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AN EFFICIENT POLICY ITERATION ALGORITHM FOR
DYNAMIC PROGRAMMING EQUATIONS ∗

ALESSANDRO ALLA†, MAURIZIO FALCONE‡, DANTE KALISE§

Abstract. We present an accelerated algorithm for the solution of static Hamilton-Jacobi-
Bellman equations related to optimal control problems. Our scheme is based on a classic policy
iteration procedure, which is known to have superlinear convergence in many relevant cases pro-
vided the initial guess is sufficiently close to the solution. This limitation often degenerates into a
behavior similar to a value iteration method, with an increased computation time. The new scheme
circumvents this problem by combining the advantages of both algorithms with an efficient coupling.
The method starts with a coarse-mesh value iteration phase and then switches to a fine-mesh policy
iteration procedure when a certain error threshold is reached. A delicate point is to determine this
threshold in order to avoid cumbersome computations with the value iteration and at the same time,
to ensure the convergence of the policy iteration method to the optimal solution. We analyze the
methods and efficient coupling in a number of examples in different dimensions, illustrating their
properties.

Key words. policy iteration, dynamic programming, semi-Lagrangian schemes, Hamilton-
Jacobi equations, optimal control
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1. Introduction. The numerical solution of optimal control problems is a cru-
cial issue for many industrial applications such as aerospace engineering, chemical
processing, power systems, and resource economics, among many others. In some
cases the original problem comes from a different setting, e.g. when one has to fit a
given set of data or has to solve a shape optimization problem, but has been reformu-
lated in terms of a control problem for an appropriate dynamic and cost functional.
The typical goal is then to compute an optimal trajectory for the controlled system
and its corresponding optimal control. In the framework of open-loop controls the
classical solution is based on the Pontryagin Maximum Principle which leads to the
solution of a two-point boundary value problem for the coupled state/costate sys-
tem. The numerical solution can be obtained via a shooting method. Despite its
simplicity and mathematical elegance, this approach is not always satisfactory be-
cause the initialization of the shooting method can be a difficult task, mainly for the
costate variables, besides having the usual limitations of open-loop controls. It is
well known that the Dynamic Programming (DP) approach introduced by Bellman
[5] produces optimal controls in feedback form, looking more appealing in terms of
online implementations and robustness. However, the synthesis of feedback controls
require the previous knowledge of the value function and this is the major bottleneck
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SAPIENZA - UNIVERSITÀ DI ROMA, P.LE ALDO MORO 2, 00185 ROME, ITALY.
FALCONE@MAT.UNIROMA1.IT
§JOHANN RADON INSTITUTE FOR COMPUTATIONAL AND APPLIED MATHEMAT-

ICS, ALTENBERGERSTRAßE 69, 4040 LINZ, AUSTRIA. DANTE.KALISE@OEAW.AC.AT
∗The authors wish to acknowledge the support of the following grants: AFOSR Grant no. FA9550-

10-1-0029, ITN - Marie Curie Grant n. 264735-SADCO , START-Project Y432-N15 “Sparse Approx-
imation and Optimization in High-Dimensions” and SAPIENZA 2009 “Analisi ed approssimazione
di modelli differenziali nonlineari in fluidodinamica e scienza dei materiali”. The authors also wish
to thank the CASPUR Consortium for its technical support.

1



2

for the application of DP. In fact, the value function of an optimal control prob-
lem is known to be only Lipschitz continuous even when the data is regular. The
characterization of the value function is obtained in terms of a first order nonlin-
ear Hamilton-Jacobi-Bellman (HJB) partial differential equation. In the last twenty
years, the DP approach has been pursued for all the classical control problems in the
framework of viscosity solution introduced by Crandall and Lions in the 80’s (see [4]
for a comprehensive illustration of this approach). Moreover, several approximation
schemes have been proposed for this class of equations, ranging from finite differences
to semi-Lagrangian and finite volume methods. Some of these algorithms converge
to the value function but their convergence is slow. The so-called curse of the di-
mensionality, namely the fact that the dimension of the partial differential equation
characterizing the value function increases as the dimension of the state space does,
constitutes a major computational challenge towards a practical implementation of
numerical algorithms for optimal control design based on viscosity solutions of HJB
equations.

Our main contribution in this paper is a new accelerated algorithm which can produce
an accurate approximation of the value function in a reduced amount of time in
comparison to the currently available methods. Furthermore, the proposed scheme
can be used in a wide variety of problems connected to static HJB equations, such
as infinite horizon optimal control, minimum time control and some cases of pursuit-
evasion games. The new method couples two ideas already existing in the literature:
the value iteration method (VI) and the policy iteration method (PI) for the solution
of Bellman equations. The first is known to be slow but convergent for any initial
guess, while the second is known to be fast when it converges (but if not initialized
correctly, convergence might be as slow as the value iteration). The approach that we
consider relates to multigrid methods (we refer to Santos [27] for a brief introduction to
subject in this context), as the coupling that we introduce features an unidirectional,
two-level mesh. The work by Chow and Tsitsiklis [13] exploits a similar idea with a
value iteration algorithm. However, as far as we know the efficient coupling between
the two methods has not been investigated.

To set this paper into perspective, we must recall that algorithms based on the itera-
tion in the space of controls (or policies) for the solution of HJB equations has a rather
long history, starting more or less at the same time of dynamic programming. The PI
method, also known as Howard’s algorithm [21], has been investigated by Kalaba [22]
and Pollatschek and Avi-Itzhak [25] who proved that it corresponds to the Newton
method applied to the functional equation of dynamic programming. Later, Puter-
man and Brumelle [26] have given sufficient conditions for the rate of convergence to
be either superlinear or quadratic. More recent contributions on the policy iteration
method and some extensions to games can be found in Santos and Rust [29] and
Bokanowski et al. [7]. Results on its numerical implementation and diverse hybrid al-
gorithms related to the proposed scheme have been reported in Capuzzo-Dolcetta and
Falcone [11], González and Sagastizábal [20], Grüne [19] and in the recent monograph
by Falcone and Ferretti [15].

Finally, we should mention that an acceleration method based on the the set of sub-
solutions has been studied in Falcone [14] (see also Tidball and González [32] for a
specific application to the Isaacs equation). More in general, dealing with acceleration
methods for Hamilton-Jacobi-Bellman equations, we should also mention approaches
based on domain decomposition algorithms as in Falcone et al. [16] and more re-
cently by Cacace et al. [9], on geometric considerations as in Botkin, et al. [8], and
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those focusing on the localization of numerical schemes which leads to Fast Marching
Methods. This approach has shown to be very effective for level-set equations related
to front propagation problems (see e.g. the book by Sethian [30]), i.e. eikonal type
equations. At every iteration, the scheme is applied only on a subset of nodes (lo-
calization) which are the nodes close to the front, the so-called narrow band. The
remaining part of the grid is divided into two parts: the accepted region, where the
solution has been already computed, and the far region where the solution will be
computed little by little in the following iterations. At every iteration, one node is
accepted and moved from the narrow band to the accepted region; the narrow band
is then updated adding the first neighbors of that node (which before where in the
far region). For eikonal-type of equations these methods converge in finite number of
iterations to the correct viscosity solution and have a very low complexity (typically
O(N ln(N)), where N is the cardinality of the grid). More recently, several efforts
have been made to extend these methods to more complex problems where the front
propagation is anisotropic [31] and/or to more general Hamilton-Jacobi equations as
in [3]. However, their implementation is rather delicate and their convergence to
the correct viscosity solution for general Hamilton-Jacobi equations is still an open
problem; we refer to [10] for a an extensive discussion and several examples of these
limitations.
The paper is organized as follows. In Section 2, we introduce some basic notions for
optimal control synthesis by the dynamic programming principle. Section 3 contains
the core of the proposed accelerated method and discuss practical implementation
details. Finally, Section 4 shows our numerical results on a number of different ex-
amples concerning infinite horizon optimal control, minimum time control, and some
further extensions towards the optimal control of partial differential equations. In
these series of tests we discuss several properties of the proposed scheme and perform
comparisons with the different techniques presented in the article.

2. Dynamic programming in optimal control and the basic solution
algorithms. In this section we will summarize the basic results for the two methods
as they will constitute the building blocks for our new algorithm. The essential
features will be briefly sketched, and more details can be found in the classical books
by Bellman [5], Howard [21] and for a more recent setting in the framework of viscosity
solutions, in [11] and [4].
Let us first present the method for the classical infinite horizon problem. Let the
dynamics be given by {

ẏ(t) = f(y(t), α(t))
y(0) = x

(2.1)

where y ∈ Rd, α ∈ Rm and α ∈ A ≡ {a : R+ → A, measurable}. If f is Lipschitz
continuous with respect to the state variable and continuous with respect to (y, α), the
classical assumptions for the existence and uniqueness result for the Cauchy problem
(2.1) are satisfied. To be more precise, the Carathéodory theorem (see [17] or [4])
implies that for any given control α(·) ∈ A there exists a unique trajectory y(·;α)
satisfying (2.1) almost everywhere.
Let us introduce the cost functional J : A → R which will be used to select the
“optimal trajectory”. For infinite horizon problem the functional is

Jx(α(·)) =

∫ ∞
0

g(y(s), α(s))e−λsds , (2.2)
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where g is Lipschitz continuous in both arguments and λ > 0 is a given parameter.
The function g represents the running cost and λ is the discount factor which allows
to compare the costs at different times by rescaling the costs at time 0. From the
technical point of view, the presence of the discount factor guarantees that the integral
is finite whenever g is bounded, i.e. ||g||∞ ≤ Mg. Let us define the value function of
the problem as

v(x) = inf
α(·)∈A

Jx(α(·)) . (2.3)

It is well known that passing to the limit in the Dynamic Programming Principle one
can obtain a characterization of the value function in terms of the following first-order
nonlinear Bellman equation

λv(x) + max
a∈A
{−f(x, a) ·Dv(x)− g(x, a)} = 0, for x ∈ Rd . (2.4)

Several approximation schemes on a fixed grid G have been proposed for (2.4). Here
we will use a semi-Lagrangian approximation based on a Discrete Time Dynamic
Programming Principle. This leads to

v∆t(x) = min
a∈A
{(1− λ∆t)v∆t (x+ ∆tf (x, a)) + ∆tg (x, a)} , (2.5)

where v∆t(x) converges to v(x) when ∆t→ 0. A natural way to solve (2.5) is to write
it in fixed point form

Vi = min
a∈A
{(1− λ∆t)I[V ] (xi + ∆tf (xi, a)) + ∆tg (xi, a)} , i = 1, . . . , NG (2.6)

where {xi}NG
i=1 are the grid nodes, Vi is the approximate value for v(xi) and I[V ] : Rd →

R represents an interpolation operator defining, for every point x, the polynomial
reconstruction based on the values Vi (see [4, Appendix A] for more details). Finally,
one obtains the following algorithm:

Algorithm 1: Value Iteration for infinite horizon optimal control (VI)

Data: Mesh G, ∆t, initial guess V 0, tolerance ε.

while ||V k+1 − V k|| ≥ ε do
forall the xi ∈ G do

Solve: V k+1
i = min

a∈A
{(1− λ∆t)I

[
V k
]

(xi + ∆tf (xi, a)) + ∆tg (xi, a)}
(2.7)end

k = k + 1
end

Here V ki represents the values at a node xi of the grid at the k-th iteration; without
loss of generality, throughout this paper we will assume that the numerical grid G is a
regular equidistant array of points with mesh spacing denoted by ∆x, and we consider
a multilinear interpolation operator. Extensions to nonuniform grids and high-order
interpolants can be performed in a straightforward manner.
Algorithm 1 is referred in the literature as the value iteration method because, starting
from an initial guess V 0, it modifies the values on the grid according to the nonlinear
rule (2.7). It is well-known that the convergence of the value iteration can be very
slow, since the contraction constant 1− λ∆t is close to 1 when ∆t is close to 0. This
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means that a higher accuracy will also require more iterations. Then, there is a need
for an acceleration technique in order to cut the link between accuracy and complexity
of the value iteration.
For sake of clarity, the above framework has been presented for the infinite horizon
optimal control problem. However, similar ideas can be extended to other classical
control problems with small changes. Let us mention how to deal with the minimum
time problem which we will use in the final section on numerical tests.
In the minimum time problem, one has to drive the controlled dynamical system (2.1)
from its initial state to a given target T . Let us assume that the target is a compact
subset of Rd with non empty interior and piecewise smooth boundary. The major
difficulty dealing with this problem is that the time of arrival to the target starting
from the point x

t(x, α(·)) :=

{
inf
α∈A
{t ∈ R+ : y(t, α(·)) ∈ T } if y(t, α(t)) ∈ T for some t,

+∞ otherwise,
(2.8)

can be infinite at some points. As a consequence, the minimum time function defined
as

T (x) = inf
α∈A

t(x, α(·)) (2.9)

is not defined everywhere unless some controllability assumptions are introduced. In
general, this is a free boundary problem where one has to determine at the same time,
the couple (T,Ω), i.e. the minimum time function and its domain. Nevertheless, by
applying the Dynamic Programming Principle and the so-called Kruzkhov transform

v(x) ≡
{

1− exp(−T (x)) for T (x) < +∞
1 for T (x) = +∞ (2.10)

the minimum time problem is characterized in terms of the unique viscosity solution
of the BVP {

v(x) + sup
a∈A
{−f(x, a) ·Dv(x)} = 1 in R\T

v(x) = 0 on ∂T ,
(2.11)

where R stands for the set of point in the state space where the time of arrival is
finite. Then, the application of the semi-Lagrangian method presented for the infinite
horizon optimal control problem together with a value iteration procedure leads to
following iterative scheme:

Algorithm 2: Value Iteration for minimum time optimal control (VI)

Data: Mesh G, ∆t, initial guess V 0, tolerance ε.
Set: Vi = 0, for all xi ∈ G ∩ T
while ||V k+1 − V k|| ≥ ε do

forall the xi ∈ G \ T do

Solve: V k+1
i = min

a∈A
{e−∆tI

[
V k
]

(xi + ∆tf (xi, a)) + 1− e−∆t} (2.12)

end
k = k + 1

end
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The numerical implementation is completed with the boundary conditions v(x) = 0
at ∂T (and inside the target as well), and with v(x) = 1 at other points outside the
computational domain (we refer the reader to [6] for more details on the approximation
of minimum time problems).
Policy iteration. We now turn our attention to an alternative solution method for
discretized HJB equations of the form 2.6. The approximation in the policy space
(or policy iteration), and is based on a linearization of the Bellman equation. First,
an initial guess for the control for every point in the state space is chosen. Once
the control has been fixed, the Bellman equation becomes linear (no search for the
minimum in the control space is performed), and it is solved as an advection equation.
Then, an updated policy is computed and a new iteration starts. Let us sketch the
procedure for the scheme related to the infinite horizon problem.

Algorithm 3: Policy Iteration for infinite horizon optimal control (PI)

Data: Mesh G, ∆t, initial guess V 0, tolerance ε.
while ||V k+1 − V k|| ≥ ε do

Policy evaluation step:

forall the xi ∈ G do

V ki = ∆tg
(
xi, a

k
i

)
+ (1− λ∆t)I

[
V k
] (
xi + ∆tf

(
xi, a

k
i

))
(2.13)

end
Policy improvement step:

forall the xi ∈ G do

ak+1
i = arg min

a

{
∆tg(xi, a) + (1− λ∆t)I

[
V k
]

(xi + ∆tf(xi, a))
}

(2.14)end
k = k + 1

end

Note that the solution of (2.13) can be obtained either by a linear system (assuming
I is a linear interpolation operator over the dataset V ) or as the limit

V k = lim
m→+∞

V k,m , (2.15)

of the linear time-marching scheme

V k,m+1
i = ∆tg

(
xi, a

k
i

)
+ (1− λ∆t)I

[
V k,m

] (
xi + ∆tf

(
xi, a

k
i

))
. (2.16)

Although this scheme is still iterative, the lack of a minimization phase makes it faster
than the original value iteration.
The sequence {V k} turns out to be monotone decreasing at every node of the grid.
In fact, by construction,

V ki = ∆tg
(
xi, a

k
i

)
+ (1− λ∆t)I

[
V k
] (
xi + ∆tf

(
xi, a

k
i

))
≥

≥ min
a

{
∆tg(xi, a) + (1− λ∆t)I

[
V k
]

(xi + ∆tf(xi, a))
}

=

= ∆tg
(
xi, a

k+1
i

)
+ (1− λ∆t)I

[
V k
] (
xi + ∆tf

(
xi, a

k+1
i

))
=

= V k+1
i

At a theoretical level, policy iteration can be shown to be equivalent to a Newton
method, and therefore, under appropriate assumptions, it converges with quadratic
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speed. On the other hand, convergence is local and this may represent a drawback
with respect to value iterations.

3. An accelerated policy iteration algorithm with smart initialization.
In this section we present an accelerated iterative algorithm which is constructed
upon the building blocks previously introduced. We aim at an efficient formulation
exploiting the main computational features of both value and policy iteration algo-
rithms. As it has been stated in [26], there exists a theoretical equivalence between
both algorithms, which guarantees a rather wide convergence framework. However,
from a computational perspective, there are significant differences between both im-
plementations. A first key factor can be observed in Figure 3.1 which shows, for a
two-dimensional minimum time problem (more details on the test can be found in sec-
tion 4.4), the typical situation arising with the evolution of the error measured with
respect to the optimal solution, when comparing value and policy iteration algorithms.
To achieve a similar error level, policy iteration requires considerable fewer iterations
than the value iteration scheme, as quadratic convergent behavior is reached faster
for any number of nodes in the state-space grid. Despite the observed computational
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Fig. 3.1. Error evolution in a 2D problem: value iteration (left) and policy iteration (right).

evidence, a second issue is observed when examining the policy iteration algorithm
in more detail. That is, as shown in Figure 3.2, the sensitivity of the method with
respect to the choice of the initial guess of the control field. It can be seen that
different initial admissible control fields can lead to radically different convergent be-
haviors. While some guesses will produce quadratic convergence from the beginning
of the iterative procedure, others can lead to an underperformant value iteration-like
evolution of the error. This latter is computationally costly, because it translates into
a non-monotone evolution of the subiteration count of the solution of equation (2.13)
(if an iterative scheme is used as in (2.16)).
A final relevant remark goes back to Figure 3.1, where it can be observed that for
coarse meshes, the value iteration algorithm generates a fast error decay up to a
higher global error. This, combined with the fact that value iteration algorithms
are rather insensitive to the choice of the initial guess for the value function (see
[27] for a detailed error quantification), are crucial points for the construction of our
accelerated algorithm. The accelerated policy iteration algorithm is based on a robust
initialization of the policy iteration procedure via a coarse value iteration which will
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Fig. 3.2. Left: error evolution in a PI algorithm for different initial guesses. Right: evolution
of the (sub)iteration count in (2.16) for different guesses.

yield to a good guess of the initial control field.

Algorithm 4: Accelerated Policy Iteration (API)

Data: Coarse mesh Gc and ∆tc , fine mesh Gf and ∆tf , initial coarse guess
V 0
c , coarse-mesh tolerance εc, fine-mesh tolerance εf .

begin
Coarse-mesh value iteration step: perform Algorithm 1
Input: Gc, ∆tc, V

0
c , εc

Output: V ∗c
forall the xi ∈ Gf do

V 0
f (xi) = I1[V ∗c ](xi)

A0
f (xi) = argmin

a∈A
{(1− λ∆t)I1[V 0

f ](xi + f(xi, a)) + ∆tg (xi, a)}

end
Fine-mesh policy iteration step: perform Algorithm 3
Input: Gf , ∆tf , V 0

f , A0
f , εf

Output: V ∗f
end

3.1. Practical details concerning the computational implementation of
the algorithm. The above presented accelerated algorithm can lead to a consider-
ably improved performance when compared to value iteration and naively initialized
policy iteration algorithms. However, it naturally contains trade-offs that need to be
carefully handled in order to obtain a correct behavior. The extensive numerical tests
performed in Section 4 suggest the following guidelines:

Coarse and fine meshes. The main trade-off of the accelerated algorithm is related
to this point. For a good behavior of the PI part of the algorithm, a good initialization
is required, but this should be obtained without deteriorating the overall performance.
Too coarse VI will lead to poor initialization, whereas fine VI will increase the CPU
time. We recall that for this paper we assume regular equidistant meshes with mesh
parameter ∆x. If we denote by ∆xc and by ∆xf the mesh parameters associated
to the coarse and fine grids respectively, numerical findings illustrated in Figure 3.3
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suggest that for minimum time problems and infinite horizon optimal control, a good
balance is achieved with ∆xc = 2∆xf . In the case of minimum time problems, it is
also important that the coarse mesh is able to accurately represent the target.

Fig. 3.3. Ratios ∆xc/∆xf and CPU time for different control problems. A good overall balance
can be observed in most cases by considering ∆xc = 2∆xf .

Accuracy. Both VI and PI algorithms require a stopping criterion for convergence.
Following [29], the stopping rule is given by

||V k+1 − V k|| ≤ C∆x2 ,

which relates the error to the resolution of the state-space mesh. The constant C is
set to C = 1

5 for the fine mesh, and for values ranging from 1 to 10 in the coarse mesh,
as we do not strive for additional accuracy that usually will not improve the initial
guess of the control field. However, different options have been extensively discussed
in the literature, as in [28] for instance, where the stopping criteria is related to a
variability threshold on the control space.

Policy evaluation. In every main cycle of the policy iteration algorithm, provided
the interpolation operator is linear, as it is in our case, a solution of the linear system
(2.13) is required. This can be performed in several ways, specially given the sparsity
of the system. For sake of simplicity and in order to make numerical comparisons with
the VI scheme, we use a fixed point iteration, i.e., the policy evaluation is implemented
as

V k,j+1
i = ∆tg

(
xi, a

k
i

)
+ (1− λ∆t)I

[
V k,j

] (
xi + ∆tf

(
xi, a

k
i

))
(3.1)

with initial guess V k,0 = V k−1,∞. We use the same stopping criteria as for the global
iteration.
Minimization. Although counterexamples can be constructed in order to show that
it is not possible to establish error bounds of the PI algorithm independently of the
(finite) number of controls [29], the algorithm does not change its performance when
the control set is increased, and therefore the argmin computation required for the
policy update can be performed by discretizing the set of controls and evaluating
all the possible arrival points. Note that, in order to avoid the discretization of the
control set, minimizers can be computed using Brent’s algorithm, as in [12].
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A remark on parallelism. Although the numerical tests that we present were
performed in a serial code, we note that the accelerated algorithm allows an easy
parallel implementation. Whenever an iterative procedure is performed over the value
function, parallelism can be implemented via a domain decomposition of the state
space as in [16,9]. If the control space is also discretized, the policy update (2.14) can
also be parallelized with respect of the set of controls.

4. Numerical tests. This section presents a comprehensive set of tests assessing
the performance of the proposed accelerated algorithm. We compare the results with
solutions given by the classical value iteration algorithm, policy iteration, and the
accelerated monotone value iteration method. In some examples we also include an
accelerated algorithm based on a monotone value iteration in the set of subsolutions
(AMVI), as presented in [4, Appendix A], and a Gauss-Seidel variation of this method
(GSVI) as in [18]. In a first part we develop tests related to infinite horizon optimal
control, to then switch to the study of minimum time problems. We conclude with
an extension to applications related to optimal control of partial differential equa-
tions. We focus on grid resolution, size of the discretized control space, performance
in presence of linear/nonlinear dynamics, targets, and state space dimension. All the
numerical simulations reported in this paper have been made on a MacBook Pro with
1 CPU Intel Core i5 2.3 Ghz and 8GB RAM.

Infinite horizon optimal control problems

4.1. Test 1: A non-smooth 1D value function. We first consider a one-
dimensional optimal control problem appearing in [4, Appendix A]. Using a similar
notation as in Section 2, we set the computational domain Ω =] − 1 , 1[, the control
space A = [−1 , 1], the discount factor λ = 1, the system dynamics f(x, a) = a(1−|x|),
and the cost function g(x, a) = 3(1−|x|). The exact optimal solution for this problem
is

v(x) =

{
3
2 (x+ 1) for x < 0 ,

3
2 (1− x) elsewhere ,

which has a kink at x = 0. We implement every proposed algorithm, and results
concerning CPU time and number of iterations are shown in Table 4.1; for different
mesh configurations, we set ∆t = .5∆x and we discretize the control space into
a set of 20 equidistant points. The notation VI(2∆x) in Table 4.1 stands for the
computation of the solution with a VI method considering a coarse grid of 2∆x.
Then it is applied the PI method with a stepsize ∆x. (PI(∆x) in the table). This
notation, in the table, is kept in all the tests. In this test case, as expected, we observe
that the VI algorithm is always the slowest option, with iteration count depending
on the number of mesh nodes; this feature is also observed for the PI algorithm,
although the number of iterations and CPU time are considerably smaller. On the
other hand, the AMVI scheme has an iteration count independent of the degrees of
freedom of the system, with an almost fixed CPU time, as the time spent on fixed
point iterations is negligible compared to the search of the optimal update direction.
In this particular example, the exact boundary conditions of the problem are known
(v(x) = 0 at ∂Ω) and it is possible to construct monotone iterations by starting from
the initial guess v(x) = 0. The GSVI method exhibits a similar performance as the PI
algorithm, with a considerably reduced number of iterations when compared to VI.
Note however, that this implementation requires the pre-computation and storage of
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the interpolation coefficients and a sequential running along the mesh, which can be
unpractical of high-dimensional problems are considered. Finally, the API algorithm
exhibits comparable CPU times as AMVI, performing always better than VI, PI and
GSVI. In this particular case, the choice of the mesh ratio between the coarse and
fine meshes can be suboptimal, as the time spent on the VI coarse pre-processing
represents an important part of the overall CPU time. More details on the error
evolution throughout the iterations can be observed in Figure 4.1; note that the error
evolution is measured with respect to the exact solution and not with respect to the
next iteration. This latter figure illustrates, for both problems, the way in which
the API idea acts: pre-processing of the initial guess of PI leads to proximity to a
quadratic convergence neighborhood, where this algorithm can converge in a reduced
number of iterations; the fast error decay that coarse mesh VI has in comparison
with the fine mesh VI is clearly noticeable. In Table 4.2, we show the performance
evolution of the different algorithms when the parameter λ decreases. It is expected
that for methods based on a fixed point iteration of the value function, the number
of iterations required to reach a prescribed error level will gradually increase. This is
clearly observed for VI, PI and API, whereas AMVI and GSVI are able to circumvent
this difficulty, leading to a constant number of iterations independent of the parameter
λ. Nevertheless, in the overall cpu time, GSVI and API exhibit a similar asymptotic
performance.

# nodes ∆x VI PI AMVI GSVI VI(2∆x) PI(∆x) API

81 2.5E-2 9.88E-2 (228) 2.02E-2 (10) 1.99E-2 (3) 2.25E-2 (41) 5.31E-3(23) 5.22E-3 (2) 1.05E-2

161 1.25E-2 0.41 (512) 5.88E-2 (34) 3.8E-2 (3) 7.71E-2 (81) 3.21E-2(73) 1.73E-2 (2) 4.94E-2

321 6.25E-3 1.89 (1134) 0.21 (65) 7.48E-2 (3) 0.29 (161) 0.16(200) 2.62E-2 (2) 0.19

Table 4.1
Test 1 (1D non-smooth value function): CPU time (iterations) for different algorithms.

λ VI PI AMVI GSVI VI(2∆x) PI(∆x) API

1 1.31 (1134) 0.16 (65) 5.73E-2 (3) 0.19 (161) 7.41E-2 (112) 3.20E-2 (2) 0.11

0.1 2.45 (2061) 0.46 (138) 5.82E-2 (3) 0.19 (161) 0.12 (203) 5.41E-2 (2) 0.18

1E-2 2.63 (2244) 0.67 (159) 6.18E-2 (3) 0.19 (161) 0.12 (220) 6.483E-2 (2) 0.19

1E-3 2.65 (2265) 0.74 (161) 7.75E-2 (4) 0.19 (161) 0.13 (222) 6.41E-2 (2) 0.19

Table 4.2
Test 1 (1D non-smooth value function): CPU time (iterations) for different algorithms and

different values of λ, in a fixed mesh with 3212 nodes and 2 control values.

4.2. Test 2: Van Der Pol oscillator. In a next step we consider two-dimensional,
nonlinear system dynamics given by the Van der Pol oscillator:

f(x, y, a) =

(
y

(1− x2)y − x+ a

)
.

System parameters are set:

Ω =]− 2 , 2[2 , A = [−1 , 1] , λ = 1 , ∆t = 0.3∆x , g(x, y, a) = x2 + y2 ,

and the control space is discretized into 32 equidistant points. We perform a similar
numerical study as in the previous example, and results are shown in Table 4.3.
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Fig. 4.1. Test 1 (non-smooth value function): error evolution for different algorithms.

For computations requiring an exact solution, we consider as a reference a fine grid
simulation with ∆x = 6.25E − 3.

We set a constant boundary value v(x) = 3.5 at ∂Ω, which can be interpreted as a
penalization on the state. If accurate solutions near the boundary are required, a
natural choice in our setting would be to perform simulations over an enlarged do-
main and then restrict the numerical results to a subset of interest. From this test we
observe a serious limitation on the AMVI algorithm. The number of iterations now
depends on the number of nodes, and even though the number of iterations is still
lower than in the VI algorithm, the CPU time increases as for every iteration a search
procedure is required. As it is not possible to find monotone update directions, the
AMVI algorithm becomes a VI method plus an expensive search procedure. This lack
of possible monotone update can be due to several factors: the nonlinear dynamics,
the existence of trajectories exiting the computational domain, and a sensitivity to
the artificial boundary condition. We report having performed similar tests for the
linear double integrator problem (ẍ = a) with similar results, therefore we conjecture
that in this case, the underperformance of the AMVI scheme is due to poor boundary
resolution and its use by optimal trajectories. Unfortunately, this is a recurrent prob-
lem in the context of optimal control. This situation does not constitute a problem
for the API algorithm, where a substantial speedup is seen in both coarse and fine
meshes. Note that compared to PI, the accelerated scheme has a number of iterations
on its second part which is independent of the mesh parameters as we are in a close
neighborhood of the optimal solution.

# nodes ∆x VI PI AMVI VI(2∆x) PI(∆x) API

812 5E-2 39.6 (529) 5.35 (8) 1.42E2 (3) 1.86 (207) 1.47 (4) 3.33 (211)

1612 2.5E-2 3.22E2 (1267) 34.5 (11) 1.01E3 (563) 10.7(165) 6.87 (4) 17.5 (169)

3212 1.25E-2 3.36E4 (2892) 3.36E2 (14) 1.55E4 (2247) 88.9 (451) 47.7 (4) 1.36E2 (455)

Table 4.3
Test 2 (Van der Pol oscillator): CPU time (iterations) for different algorithms.
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4.3. Test 3: Dubin’s Car. Having tested some basic features of the proposed
schemes, we proceed with our numerical study of the API method by considering a
three-dimensional nonlinear dynamical system given by

f(x, y, z, a) =

 cos(z)
sin(z)
a

 ,

corresponding to a simplified version of the so-called Dubin’s car, a test problem exten-
sively used in the context of reachable sets and differential games. System parameters
are set:

Ω =]− 2 , 2[2 , A = [−1 , 1] , λ = 1 , ∆t = 0.2∆x , g(x, y, z, a) = x2 + y2 ,

and the control space is discretized into 11 equidistant points; the boundary value is
set to v(x) = 3 in ∂Ω and reference solution is taken with ∆x = 1.25E − 2. Different
isosurfaces for this optimal control problem can be seen in Figure 4.2, and CPU times
for different meshes are shown in Table 4.4. This case is an example in which the
mesh ratio between coarse and fine meshes is well-balanced, and the time spent in
pre-processing via VI is not relevant in the overall API CPU time, despite leading to
a considerable speedup of the order of 8× with a mesh of 106 grid points. In the last
line of Table 4.4, the VI algorithm was stopped after 4 hours of simulation without
achieving convergence, which is illustrative of the fact that acceleration techniques
in such problems are not only desirable but necessary in order to obtain results with
acceptable levels of accuracy.

Fig. 4.2. Test 3: Dubin’s car value function isosurfaces.

# nodes ∆x VI PI VI(2∆x) PI(∆x) API

413 0.1 50.6 (192) 12.2 (12) 0.84 (8) 8.52 (3) 9.36 (11)

813 5E-2 1.19E3 (471) 3.28E2 (18) 8.98 (39) 1.39E2 (9) 1.48E2 (48)

1613 2.5E-2 ≥ 1.44E4 9.93E3 (12) 3.02E2 (30) 2.92E3 (10) 2.62E3 (40)

Table 4.4
Test 3 (Dubin’s car): CPU time (iterations) for different algorithms

Minimum time problems
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4.4. Tests 4 and 5: minimum time problems in 2D. The next two cases are
based on a two-dimensional eikonal equation. For both problems, common seetings
are given by

f(x, y, a) =

(
cos(a)
sin(a)

)
, A = [−π, π] , ∆t = 0.8∆x .

What differentiates the problems is the domain and target definitions; Test 4 consid-
ers a domain Ω =] − 1, 1[2 and a target T = (0, 0), while for Test 5, Ω =] − 2, 2[2

and T = {x ∈ R2 : ||x||2 ≤ 1}. Reference solutions are considered to be the distance
function to the respective targets, which is an accurate approximation provided that
the number of possible control directions is large enough. For Test 4, with a dis-
cretization of the control space into set of 64 equidistant points, CPU time results are
presented in Table 4.5; it can be seen that API provides a speedup of 8× with respect
to VI over fine meshes despite the large set of discrete control points. Table 4.6 shows
experimental convergence rates achieved by the fully discrete scheme, in both L1 and
L∞ norms, which are in accordance with the theoretically expected rate of 1/2. Test
5 features an enlarged target, and differences in CPU time are presented in Table 4.7
where, for a discrete set of 72 equidistant controls, the speedup is reduced to 4×. In
general, from a mesh node, larger or more complicated targets represent a difficulty in
terms of the choice of the minimizing control, which translates into a larger number
of iterations. In this case, the CPU time spent in the pre-processing is significant to
the overall CPU time, but increasing this ratio in order to reduce its share will lead
to an underperformant PI part of the algorithm.

# nodes ∆x VI PI VI(2∆x) PI(∆x) API

412 5E-2 3.16 (37) 1.89 (12) 0.39 (5) 0.38 (2) 0.77 (7)

812 2.5E-2 8.23 (69) 4.43 (19) 0.80 (12) 0.53 (2) 1.33 (14)

1612 1.25E-2 39.2 (133) 12.6 (13) 2.55 (31) 2.11 (3) 4.66 (34)

Table 4.5
Test 4 (2D eikonal): CPU time (iterations) for different algorithms.

# nodes ∆x L1 − error rate L∞ − error rate

412 5E-2 2.1E-2 0.60 8.9E-3 0.61

812 2.5E-2 1.4E-2 0.64 5.8E-3 0.64

1612 1.25E-2 8.5E-3 0.68 3.7E-3 0.75

3212 6.25E-3 5.3E-3 2.2E-3

Table 4.6
Test 4 (2D Eikonal): Rate of convergence for the API scheme with 64 controls.

4.5. Tests 6 and 7: minimum time problems in 3D. We develop a three-
dimensional extension of the previously presented examples. System dynamics and
common parameters are given by

f(x, y, z, (a1, a2)) =

 sin(a1) cos(a2)
sin(a1) sin(a2)

cos(a1)

 , A = [−π, π]× [0 , π] , ∆t = 0.8∆x .
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# nodes ∆x VI PI VI(2∆x) PI(∆x) API

642 6.35E-2 4.02 (36) 1.42 (9) 0.84 (10) 0.53 (4) 1.37 (14)

1282 3.15E-2 16.9 (70) 6.25 (14) 2.80 (25) 1.66 (2) 4.46 (27)

2562 1.57E-2 1.09E2 (135) 38.7 (16) 15.8 (62) 11.7 (8) 27.5 (70)

5122 7.8E-3 9.80E2 (262) 3.98E2(168) 1.07E2 (126) 1.09E2 (12) 2.16E2 (138)

Table 4.7
Test 5 (2D Eikonal): CPU time (iterations) for different algorithms with 72 controls.

As in the two-dimensional study, we perform different tests by changing the domain
and the target. For Test 6 we set Ω =] − 1, 1[3 and T = (0, 0, 0), while for Test 7,
Ω =]− 6, 6[ and T is the union of two unit spheres centered at (−1, 0, 0) and (1, 0, 0).
In both cases, the set of controls is discretized into 16× 8 points. Reachable sets for
Test 7 are shown in Figure 4.3, and CPU times for both tests can be found in Tables
4.8 and 4.9. We observe similar results as in the 2D tests, with up to 10× acceleration
for a simple target, and 4× with more complicated targets. Note that in the second
case, the speedup is similar to the natural performance that would be achieved by a
PI algorithm. This is due to a weaker influence of the coarse VI iteration, which is
sensitive to poor resolution of a complex target.

# nodes ∆x VI PI VI(2∆x) PI(∆x) API

413 5E-2 4.83E2 (44) 1.22E3 (10) 4.61 (5) 1.19E2 (3) 1.23E2 (8)

813 2.5E-2 7.67E3 (84) 1.47E3 (13) 2.43E1 (12) 3.88E2 (3) 6.31E2 (15)

Table 4.8
Test 6 (3D Eikonal): CPU time (iterations) for different algorithms with a1 = 16 controls,

a2 = 8 controls.

Fig. 4.3. Test 7 (3D eikonal): different value function isosurfaces.

4.6. Test 8: A Minimum time Problem in 4D. We conclude our series
of tests in minimum time problems by considering a four-dimensional problem with
a relatively reduced control space. In the previous examples we have studied the
performance of our scheme in cases where the set of discrete controls was fairly large,
while in several applications, it is also often the case that the set of admissible discrete
controls is limited and attention is directed towards the dimensionality of the state
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# nodes ∆x VI PI VI(2∆x) PI(∆x) API

613 0.2 2.67E2 (25) 1.22E2 (9) 1.44 (11) 6.80E1 (3) 6.94E1 (14)

1213 0.1 4.52E3 (52) 1.28E3 (11) 25.15E1 (12) 9.96E2 (3) 1.01E3 (15)

Table 4.9
Test 7 (3D Eikonal): CPU time (iterations) for different algorithms with a1 = 16 controls,

a2 = 8 controls.

space. The following problem tries to mimic such a setting. System dynamics are
given by

f(x, y, z, w, (a1, a2, a3, a4)) =


a1

a2

a3

a4

 ,

the domain is Ω =]− 1, 1[4, the target is T = ∂Ω, ∆t = 0.8∆x and A is the set of 8
directions pointing to the facets of the four-dimensional hypercube. Figure 4.4 shows
different reachable sets and CPU times are presented in Table 4.10. In the finest mesh
a speedup of 8× is observed, which is consistent with the previous results on simple
targets. Thus, the performance of the presented algorithm is not sensitive neither to
the number of discrete controls nor to the dimension of the state space, whereas it is
affected by the complexity of the target.

Fig. 4.4. Test 8 (4D minimum time): different value function isosurfaces with x4 = 0.

# nodes ∆x VI PI VI(2∆x) PI(∆x) API

214 0.1 13.6 (15) 16.2 (11) 0.30 (4) 2.79 (2) 3.09 (6)

414 5E-2 4.79E2 (29) 6.30E2 (21) 10.2 (12) 48.3 (2) 58.5 (14)

Table 4.10
Test 8 (4D minimum time): CPU time (iterations) for different algorithms.

4.7. Application to optimal control problem of PDEs. Having developed
a comprehensive set of numerical tests concerning the solution of optimal control
problems via static HJB equations, which assessed the performance of the proposed
API algorithm, we present an application where the existence of accelerated solution
techniques for high-dimensional problems is particularly relevant, namely, the opti-
mal control of systems governed by partial differential equations. From an abstract



17

perspective, optimal control problems where the dynamics are given by evolutive
partial differential equations correspond to systems where the state lies in an infinite-
dimensional Hilbert space (see [33]). Nevertheless, in terms of practical applications,
different discretization arguments can be used to deal with this fact, and (sub)optimal
control synthesis can be achieved through finite-dimensional, large-scale approxima-
tions of the system. At this step, the resulting large-scale version will scale according
to a finite element mesh parameter, and excepting for the linear-quadratic case and
some closely related versions, it would be still computationally intractable for mod-
ern architectures (for instance, for a 100 elements discretization of a 1D PDE, the
resulting optimal control would be characterized as the solution of a HJB equation in
R100). Therefore, a standard remedy in optimal control and estimation is the appli-
cation of model order reduction techniques, which, upon a large-scale version of the
system, recover its most relevant dynamical features in a low-order approximation of
prescribed size. In this context, surprisingly good control synthesis can be achieved
with a reduced number of states (for complex nonlinear dynamics and control config-
urations an increased number of reduced states may be required). Previous attempts
in this direction dates back to [23,24] and more recently to [1,2]. We present an exam-
ple where we embed our accelerated algorithm inside the described framework. Note
that, in this example, model reduction method is only applied in order to make the
problem feasible for the Dynamic Programming approach. The acceleration is due to
the proposed API scheme.

Let us consider a minimum time problem for the linear heat equation: yt(x, t) = cyxx(x, t) + y0(x)α(t) ,
y(0, t) = y(1, t) = 0 ,
y(x, 0) = y0(x) ,

(4.1)

where x ∈ [0, 1], t ∈ [0, T ] , c = 1/80 and α(t) : [0, T ]→ {−1, 0, 1}. After performing
a finite difference discretization, we perform a Galerkin projection with basis function
computed with a Proper Orthogonal Decomposition (POD) method, leading to a
reduced order model (we refer to [34] for an introduction to this topic). In general,
model reduction techniques do have either a priori or a posteriori error estimates
which allow to prescribe a certain number of reduced states yielding a desired level
of accuracy. For this simple case, we consider the first 3 reduced states, which for a
one-dimensional heat transfer process with one external source provides a reasonable
description of the input-output behavior of the system. The system is reduced to:

d

dt

 x1

x2

x3

 =

 −0.123 −0.008 −0.001
−0.008 −1.148 −0.321
−0.001 −0.321 −3.671

 x1

x2

x3

+

 −5.770
−0.174
−0.022

α(t). (4.2)

Once the reduced model has been obtained, we solve the minimum time problem
with target T = (0, 0, 0). Figure 4.5 shows contour plots of the value function in the
reduced space and a comparison of the performance of the minimum time controller
with respect to the uncontrolled solution and to a classical linear-quadratic controller
is presented. CPU times are included in Table 4.11, where a speedup of 4× can be
observed, the acceleration would become more relevant as soon as more refined meshes
and complex control configurations are considered.

Concluding remarks and future directions. In this work we have presented
an accelerated algorithm for the solution of static HJB equations arising in different
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Fig. 4.5. Optimal control of the heat equation. Top left: contour plot of the value function at
x3 = 0. Top right: contour plot of the value function at x2 = 0. Bottom left: controlled output
via proposed procedure of model reduction + minimum time HJB controller. Bottom right: cross
section of the different outputs.

# nodes ∆x VI PI VI(2∆x) PI(∆x) API

213 0.1 1.87 (76) 0.91 (11) 0.32 (27) 0.59 (8) 0.98 (35)

413 5E-2 27.8 (178) 12.4 (15) 1.65 (76) 6.34 (10) 7.99 (86)

813 2.5E-2 6.13E2 (394) 2.68E2 (15) 27.7 (178) 1.45E2 (9) 1.72E2 (187)

Table 4.11
Minimum time control of the heat equation: CPU time (iterations) for different algorithms.

optimal control problems. The proposed method considers a pre-processing value it-
eration procedure over a coarse mesh with relaxed stopping criteria, which is used to
generate a good initial guess for a policy iteration algorithm. This leads to acceler-
ated numerical convergence with respect to the known approximation methods, with
a speedup ranging in average from 4× to 8×. We have assessed the performance of the
new scheme via a extensive set of numerical tests focusing on infinite horizon and min-
imum time problems, providing numerical evidence of the reliability of the method in
tests with increasing complexity. Positive aspects of the proposed scheme are its wide
applicability spectrum (in general for static HJB), and its insensitivity with respect
to the complexity of the discretized control set. Nonetheless, for some non trivial
targets, special care is needed in order to ensure that the coarse pre-processing step
will actually lead to an improved behavior of the policy iteration scheme. Certainly,
several directions of research remain open. The aim of this article was to present the
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numerical scheme and provide a numerical assessment of its potential. Future works
should focus on tuning the algorithm in order to achieve an optimal performance;
for instance, in order to make a fair comparison with the value iteration algorithm,
the policy iteration step was also performed via a successive approximation scheme,
while better results could be obtained by using a more efficient solver, including a
larger amount of pre-processing work. Other possible improvements would relate to
multigrid methods, high-order schemes and domain decomposition techniques. An
area of application that remains unexplored is the case of differential games, where
Hamilton-Jacobi-Isaacs equations need to be solved. Results presented in [7] indicate
that the extension is far from being trivial since a convergence framework is not easily
guaranteed and the policy iteration scheme requires some modifications.
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de Hamilton-Jacobi-Bellman, C.R. Acad. Sci. Paris, Sér. I, 311 (1990), pp. 45–50.

[21] R.A. Howard, Dynamic programming and Markov processes, Wiley, New York, 1960.



20

[22] R. Kalaba, On nonlinear differential equations, the maximum operation and monotone con-
vergence, J. of Math. Mech., 8 (1959), pp. 519–574.

[23] K. Kunisch, S. Volkwein and L. Xie, HJB-POD Based Feedback Design for the Optimal Control
of Evolution Problems, SIAM J. on Appl. Dyn. Syst., 4 (2004), pp. 701-722.

[24] K. Kunisch and L. Xie, POD-Based Feedback Control of Burgers Equation by Solving the
Evolutionary HJB Equation, Comput. Math. Appl., 49 (2005), pp. 1113–1126.

[25] M. Pollatschek and B. Avi-Itzhak, Algorithms for Stochastic Games with Geometrical Inter-
pretation, Management Sci., 15 (1969), pp. 399–415.

[26] M.L. Puterman and S.L. Brumelle, On the convergence of Policy iteration in stationary Dy-
namic Programming. Math. Oper. Res., 4 (1979), pp. 60–69.

[27] M.S. Santos, Numerical solution of dynamic economic models, in Handbook of Macroeco-
nomics, J.B. Taylor abd M. Woodford eds., Elsevier Science, Amterdam, The Netherlands,
pp. 311-386.
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