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1 Introduction

We consider an algorithm for the approximation of the minimal solutions of the bounded
real and positive real Lur’e equations. In this introduction we focus on the bounded real
case.

Consider the bounded real Lur’e equation

A∗X+XA+C∗C=−K∗K,

B∗X+D∗C=−J∗K,

D∗D− I =−J∗J,

(1)

whereA∈ Cn×n is stable (i.e. all its eigenvalues are in the open left half-plane),B∈ Cn×m,
C∈ C

p×n andD ∈ C
p×m are given; the unknowns in this equation are the Hermitian matrix
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X ∈Cn×n and the further matricesK ∈Cq×n, J∈Cq×m with q≤m. We will call X asolution
of (1), if there existq ∈ N0 andK ∈ C

q×n, J ∈ C
q×m such that (1) holds true. A solution

X is calledminimal, if X ≤Y (i.e.,Y−X is positive semi-definite) for all other solutionsY
of (1). Note that ifD∗D− I is invertible, thenJ andK can be eliminated and (1) becomes
equivalent to the algebraic Riccati equation

A∗X+XA+C∗C+(XB+C∗D)(I −D∗D)−1(B∗X+D∗C) = 0.

An important application of the bounded real Lur’e equations isbounded real balanced
truncation [11, 12], a model reduction method which preserves contractivity of a system.
In particular in this application there is a need for an efficient numerical method for the
large-scale case (i.e.,n is large). This large-scale case arises for example when considering
discretizations of partial differential equations (see Section 5 for a typical example). In the
large scale case it is unfeasible to even store the dense matrix X ∈ C

n×n. Our algorithm
provides a sequence(Xk) of approximate solutions of the formXk = R∗

kRk for someRk ∈
C
ℓk×n with, typically, ℓk ≪ n (i.e., Xk is given in “low-rank factored form”). For a “shift

parameter sequence”(α j)
k
j=1 with α j ∈ C with Re(α j) > 0, the main computational cost

in the algorithm consists of, for eachα j ( j = 1, . . . ,k), solving a linear system of the form
(α j −A)x= v, wherev∈ C

n×p. The above features make the proposed algorithm attractive
for the case wheren is large, p is small andA is sparse. This situation is typical when
considering discretizations of partial differential equations.

The proposed algorithm is an extension of the recently developedADI methodfor alge-
braic Riccati equations of the typeA∗X+XA+C∗C−XBB∗X = 0 [8, 10], which in turn is
an extension of the ADI method for Lyapunov equations [7,9,19].

For the convergence analysis of the algorithm, we use the following connection between
the minimal solution of the bounded real Lur’e equation and an optimal control problem. It
is well-known that the quadratic form defined by the minimal solution of the bounded real
Lur’e equation (1) expresses theavailable storage[23]. Namely, for allx0 ∈ C

n there holds

x∗0Xx0 = sup
u∈L2(0,∞;Cm)

∫ ∞

0
‖y(t)‖2−‖u(t)‖2 dt, (2)

where
ẋ(t) =Ax(t)+Bu(t), x(0) = x0,

y(t) =Cx(t)+Du(t),
(3)

see [21–23]. Thereby we follow the ideas in [10], which givesan interpretation of the ADI
method for the algebraic Riccati equation [8] in terms of theunderlying optimal control
problem.

The theoretical foundation for our algorithm is a sequence of subspaces

Vk := span{e−α1t , . . . ,e−αkt} ⊂ L2(0,∞). (4)

In this introduction we assume for notational simplicity that the “shift parameters”α j are
distinct (in the main part of the article we drop this assumption; the definition ofVk has to
be modified in case of non-distinct parameters). LetPk : L2(0,∞;Cp)→ L2(0,∞;Cp) denote
the orthogonal projection ontoVk⊗C

p. The matrixXk produced by our algorithm is proven
to represent the optimal cost for the following control problem (see Theorem 3)

x∗0Xkx0 = sup
u∈L2(0,∞;Cm)

∫ ∞

0
‖(Pky)(t)‖2−‖u(t)‖2 dt, (5)
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subject to (3). Since the spacesVk are nested, this representation shows that the sequence
(Xk) is monotonically increasing with respect to monotonicity,that isXk ≥Xk−1 for all k∈N.
In the case where ⋃

k∈N
Vk = L2(0,∞), (6)

we immediately see that we will have convergence of(Xk) to X. The property (6) is proven
in [17] to be equivalent to thenon-Blaschke condition

∞

∑
j=1

Re(α j)

1+ |α j |2
= ∞. (7)

We note that this non-Blaschke condition is for example satisfied if the parameters all be-
long to a fixed compact set contained in the open right half-plane (in particular, if the shift
parameters are periodic).

We further consider the ADI method for positive real Lur’e equation

A∗X+XA=−K∗K,

B∗X−C=−J∗K,

−(D∗+D) =−J∗J,

(8)

whereA ∈ Cn×n is stable, andB ∈ Cn×m, C ∈ Cm×n, D ∈ Cm×m. These equations arise
in passivity characterization of linear systems [1, 2] and in the passivity-preserving model
reduction method ofpositive real balanced truncation[12,18]. Our considerations are based
on the fact that the minimal solution expresses the available storage for passivity, that is

x∗0Xx0 = sup
u∈L2(0,∞;Cm)

−2Re
∫ ∞

0
y(t)∗u(t)dt (9)

subject to (3).
At this point, we briefly summarize existing approaches to the solution of bounded real

and positive real Lur’e equations. IfI −D∗D (resp.D+D∗) is invertible, then, of course, the
huge variety of existing methods for algebraic Riccati equations (see [3] for an overview) can
be used. In the case where this matrix is however singular, there are only few methods avail-
able: Thestructured doubling algorithmwas recently developed for Lur’e equations [15]. In
contrast to our method, the structured doubling algorithm does not provide factorizations of
low rank form and is therefore memory consuming in the large-scale case. Another approach
to numerical solution was presented in [15], where some “critical part” of the Lur’e equation
is extracted such that an algebraic Riccati equation is obtained. The latter is then solved by
Newton-Kleinman iteration [3]. This method can be formulated such that approximate low
rank factors are obtained. A drawback of this approach is that the extraction of the critical
part consists of successive nullspace computations which may be numerically unstable.

This article is organized as follows. In the forthcoming Section 2, we introduce the sys-
tems theoretic and functional analytic framework. Some fundamentals on singular optimal
control, spectral factorization and their relations to theminimal solutions of positive real and
bounded real Lur’e equations are presented. Thereafter, inSection 3, we consider (general-
izations of) the spacesVk from (4). In particular we consider an orthonormal basis forthese
spaces (the Takenaka–Malmquist system) and provide matrixrepresentations of the solution
maps associated with the dynamical system (3) with respect to this basis. In Section 4 we
apply these findings to the optimal control problem. In particular, we show that the matrix
representations from Section 3 can be used to determine the solution Xk of (5). This gives
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rise to an iterative algorithm for the determination of the minimal solutions of the bounded
real (and positive real) Lur’e equations. In this section wealso prove convergence of the
algorithm. In Section 5 we demonstrate our results by means of a numerical example.

2 Linear systems and singular optimal control

We present the connection between the minimal solutions of the Lur’e equations (1) and
(8) to the optimization problems (2) and (9) respectively. We give an explicit formula of the
minimal solution of the Lur’e equation in terms of operatorsassociated to the linear system
(3). This will be the theoretical basis for our algorithm.

Definition 1 (Output map, input-output map) Assume thatA∈C
n×n is stable,B∈C

n×m,
C∈ Cp×n andD ∈ Cp×m. Consider the following maps associated to the system (3):

a) theoutput mapΨ : Cn → L2(0,∞;Cp) which maps the initial statex0 to the outputy (for
controlu= 0),

Ψx0 = t 7→CeAtx0; (10)

b) the input-output mapF : L2(0,∞;Cm) → L2(0,∞;Cp) which maps the inputu to the
outputy (for initial conditionx0 = 0);

Fu= t 7→
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t). (11)

The adjointsΨ ∗ : L2(0,∞;Cp)→ C
n, F∗ : L2(0,∞;Cp)→ L2(0,∞;Cm) are given by

Ψ∗z=
∫ ∞

0
eA∗τC∗z(τ)dτ ,

F
∗z= t 7→

∫ ∞

t
B∗eA∗(τ−t)C∗z(τ)dτ +D∗z(t).

(12)

With the above introduced mappings, the supremized expression in (2) is‖Ψx0+Fu‖2
L2 −

‖u‖2
L2 ; the supremized expression in (9) becomes−2Re〈u,Ψx0+Fu〉L2 .
Outer systems play a crucial role in linear-quadratic optimal control.

Definition 2 (Outer system)Assume thatA ∈ Cn×n is stable,B ∈ Cn×m, C ∈ Cp×n and
D ∈ C

p×m. The system (3) is calledouter, if the operatorF in (11) has dense range.

The property of a system being outer can be characterized by an algebraic criterion on the
matricesA, B, C andD.

Proposition 1 Assume that A∈ Cn×n is stable, B∈ Cn×m, C∈ Cp×n and D∈ Cp×m. The
system(3) is outer, if, and only if,

rk

[
−λ I +A B

C D

]
= n+ p ∀λ ∈ C with Re(λ )> 0. (13)

Proof The proof will make use of the following two facts:

a) A bounded operator that maps between Hilbert spaces has dense range, if, and only if,
its adjoint has a trivial nullspace.
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b) By the representation ofF∗ in (12) and the variations of constants formula, the following
holds true: Forz∈ L2(0,∞;Cp) there holdsv= F

∗z∈ L2(0,∞;Cm), if, and only if, there
exists some absolutely continuousw∈ L2(0,∞;Cn) with

−ẇ=A∗w+C∗z,

v=B∗w+D∗z.
(14)

Note that, by the fact thatA is stable,w ∈ L2(0,∞;Cn) is uniquely determined byz∈
L2(0,∞;Cp).

First we prove that, ifF has dense range, then (13) holds true: Assuming the converseof the
latter, then there exists someλ ∈ C with Reλ > 0 and some ˜w∈ C

n, z̃∈ C
p with

[
w̃
z̃

]
6= 0,

such that [
−λ I +A∗ C∗

B∗ D∗

][
w̃
z̃

]
=

[
0
0

]
.

Then we have ˜z 6= 0, since, otherwise,(−λ I +A∗)w̃= 0 with w̃ 6= 0, which is a contradiction
to the stability ofA. Now define

[
w
z

]
= t 7→ e−λ t

[
w̃
z̃

]
.

These functions fulfill (14). By b), we have 0= F∗z. Sincez̃ 6= 0, we havez 6= 0, whence
kerF∗ is nontrivial. By a), this is a contradiction toF having dense range.
Finally we assume (13) and aim to prove thatF has dense range. To this end, we prove that
F
∗ has a trivial nullspace. Assume thatv∈ kerF∗. Then, by b), there exists some absolutely

continuousw∈ L2(0,∞;Cn), such that[wz ] solves the differential-algebraic equation

d
dt

[
I 0
0 0

][
w
z

]
=

[
A∗ C∗

B∗ D∗

][
w
z

]
.

Then it follows by a transformation of the matrix pencil
[

sI+A∗ C∗
B∗ D∗

]
into Kronecker form [5,

Chap. XII,§7] thatz has the form

z(t) =
ℓ

∑
k=1

pk(t)e
−λkt ,

wherep1, . . . , pℓ : [0,∞) → Cm are vector-valued complex polynomials, andλ1, . . . ,λℓ are
distinct complex numbers with

rk

[
λkI +A∗ C∗

B∗ D∗

]
< n+ p for k= 1, . . . , ℓ. (15)

Numbers with the latter property are calledgeneralized eigenvaluesof the matrix pencil[
sI−A −B
−C −D

]
. Eqs. (13) & (15) implies thatλ1, . . . ,λℓ have positive real part. The property

z∈ L2(0,∞;Cp) then gives rise top1 = . . .= pk = 0, and thusz= 0.

Remark 1By taking the Schur complement, we see that (13) holds true, if, and only if, the
transfer functionG(s) := D+C(sI−A)−1B has full row rank on the open right complex half
plane.
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Now we study solvability of Lur’e equations and characterize the properties of the solu-
tions. We study the more general case of Lur’e equations

A∗X+XA−C∗QC=−K∗K,

B∗X− (D∗QC+S∗C) =−J∗K,

−(D∗QD+S∗D+D∗S+R) =−J∗J,

(16)

whereA ∈ C
n×n is stable,B ∈ C

n×m, C ∈ C
p×n, D ∈ C

p×m and Q ∈ C
p×p, S∈ C

p×m,
R∈ Cm×m with R= R∗ andQ= Q∗. Note that we obtain the bounded real Lur’e equation
by settingQ = −I , S= 0 andR= I ; the positive real Lur’e equation is given by (16) with
p= m, Q= R= 0 andS= I .

The following concepts are crucial for the existence of minimal solutions of Lur’e equa-
tions and their relation to optimization problems.

Definition 3 (Popov function, Popov operator)Assume thatA∈C
n×n is stable,B∈C

n×m,
C∈ Cp×n, D ∈ Cp×m andQ∈ Cp×p, S∈ Cp×m, R∈ Cm×m with R= R∗ andQ= Q∗. Then,
for G(s) =C(sI−A)−1B+D, thePopov functionΠ : ıR→ C

m×m is defined by

Π (ıω) :=
[
G(ıω)∗ I

][Q S
S∗ R

][
G(ıω)

I

]
.

Let the operatorF be defined as in Definition 1. ThePopov operatorR : L2(0,∞;Cm) →
L2(0,∞;Cm) is

R :=
[
F∗ I

][Q S
S∗ R

][
F

I

]
. (17)

Remark 2 (Popov operator, Popov function, Lur’e equations)

a) The Popov operator is positive semi-definite, if, and onlyif, the Popov function fulfills
Π (ıω)≥ 0 for all ω ∈ R [4].

b) If the Lur’e equation (16) is solvable, then the Popov function fulfills Π (ıω)≥ 0 for all
ω ∈ R [16].

c) If the Popov function fulfillsΠ (ıω)≥ 0 for all ω ∈ R and the system (3) is controllable,
then there exists a minimal solution of the Lur’e equation (16). This follows from the
results in [16] and the substitutions

X −X, C∗QC Q,

C∗QD+C∗S C, D∗QD+S∗D+D∗S+R R,

“minimal solution” “maximal solution”.

(18)

d) In the bounded real case, the Popov operator readsI −F
∗
F. Solvability of the bounded

real Lur’e equation (1) therefore implies‖F‖ ≤ 1. This property is calledcontractiv-
ity. The Popov function now readsıω 7→ I −G∗(ıω)G(ıω). By b) the solvability of (1)
implies ‖G(ıω)‖ ≤ 1 for all ω ∈ R. Further using stability ofA, the maximum princi-
ple yields that theH∞-norm ofG does not exceed one. By b), under the assumption of
controllability, the converse implications are also true.

e) In the positive real case, the Popov operator is given byR = F
∗+F. Positive semidef-

initeness of this operator is calledpassivity. Here the Popov function is given byıω 7→
G∗(ıω)+G(ıω). If the positive real Lur’e equation (8) is solvable, the stability of A and
the maximum principle give rise toG(s)+G(s)∗ ≥ 0 for all s∈ C with Re(s) > 0. The
latter property is calledpositive realness.
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Remark 3 (Dissipation inequality)

a) Solutions of the Lur’e equation (16) are special solutions of thedissipation inequality

[
A∗X+XA−C∗QC XB− (C∗QD+C∗S)

B∗X− (D∗QC+S∗C) −(D∗QD+S∗D+D∗S+R)

]
≤ 0, X = X∗. (19)

The solutions of (3) fulfill

x(t1)
∗Xx(t1)−x(t2)

∗Xx(t2)≥−
∫ t2

t1

[
y(τ)
u(τ)

]∗ [
Q S
S∗ R

][
y(τ)
u(τ)

]
dτ ∀t1, t2 ∈ R s.t.t1 ≤ t2,

(20)
see [23]. More precisely, if the left hand side in (19) equals−

[
K̃ J̃

]∗ [
K̃ J̃

]
for some

K̃ ∈ C
ℓ×n, J̃ ∈ C

ℓ×m, then the solutions of (3) fulfill

x(t1)
∗Xx(t1)−x(t2)

∗Xx(t2)

= −
∫ t2

t1

[
y(τ)
u(τ)

]∗ [
Q S
S∗ R

][
y(τ)
u(τ)

]
dτ +

∫ t2

t1
‖K̃x(τ)+ J̃u(τ)‖2dτ ∀t1, t2 ∈ R s.t.t1 ≤ t2,

(21)
see [21].

b) If the Popov function fulfillsΠ (ıω)≥ 0 and the system (3) is controllable, then the Lur’e
equation (16) has a minimal solution. If the system (3) is stabilizable, and the dissipation
inequality (19) has a solution, then the Lur’e equation (16)has a minimal solution [16].

Now we present the relation between the minimal solutions and optimization problems sub-
ject to the linear system (3). The following result is only a slight modification and special-
ization of those presented in [4].

Theorem 1 Assume that A∈C
n×n is stable, B∈C

n×m, C∈C
p×n, D∈C

p×m and Q∈C
p×p,

S∈ Cp×m, R∈ Cm×m with R= R∗ and Q= Q∗. LetF be the input-output operator andΨ
be the output operator of the system(3). Assume that the dissipation inequality(19) has
a solution. Let X be the minimal solution of the Lur’e equations (16) and let K∈ Cq×n,
J ∈ C

q×m be such that(16) holds true. Then the following hold true:

a) The system

ẋ(t) =Ax(t)+Bu(t), x(0) = x0,

yΞ (t) =Kx(t)+Ju(t),
(22)

with output mapΨΞ : Cn → L2(0,∞;Cq) and input-output mapFΞ : L2(0,∞;Cm) →
L2(0,∞;Cq) is outer.

b) The operatorFΞ and the Popov operator(17) are related by

R = F
∗
ΞFΞ . (23)

c) The operatorsFΞ , ΨΞ , the output mapΨ , and the input-output mapF of the system(3)
are related by

F
∗
ΞΨΞ = (F∗Q+S∗)Ψ . (24)

d) The minimal solution fulfills

X =Ψ ∗
ΞΨΞ −Ψ ∗QΨ . (25)
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e) For all u∈ L2(0,∞;Cm) there holds

−
〈[

Fu+Ψx0

u

]
,

[
Q S
S∗ R

][
Fu+Ψx0

u

]〉

L2
= x∗0Xx0−‖FΞ u+ΨΞ x0‖2

L2 .

Proof

a) LetX be the minimal solution. Then, by using the substitutions in(18), it has been shown
in [16, Sec. 5] that

im

[
−λ I +A B

K J

]
= C

n+q ∀λ ∈ C with Re(λ )> 0.

Then it follows from Proposition 1 that (22) is outer.
b) Let Γ be the input-output operator of the system ˙x(t) = Ax(t) +Bu(t), yext(t) = x(t).

Then we haveF=CΓ +D andFΞ = KΓ +J. Let u∈ L2(0,∞;Cm) be continuous. Then
by integration by parts, we obtain fort ∈ [0,∞) that

(Γ ∗A∗XΓ u)(t)

=

∫ ∞

t
B∗eA∗(τ−t)A∗X

∫ τ

0
eA(τ−s)Bu(s)dsdτ

=−
∫ ∞

t
B∗eA∗(τ−t)X

d
dτ

∫ τ

0
eA(τ−s)Bu(s)dsdτ + B∗eA∗(τ−t)X

∫ τ

0
eA(τ−s)Bu(s)ds

∣∣∣∣
∞

t

=−
∫ ∞

t
B∗eA∗(τ−t)X

d
dτ

∫ τ

0
eA(τ−s)Bu(s)dsdτ −B∗X

∫ t

0
eA(t−s)Bu(s)ds

=−
∫ ∞

t
B∗eA∗(τ−t)XA

∫ τ

0
eA(τ−s)Bu(s)dsdτ −

∫ ∞

t
B∗eA∗(τ−t)XBu(τ)dτ

−B∗X
∫ t

0
eA(t−s)Bu(s)ds

=− (Γ ∗XAΓ u)(t)− (Γ ∗XBu)(t)− (B∗XΓ u)(t).

Making use of this expression, we obtain for all continuousu ∈ L2(0,∞;Cm) and t ∈
[0,∞) that

(F∗
ΞFΞ u)(t) =((KΓ )∗(KΓ u))(t)+(J∗(KΓ u))(t)+((KΓ )∗Ju)(t)+J∗Ju(t)

=(Γ ∗K∗KΓ u)(t)+(J∗KΓ u)(t)+(Γ ∗K∗Ju)(t)+J∗Ju(t)

=− (Γ ∗(A∗X+XA−C∗QC)Γ u)(t)+(J∗KΓ u)(t)+(Γ ∗K∗Ju)(t)

+(D∗QD+S∗D+D∗S+R)u(t)

=(Γ ∗XBu)(t)+(B∗XΓ u)(t)+(Γ ∗C∗QCΓ u)(t)+(J∗KΓ u)(t)

+(Γ ∗K∗Ju)(t)+(D∗QD+S∗D+D∗S+R)u(t)

=(Γ ∗C∗QCΓ u)(t)+(Γ ∗(C∗QD+C∗S)u)(t)+((D∗QC+S∗C)Γ u)(t)

+(D∗QD+S∗D+D∗S+R)u(t)

=

[
CΓ +D

I

]∗ [
Q S
S∗ R

][
CΓ +D

I

]
u(t) = (Ru)(t).

The density of the continuous and square integrable functions in L2 then implies that
R = F

∗
ΞFΞ .
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c) By integration by parts, we obtain that for allx0 ∈ Cn there holds
∫ ∞

t
B∗eA∗(τ−t)A∗XeAτ x0dτ =−

∫ ∞

t
B∗eA∗(τ−t)X

d
dτ

eAτx0dτ + B∗eA∗(τ−t)XeAτ x0

∣∣∣
∞

t

=−
∫ ∞

t
B∗eA∗(τ−t)XAeAτ x0dτ −B∗XeAtx0.

Using the previous formula, we obtain

(F∗Q+S∗)Ψx0 =
∫ ∞

t
B∗eA∗(τ−t)C∗QCeAτx0 dτ +(D∗QC+S∗C)eAtx0

=

∫ ∞

t
B∗eA∗(τ−t)(K∗K +A∗X+XA)eAτ x0 dτ +J∗KeAtx0+B∗XeAtx0

=(F∗
ΞΨΞ )x0+

∫ ∞

t
B∗eA∗(τ−t)(A∗X+XA)eAτ x0 dτ +B∗XeAtx0

=(F∗
ΞΨΞ )x0.

d) Stability ofA combined withA∗X+XA−C∗QC+K∗K = 0 implies

X =
∫ ∞

0
eA∗t(−C∗QC+K∗K)eAtdt =−Ψ ∗QΨ +Ψ ∗

ΞΨΞ .

e) Letu∈ L2(0,∞;Cm). Then, by using b), c) and d), we obtain

−
〈[

Fu+Ψx0

u

]
,

[
Q S
S∗ R

][
Fu+Ψx0

u

]〉

L2

=−〈u,(F∗QF+F
∗S+S∗F+R)u〉L2 −〈u,(F∗Q+S∗)Ψx0〉L2 −〈(F∗Q+S∗)Ψx0,u〉L2

−〈Ψ ∗QΨx0,u〉L2 −x∗0Ψ ∗QΨx0

=−〈u,F∗
ΞFΞ u〉L2 + 〈u,F∗

ΞΨΞ x0〉L2 −〈F∗
ΞΨΞ x0,u〉L2 −〈Ψ ∗QΨx0,u〉L2 −x∗0Ψ ∗QΨx0

=−‖FΞ u+ΨΞ x0‖2+x∗0Ψ ∗
ΞΨΞ x0−x∗0Ψ ∗QΨx0

=−‖FΞ u+ΨΞ x0‖2+x∗0Xx0.

Remark 4 (Lur’e equations)

a) Equation (23) is calledspectral factorization[4,24].
b) If the Popov operator is positive definite and boundedly invertible, thenFΞ will be

boundedly invertible as well. In this case, (24) implies

Ψ∗
ΞΨΞ =Ψ ∗(F∗Q+S∗)∗F−1

Ξ F
−∗
Ξ (F∗Q+S∗)Ψ =Ψ ∗(F∗Q+S∗)∗R−1(F∗Q+S∗)Ψ .

Consequently, the minimal solution reads

X =Ψ ∗(F∗Q+S∗)∗R−1(F∗Q+S∗)Ψ −Ψ ∗QΨ ,

which coincides with [20, Proposition 7.2] (up to a minus sign which is due to a different
sign convention).

c) The property ofFΞ being outer implies that for allx0 ∈ C
n, ε > 0, there exists some

u∈ L2(0,∞;Cm) with ‖FΞ u+ΨΞ x0‖2 < ε . As a consequence, we have, from Theorem
1 e), that for allx0 ∈ Cn

x∗0Xx0 = sup
u∈L2(0,∞;Cm)

−
〈[

Fu+Ψx0

u

]
,

[
Q S
S∗ R

][
Fu+Ψx0

u

]〉

L2
. (26)
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d) For the bounded real Lur’e equation, the minimal solutionreads

X =Ψ ∗
ΞΨΞ +Ψ ∗Ψ .

In particular,X is positive semidefinite in this case.
In the positive real case, we have

X =Ψ ∗
ΞΨΞ ,

so that the minimal solution is again positive semidefinite.
e) It follows from Theorem 1 e) that foru∈ L2(0,∞;Cm) there holds

−
〈[

Fu+Ψx0

u

]
,

[
Q S
S∗ R

][
Fu+Ψx0

u

]〉

L2
= x∗0Xx0,

(i.e. u is an optimal control) if, and only if,FΞ u+ΨΞ x0 = 0. Using Theorem 1 a), this
means that there exists somex : [0,∞)→Rn such that the differential-algebraic equation

[
I 0
0 0

][
ẋ(t)
u̇(t)

]
=

[
A B
K L

][
x(t)
u(t)

]
, x(0) = x0 (27)

is fulfilled. Then it follows by a transformation of the matrix pencil
[

sI−A −B
−K −L

]
into Kro-

necker form [5, Chap. XII,§7] that x and u can be expressed by sums of exponen-
tial functions of type∑ℓ

k=1 pk(t)e−λkt (cf. proof of Proposition 1), wherep1, . . . , pℓ are
vector-valued complex polynomials, and the distinct numbers λ1, . . . ,λℓ are the general-
ized eigenvalues of the pencil

[
sI−A −B
−K −L

]
. By using the substitutions in (18), the latter are

shown in [16] to be the negatives of the stable generalized eigenvalues of theeven matrix
pencil

sE −A =




0 −sI+A B
sI+A∗ −C∗QC −C∗QD−C∗S

B∗ −D∗QC−S∗C −D∗QD−S∗D−D∗S−R


 .

3 Convolution systems and matrix representations

In this section we review results from [10] which give matrixrepresentations of the adjoints
of the output mapΨ and the input-output mapF with respect to a certain orthonormal basis
of L2(0,∞).

Definition 4 Let (α j)
∞
j=1 be a complex sequence with Re(α j) > 0 for all j ∈ N. We define

the correspondingTakenaka–Malmquist system(ψ j)
∞
j=1, ψ j ∈ L2(0,∞) by

φ1 = t 7→ e−α1t , ψ1 =
√

2Re(α1) ·φ1,

φ j =φ j−1− (α j +α j−1) · (e−α j · ∗φ j−1), ψ j =
√

2Re(α j) ·φ j , (28)

where∗ denotes the convolution product, i.e.,(g∗h)(t) =
∫ t

0 g(t − τ)h(τ)dτ .
The space generated by the firstk Takenaka–Malmquist functions is denoted byKk(α).

Remark 5

a) The Takenaka–Malmquist system is orthonormal (see e.g. [17, Appendix B] for a proof).
b) The spacesKk(α) can be interpreted as rational Krylov subspaces [10].
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c) Theconvolution system(ϕ j)
∞
j=1, ϕ j ∈ L2(0,∞), which is defined by

ϕ1 := t 7→ e−α1t , ϕ j := e−α j · ∗ϕ j−1, (29)

fulfills span{ϕ1, . . . ,ϕk}= Kk(α).
d) Consider the distinct numbersq1, . . . ,qJ with {q1, . . . ,qJ} = {α1, . . . ,αk}. Let ℓ j be the

number of indices in whichq j appears in(α j)
k
j=1 (thusk= ℓ1+ . . .+ ℓJ). Then

span{ϕ1, . . . ,ϕk}=
J⊕

j=1

span
{

t 7→ t l e−q j t
∣∣∣ l = 0, . . . , ℓ j −1

}
,

see [10,17].

The most important property of the above introduced space isthat it isF∗-invariant.

Theorem 2 Let A∈Cn×n stable and B∈Cn×m, C∈Cp×n, D∈Cp×m. For F as in(11) and
Kk(α) the sequence of subspaces from Definition 4, we have that

F
∗ (Kk(α)⊗C

p)⊂ Kk(α)⊗C
m.

Proof The proof is contained in [10] for the caseD = 0. The general result follows by
regardingD as a pointwise multiplication operatorD : L2(0,∞;Cm) → L2(0,∞;Cp). The
latter obviously fulfills

D∗ (Kk(α)⊗C
p)⊂ Kk(α)⊗C

m.

The above invariance gives rise to the existence of matrix representations ofF∗ with respect
to the Takenaka–Malmquist systems. These will be explicitly constructed in the following.

Definition 5 Let (α j)
∞
j=1 be such that Re(α j)> 0 for all j ∈N. Let (ψ j)

∞
j=1, ψ j ∈ L2(0,∞)

be the corresponding Takenaka–Malmquist system (28). Fork ∈ N, the mappingιk : Ck →
L2(0,∞) is defined by

ιkx=
k

∑
j=1

x j ·ψ j . (30)

Further, for the identity matrixI ∈C
p×p, we identifyιk : Ckp→ L2(0,∞;Cp) with the tensor

productιk⊗ I . We omit an additional subindex for sake of brevity.

Orthonormality of the Takenaka–Malmquist system implies thatιk defines an isometric em-
bedding. The orthogonal projector ontoKk(α)⊗Cp is therefore given by

Pk = ιkι∗k : L2(0,∞;Cp)→ L2(0,∞;Cp). (31)

With operatorsΨ andF as in (10) and (11), we define the matrices

Fk = ι∗kFιk ∈ C
kp×km, (32)

Sk = ι∗kΨ ∈ C
kp×n. (33)

We have
PkΨ = ιkSk, PkF= PkFPk = ιkFkι∗k , (34)

where the equalityPkF = PkFPk follows by taking adjoints inF∗Pk = PkF
∗Pk and the latter

equality follows from Theorem 2.
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Algorithm 1 from [10] provides a recursive method for the determination ofSk andFk.
The determination ofSk is based on the fact that the unnormalized Takenaka–Malmquist
system system(φ j)

∞
j=1 (28) fulfills

Ψ∗(φ1v) = (α1−A∗)−1C∗v,

Ψ ∗(φ jv) =Ψ ∗(φ j−1v)− (α j +α j−1)(α j −A∗)−1Ψ ∗(φ j−1v) ∀v∈ C
p,

see [10, Corollary 13]. The determination ofFk relies on the following consideration: LetΛ :
L2(0,∞;Cn)→ L2(0,∞;Cp) be the input-output map of the system (3) withB= I andD= 0.
ThenF = ΛB+D, whereB∈ C

n×m andD ∈ C
p×m are regarded as constant multiplication

operators onL2(0,∞;Cm). ThenΛ ∗ satisfies the recursion (here(ϕ j)
∞
j=1 is the convolution

system from (29))

Λ ∗(ϕ1v) = (α1−A∗)−1C∗vϕ1,

Λ ∗(ϕ jv) = (α j −A∗)−1C∗vϕ j +(α j −A∗)−1Λ ∗(ϕ j−1v) ∀v∈ C
p,

see [10, Corollary 14]. A transition from the basis(ϕ1, . . . ,ϕk) to the basis(ψ1, . . . ,ψk) then
gives rise to the construction ofFk. The precise construction is given in Algorithm 1 (we
refer to [10] for further details).

Algorithm 1 ADI iteration for output and input-output maps.
Input: A∈ Cn×n a stable matrix,B∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m and shift parametersα1, . . . ,αk ∈ C with
Re(αi)> 0.
Output: Sk = ι∗kΨ ∈ Ckp×n, Fk = ι∗kFιk ∈ Ckp×km

1: V1 = (α1−A∗)−1C∗

2: S1 =
√

2Re(α1) ·V∗
1

3: Q1 =
√

2Re(α1) ·V∗
1 B

4: L1 =
1√

2Re(α1)

5: F1 = Q1L1+D
6: for i = 2,3, . . . ,k do
7: Vi =Vi−1− (αi +αi−1) · (αi −A∗)−1Vi−1

8: Si = [S∗i−1 ,
√

2Re(αi) ·Vi ]
∗

9: Qi = [Qi−1 ,
√

2Re(αi) ·V∗
i B]

10: γi =

√
Re(α j )

Re(α j−1)

11: Mi,1 =




1√
2Re(α1)

. . .
1√

2Re(αi )


, Mi,2 =




α1+αi
α1−αi α2+αi

. . .
αi−1−αi αi +αi


,

Mi,3 =




1 . . . 1
...

...
1


, Mi,4 =

[
0 I
1 0

]
, Mi,5 =




−
√

2Re(α1)

. . .

−
√

2Re(αi−1)
1




12: Mi = M−1
i,1 M−1

i,2 M−1
i,3 M−1

i,4 M−1
i,5

13: Li =

[
γiLi−1 0

0 0

]
−Mi

[
Li−1 0

0 1

][
γi(αi +αi−1)I 0

[0,γi ] −1

]

14: Fi =

[
[Fi−1,0]

Qi(Li ⊗ Im)+
[
0,D

]
]

15: end for
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4 The projected optimal control problem

In this section we consider the optimal control problems (2)& (3) and (9) & (3), and their
relations to the corresponding optimal control problems inwhich the outputy is replaced by
Pky with the orthogonal projectorPk as in (31).
We start with the bounded real case.

Theorem 3 Assume that A∈ C
n×n is stable, B∈ C

n×m, C∈ C
p×n and D∈ C

p×m. Further
assume that the bounded real dissipation inequality

[
A∗X+XA+C∗C XB+C∗D

B∗X+D∗C D∗D− I

]
≤ 0, X = X∗ (35)

has a solution X∈ C
n×n. DefineΨ andF by (10) and (11).

Let (α j)
∞
j=1 be a complex sequence withRe(α j) > 0 for all j ∈ N, and let Fk ∈ Ckp×km,

Sk ∈ C
kp×n be defined as in(32) and (33).

Then the matrix I− F∗
k Fk ∈ Ckm×km is positive semi-definite. In particular, there exists

some matrix FΞ ,k ∈ C
ℓk×km with full row rank and

I −F∗
k Fk = F∗

Ξ ,kFΞ ,k. (36)

Further, there exists some SΞ ,k ∈ C
ℓk×n such that

F∗
Ξ ,kSΞ ,k =−F∗

k Sk. (37)

For the orthogonal projector Pk as in(31), the matrix Xk defined by

Xk = S∗kSk+S∗Ξ ,kSΞ ,k, (38)

fulfills
x∗0Xkx0 = sup

u∈L2(0,∞;Cm)

‖PkFu+PkΨx0‖2−‖u‖2. (39)

Proof Since the dissipation inequality (35) has a solution andA is stable, we obtain by
Remark 3 b) that the bounded real Lur’e equation has a minimalsolutionX = X∗ ∈ C

n×n.
Then Theorem 1 implies that the operatorI −F

∗
F is positive semi-definite. SincePk ≤ I

we haveF∗PkF ≤ F
∗
F, which implies thatI −F

∗PkF ≥ I −F
∗
F. SinceI −F

∗
F is positive

semi-definite it follows thatI −F
∗PkF is positive semi-definite. We have

I −F∗
k Fk = I − ι∗kF∗ιkι∗kFιk = ι∗k (I −F

∗PkF)ιk ≥ 0,

so thatI −F∗
k Fk is positive semi-definite. Thus, there exists someFΞ ,k ∈ Cℓk×km with full

row rank and satisfying (36).
We prove that im(F∗

k Sk)⊂ im(FΞ ,k). By taking orthogonal complements, this is equiva-
lent to

ker(FΞ ,k)⊂ ker(S∗kFk).

Let x0 ∈ C
n andu ∈ L2(0,∞;Cm). Then, by stability ofA, the statex(t) of the system (3)

tends to zero, ift tends to infinity. Then (20) yields

x∗0Xx0 ≥ ‖Fu+Ψx0‖2−‖u‖2.
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By further using (34) and (36), we see that

x∗0Xx0 ≥ ‖Fu+Ψx0‖2−‖u‖2

≥ ‖PkFu+PkΨx0‖2−‖Pku‖2−‖(I −Pk)u‖2

= ‖ιkFkι∗k u+ ιkSkx0‖2−‖ι∗k u‖2−‖(I −Pk)u‖2

= ‖Fkι∗k u+Skx0‖2−‖ι∗k u‖2−‖(I −Pk)u‖2

= 〈ι∗k u,(F∗
k Fk− I)ι∗k u〉+2Re〈ι∗k u,F∗

k Skx0〉+‖Skx0‖2−‖(I −Pk)u‖2

= −〈ι∗k u,F∗
Ξ ,kFΞ ,k)ι∗k u〉+2Re〈ι∗k u,F∗

k Skx0〉+‖Skx0‖2−‖(I −Pk)u‖2

= −‖FΞ ,kι∗k u‖2+2Re〈ι∗k u,F∗
k Skx0〉+‖Skx0‖2−‖(I −Pk)u‖2.

(40)

Assume that
kerFΞ ,k 6⊂ kerS∗kFk.

Then there exists some ˆu ∈ C
km with S∗kFkû 6= 0 andFΞ ,kû = 0, and thus we can choose

somex0 ∈ Cn such thatx∗0S∗kFkû 6= 0. Then, forλ ∈ C, substitutingx0 andu := ιk(λ û) ∈
L2(0,∞;Cm) into (40), we obtain

x∗0Xx0 ≥−‖FΞ ,kι∗k ιk(λ û)‖2+2Re〈ι∗k ιk(λ û),F∗
k Skx0〉+‖Skx0‖2−‖(I −Pk)ιk(λ û)‖2

=−‖λFΞ ,kû‖2+2Re(λ 〈û,F∗
k Skx0〉)+‖Skx0‖2

=2Re(λ 〈û,F∗
k Skx0〉)+‖Skx0‖2.

In particular, by an appropriate choice ofλ ∈ C, we can make the expression on the right
hand side arbitrarily large, which leads to a contradiction. Hence ker(FΞ ,k)⊂ ker(S∗kFk).

SinceFΞ ,k has full row rank,FΞ ,kF∗
Ξ ,k is invertible and therefore

SΞ ,k := (FΞ ,kF
∗

Ξ ,k)
−1FΞ ,kFkSk (41)

is well-defined. We now show that it satisfies (37). Letx ∈ C
n. By the above established

subspace inclusion im(F∗
k Sk) ⊂ im(F∗

Ξ ,k), there exists az∈ Ckm such thatF∗
k Skx = F∗

Ξ ,kz.
Then

F∗
Ξ ,kSΞ ,kx= F∗

Ξ ,k(FΞ ,kF
∗

Ξ ,k)
−1FΞ ,kFkSkx= F∗

Ξ ,k(FΞ ,kF∗
Ξ ,k)

−1FΞ ,kF
∗

Ξ ,kz= F∗
Ξ ,kz= F∗

k Skx.

Sincex ∈ C
n was arbitrary this proves thatF∗

Ξ ,kSΞ ,k = F∗
k Sk, i.e the above definedSΞ ,k

satisfies (37).
It remains to prove thatXk as in (38) fulfills (39). Using (36) and (37), we have for all

x0 ∈ Cn andu∈ L2(0,∞;Cm) that

‖PkFu+PkΨx0‖2−‖u‖2

=−〈ι∗k u,F∗
Ξ ,kFΞ ,kι∗k u〉+2Re〈ι∗k u,F∗

k Skx0〉+‖Skx0‖2−‖(I −Pk)u‖2

=−〈ι∗k u,F∗
Ξ ,kFΞ ,kι∗k u〉−2Re〈ι∗k u,F∗

Ξ ,kSΞ ,kx0〉+‖Skx0‖2−‖(I −Pk)u‖2

=−‖FΞ ,kι∗k u+SΞ ,kx0‖2+‖SΞ ,kx0‖2+‖Skx0‖2−‖(I −Pk)u‖2

=−‖FΞ ,kι∗k u+SΞ ,kx0‖2−‖(I −Pk)u‖2+x∗0Xkx0

≤x∗0Xkx0.

This gives rise to
x∗0Xkx0 ≥ sup

u∈L2(0,∞;Cm)

‖PkFu+PkΨx0‖2−‖u‖2.
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On the other hand, using the surjectivity ofFΞ ,k, there exists some ˆu ∈ Ckm with FΞ ,kû =
−SΞ ,kx0. Then, foru= ιkû, we see that equality holds true in the above calculations. This
proves (39).

Remark 6 (Bounded real Lur’e equations and projected optimal control problems)

a) Equation (36) can be regarded as a discrete version of the spectral factorization (23). The
matrix SΞ ,k takes the role of the operatorΨΞ in Theorem 1.

b) The formula (41) forSΞ ,k shows thatXk equalsS∗k[I + FkF∗
Ξ ,k(FΞ ,kF∗

Ξ ,k)
−2FΞ ,kF∗

k ]Sk.

It is easily verified thatF∗
Ξ ,k(FΞ ,kF∗

Ξ ,k)
−2FΞ ,k is the Moore-Penrose pseudo-inverse of

F∗
Ξ ,kFΞ ,k. Therefore,Xk = S∗k[I +Fk(I −F∗

k Fk)
+F∗

k ]Sk. This formula should be compared
to the one given in Remark 4 b) forX.

Next we prove that the sequence(Xk) is monotonically increasing with respect to definite-
ness. We further present a criterion on the shift parameterssuch that convergence to the
minimal solutions is achieved.

Theorem 4 Assume that A∈ Cn×n is stable, B∈ Cn×m, C∈ Cp×n and D∈ Cp×m. Further
assume that the bounded real Lur’e equation(1) has a minimal solution X∈ C

n×n. Define
Ψ andF by (10) and (11).
Let (α j)

∞
j=1 be a complex sequence withRe(α j) > 0 for all j ∈ N, and let Fk ∈ C

kp×km,

Sk ∈ C
kp×n be defined as in(32) and (33); let Xk be defined as in Theorem 3.

Then
Xk ≤ Xk+1, Xk ≤ X ∀k∈ N,

and the sequence(Xk) converges. If, additionally,(α j)
∞
j=1 satisfies the non-Blaschke condi-

tion (7), then(Xk) converges to X.

Proof For x0 ∈ C
n andu∈ L2(0,∞;Cm) we have

‖PkFu+PkΨx0‖2
L2 ≤ ‖Pk+1Fu+Pk+1Ψx0‖2

L2 ,

sinceKk(α)⊂ Kk+1(α). It follows that

x∗0Xkx0 = sup
u∈L2(0,∞;Cm)

‖PkFu+PkΨx0‖2−‖u‖2

≤ sup
u∈L2(0,∞;Cm)

‖Pk+1Fu+Pk+1Ψx0‖2−‖u‖2 = x∗0Xk+1x0.

Similarly, using that
‖PkFu+PkΨx0‖2

L2 ≤ ‖Fu+Ψx0‖2
L2 ,

we obtain
x∗0Xkx0 ≤ x∗0Xx0 ∀x0 ∈ C

n.

Convergence of the sequence(Xk) follows by the fact that it is non-decreasing and bounded
from above byX with respect to definiteness.
In the case where the non-Blaschke condition (7) is fulfilled, the union of the spacesKk(α)
over allk ∈ N is dense inL2(0,∞;Cm) [17]. The sequence(Pk) therefore converges to the
identity in the strong operator topology, that is

lim
k→∞

Pky= y ∀y∈ L2(0,∞;Cm). (42)
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Let x0 ∈ Cn andε > 0. By (26) there exists someu∈ L2(0,∞;Cm) with

x∗0Xx0 < ‖Fu+Ψx0‖2−‖u‖2+ ε
2 .

By (42), there exists someN ∈ N with ‖(Fu+Ψx0)−Pk(Fu+Ψx0)‖2 ≤ ε
2 for all k ≥ N.

Then we obtain that for allk≥ N there holds

x∗0Xx0 < ‖Fu+Ψx0‖2−‖u‖2+ ε
2

≤ ‖PkFu+PkΨx0‖2+‖(Fu+Ψx0)−Pk(Fu+Ψx0)‖2−‖u‖2+ ε
2

≤ ‖PkFu+PkΨx0‖2−‖u‖2+ ε ≤ x∗0Xkx0+ ε .

Using further thatXk ≤ X, we obtain

|x∗0(X−Xk)x0|= x∗0Xx0−x∗0Xkx0 < ε ∀k≥ N.

It follows that the sequence(Xk) converges toX.

Next we introduce a slighty different, numerically more advantageous, representation
for the matrixXk as in (38).

Theorem 5 Assume that A∈ Cn×n is stable, B∈ Cn×m, C∈ Cp×n and D∈ Cp×m. Further
assume that the bounded real dissipation inequality(35)has a solution X∈C

n×n. DefineΨ
andF by (10) and (11).
Let (α j)

∞
j=1 be a complex sequence withRe(α j) > 0 for all j ∈ N, and let Fk ∈ C

kp×km,

Sk ∈ C
kp×n be defined as in(32) and (33).

Then there exists some matrix Gk ∈ C
ℓ̃k×kp with full row rank and

I −FkF∗
k = G∗

kGk. (43)

Further, there exists some Rk ∈ Cℓ̃k×n such that

G∗
kRk = Sk. (44)

The matrix Xk as in(38) fulfills
Xk = R∗

kRk. (45)

Proof The matrix I − FkF∗
k ∈ C

kp×kp is positive semi-definite by Theorem 3. Therefore,
I−F∗

k Fk ∈Ckm×km is positive semidefinite as well. This implies the existenceof some matrix

Gk ∈ C
ℓ̃k×kp with full row rank such that (43) holds.

By (36) we have ker(I −F∗
k Fk) = ker(FΞ ,k). From (37) we obtain ker(FΞ ,k)⊂ ker(S∗kFk),

whence ker(I −F∗
k Fk)⊂ ker(S∗kFk).

We now prove im(Sk) ⊂ im(I −FkF∗
k ). This is equivalent to ker(I −FkF∗

k ) ⊂ ker(S∗k).
Let y∈ ker(I −FkF∗

k ). Theny= FkF∗
k y. Therefore

S∗ky= S∗kFkF∗
k y (46)

andF∗
k y= F∗

k FkF∗
k y. The latter is equivalent to(I −F∗

k Fk)F∗
k y= 0. Thereby we obtain that

F∗
k y∈ ker(I −F∗

k Fk), which by the inclusion of nullspaces established in the previous para-
graph givesF∗

k y ∈ ker(S∗kFk). HenceS∗kFkF∗
k y = 0. From (46) we then obtainS∗ky = 0. We

conclude that ker(I −FkF∗
k )⊂ ker(S∗k), as desired.
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From (43) we obtain ker(I −FkF∗
k ) = ker(Gk), so that im(I −FkF∗

k ) = im(G∗
k). Together

with the already established subspace inclusion im(Sk) ⊂ im(I − FkF∗
k ), this shows that

im(Sk) ⊂ im(G∗
k). SinceGk has full row rank,GkG∗

k is invertible and therefore

Rk := (GkG
∗
k)

−1GkSk (47)

is well-defined. We now show that it satisfies (44). Letx ∈ C
n. By the above established

subspace inclusion im(Sk)⊂ im(G∗
k), there exists az∈ Ckp such thatSkx= G∗

kz. Then

G∗
kRkx= G∗

k(GkG
∗
k)

−1GkSkx= G∗
k(GkG

∗
k)

−1GkG
∗
kz= G∗

kz= Skx.

Sincex∈C
n was arbitrary this proves thatG∗

kRk = Sk, i.e the above definedRk satisfies (44).
By Remark 6 b) we haveXk = S∗k[I +Fk(I −F∗

k Fk)
+F∗

k ]Sk. Using the above established
subspace inclusion im(Sk) ⊂ im(I −FkF∗

k ) and the fact that(I −FkF∗
k )

+(I −FkF∗
k ) is the

orthogonal projection onto im(I −FkF∗
k ) we may alternatively write this as

Xk = S∗k[(I −FkF∗
k )

+(I −FkF∗
k )+Fk(I −F∗

k Fk)
+F∗

k ]Sk.

The following identity for Moore-Penrose pseudo-inversesis most easily proven by verify-
ing the Moore-Penrose conditions [6, Sec. 5.5.4]:

(I −FkF∗
k )

+ = (I −FkF∗
k )

+(I −FkF∗
k )+Fk(I −F∗

k Fk)
+F∗

k .

From this we see that
Xk = S∗k(I −FkF

∗
k )

+Sk. (48)

On the other hand we have, using (47),

R∗
kRk = S∗kG∗

k(GkG
∗
k)

−2GkSk,

and it is easily verified thatG∗
k(GkG∗

k)
−2Gk is the Moore-Penrose pseudo-inverse ofG∗

kGk.
SinceG∗

kGk = I −FkF∗
k by (43), it follows thatR∗

kRk = Xk.

Remark 7 (Bounded real Lur’e equations)

a) It follows from (32) thatι∗k (I −FkF
∗
k)ιk = I −FkF∗

k .
b) The formula (48) forXk should be compared to the equation forX in Remark 4 b), which

in the bounded real case can be re-written asX =Ψ∗(I −FF∗)−1Ψ .
c) Observing the lower triangular block structure of matrixFi in Algorithm 1, that is

Fi =

[
[Fi−1,0]

Qi(Li ⊗ Im)+
[
0,D

]
]
, (49)

we can determine the matricesGi ∈ Cℓ̃i×ip andRi ∈ Cℓ̃i×n recursively as follows: We
have

I −FiF
∗
i

=

[
I −Fi−1F∗

i−1 −
[
Fi−1 0

](
Qi(Li ⊗ Im)

)∗

−
(
Qi(Li ⊗ Im)

)[
Fi−1 0

]∗
I −

(
Qi(Li ⊗ Im)+

[
0,D

])(
Qi(Li ⊗ Im)+

[
0,D

])∗
]
.

By making the ansatz

Gi =

[
Gi−1 G12,i

0 G22,i

]
,
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we obtain
[
G∗

i−1Gi−1 G∗
i−1G12,i

G∗
12,iGi−1 G∗

12,iG12,i +G∗
22,iG22,i

]

= G∗
i Gi = I −FiF

∗
i

=

[
I −Fi−1F∗

i−1 −
[
Fi−1 0

](
Qi(Li ⊗ Im)

)∗

−
(
Qi(Li ⊗ Im)

)[
Fi−1 0

]∗
I −

(
Qi(Li ⊗ Im)+

[
0,D

])(
Qi(Li ⊗ Im)+

[
0,D

])∗
]
.

Thus, the matrixG12,i is the unique solution of the linear equation

G∗
i−1G12,i =−

[
Fi−1 0

](
Qi(Li ⊗ Im)

)∗
.

Thereafter, the matrixG22,i can be obtained by a factorization

G∗
22,iG22,i = I −

(
Qi(Li ⊗ Im)+

[
0,D

])(
Qi(Li ⊗ Im)+

[
0,D

])∗−G∗
12,iG12,i .

Since, by Algorithm 1,Si is obtained fromSi−1 by

Si =

[
Si−1√

2Re(αi) ·V∗
i

]
, (50)

we can, by making the ansatz

Ri =

[
Ri−1

R2,i

]
,

rewrite equation (44) as
[
G∗

i−1 0
G∗

12,i G∗
22,i

][
Ri−1

R2,i

]
=

[
Si−1√

2Re(αi) ·V∗
i

]
.

Hence,R2,i is the solution of the linear equation

G∗
22,iR2,i =

√
2Re(αi) ·V∗

i −G∗
12,iRi−1.

By Theorem 5 and Remark 7 c), we can set up the following algorithm for the determi-
nation of the minimal solution of bounded real Lur’e equations.

Algorithm 2 ADI iteration for the bounded real Lur’e equation.
Input: a stable matrixA ∈ Cn×n, andB ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m such that the bounded real Lur’e
equation (1) has the minimal solutionX ∈ Cn×n, and shift parametersα1, . . . ,αk ∈ C with Re(αi)> 0.
Output: Rk ∈ Cℓ̃k×n such thatR∗

kRk = Xk ≈ X.

1: Perform steps 1–5 in Algorithm 1
2: Determine a matrixG1 with full row rank andG∗

1G1 = I −F1F∗
1

3: Determine a matrixR1 with G∗
1R1 = S1

4: for i = 2,3, . . . ,k do
5: Perform steps 7–14 in Algorithm 1.
6: Determine a matrixG12,i with G∗

i−1G12,i =−
[
Fi−1 0

](
Qi(Li ⊗ Im)

)∗
7: Determine a matrixG22,i with full row rank and

G∗
22,iG22,i = I −

(
Qi(Li ⊗ Im)+

[
0,D

])(
Qi(Li ⊗ Im)+

[
0,D

])∗−G∗
12,iG12,i

8: Gi =

[
Gi−1 G12,i

0 G22,i

]

9: Determine a matrixR2,i with G∗
22,iR2,i =

√
2Re(αi) ·V∗

i −G∗
12,iRi−1

10: Ri =

[
Ri−1
R2,i

]

11: end for
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Remark 8If A ∈ Cn×n is stable,B = 0 ∈ Cn×m, C ∈ Cp×n andD = 0 ∈ Cp×m, then the
bounded real Lur’e equations reduce to the Lyapunov equation

A∗X+XA+C∗C= 0.

In this case, the matrices in Algorithm 2 readFi = 0, Gi = I andSi = Ri . Then Algorithm 2
reduces to the well-known and established ADI iteration forLyapunov equations [7,9,19].

Now we consider positive real Lur’e equations. First we present a version of Theorem 3
for positive real systems. The proof can be done by adapting the lines of the proof of Theo-
rem 3.

Theorem 6 Assume that A∈ C
n×n is stable, B∈ C

n×m, C∈ C
m×n and D∈ C

m×m. Further
assume that the positive real dissipation inequality

[
A∗X+XA XB−C∗

B∗X−C −(D∗+D)

]
≤ 0, X = X∗ (51)

has a solution X∈ Cn×n.
DefineΨ andF by (10) and (11). Let (α j)

∞
j=1 be a complex sequence withRe(α j) > 0 for

all j ∈ N, and let Fk ∈ Ckp×km, Sk ∈ Ckp×n be defined as in(32) and (33).
Then the matrix F∗k +Fk ∈ C

km×km is positive semi-definite. In particular, there exists some
FΞ ,k ∈ Cℓk×km with full row rank and

F∗
k +Fk = F∗

Ξ ,kFΞ ,k. (52)

Further, there exists some SΞ ,k ∈ C
ℓk×n such that

F∗
Ξ ,kSΞ ,k = Sk. (53)

For the orthogonal projector Pk as in(31), the matrix Xk defined by

Xk = S∗Ξ ,kSΞ ,k. (54)

fulfills,
x∗0Xkx0 = sup

u∈L2(0,∞;Cm)

−2Re〈u,PkFu+PkΨx0〉. (55)

Remark 9Using (34) and the self-adjointness ofPk, we obtain from (34) and (55) that

x∗0Xkx0 = sup
u∈L2(0,∞;Cm)

−2Re〈u,PkFu+PkΨx0〉

= sup
u∈L2(0,∞;Cm)

−2Re〈u,PkFPku+PkΨx0〉

= sup
u∈L2(0,∞;Cm)

−2Re〈Pku,FPku+Ψx0〉

= sup
u∈Kk(α)⊗Cm

−2Re〈u,Fu+Ψx0〉.

Again, we can formulate a convergence result. The proof is analogous to that of Theo-
rem 4 and therefore omitted.
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Theorem 7 Assume that A∈ Cn×n is stable, B∈ Cn×m, C∈ Cm×n and D∈ Cm×m. Further
assume that the positive real Lur’e equation(8) has a minimal solution X∈C

n×n. DefineΨ
andF by (10) and (11).
Let (α j)

∞
j=1 be a complex sequence withRe(α j) > 0 for all j ∈ N, and let Fk ∈ C

kp×km,

Sk ∈ Ckp×n be defined as in(32) and (33); let Xk be defined as in Theorem 6.
Then

Xk ≤ Xk+1, Xk ≤ X ∀k∈ N,

and the sequence(Xk) converges. If, additionally,(α j)
∞
j=1 satisfies the non-Blaschke condi-

tion (7), then(Xk) converges to X.

Remark 10 (Positive real Lur’e equations and projected optimal control problems)

a) If the Popov operatorF∗+F is positive definite and boundedly invertible, then the matrix
F∗

k +Fk is positive definite. In this case, the matrixXk fulfills

Xk = S∗k(F
∗
k +Fk)

−1Sk,

cf. Remark 4 b).
b) In the following we show that, by using the fact that the matrix Fi has the lower triangular

block structure as in (49), the matricesFΞ ,i ∈ Cℓi×im andSΞ ,i ∈ Cℓi×n can be recursively
determined (cf. Remark 7 c):
We have

Fi +F∗
i

=

[
Fi−1+F∗

i−1 [ I(i−1)m 0] (Qi(Li ⊗ Im))∗

(Qi(Li ⊗ Im))
[

I(i−1)m
0

]
D+D∗+[0 Im ] (Qi(Li ⊗ Im))∗+(Qi(Li ⊗ Im))

[
0
Im

]
]
.

By making the ansatz

FΞ ,i =

[
FΞ ,i−1 FΞ12,i

0 FΞ22,i

]
,

we obtain
[
F∗

Ξ ,i−1FΞ ,i−1 F∗
Ξ ,i−1FΞ12,i

F∗
Ξ12,iFΞ ,i−1 F∗

Ξ12,iFΞ12,i +F∗
Ξ22,iFΞ22,i

]

= F∗
Ξ ,iFΞ ,i = Fi +F∗

i

=

[
Fi−1+F∗

i−1 [ I(i−1)m 0] (Qi(Li ⊗ Im))∗

(Qi(Li ⊗ Im))
[

I(i−1)m
0

]
D+D∗+[0 Im ] (Qi(Li ⊗ Im))∗+(Qi(Li ⊗ Im))

[
0
Im

]
]
.

Thus, the matrixFΞ12,i is the unique solution of the linear equation

F∗
Ξ ,i−1FΞ12,i =

[
I(i−1)m 0

]
(Qi(Li ⊗ Im))

∗.

Thereafter, the matrixFΞ22,i can be obtained by a factorization

F∗
Ξ22,iFΞ22,i = D+D∗+[0 Im ] (Qi(Li ⊗ Im))

∗+(Qi(Li ⊗ Im))
[

0
Im

]
−F∗

Ξ12,iFΞ12,i .

Since, by Algorithm 1, the matricesSi andSi−1 are related by (50) we see, by making
the ansatz

SΞ ,i =

[
SΞ ,i−1

SΞ2,i

]
,
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that equation (53) now reads
[
F∗

Ξ ,i−1 0
F∗

Ξ12,i F∗
Ξ22,i

][
SΞ ,i−1

SΞ2,i

]
=

[
Si−1√

2Re(αi) ·V∗
i

]
.

Hence,SΞ2,i is the solution of the linear equation

F∗
Ξ22,iSΞ2,i =

√
2Re(αi) ·V∗

i −F∗
Ξ12,iSΞ ,i−1.

Algorithm 3 ADI iteration for the positive real Lur’e equation.
Input: A∈ Cn×n a stable matrix,B∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m such that the positive real Lur’e equation
(8) has the minimal solutionX ∈ Cn×n, and shift parametersα1, . . . ,αk ∈ C with Re(αi)> 0.
Output: SΞ ,k ∈ Cℓk×n such thatS∗Ξ ,kSΞ ,k = Xk ≈ X.

1: Perform steps 1–5 in Algorithm 1
2: Determine a matrixFΞ ,1 with full row rank andF∗

Ξ ,1FΞ ,1 = F1+F∗
1

3: Determine a matrixSΞ ,1 with F∗
Ξ ,1SΞ ,1 = S1

4: for i = 2,3, . . . ,k do
5: Perform steps 7–14 in Algorithm 1.
6: Determine a matrixFΞ12,i with F∗

Ξ ,i−1FΞ12,i = [ I(i−1)m 0] (Qi(Li ⊗ Im))∗

7: Determine a matrixFΞ22,i with full row rank and
F∗

Ξ22,iFΞ22,i = D+D∗+[0 Im ](Qi(Li ⊗ Im))∗+(Qi(Li ⊗ Im))
[

0
Im

]
−F∗

Ξ12,iFΞ12,i

8: FΞ ,i =

[
FΞ ,i−1 FΞ12,i

0 FΞ22,i

]

9: Determine a matrixSΞ2,i with F∗
Ξ22,iSΞ2,i =

√
2Re(αi) ·Vi −F∗

Ξ12,iSΞ ,i−1

10: SΞ ,i =

[
SΞ ,i−1
SΞ2,i

]

11: end for

Remark 11We note that Algorithm 2 reduces to well-known ADI iterationfor Lyapunov
equations [7, 9, 19] (cf. Remark 8): IfA ∈ Cn×n is stable,B = 0 ∈ Cn×m, C ∈ Cm×n and
D = 1

2Im ∈ C
m×m, then the positive real Lur’e equation reduces to the Lyapunov equation

A∗X+XA+C∗C= 0.

The matrices in Algorithm 3 then readFi = 0, FΞ ,i =
1
2I andSΞ ,i = Si , whence Algorithm 2

then again reduces to ADI iteration for Lyapunov equations.

5 Numerical Example

We present a numerical example to show the applicability of our algorithm and to demon-
strate the expected performance of the ADI iteration for thepositive real Lur’e equation in
terms of monotonicity and convergence behavior.

We consider a convection-diffusion equation on the unit square Ω := [0,1]× [0,1],
namely

∂x
∂ t (ξ , t) = k∆x(ξ , t)+b⊤∇x(ξ , t), (ξ , t) ∈ Ω ×R≥0. (56)

The input is a scalar function formed by the Robin boundary condition

u(t) = ν(ξ )⊤∇x(ξ , t)+αx(ξ , t), (ξ , t) ∈ ∂ Ω ×R≥0,



22 Arash Massoudi et al.

and the output consists of the integral of Dirichlet boundary values, i.e.

y(t) =
∫

∂Ω
x(ξ , t)dσξ ,

where∂ Ω denotes the boundary ofΩ , σξ denotes the surface measure, andν(ξ ) denotes
the outward unit normal.

We considerb=
[

10
10

]
and setk = α = 1. To discretize the PDE (56), we apply a finite

element discretization with uniform triangular elements of fixed sizeh= 1
N−1, whereN ∈N

is the number of points in each coordinate direction. In addition, we define the subspaceVh ⊂
H1(Ω ) using piecewise-linear basis functions. As a result, we obtain a finite dimensional
dynamical system

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)
(57)

with state space dimensionn= N2. E ∈ R
n,n is a symmetric positive definite mass matrix,

A ∈ R
n,n is a non-symmetric stiffness matrix,B∈ R

n,1 is the input matrix, andC ∈ R
1,n is

the output matrix.
The system is asymptotically stable and the matrixA+A∗ is negative definite. Further-

more, we haveB = C∗. A simple calculation then shows that the system is passive.The
positive real Popov operator has no bounded inverse, since the positive real Popov function
Π (ıω) = G(ıω)+G(ıω)∗ (with G(s) = C(sE−A)−1B = C(sI−E−1A)−1E−1B) vanishes
at infinity.
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Fig. 1 Comparison of different shift parameters for ADI iteration: convection-diffusion equation with the
space dimensionn= 4900
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We find an approximate solutionX ∈ Cn×n of the positive real Lur’e equation (8) by
applying Algorithm 3. Thereby, we use the modifications proposed in [10, Remark 7.1]
& [8, Remark 3.3] which allow computations without explicitinversion ofE. In addition, in
steps 6 and 7 of Algorithm 3, we do not need to compute the expressionQi(Li ⊗ Im), because
we compute it once in step 14 of Algorithm 1. In fact, we need tojust access the lastp rows
of the matrixFi in order to obtain the value of this expression (cf. Remark 10b)).

The choice of shift parameters has a major effect on the convergence speed of the ADI
algorithm. In our example, we choose the following two different sets of shift parameters.

1. As a first set of shift parameters, we generate 30 parameters using the Wachspress
method [19] on the basis of 4900 eigenvalues of the DirichletLaplacian given byπ2(i2+
j2), i, j = 1,2, . . . ,70. We use the obtained shift parameters in the first 30 iterations. Af-
terwards, we select a subset of these parameters which provided the highest reduction
in the value of residual norm. In our case, we chose 13 shift parameters and re-use them
every 13 iterations.

2. The second set of shift parameters is motivated by the statements in Remark 4 e). Specif-
ically, we generate a set of 30 shift parameters using Penzl’s heuristic procedure [13] on
negatives of the stable eigenvalues of the even matrix pencil

λE −A =




0 −λE+A B
λE+A∗ 0 −C∗

B∗ −C 0


 .
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Fig. 2 Monotonicity of ADI iteration: convection-diffusion equation with the space dimensionn= 4900
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We sort the obtained 30 parameters in a decreasing order withrespect to the values of
their real part in order to obtain a smooth convergence. We perform 30 iterations of
Algorithm 3 using these shift parameters. Subsequently, weextract a subset of these
parameters which provided the highest reduction in the value of residual norm. From
this set of shift parameters, we extract 8 parameters to re-use every 8 iterations.

We add a large real shift parameter of order 1012 to the above two sets of shift parame-
ters and consider it to be the first parameter in the set. We usethis large shift parameter just
in the first iteration of Algorithm 3 and do not repeat it in thefurther iterations. The reason
for adding a very big shift parameter can be explained as follows. Since in the positive real
case the Popov function has a zero at infinity, a delta impulsewill occur in the optimal con-
trol. The Takenaka-Malmquist basis function corresponding to a big shift parameter should
suitably approximate the behavior of this delta impulse.

We have performed the calculations with several state spacedimensions using MATLAB
7.10.0 (R2010a). At each iterationk, we observe the relative residual norm of the positive
real Lur’e equation using the approach proposed in [14, Sec.6]. Figure 1 shows the relative
residual norm with respect to the iteration for the space dimensionn = 4900 and for the
two different choices of shift parameters which we have introduced earlier. We can conclude
from this figure that the second set of shift parameters provide a faster convergence behavior
to the solution of positive real Lur’e equation corresponding to the system (57). In fact, with
a tolerance of 10−14 on the relative residual norm for the problem with the space dimension
n=4900, the second choice of shift parameters leads to convergence in 41 iterations whereas
the first set of parameters requires more than 70 iterations for the desired convergence.

In order to illustrate the monotonicity of the ADI iteration, we observe the trace ofXk,
denoted by trace(Xk), at each iteration of Algorithm 3. The trace ofXk can be computed
efficiently as

trace(Xk) = trace
(
S∗Ξ ,kSΞ ,k

)
= ‖SΞ ,k‖2

F ,

where‖ · ‖F denotes the Frobenius norm. Figure 2 shows the trace of solutionsXk generated
by Algorithm 3 with the two sets of shift parameters introduced earlier in this example.
From this figure we observe thattr (Xk) ≤ tr (Xk+1), for all k ∈ N, which is consistent with
Theorem 7.
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