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Abstract

We show that unstable attractors do not exist for smooth invert-
ible dynamics. In systems lacking these properties we draw simple
conclusions about their stability indices and look at examples high-
lighting extreme cases of stability and attractiveness – characterised
in terms of stability indices. In particular, we investigate the possi-
bilities for great discrepancies between the local and non-local indices
σloc(x) and σ(x), also depending on properties of the system. We
show that while σloc(x) = −∞ holds for all unstable attractors, it is
not straightforward to uniquely identify them using stability indices.
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1 Introduction

The stability index was introduced by Podvigina and Ashwin [1] as a tool
for quantifying stability properties of attractors in dynamical systems. It
has subsequently been used by several authors in different contexts: Mohd
Roslan [2] considers skew product systems and uses the stability index to
gain insight in the nature of riddled basins of attraction, while Castro and
Lohse [3] look at heteroclinic cycles and networks, where the stability index
enhances understanding of competition between cycles in a network.
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Unstable attractors have been rigorously defined by Ashwin and Timme
[4] as sets with seemingly contradictory stability properties: attracting a
set of positive measure, while repelling almost everything in its immediate
neighbourhood. Numerical simulations indicate that these occur naturally
in networks of pulse-coupled oscillators, see Timme et. al. [5] and [6], for
instance. In [4] the authors give analytical examples of unstable attractors,
but only for semiflows that are not invertible, i.e. cannot be extended to flows.
They conjecture that unstable attractors do not exist in smooth invertible
systems.

The main result of this work is to confirm their conjecture through the
proof of theorem 3.1. Moreover, we investigate unstable attractors in terms
of their stability indices. Both is done in section 3, after recalling standard
definitions and terminology in section 2. We also provide several examples
illustrating limitations of the stability index when it comes to characterising
extreme cases of (unstable) attractiveness. This means we focus on situations
where local and non-local stability indices differ, σ(x) 6= σloc(x). In fact,
we look for the greatest possible discrepancies between the two. This is in
contrast to most of the other work on stability indices, especially [3] and [7],
where σ(x) = σloc(x) is often an appropriate assumption.

2 Preliminaries

We are concerned with finite-dimensional dynamics given by a (semi)flow

φt : M →M (1)

on a (compact) manifold M with Lebesgue/Riemann measure `(·). Time is
either continuous (t ∈ R(≥0)) or discrete (t ∈ Z(≥0)). We are interested in the
stability properties of compact, invariant sets X ⊂ M , which are commonly
called attractors if their basin of attraction B(X) = {x ∈M | ω(x) ⊂ X} has
positive measure `(B(X)) > 0. By Bε(X) we denote an ε-neighbourhood of
X, and by Bε(X) its ε-local basin of attraction – the set of points x ∈ B(X)
that for positive times do not leave Bε(X).

There are attractors in the above sense that at the same time exhibit
strong repelling properties. The following precise definition was made by
Ashwin and Timme [4].

Definition 2.1 ([4], definitions 1&2). An attractor X ⊂M is called unstable
attractor if there is a neighbourhood U of X such that

`(A(U)) = 0,

where A(U) := {x ∈ U | φt(x) ∈ U ∀t ≥ 0} is the lingering subset of U ⊂M .
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Note that any neighbourhood U of X contains Bε(X) for ε > 0 small
enough. Then the ε-local basin of attraction is contained in the lingering
subset of U , Bε(X) ⊂ A(U).

Ashwin and Timme further distinguish unstable attractors with positive
and zero measure local basin, depending on whether or not there is a neigh-
bourhood U of X with `(U ∩B(X)) = 0, see definitions 3 and 4 in [4]. They
give examples for both types and show that unstable attractors with zero
measure local basin do not occur in certain cases (proposition 1 in [4]). In
theorem 3.1 we generalise their result and prove that unstable attractors –
regardless of the size of their local basin – do not exist for smooth invertible
flows.

A useful way to quantify stability of any attractor is the stability index,
we recall its definition from Podvigina and Ashwin [1].

Definition 2.2 ([1], definition 5). For x ∈ X and ε, δ > 0 define

Σε(x) :=
`(Bε(x) ∩ B(X))

`(Bε(x))
, Σε,δ(x) :=

`(Bε(x) ∩ Bδ(X))

`(Bε(x))
.

Then the stability index at x (with respect to X) is set to be

σ(x) := σ+(x)− σ−(x),

where

σ−(x) := lim
ε→0

[
ln(Σε(x))

ln(ε)

]
, σ+(x) := lim

ε→0

[
ln(1− Σε(x))

ln(ε)

]
.

The convention that σ−(x) =∞ if Σε(x) = 0 for some ε > 0 and σ+(x) =∞
if Σε(x) = 1, leads to σ(x) ∈ [−∞,∞]. In the same way the local stability
index is defined to be

σloc(x) := σloc,+(x)− σloc,−(x),

with

σloc,−(x) := lim
δ→0

lim
ε→0

[
ln(Σε,δ(x))

ln(ε)

]
, σloc,+(x) := lim

δ→0
lim
ε→0

[
ln(1− Σε,δ(x))

ln(ε)

]
.

Stability indices quantify attraction (σloc(x)) and stability (σ(x)) proper-
ties of a set X locally near a point x ∈ X. Positive indices represent strong
attraction/stability, while negative indices indicate that most trajectories
near x are repelled by X, see figure 1.

The next lemma relates σ(x) to the behaviour of Σε(x) for small ε > 0.
Most of it was already established in lemma 2.2 of [1], a proof is given in [7].
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Figure 1: σ(loc)(x) < 0 left and σ(loc)(x) > 0 right.

Lemma 2.3 ([7], lemma 1.32). Suppose that the stability index σ(x) exists
for some x ∈ X and let c > 0. Then the following is true.

(a) If σ±(x) > 0, then σ∓(x) = 0.

(b) Σε(x) = O(εc) ⇔ σ(x) ≤ −c

(c) 1− Σε(x) = O(εc) ⇔ σ(x) ≥ c

(d) Σε(x) is bounded away from 0 and 1 ⇒ σ(x) = 0

3 Results

We begin this section by excluding the existence of unstable attractors in the
smooth invertible case.

Theorem 3.1 ([7], corollary 1.27). For a smooth invertible flow (1) there
exist no unstable attractors.

Proof. If X ⊂ M is an attractor, then by definition `(B(X)) > 0. We argue
that this implies `(Bε(X)) > 0 for any ε > 0 and therefore `(A(U)) > 0 for
any neighbourhood U of X, so X is not unstable.

Let ε > 0. Since φt is smooth and B(X) is flow-invariant, it contains a
set A ⊂ Bε(X) with `(A) > 0. For T ∈ N we set

AT := {x ∈ A | ∃t > T : φt(x) /∈ Bε(X)}.

Then AT contains all points in A that still leave Bε(X) after time T . Now
there are two cases:
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1. ∃T ∈ N : `(AT ) < `(A)

2. ∀T ∈ N : `(AT ) = `(A)

In the first case we have `(A \AT ) > 0 and φt(x) ∈ Bε(X) for all t > T and
x ∈ A \ AT , so the set Aε := φT (A \ AT ) has the required properties, i.e.
Aε ⊂ Bε(X) and `(Aε) > 0.

In the second case we have `(A \ AT ) = 0 for all T ∈ N. However, for
all x ∈ A there exists T ∈ N such that x /∈ AT , so A =

⋃
T∈NA \ AT . To

see this, suppose there is x ∈ A ⊂ B(X) such that the trajectory through x
leaves (and enters) Bε(X) infinitely many times. Then, since the boundary
∂Bε(X) is compact, the set {φt(x) | t ∈ R} ∩ ∂Bε(X) has an accumulation
point x0. But then x0 ∈ ω(x), in contradiction with ω(x) ⊂ X for x ∈ B(X).
It follows that

0 < `(A) = `

(⋃
T∈N

A \ AT

)
≤
∑
T∈N

`(A \ AT ) = 0.

This is a contradiction, so the second case cannot occur and the proof is
complete.

We have thus confirmed the conjecture in [4] and know that unstable
attractors can only occur for (semi)flows failing to be smooth and invertible.
Clearly, then the local stability indices must be equal to −∞.

Lemma 3.2. Let X be an unstable attractor. Then σloc(x) = −∞ for all
x ∈ X.

Proof. There is a neighbourhood U of X with `(A(U)) = 0. For δ > 0 small
enough we have Bδ(X) ⊂ U , so Bδ(X) ⊂ A(U) and thus `(Bδ(X)) = 0.
Then by definition Σε,δ(x) = 0 for any x ∈ X and ε, δ > 0 small enough, so
σloc(x) = −∞.

The same can not be said about the non-local indices σ(x), because
`(B(X)) > 0 holds for any (unstable) attractor. However, it is not impossi-
ble to have σ(x) = −∞, i.e. a positive measure basin of attraction does not
prevent X from appearing completely unstable in terms of stability indices.
This is illustrated by example 3.3.

Note that here and in the following we often consider equilibria in R2 as
the invariant set X. This may seem like a rather specialised setting, but it is
very common for heteroclinic cycles in R4, where the stability indices may be
computed with respect to a plane that is transverse to the flow, see theorem
2.4 in [1]. The intersection with the cycle is then an equilibrium of the return
map. This is frequently exploited and explained in more detail in [3].
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Example 3.3 ([7], section 1.2.3). Consider a (not necessarily unstable) at-
tractor X ⊂ M for which locally near x ∈ X the basin of attraction B(X)
is a superalgebraic cusp, i.e. Σε(x) = O(εc) for all c > 0. For instance, let
B(X) be shaped in such a way that Σε(x) = exp(−1/ε). Then for any c > 0
we get

εc exp (−1/ε) =
∞∑
k=0

εc−k

k!

ε→0−−→∞,

so Σε(x) = O(εc). Thus, lemma 2.3 yields σ(x) ≤ −c, so σ(x) = −∞, even
though B(X) is of positive measure in any neighbourhood of x.

We look at this in more detail in R2: let X consist of the origin only.
Then such a cusp is bounded by the graph of f(x) = (2x+ 1) exp (−1/x) and
the x-axis. If the basin of attraction is shaped by f , then for small ε > 0 we
have (up to a constant factor)

Σε(0) =
`(Bε(0) ∩ B(0))

`(Bε(0))
≈ ε−2

ε∫
0

(2x+ 1) exp (−1/x) dx = exp (−1/ε) .

Therefore, X being unstable in the sense that σ(x) = −∞ does not imply
`(B(X)) = 0, so it does not prevent X from being an attractor. Moreover,
this shows that σloc(x) = −∞ is merely a necessary condition for X being
an unstable attractor – it is not sufficient, not even when `(B(X)) > 0.

In the other extreme it is similar: adapting the flow such that everything
except for the cusp is contained in the basin of attraction, we get σ(x) = +∞
even though X is not asymptotically stable in the classical sense.

We take this one step further by modifying a dynamical system that
serves as an example for an unstable but attractive invariant set, so that
σ(x) = +∞ and σloc(x) = −∞ simultaneously.

Example 3.4. Consider the following ordinary differential equation on the
upper half plane H+ ⊂ R2 that Hahn discusses in §40 of [8].

ξ̇1 =
ξ21(ξ2 − ξ1) + ξ52

(ξ21 + ξ22)(1 + (ξ21 + ξ22)2)
, ξ̇2 =

ξ22(ξ2 − 2ξ1)

(ξ21 + ξ22)(1 + (ξ21 + ξ22)2)
.

This creates a smooth flow with a phase portrait as in figure 2. The invariant
set X = {0} again consists of a single point, the origin. It is unstable but
attractive, its basin B(X) is the entire space and thus has full measure in
Bε(0) for any ε > 0, so σ(0) = +∞. In the first quadrant there are infinitely
many homoclinic orbits. For small δ > 0 the local basin of attraction Bδ(0)
is confined between the longest homoclinic orbit and the ξ1-axis. In fact,
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Figure 2: Unstable but attractive equilibrium

Hahn [8] shows that the sector between the ξ1-axis and the ray through the
point (25/32, 5/8) belongs to Bδ(0). Denoting the opening angle of that sector
by α this implies that for small ε, δ > 0 we get

α

π
≤ Σε,δ(0) ≤ 1

2
,

and therefore σloc(0) = 0 by lemma 2.3. We modify this example so that
σloc(0) = −∞.

The idea is to transform the phase portrait into the one in figure 3 where
all homoclinic orbits are located below the line ξ2 = (2ξ1 + 1) exp (−1/ξ1), the
boundary of a superalgebraic cusp as described above. The local basin of the
origin is then contained in this cusp, so σloc(0) = −∞, while the equilibrium
is still globally attractive, hence σ(0) = +∞.

Figure 3: Bδ(X) contained in a superalgebraic cusp

In order to see how this is possible we make the following general consid-
erations. Let ẋ = f(x) be an ordinary differential equation generating a flow
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on H+ with some phase portrait (A), and let x = x(t, x0) be the solution for
an inital value x0 ∈ H+. Then consider a continuously differentiable homeo-
morphism Φ : H+ → H+ transforming the phase portrait in such a way that
y = y(t, y0) := Φ(x(t, x0)), with y0 := Φ(x0), are the trajectories of a desired
phase portrait (B). Then y(t, y0) is the solution to an equation ẏ = g(y)
generating the desired flow (corresponding to (B)), where g is obtained by
transforming f with Φ in the following way:

ẏ =
d

dt
(Φ(x(t))) = dΦ(x(t)) · ẋ(t) = [dΦ ◦ Φ−1](y(t)) · [f ◦ Φ−1](y(t)) =: g(y)

The right-hand side g is continuous because Φ is a homeomorphism and dΦ
is continuous. Now define Φ for our specific case:

Φ : H+ → H+, (ξ1, ξ2) 7→ (ξ1 + ξ2, (2ξ2 + 1) exp (−1/ξ2))

It is simple to check that Φ is continuously differentiable. Moreover, it is
bijective and its inverse Ψ is continuous, since ξ2 7→ (2ξ2 + 1) exp (−1/ξ2) is
strictly monotonically increasing and unbounded, thus open. However, Ψ
is not differentiable along ξ2 = 0, so neither is g. Nevertheless, this does
exactly what we wanted: for ξ1 > 0 we have exp (−1/ξ2) < exp (−1/(ξ1+ξ2))
and therefore

(2ξ1 + 1) exp (−1/ξ2) < (2(ξ1 + ξ2) + 1) exp (−1/(ξ1+ξ2)) ,

so the first quadrant (and thus the entire local basin of attraction) is mapped
below the boundary of a superalgebraic cusp. So indeed we have σloc(0) =
−∞. We emphasise again that this is achieved at the cost of differentiability.

We have seen that in systems with a continuous (but not differentiable)
right-hand side it is possible to have σ(x) = +∞ while σloc(x) = −∞, the
two indices are independent in the same way that the classical definitions of
stability and attractivity do not go hand in hand. This is not necessarily
a feature of an unstable attractor (typically σ(x) < +∞), but the stability
properties of an attractor with indices like that are very similar to unstable
attractors: locally strongly repelling while globally attracting. It is unclear,
however, if such an example can be constructed with a smooth right-hand
side. We consider this unlikely, since we were able to exclude the existence
of unstable attractors in theorem 3.1. In any case, an example cannot be
expected from a construction like ours, because by theorem 2.2 in [1] the sta-
bility index is invariant under topological equivalence. Therefore, we cannot
use a diffeomorphism to alter the indices in the same way as above.
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We conclude with an example for strong discrepancies between σ(x) and
σloc(x) in smooth systems. Consider a flow on the unit circle S1, as depicted
in figure 4. Again X consists of a single equilibrium x ∈ S1 and the whole
space belongs to B(X), so σ(x) = +∞. But only one side of x (shaded grey
in figure 4) belongs to the local basin Bε(X) for ε > 0 small enough. Thus,
Σε,δ(X) is constant and σloc(x) = 0 by lemma 2.3.

Figure 4: σ(x) = +∞ and σloc(x) = 0

We point out that in smooth systems it is also possible to have

−∞ < σloc(x) < 0 < σ(x) < +∞.

An example for this can be found in proposition 5.3 and lemma 5.5 in [3],
where in a heteroclinic network the index along a trajectory that belongs to
two cycles is positive with respect to the network (σ(x)), but negative with
respect to both cycles (σloc(x)). This is also commented on in remark 2.18
of [7].

In summary, we have proved that unstable attractors only occur in sys-
tems lacking smoothness or invertibility. While the stability index helps to
characterise them by common features such as σloc(x) = −∞, our exam-
ples exhibit different intermediate cases with delicate configurations of σ(x),
σloc(x) and stability/attractiveness of X.

Acknowledgements: This work is based on a part of the author’s doc-
toral thesis [7], written under the primary supervision of Reiner Lauterbach
(University of Hamburg) and co-examined by Sofia Castro (University of
Porto) and Peter Ashwin (University of Exeter). The author wishes to ex-
press his gratitude to all three examiners for helpful comments, discussions
and support.

9



References

[1] Podvigina O, Ashwin P. On local attraction properties and a stability
index for heteroclinc connections. Nonlinearity. 2011;24:887–929.

[2] Mohd Roslan UA. Stability index for riddled basins of attraction with
applications to skew product systems [PhD Thesis]. Exeter: University
of Exeter; 2015.

[3] Castro S, Lohse A. Stabiliy in simple heteroclinic networks in R4. Dy-
namical Systems: An International Journal. 2014;29:451–481.

[4] Ashwin P, Timme M. Unstable attractors: existence and robustness
in networks of oscillators with delayed pulse coupling. Nonlinearity.
2005;18:2035–2060.

[5] Timme M, Wolf F, Geisel T. Prevalence of Unstable Attrac-
tors in Networks of Pulse-Coupled Oscillators. Phys. Rev. Lett.
2002;89(15):154105-1–4.

[6] Timme M, Wolf F, Geisel T. Unstable attractors induce perpetual syn-
chronization and desynchronization. Chaos. 2003;13(1):377–387.

[7] Lohse A. Attraction properties and non-asymptotic stability of sim-
ple heteroclinic cycles and networks in R4 [PhD Thesis]. Hamburg:
University of Hamburg; 2014. Available at: http://ediss.sub.uni-
hamburg.de/volltexte/2014/6795

[8] Hahn W. Stability of Motion. Springer Verlag Berlin; 1967.

10


