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Abstract—Parameter estimation for exponential sums is a
classical problem in signal processing. Recently, a new concept
for estimating parameters of bivariate exponential sums has been
proposed. The resulting method relies on parameter estimations
for univariate exponential sums along several lines in the plane.
These (univariate) parameter estimations are being used to first
compute the projections of the unknown bivariate frequency
vectors onto these lines, before they are combined to obtain
estimations for the sought frequency vectors of the bivariate
exponential sum. In this paper, we address theoretical questions
concerning this new concept, namely (a) how many lines are
needed for exact reconstruction, and (b) how to recover linear
combinations of shifted positive definite functions.

I. INTRODUCTION

Univariate exponential sums are commonly used model

functions in many relevant applications. Often, one wishes

to recover their parameters exactly from only a few given

samples. This reconstruction problem is well-understood and,

in fact, it has a long history. The first reconstruction method

was devoloped by Gaspard Riche de Prony as early as 1795

[1]. A variety of numerical algorithms have been developed

since then, including ESPRIT [2], APM [3] and matrix pencil

methods [4].

A significantly more difficult reconstruction problem is that

of parameter estimation for bivariate exponential sums, i.e.,

functions of the form

f(x) =

M∑
j=1

cje
iyj ·x for x ∈ R

2 (1)

with pairwise distinct frequency vectors yj ∈ R
2 and their

corresponding coefficients cj ∈ C
∗ := C \ {0}.

Several methods for parameter estimation of bivariate expo-

nential sums rely on gridded data samples [5], [6]. Just very

recently, a new concept has been proposed, where only a few

sample points are needed [7], [8]. The basic idea in the new

approach of [7], [8] is to first apply a univariate parameter

estimation along several lines in the plane, before the resulting

information are being combined to obtain estimations for the

bivariate frequency vectors yj in (1).

The outline of this paper is as follows. In Section II, we

briefly explain parameter estimation for univariate exponential

sums, before we turn to the bivariate case in Section III. In

Section III, we analyse theoretical properties for the line-based

method of [7], [8]. To this end, we first prove an upper bound

for the number of lines being needed for exact reconstruction

of exponential sums with fixed order (i.e., length). Moreover,

we show that there is no set of finitely many lines for which

the bivariate reconstruction problem has a unique solution.

We then characterize a bivariate exponential sum f in (1) as

the unique solution of a non-convex optimization problem,

although the complexity for computing its solution is for

practical purposes too large. In Section IV, we show how linear

combinations of shifted positive definite functions Φ : R2 → R

can be recovered from their Fourier data. Supporting numerical

examples are finally provided in Section V.

II. UNIVARIATE PARAMETER ESTIMATION

In this section, we give a short introduction to the problem

of parameter estimation for univariate exponential sums. To

this end, let

f(x) =

M∑
j=1

cje
iyjx for x ∈ R (2)

denote a univariate exponential sum of order M with pairwise

distinct frequencies yj ∈ (−π, π] and coefficients cj ∈ C
∗.

We collect all univariate exponential sums of finite order in

the linear space

E1 :=

⎧⎨
⎩

N∑
j=1

cje
iyjx

∣∣∣∣ cj ∈ C
∗, yj ∈ (−π, π], N ∈ N

⎫⎬
⎭ .

Parameter estimation on E1 requires computing, from given

2M samples f(k), k = 0, . . . , 2M − 1, all frequencies yj
and coefficients cj of f in (2). Note that there are infinitely

many functions g ∈ E1 satisfying g(k) = f(k), for all

k = 0, . . . , 2M − 1, but f is the one with minimal order,

M . In this sense, we are concerned with a problem of sparse

approximation on E1.

The first method to solve this problem is Prony’s method [1],

which we briefly explain in this section. To this end, we let

zk = eiyk and define the Prony polynomial

P (z) =

M∏
k=1

(z − zk) =

M∑
j=0

pjz
j for z ∈ C, (3)

where pM = 1. Then, the M coefficients pj , j = 0, . . . ,M−1,

satisfy the set of M linear equations

M∑
j=0

pjf(j +m) =

M∑
k=1

cke
imyk

M∑
j=0

pjz
j
k = 0

for m = 0, ...,M − 1, which can be written in matrix form as

HMp = −f (4)



where

HM = (f(j + k))j,k=0,...,M−1 ∈ C
M×M ,

p = (p0, ..., pM−1)
T ∈ C

M ,

f = (f(M), ..., f(2M − 1))T ∈ C
M .

Now, HM can be diagonalized by the (regular) Vander-

monde matrix V(z) = (zk−1
j )k,j=1,...,M ∈ C

M×M ,

HM = V(z) diag(c1, ..., cM )V(z)T , (5)

so that HM is regular. Hence, we can solve the system (4)

uniquely for the (unknown) Prony coefficients p, and so we

get the Prony polynomial P in (3). Finally, from the roots zk
of P we obtain the frequencies yk, and the coefficients cj can

then be obtained by solving the overdetermined linear system

M∑
j=1

cjz
k
j = f(k) for k = 0, ..., 2M − 1. (6)

On the down side, Prony’s method is numerically unstable.

Moreover, for the performance of the Prony method, the order

M of f is required to be known beforehand. Many methods

have been developed to improve on the shortcomings of the

Prony method, one of which is ESPRIT. For the performance

of the ESPRIT algorithm, only an upper bound K ≥ M of

M is needed. Then, 2N ≥ 2K equispaced samples of f are

stored in the rectangular Hankel matrix

H2N−K,K+1 = (f(j + k − 2)) 1≤j≤2N−K
1≤k≤K+1

∈ R
(2N−K)×(K+1).

We can factorize H2N−K,K+1 similarly as HM in (5), so

that the rank of H2N−K,K+1 is equal to the order M of

f . In practice, we determine the order numerically by the

singular value decomposition of H2N−K,K+1. More precisely,

the numerical rank of H2N−K,K+1 is taken as the largest

number M satisfying εσ1 < σM , where σj is the j-th singular

value of H2N−K,K+1 and ε > 0 is chosen with respect to the

expected noise level.

The frequencies yj of f in (2) can then be calculated

by solving an eigenvalue problem for a matrix computed

from the right singular vectors of H2N−K,K+1, before the

coefficients cj in (2) are finally determined by the solution

of an overdetermined system similar to that in (6). For more

details on the method ESPRIT, we refer to [2].

III. BIVARIATE PARAMETER ESTIMATION

Now we turn to parameter estimation for bivariate expo-

nential sums. We collect all bivariate exponential sums (1) of

finite order in the linear space

E2 :=

⎧⎨
⎩

N∑
j=1

cje
iyj ·x

∣∣∣∣ cj ∈ C
∗,yj ∈ R

2, N ∈ N

⎫⎬
⎭ .

By the restriction of any f ∈ E2 to a straight line

� = {λv + βη
∣∣ λ ∈ R}, (7)

for fixed perpendicular unit vectors v ⊥ η and β ∈ R, we

obtain a univariate exponential sum

f |�(λ) =
M∑
j=1

cje
iβyj ·ηeiλyj ·v =

M�∑
j=1

dje
iyjλ ∈ E1. (8)

for frequencies yj = yj · v ∈ R and coefficients dj ∈ C
∗.

Note that M� ≤ M , since distinct frequencies yj �= yk may

have the same projection onto �, i.e., yj ·v = yk ·v. We choose

M�, such that dj �= 0 for all 1 ≤ j ≤ M�. Then, we apply the

univariate parameter estimation from the previous section to

f |� in (8), where we take equispaced samples from f |�. This

way we obtain all parameters dj and yj of f |� in (8).

This line-based parameter estimation can be applied to f
on any set L = {�1, ..., �L} of L pairwise non-parallel

lines �1, ..., �L, yielding L pairs of projected frequencies

y ≡ y�k ∈ R
M�k and corresponding coefficient vectors

d ≡ d�k ∈ R
M�k , i.e., one pair (y�k ,d�k) for each restriction

f |�k , for k = 1, . . . , L.

Yet it remains to derive practical conditions under which f
is uniquely determined. For the purpose of doing so, we can

rely on the following useful result by Renyi [9].

Theorem 1: Any set of M points yj ∈ R
2, associated with

positive weights cj > 0, is uniquely determined by the point

projections onto M + 1 distinct lines through the origin. �
We can adapt the proof in [9] to obtain a first result

concerning the order of f ∈ E2. To this end, we define, for

any set L = {�1, ..., �L} of L pairwise non-parallel lines �j
the restriction operator

RL : E2 → C (L,C),
which maps any f ∈ E2 onto its restriction to the lines in L.

Theorem 2: For a set L = {�1, ..., �L} of L pairwise non-

parallel lines, let f ∈ ker RL \ {0} be a non-trivial element

in the kernel of RL. Then, f is of order at least 2L.

Proof: If all points are co-linear, they have distinct

projections on all but at most one line. Otherwise we find for

each line �j two perpendicular lines, passing through at least

two frequency vectors, such that all other frequency vectors lie

in the region between these two lines. The intersection of these

regions forms a convex polygon, which contains all frequency

vectors. This polygon has 2L edges, as at least two frequency

vectors lie on each line and no line segment is in the interior

of the polygon. In particular, at least 2L frequency vectors lie

on the boundary of the polygon.

Corollary 3: Let f1, f2 ∈ E2 be of order at most M . If f1
and f2 coincide on a set L of M + 1 pairwise non-parallel

lines, RL(f1) ≡ RL(f2), then they coincide on R
2, f1 ≡ f2.

Proof: The function f1−f2 ∈ E2 is of order at most 2M
and hence cannot be a non-trivial kernel element of RL.

We remark that the estimate for the order of f in Theorem 2

is sharp. For instance, if we choose the vertices of a regular

2L-gone P2L as frequency vectors and associate them with

alternating coefficients ±1, then the corresponding exponential

sum f vanishes along all lines through the origin which are

perpendicular to the edges of P2L.



For a set L of arbitrarily chosen 2L lines, however, it is not

clear whether such examples exist. But we can show that the

restriction operator RL has a non-trivial kernel f ∈ E2.

Theorem 4: For any finite set L of pairwise non-parallel

lines there exists one non-trivial element f ∈ kerRL with

arbitarily small frequency vectors and real coefficients.

Proof: Any line � ∈ L has the form (7) for some

perpendicular unit vectors v ⊥ η and β ∈ R. Therefore,

f�(x) = eiαv·x − ei(αv+γη)·x ∈ E2
is zero along � for any α ∈ R, where γ ∈ R \ {0} satisfies

γβ ∈ 2πZ. If β = 0, we can choose γ arbitrarily small.

Otherwise we use the ansatz

f�(x) = c1e
iαv·x + c2e

i(αv+γ1η)·x + c3e
i(αv+γ2η)·x

with γ1 �= γ2 ∈ R \ {0}. But then

f�(λv + βη) = eiαλ(c1 + c2e
iγ1β + c3e

iγ2β)

and so in this case it is always possible to choose non-

vanishing real coefficients cj such that f�(λv1 + βη1) = 0
for all λ ∈ R. Therefore, in either case, we find f

∣∣
�
≡ 0 on �.

By construction, the product

f =
∏
�∈L

f� ∈ E2

is a non-trivial element in kerRL.

It was conjectured in [8] that – under certain additional

assumptions – it is possible to choose only four lines passing

through the origin to guarantee a unique reconstruction of any

f ∈ E2. The additional assumptions are in [8] stated as follows.

• All coefficients of f are assumed to be positive.

• The first line �1 be the x-axis, and �2 be the y-axis. The

other two lines, �3 and �4, be perpendicular, �3 ⊥ �4.

Moreover, �3 is assumed to be spanned by the unit vector

(cos(α), sin(α))T for α ∈ (0, π/2), where α is required

to satisfy tan(α) �= 1/n for all n ∈ N.

• Arbitrarily many samples may be taken along the 4 lines.

We now use the construction in our proof of Theorem 4

to falsify that conjecture in [8]. To this end, let f �≡ 0 be an

exponential sum which is zero along the four preselected lines

with real coefficients and sufficently small frequency vectors.

We can represent f as a difference

f(x) = f1(x)− f2(x)

between two functions f1 and f2 with positive coefficients.

By construction, f is zero along all of the four lines, i.e., f1
and f2 are equal along all four lines. But f1 and f2 cannot be

equal on R
2, since f �≡ 0.

While Corollary 3 states that an exponential sum of order

M is uniquely determined by its restriction to M +1 pairwise

non-parallel lines, this does not give a construction to compute

f from its samples. But we can characterize f as a solution

of a non-convex optimization problem. Our characterization

relies on the following Lemma.

Lemma 5: Let f be an exponential sum of order M and let

L = {�1, . . . , �M+1} be M+1 pairwise non-parallel lines with

direction vectors v1, . . . ,vM+1. Then, for every frequency

vector y of f , there are at least two distinct lines �j1 , �j2 ∈ L,

such that the frequency y·v�jk
appears in the representation (8)

of f |�jk ∈ E1, with djk �= 0, for k = 1, 2.

Proof: Assume that y ·vj is not a frequency of f |�j . Then

there must be another frequency vector ỹ such that y − ỹ is

orthogonal to vj . But there are only M − 1 possible choices

for ỹ, since L contains only M + 1 lines.

Note that the result of Lemma 5 allows us to find a large

set of possible frequency vectors. In fact, we can characterize

the frequency vectors of f ∈ E2 by a non-convex optimization

problem, whose formulation is given in the following theorem.

Theorem 6: Let f ∈ E2 be a bivariate exponential sum of

order M and let L = {�1, ..., �M+1} be a set of be pairwise

non-parallel lines with direction vectors v1, ...,vM+1. More-

over, let Yj be the set containing the frequencies of f |�j , and

let

Ỹ := {y ∈ R
2 | ∃j �= k : y · vj ∈ Yj and y · vk ∈ Yk}.

Let G be a set containing 2M equispaced sample points along

each of the M + 1 lines in L. Assume that ‖y‖2 < π/hmax

for every frequency vector y of f , where hmax is the largest

stepsize of the equispaced samples taken from the lines in L.

Then, the solution of the constrained optimization problem

min
c∈R|Ỹ |

‖c‖0 subject to
∑
y∈Ỹ

cye
iw·y = f(w) for all w ∈ G

determines f , where the frequency vectors of f are all those

y ∈ Ỹ with cy �= 0, cy are the corresponding coefficients,

and ‖c‖0 gives the number of nonzero entries of c.

Proof: By Lemma 5, f corresponds to a coefficient vector

c(f) ∈ R
|Ỹ | with c(f)y = cj if y = yj and zero otherwise.

Hence, every solution corresponds to an exponential sum with

at most M summands. The equality constraint ensures that

the solution is equal to f along the chosen lines. Applying

Corollary 3 yields the claim.

Unfortunately, the minimization problem in Theorem 6 is

NP-hard (cf. [10]). Moreover, we cannot expect that the system

matrix satisfies the restricted isometric property, which would

allow to relax the zero semi-norm to the convex 1-norm. The

reason is that frequency vectors may have projections which

are close, leading to close points in Ỹ . Unfortunately, |Ỹ | is

of order M4, which is too large for practical purposes.

A. Reconstruction Algorithms

But is there a more efficient method to calculate the fre-

quency vectors from the projections onto the lines? It turns out

that under a weak assumption there is one, namely the sparse
approximate Prony method (SAPM) of [7]. Reconstruction

by SAPM relies on the assumption, that the projections of

all frequency vectors on all lines do not vanish, i.e., for

k = 1, ..., L we have

{yj · vk | j = 1, ...,M} = {y(�k)j | j = 1, ...,M�k}.



Note that frequency vectors with the same projection on a

chosen line are allowed, as long as their coeffcients do not

sum up to zero.

Without loss of generality we assume that �1 is the x-axis

and �2 is the y-axis. We start with the large set of possible

frequency vectors

Y (1) = {(y(�1)j , y
(�2)
k ) ∈ R

2 | j = 1, ...,M�1 , k = 1, ...,M�2}.
Our above assumption ensures that all frequency vectors are

contained in this set. Then one compares the projection of the

points in Y (1) with the projected frequencies y
(�3)
j , then let

Y (2) = {y ∈ Y (1) | ∃j ∈ {1, . . . ,M3} : |y·v3−y
(�3)
j | < ε(2)},

where M3 = M�3 and ε(2) > 0 is an accuracy bound. We then

repeat this reduction step for all available lines, obtaining the

set Y (L−1). If L is larger than the order of f , then Y (L−1)

will be equal to the set of all frequency vectors. Often, it

will be sufficient to take significantly less lines to obtain all

frequencies of f . Having determined all frequencies of f , we

can compute the coefficients cj . To this end, we compute the

coefficients as the least squares solution of the overdetermined

linear system∑
y∈Y (L−1)

cye
iy·x = f(x) for all x ∈ G.

Finally, we remove all frequency vectors from Y (L−1) which

are corresponding to small coefficients. This gives, for some

ε̃ > 0, the smaller set of frequencies

Ỹ = {y ∈ Y (L−1) | |cy| ≥ ε̃} ⊂ Y (L−1)

on which we solve the linear system (rather than on Y (L−1))

to obtain the corresponding coefficients cy (cf. [7] for details).

A posteriori chosen lines: Often, SAPM only needs data

taken along three lines, namely when the points in Y (1) have

pairwise distinct projections on the third line. This observation

is used in [8], where the following algorithm is proposed.

(1) Apply ESPRIT along two lines �1, �2 and calculate Y (1).

(2) Find a third line, �3, on which all frequencies in Y (1)

have a distinct projection.

(3) Apply ESPRIT along �3. This gives the frequency vectors

and the corresponding coefficients of f ∈ E2.

We remark that the above reconstruction scheme relies on the

same assumption as SAPM, since it uses data taken on the first

two lines to find a set which contains the frequency vectors.

IV. RECONSTRUCTION FROM FOURIER DATA

In this section, we show how the reconstruction method

of the previous section can be used to reconstruct linear

combinations of shifted basis functions from their Fourier data

(see [8]). Here, we define the (continuous) Fourier transform

f̂ of a function f ∈ L1(R2) by

f̂(w) =
1

2π

∫
Rd

f(x)eix·wdx for w ∈ R
2.

For an even function Φ : R2 → R, we consider the model

f(x) =

M∑
j=1

cjΦ(x− xj). (9)

For Φ ∈ L1(R2), we get the Fourier transform of f by

f̂(w) = Φ̂(w)

M∑
j=1

cje
iw·xj .

Sampling f̂ at a finite point set G leads us to a reconstruction

problem for bivariate exponential sums, provided that Φ̂ �≡ 0
on G. As Φ is assumed to be even, Φ̂ is real-valued. Therefore,

to allow all possible choices for G, we require Φ̂ to be positive

(or negative) on R
2. By Bochner’s theorem, the condition

Φ̂(w) > 0 for all w ∈ R
2

guarantees Φ to be positive definite. Positive definite functions

are an important tool in approximation theory. Prototypical

examples for positive definite functions are the Gaussians
Φ(x) = e−α‖x‖2

2 , for α > 0, whose Fourier transform is

Φ̂(w) =
1

2α
e−‖w‖2

2/(4α) > 0.

Other examples are the inverse multiquadrics

Φ(x) =
(
1 + ‖x‖22

)β
for − 2 < β < 0.

We finally summarize our proposed reconstruction method

for model functions of the form (9) briefly as follows.

(1) Take equispaced samples from f̂ on enough lines.

(2) Calculate

g(w) =
f̂(w)

Φ̂(w)
=

M∑
j=1

cje
iw·xj

for all sample points.

(3) Use SAPM to reconstruct g, and so obtain the shift

vectors xj ∈ R
2 and coefficients cj ∈ R of f in (9).

Let us finally make one remark concerning the stability of

the proposed reconstruction scheme. As we divide by Φ̂(w),
we require Φ̂ to be uniformly bounded away from zero, i.e.,

Φ̂(w) > C > 0 (10)

for some sufficently large constant C. Otherwise noise gets

overamplified. Due to the Riemann-Lebesgue lemma, we have

Φ̂(w) → 0 for w → ∞,

for Φ ∈ L1(R2), and so (10) can only hold on a bounded set.

V. NUMERICAL EXAMPLES

For the purpose of illustration, we provide two numerical

examples, one for the reconstruction by SAPM (as proposed

in Section III) and another one for the reconstruction from

Fourier data (as proposed in Section IV).



TABLE I
RESULTS OF THE FIRST EXAMPLE

N K δ ε e(y) e(c) e(f)

5 5 ∞ 1e-7 3.06e-12 2.25e-13 7.75e-13

20 10 ∞ 1e-7 3.28e-15 1.11e-15 3.35e-15

5 5 8 1e-7 2.31e-05 1.71e-06 6.31e-06

20 10 8 1e-7 1.31e-09 2.49e-10 4.00e-10

5 5 6 1e-5 - - 0.30

10 10 6 1e-5 7.53e-06 5.56e-07 1.90e-06

20 10 6 1e-5 2.35e-07 1.39e-08 7.58e-08

40 20 6 1e-5 1.07e-08 1.36e-08 1.50e-08

10 10 4 1e-3 - - 0.23

20 10 4 1e-3 1.10e-05 2.56e-06 5.01e-06

40 20 4 1e-3 1.10e-06 1.38e-06 1.55e-06

First Example: Regard frequency vectors and coefficients

(
y1 y2 y3 y4 y5

)
=

(
0 2 2 0.5 1
0 1 2 1 2.5

)

c =
(−2 5 1.7 −0.2 3.3

)
We let �1 be the x-axis and �2 be the y-axis. Moreover, we let

�3 = {λ(1/2,√3/2)T | λ ∈ R} and h = 0.5 for the sampling

size. For univariate parameter estimation, we use ESPRIT. In

our numerical experiments, we recorded the relative errors

e(y) =
maxj |yj − ỹj |

maxj |yj | and e(c) =
maxj |cj − c̃j |

maxj |cj |
for the frequency and coefficient vectors, and

e(f) =
max[0,4]2 |f − f̃ |
max[0,4]2 |f |

to measure the relative error of the reconstruction f̃ . Our

numerical results are in Table I, where N is the number of

samples taken along each line, K is an upper bound for the

order of f , and ε is the parameter used in ESPRIT to determine

the rank of the Hankel matrix and so the order of f .

Moreover, we considered choosing ε(2) = ε̃ = 10−3

(cf. the definitions of Y (2), Ỹ in Section III). Furthermore,

we have added noise, uniformly distributed in [10−δ, 10δ]. At

the absense of noise we let δ = ∞. All our numerical results

(as shown in Table I) are averaged values over 50 runs.

Our numerical results of Table I support the good perfor-

mance of the algorithm SAPM in [7]. Given enough samples,

the algorithm is stable with respect to noise. Often, the error

is even smaller than the added noise.

Second Example: We consider using the same frequency and

coefficient vectors as in our first example. We take samples

from a sum of shifted Gaussians

f(x) =

5∑
j=1

cjΦ(x− yj),

where Φ(x) = e−25‖x‖2
2 , and so Φ̂(w) = 1

50e
−‖x‖2

2/100.

Our numerical results are summarized in Table II. We see

that for any sampling point of modulus greater than ten, the

TABLE II
RESULTS OF THE SECOND EXAMPLE

N K δ ε e(y) e(c) e(f)

5 5 ∞ 1e-7 5.08e-12 3.17e-13 8.36e-13

20 10 ∞ 1e-7 1.44e-15 1.07e-15 5.15e-15

5 5 8 1e-7 1.20e-03 8.43e-05 2.17e-04

20 10 8 1e-7 5.63e-06 4.21e-07 8.36e-07

5 5 6 1e-5 - - > 1

10 10 6 1e-5 4.56e-04 3.32e-05 7.41e-05

20 10 6 1e-5 3.47e-05 4.04e-06 1.11e-05

40 20 6 1e-5 - - > 1

10 10 4 1e-3 - - > 1

20 10 4 1e-3 3.30e-03 3.72e-04 2.80e-03

30 10 4 1e-3 - - > 1

error is overamplified. The error is then magnified by factor

50e‖w‖2
2/100, i.e., any sample taken at ‖w‖2 > 10 is very

sensitive w.r.t. noise. In such cases, a larger set of samples may

lead to even worser reconstructions. Nevertheless, we believe

that our numerical results in Table II are quite promising.

VI. CONCLUSION

We have investigated the reconstruction problem for bivari-

ate exponential sums f from samples taken along a few lines.

Samples on at least M + 1 lines are needed to guarantee

unique reconstruction for any f of order M . The recon-

struction can be characterized by a non-convex optimization

problem. Under rather mild assumptions on f , an efficient

reconstruction method is discussed. A method to recover a

sum of shifted positive definite functions from Fourier data is

finally explained.
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