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Abstract: In a electromagnetic machine with permanent magnets the excitation field is
provided by a permanent magnet instead of a coil. The center of the generator, the rotor,
contains the magnet. Our optimization goal consists in finding the minimum volume of the
magnet which gives a desired electromotive force. This results in an optimization problem for
a parametrized partial differential equation (PDE). We propose a goal-oriented model order
reduction approach to provide a reduced order surrogate model for the parametrized PDE
which then is utilized in the numerical optimization. Numerical tests will be provided in order
to show the effectiveness of the proposed method.
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1. INTRODUCTION

Permanent magnet synchronous machines play an increas-
ing role in applications demanding a highly dynamic be-
haviour of the drive and energy efficient speed and electro-
motive force control. To guarantee optimal operation of the
drive, simplified analytical models are used in the control
scheme of the machine. Designing a technical device is a
complex process. For this purpose we model the machine
by a magneto static Maxwell’s equation. A first deep study
on this model with an optimization problem is given in the
PhD Thesis of Pahner (1998).

In this work we present an optimization problem related
to the volume of the magnet. Due to the different configu-
rations of the magnet we will introduce an affine decompo-
sition which allows us to work on a fixed reference domain
as proposed in Rozza et al. (2008).

The rather high computational expense of the optimiza-
tion problem leads us to reduce the dimension of the
problem by means of Proper Orthogonal Decomposition
(POD). The POD method allows to reduce the degrees of
freedom of the problem (see e.g., Gubisch et al. (2013))
and allows to design fast optimization methods which
only need a few evaluations of the fully resolved objective
function, and thus evaluations of the fully resolved PDE
model, see e.g., APOD (Afanasiev et al. (2001)), TRPOD
(Arian et al. (2002),Zahr et al. (2014)).

The outline of this paper is as follows. In Section 2 we give
a brief introduction of our model problem. The optimiza-
tion problem is described in Section 3. Section 4 is devoted

? This work is supported by the German BMBF in the context of
the SIMUROM project (grant number 05M2013).

to the model order reduction and its application to our
optimization problem. Numerical results to demonstrate
the effectiveness of the proposed methods are presented in
Section 5. Finally a conclusion is drawn in Section 6.

2. MODEL PROBLEM

Our mathematical model is build upon the Permanent
Magnetic Synchronous Machines (PMSM) of Henner-
berger et al. (1997). This PMSM is used as the base design,
where some modifications have been added. The stator
contains six slots per pole. A double-layer winding with
two slots per pole per phase is used. Both, stator and rotor
are made of laminated steel which is modeled by a relative
permeability of µr = 500 with vanishing conductivity. The
length of the machine is 100 mm. Opposed to the original
design, where five surface mounted magnets are used, we
consider one buried permanent magnet in the rotor. This
design provides greater mechanical strength for holding
the magnet in place. The geometry is shown in Figure 1.

PMSMs are described by the magneto static approxima-
tion of Maxwell’s equations. The model we consider in this
work a parametrized elliptic partial differential equation
(PDE) in terms of the magnetic vector potential (MVP)
A,

∇× (µ∇×A(µ)) = Jsrc(µ)−∇×Hpm(µ). (1)

The boundary conditions are given by

A|BC = A|DA = 0, A|AB = −A|CD, (2)

where Jsrc is the source current density and Hpm is the
coercivity of the permanent magnet, and the meaning of
A,B,C,D is explained in Figure 1.
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Fig. 1. Geometry for the model problem and the region for
the affine decomposition marked with dashed lines.

In the planar 2D case, the finite element (FE) discretiza-
tion leads to following parametrized linear system,

K(µ)u(µ) = jsrc(µ) + jpm(µ). (3)

For the MVP we use the ansatz A =
∑N
i=1 uiϕi, where

ϕi are suitable ansatz functions. The FE system matrix
K(µ) emphasizes the dependency on the parameter µ.
The parameter µ is related to the location and size of
the permanent magnet. We consider a setting with a
three dimensional parameter µ = (µ1, µ2, µ3). We use two
parameters to describe the size of the permanent magnet,
where µ1 corresponds to its width and µ2 to its height in
mm. Additionally, since a PMSM with a buried permanent
magnet is considered, we introduce the parameter µ3 to
describe the central perpendicular distance between the
permanent magnet and the surface of the rotor in mm.
To obtain a computationally fast model and to avoid
remeshing when the parameter changes we require an
affine decomposition. For this purpose we introduce a box
around the permanent magnet (Figure 1, dashed line) in
which we perform a domain decomposition, (see e.g. Rozza
et al. (2008)) into L subdomains of triangular shape. As a
consequence the system matrix can be written in the form

K(µ) = Kout +

L∑
k=1

θk(µ)Kk, (4)

where Kout is the system matrix for the domain outside
the box and Kk, k = 1, . . . , L, are the system matrices
on the L domains inside the box obtained by the domain
decomposition. The µ dependency of K is now only in the
weight functions θk which are easy to evaluate. Note, that
the same decomposition is made for the right hand side.
This affine decomposition of the linear system is essential
to obtain fast reduced order models, see Section 4. Fur-

thermore, we only simulate one pole due to the symmetry
of the problem.

3. OPTIMIZATION

Given the geometry presented in Figure 1, the goal of the
optimization is to minimize the required material for the
permanent magnet while maintaining the electromotive
force E0. In the mathematical model this leads to a cost
function of the form

min
µ∈Mad

J̄(µ) := µ1µ2 + ρmax(0, Ed − E0(µ,u(µ))), (5)

where Ed is the desired electromotive force and

Mad := {µ ∈ R3 |µ ≤ µ ≤ µ}
with µ = (1, 1, 5) and µ = (∞,∞, 14) denotes the set of
admissible parameters. The nonnegative parameter ρ is a
penalization parameter and in our case set to 100. Note
that for the computation of the electromotive force the
solution to (3) is required, hence we have an optimization
problem with a PDE constraint. Further, we only consider
a 2D problem, hence we replace the volume by the area.
In addition to the constraints defined in the admissible set
we introduce the constraints

µ2 + µ3 ≤ 15 and µ1 −
2

3
µ3 ≤

50

3
.

The first constraint is motivated by the affine decomposi-
tion. Since only a subdomain of the geometry is involved
it is required that we stay within this region during the
optimization process. The second constraint is a design
constraint. It is required that the permanent magnet al-
ways has a certain distance to the rotor surface. Hence
the depth of the magnet is linked to the width, which is
expressed by this linear constraint.

The cost function (5) is not smooth due to the max oper-
ator. For the optimization we seek a smooth formulation
of the minimization problem in order to apply derivative
based methods. Therefore, we rewrite the problem by
introducing a slack variable ξ. Setting x = (µ, ξ) we get
the smooth optimization problem

min
x∈R4

J(x) := µ1µ2 + ρξ (6)

subject to

G(x) :=



µ2 + µ3 − 15

µ1 −
2

3
µ3 −

50

3
Ed − E0(µ,u(µ))− ξ

1− µ1

1− µ2

5− µ3

−ξ
µ3 − 14


≤ 0. (7)

We now have an optimization problem that can be solved
by standard methods presented in, e.g., Nocedal et al.
(2006), Hinze et al. (2009) or Tröltzsch (2010). Let us
give a brief outline of the methods utilized in the present
work, including the computation of the derivatives. We
apply here the approach using the sensitivity equations.
Although computationally more expensive than the ad-
joint approach this method will be beneficial in the model



order reduction approach presented in Section 4. The
sensitivities are required to compute the derivative of the
electromotive force. Since E0 is a linear operator we get

∂E0(µ,u(µ))

∂µi
= E0(µ, si) for i = 1, . . . , 3,

where si = ∂u(µ)
∂µi

are the sensitivities. To obtain the

sensitivities the linear sensitivity equations

K(µ)si(µ) = fi, for i = 1, . . . , 3 (8)

have to be solved with

fi = (jsrc(µ) + jpm(µ))µi
−Kµi

(µ)u(µ).

Here the subindex µi indicate the derivative with respect
to the i-th parameter. Note, that these derivatives are
easy to compute due to the previousely introduced affine
decomposition (4). The derivative of the matix K(µ) is
given by the derivatives of the functions θk(µ).

To perform the numerical optimization we use the SQP
method. This method provides fast convergence. To avoid
the computationally expensive evaluation of the Hessian
we use an approximation based on the damped BFGS
update. To guarantee the convergence an Armijo back-
tracking strategy using a `1− penalty function is used
(Nocedal et al. (2006)).

4. PROPER ORTHOGONAL DECOMPOSITION FOR
PARAMETRIZED PROBLEMS

In this section, we explain the POD method for the
approximate solution of the parametrized equation (3).
To begin with, let us suppose to know the finite element
solution u(µ) ∈ RN for given parameter µ ∈Mad. For this
purpose let {µj}nj=1 be a grid in Mad and let u(µj) denote

the corresponding solutions to (3) for the grid points µj .
We define the snapshots set V := span{u(µ1), . . . ,u(µn)}
and determine a POD basis {ψ1, . . . , ψ`} of rank ` by
solving the following minimization problem:

min
ψ1,...,ψ`

n∑
j=1

αj

∥∥∥∥∥u(µj)−
∑̀
i=1

〈u(µj), ψi〉Wψi

∥∥∥∥∥
2

W

s.t. < ψj , ψi >W= δij for 1 ≤ i, j ≤ `, (9)

where αj are nonnegative weights, δij denotes the Kro-
necker symbol, W is a positive definite N ×N matrix and
ψi ∈ Rn. The weighted inner product used is defined as
follows:

〈u,v〉W = u>Wv.

It is well-known (see Gubisch et al. (2013)) that problem
(9) admits a unique solition {ψ1, . . . , ψ`}, where ψi denotes
the i−th eigenvector of the selfadjoint linear mapping
operator R : Rn → Rn, i.e. Rψi = λiψi with λi > 0.
where R is defined as follows:

Rψ =

n∑
j=1

αj〈u(µj), ψ〉Wu(µj) for ψ ∈ Rn.

Moreover
n∑
j=1

αj

∥∥∥∥∥u(µj)−
∑̀
i=1

〈u(µj), ψi〉Wψi

∥∥∥∥∥
2

W

=

d∑
i=`+1

λi.

4.1 POD approximation for state and sensitivities

We briefly recall how to generate the reduce order model
by means of POD. Suppose we have computed the POD
basis {ψi, . . . , ψ`} of rank `. The weight matrix W is given
by

W = K(µ̄) + M(µ̄),

where µ̄ is a fixed reference parameter and M denotes
the mass matrix. Then, we define the POD ansatz for the

state u`(µ) :=
∑`
i=1 w

`
iψi. This ansatz in (3) leads to a

`−dimensional system for the unknown {wi}`i=1, namely

K`(µ)w(µ) = j`src(µ) + j`pm(µ). (10)

Here the entries of the stiffness matrix K` are given by
〈ψi,K(µ)ψj〉W . The right hand side is composed of the
projections 〈jsrc(µ), ψi〉W and 〈jpm(µ), ψi〉W , respectively.
Recall that due to the affine decomposition this projection
has to be computed only once, and the system matrix can
be written as

K`(µ) = Kout,` +

L∑
k=1

θk(µ)Kk,`,

where Kout,` = 〈ψi,Kout(µ)ψj〉W and Kk,` = 〈ψi,Kk(µ)ψj〉W .
The same structure can be used for the right hand side.
Note that this is very important in order to obtain an
efficient reduced order model since the system can be set
up for different values of µ without the need of the original
high dimensional matrices and right hand sides. In an
analogous way we obtain the reduced sensitivity equation
from (8). We need to make an ansatz for the sensitivities
si and project the system onto the subspace spanned by
the POD basis. Note that in the present work we use the
same basis functions for the state u and the sensitivities
s. A better approximation property is achieved by adding
the solution of the sensitivity equation to the snapshot set.
More details are given in the next section.

4.2 The POD method for optimization problem

The selection of snapshots is crucial for the quality of the
ROM. It is clear that the more information we provide
about the system (i.e. the more snapshots details), the
better and more accurate approximations we can achieve.
Nevertheless, we want to avoid a too expensive offline
stage. For this purpose we propose a goal-oriented ap-
proach for the computation of the POD basis functions.
The goal is given by the difference between the electro-
motive force computed by the FE model and the reduced
model, i.e., |E0(µ,u`(µ))−E0(µ,u(µ))|. The goal-oriented
approximation approach aims at minimizing the error for a
particular output function instead of minimizing the error
in the state.

We start with a very coarse parameter space choosing
only one parameter µ0 and solve the full problem together
with the sensitivity equations associated to this parameter.
Then we compute the POD basis functions and perform
the reduced optimization procedure. At the end of the pro-
cess we find a new parameter µ1 which is an approximation
of the optimal desired design, we update the parameter
set D = {µ0, µ1} ⊂ Mad, solve the full problem and
the sensitivity equations related to the new parameter µ1.



Then, we enlarge the snapshot set and compute new POD
basis functions. We itereate this process until we reach the
desidered convergence. The procedure is summarized in
Algorithm 1.

Algorithm 1 (Goal-Oriented POD optimization)

Require: µ0,u(µ0),V = [], k = 0, tol
1: while |E(µk,u`(µk)− E(µk,u(µk))| > tol do
2: Compute sensitivity si(µ

k), for i = 1, 2, 3.
3: Set Snapshots set

V = [V,u(µk), s1(µk), s2(µk), s3(µk)]

4: Compute POD basis functions {ψi}`i=1 with ` =
rank(V)

5: Find µk+1 solving the optimization problem utiliz-
ing the reduce order model

6: Compute u`(µk+1) and E(µk+1,u`(µk+1)).
7: Compute u(µk+1) and E(µk+1,u(µk+1))
8: Set k=k+1
9: end while

In our simulations this approach turns out to be the most
efficient since it avoids long offline computations.

5. NUMERICAL EXPERIMENTS

This section presents numerical tests in order to show the
performance of our proposed methods. All the numerical
simulations reported in this paper are performed on an
iMac with an Intel Core i5, 2.7 Ghz and 8GB RAM using
MATLAB R©. We will present three test cases. In the first
experiment we show the performance of the reduced order
model obtained by the POD method. The second and
the third experiment focus on the optimization problem,
where we first perform the optimization only using the
FE method and compare the performance to the strategy
proposed in Algorithm 1.

5.1 Test 1

The first test concerns the parametric model order reduc-
tion. We focus on two different snapshot sets: one is given
by the PDE solutions corresponding to the corners of the
parameter space, the second snapshot set is computed on
an equidistant grid with grid size one. In the first case
we have only eight snapshots, while in the second case we
have 1170 snapshots. In Table 1 we show the maximum
relative error in the POD approximation with the poor
(second column, errc) and with the rich (third column,
errf ) snapshot span. As expected, the error in the third
column is less than the error in the second column when
varying the number of POD basis functions. Here the
relevance of the snapshot set for the approximation quality
can clearly be seen.

Figure 2 shows the behavior of the maximum relative error
with respect to the number of POD basis functions. The
Figure refers to the rich snapshot span (errf ). Moreover,
we present the decay of the associated eigenvalues λi. From
the decay of the eigenvalues it can be seen that we are
able to reduce the dimension of the discrete state equation
significantly.

Summarizing this experiment we can see that the POD
method is able to gererate a reduced order model of
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Fig. 2. Decay of the relative error and the eigenvalues.

good quality. Furthermore, the choice of the snapshots
are essential since the reduced order model is only valid
in a neighbourhood of the paramerter µ chosen to build
the reduced order model. This is also observed in the
optimization procedure using Algorithm 1.

5.2 Test 2

In this experiment we present the results for the optimiza-
tion process using the FE model. The initial parameter
choice is µ0 = (19, 7, 7), and the desired electromotive
force is set to Ed = 30.3702. Note that this particular
choice corresponds to Ed = E0(µ0,u(µ0)). Further the
volume (V ) of the permanent magnet for the initial condi-
tion is 133mm3. The iteration history of the optimization
routine is shown in Table 2. The optimal design is obtained
with µopt = (21.071, 2.980, 6.607) and the corresponding
volume is 62.798mm3. This corresponds to a reduction
of more than 50% compared to the initial configuration.
Moreover, Table 2 shows the norm of the gradient of the
cost function in the third column. Once we are close to
the optimal solution we can observe the fast quadratic
convergence of the proposed method.

In Figure 3 we show the initial configuration. Comparing
this to the optimal design shown in Figure 4 the significant
reduction in the volume can be clearly seen.

Although the CPU time for our function evaluation is
only 2.5s, this method is rather expensive since we needed
10 iterations to reach the optimal design. Each iteration
needs the solution of 4 PDEs: one solution of (3) and three
solves for the sensitivity equations (8). Summarizing, we
have to solve 40 PDEs to achieve the optimal design. The
dimension, in this example, is still rather moderate with

Table 1. Test 1: Comparison of maximum rel-
ative error of the reduced order model for dif-

ferent snapshot sets.

` errc errf
3 0.0402 0.1002
4 0.0522 0.0657
5 0.0198 0.0577
6 0.0238 0.0592
7 0.0051 0.0584



Table 2. Test 2: Iteration history of the opti-
mization algorithm using the FE model.

iter J ‖∇J‖ µ

0 133.000 102.0294 (19.000 7.000 7.000)
1 105.248 5.752917 (19.136 5.500 6.500)
2 85.601 1.705679 (19.566 4.375 6.446)
3 75.466 2.031486 (20.106 3.753 6.732)
4 59.608 3.716464 (20.777 2.869 6.166)
5 62.196 1.497623 (21.163 2.939 6.746)
6 62.741 0.197684 (21.062 2.979 6.593)
7 62.796 0.010143 (21.071 2.980 6.607)
8 62.796 0.000123 (21.071 2.980 6.607)
9 62.796 0.000000 (21.071 2.980 6.607)

Solution u
0 (E0 = 30.3702, V = 133)

Fig. 3. Solution u0 to system (3) for the parameter µ0.

only 8128 discretization points. We note that the num-
ber of unknowns and the related computational expenses
dramatically increase if we simulate the whole machine or
consider the 3D case.

5.3 Test 3

In the last experiment we combine the results from the
previous two experiments and Algorithm 1. Table 4 shows
that the snapshots set was updated once. Note that in
every update we have to solve the system (3) and the
sensitivity equations (8) in the full space. This is the
most expensive part of the proposed algorithm. We solve
only eight PDEs in this approach. Every iteration is
the result of an optimization routine computed in the
reduced space which is cheap since the `−dimensional
problem is much smaller than the full problem. In fact each
iteration in Table 3 considers the solution of four reduced
equations. As we can see this algorithm needs to solve
eight FE systems and 60 reduced systems. Compared to
the computational costs of the optimization utilizing only
the FE model we have a reduction in the computational
cost of approximately a factor of five although the CPU
time for the whole process is approximately 1s.

Solution uopt (E0 = 30.3702, V = 62.7965)

Fig. 4. Solution uopt to system (3) for the parameter µopt

obtaind by the optimization process.

The results obtained by the reduced approach are almost
the same as the one obtained by the more expensive
FE problem. In Table 4 the values for the electromotive
force are compared when computed with the FE model
and the reduced model. Here it can be seen that in the
second iteration of Algorithm 1 the difference already is
less than 10−4, which is the chosen accuracy tolerance in
this algorithm.

Table 3. Test 3: Opimization history utilizig
Algorithm 1

iter J ‖∇J‖ µ

0 133.000 102.0294 (19.000 7.000 7.000)
1 105.248 5.712287 (19.136 5.500 6.500)
2 85.706 1.767354 (19.590 4.375 6.482)
3 76.332 1.863950 (20.069 3.803 6.677)
4 59.643 3.352590 (20.751 2.874 6.126)
5 62.691 1.170096 (21.071 2.975 6.607)
6 63.053 0.133491 (21.007 3.001 6.511)
7 63.072 0.005441 (21.018 3.001 6.528)
8 63.072 0.000048 (21.018 3.001 6.527)

0 63.072 102.2290 21.018 3.001 6.527)
1 62.906 0.134651 (21.088 2.983 6.632)
2 62.795 0.074026 (21.069 2.980 6.604)
3 62.797 0.002143 (21.070 2.980 6.606)
4 62.797 0.000047 (21.070 2.980 6.606)

Table 4. Test 3: Comparison of the electromo-
tive force computed from the u and u` during
the optimization process utilizing Algorithm 1.

iter E0(µ,u(µ)) E0(µ,u`(µ)) V

0 30.370231 30.370231 133.000000
1 30.393726 30.370231 63.072370
2 30.370245 30.370231 62.796700



6. CONCLUSION AND PROSPECTS

We present an algorithm for the optimal design of a perma-
nent magnet in electro-magnetic machines. The algorithm
allows to reduce the computational cost of the problem
and at the same to provide an accurate approximation of
the design as confirmed by the numerical tests.
Future work will include nonlinear problems and a possible
extension to a 3D model, where we expect to observe an
improved speed-up of the CPU time needed for optimiza-
tion, and to deal with non-linear models.
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F. Tröltzsch. Optimal Control of Partial Differential
Equations: Theory, Methods and Application, American
Mathematical Society, 2010.

M. Zahr and C. Farhat. Progressive Construction of a
Parametric Reduced-Order Model for PDE-Constrained
Optimization. International Journal for Numerical
Methods in Engineering, in press, 2014.


