1
k U−∗

k S∗
k

)
= ‖SkU

−1
k ‖2

F
,

where ‖ · ‖F denotes the Frobenius norm.

Figure 2 illustrates the traces of Xk and X̃k at each iteration. We observe that

for all k ∈ N there holds tr (Xk) ≤ tr
(
X̃k

)
(consistent with Theorem 6.3). Note

that in our example, by setting a tolerance of 10−9, RKSM terminates in less than 23
iterations for state space dimensions satisfying n ≤ 3600. In addition, from Figure 3,
we observe that tr (Xk) is a non-decreasing function of the iteration k. This illustrates
the monotonicity of Riccati-ADI which we have proven in Theorem 4.4.

8.2. Euler-Bernoulli beam. As a second example, we consider the Euler-
Bernoulli beam problem taken from [18]. Discretization of this PDE gives small
enough matrices for a direct method for the solution of Riccati equations to be uti-
lized; this allows for comparison of Riccati ADI with this “true solution”. For ease
of reference, we briefly present the problem in the following. The beam is clamped
at one end (r = 0) and is free to vibrate at the other end (r = R); the control acts
at the free end. The deflection of the beam from its rigid body motion at time t and
position r is denoted by w(r, t). As a result, the corresponding partial differential
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Figure 3. Monotonicity of Riccati-ADI: convection-diffusion equation with the state space

dimension n = 3600
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equation model with Kelvin-Voigt and viscous damping is

(8.2) ρwtt(r, t) + Cvwt(r, t) +
∂2

∂r2
[CdIbwrrt(r, t) + EIbwrr(r, t)] = 0,

with boundary conditions and controls

(8.3)

w(0, t) = 0,

wr(0, t) = 0,

[CdIbwrrt(r, t) + EIbwrr(r, t)]r=R = u1(t),

[CdIbwrrrt(r, t) + EIbwrrr(r, t)]r=R = u2(t).

where we have used the notations wt :=
∂
∂t
w and wr := ∂

∂r
w. In addition, we consider

a two dimensional boundary observation at the free end (r = R) described by

y(t) =

[
wt(R, t)
wrt(R, t)

]
.

The values of the physical parameters are chosen as in Table 1. These values coincide
with [18, Table 11], with modifications in the values of Cv and Cd (instead of the
values Cv = 2 and Cd = 5× 108 from [18, Table 11], we use Cv = 20 and Cd = 108).
We partition the interval [0, R] into N uniform subintervals and consider a finite

0 5 10 15 20 25 30
3.8

3.9

4

4.1

4.2

4.3

4.4
x 105

Iteration

Tr
ac

e

trace of X obtained from MATLAB routine "care"

trace of Xk (Riccati−ADI + Penzl shifts based on λ E−A+BB*Xk)

Figure 4. Trace of the solution using Riccati-ADI and the “care” routine in MATLAB: Euler-

Bernoulli beam with the state space dimension n = 96
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Parameter Value

E 2.68× 1010 N/m2

Ib 1.64× 10−9 m4

ρ 1.02087
Cv 20 Ns/m2

Cd 108 Ns/m2

L 1 m

Table 1

Physical parameters of the Euler-Bernoulli beam

element discretization of (8.2) using standard cubic B-splines. As a result, we obtain
the following finite dimensional dynamical system in H2N ×H2N :

(8.4)
Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

with the state-space dimension n = 4N . The matrix E ∈ R
n×n is a symmetric positive

definite mass matrix, A ∈ R
n×n is a non-symmetric stiffness matrix, B ∈ R

n×2 is the
input matrix, and C ∈ R

2×n the output matrix.
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obtained by the “care” routine in MATLAB: Euler-Bernoulli beam with the state space dimension

n = 96
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We consider N = 24 and solve the algebraic Riccati equation corresponding to the
system (8.4) once using the “care” routine of MATLAB and once using Algorithm 1
with the modifications in Remark 7.1. The shift parameters are chosen similarly to
the first set of parameters in the previous example. That is, we apply Penzl’s heuristic
method to the matrix pencil λE −A. By this procedure we generate a set of 20 shift
parameters, which we re-use every 20 iterations. For this example, we sort these
20 shift parameters in a decreasing order with respect to the values of their real parts
in order to obtain a smooth convergence in Algorithm 1. Note that this cyclic set of
shift parameters satisfies the non-Blaschke condition (1.17).

We denote by X the solution obtained from the “care” routine and we use it as a
reference for the comparisons with the solution obtained by Algorithm 1 (denoted by
Xk). Also note that the modifications in the values of Cv and Cd that we mentioned
earlier, ensure that the associated Hamiltonian pencil has eigenvalues far from the
imaginary axis and therefore we obtain a more accurate solution using the “care”
routine in MATLAB.

In order to illustrate Theorem 4.4, we consider the traces of X and Xk denoted
respectively by tr (X) and tr (Xk). Note that tr (Xk) can be computed efficiently
by considering the Cholesky decomposition of Ikp + FkF

∗
k as we have already shown

in the previous example. Figure 4 shows that tr (Xk) ≤ tr (X) for all k ∈ N. In

addition, we observe the relative error
‖Xk −X‖2

‖X‖2
at every iteration to show the

convergence behavior of the Riccati-ADI algorithm. Figure 5 shows the relative error
of the solutions obtained by Algorithm 1 with respect to the solution obtained by the
“care” routine in MATLAB.
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