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Abstract

An important part in the numerical simulation of tsunami and storm surge
events is the accurate modelling of flooding and the appearance of dry areas
when the water recedes. This paper proposes a new algorithm to model inunda-
tion events with piecewise linear Runge-Kutta discontinuous Galerkin approx-
imations applied to the shallow water equations. This study is restricted to
the one-dimensional case and shows a detailed analysis and the corresponding
numerical treatment of the inundation problem.

The main feature is a velocity based “limiting” of the momentum distri-
bution in each cell, which prevents instabilities in case of wetting or drying
situations. Additional limiting of the fluid depth ensures its positivity while
preserving local mass conservation. A special flux modification in cells located
at the wet/dry interface leads to a well-balanced method, which maintains the
steady state at rest. The discontinuous Galerkin scheme is formulated in a
nodal form using a Lagrange basis. The proposed wetting and drying treatment
is verified with several numerical simulations. These test cases demonstrate the
well-balancing property of the method and its stability in case of rapid tran-
sition of the wet/dry interface. We also verify the conservation of mass and
investigate the convergence characteristics of the scheme.

Keywords: Shallow water equations, Discontinuous Galerkin, Wetting and
Drying, Limiter, Well-balanced Scheme

1. Introduction

The shallow water equations are an established model for geoscientific ap-
plications such as tsunami or storm surge simulations [see e.g. 4, 21]. Although
they are derived under the assumption that vertical velocities are negligible,
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they are favored for their ability to realistically model large scale horizontal
flows with relatively low computational cost. While the discrete representation
of the flow field and the propagation of surface waves in the deep ocean is usually
well captured, difficulties arise in the coastal area, where water floods originally
dry areas or recedes back into the ocean. Mathematically, this is a problem,
because the shallow water equations become ill-posed when the fluid depth be-
comes zero. Therefore, either the computational domain must be dynamically
adapted according to the edge of the water body, or one needs to introduce a
special treatment of wetting and drying events into the numerical scheme.

Although the Lagrangian approach of a moving mesh is known to result in
accurate solutions, its implementation is difficult, especially in case of complex
bathymetry, and only applications to simple flow configurations have been re-
ported in the literature [3, 17]. Thus, in geophysical problems it turned out to
be advantageous to use meshes which do not necessarily align with the wet/dry
interface. In this Eulerian approach one has to ensure the positivity of the
fluid depth, the proper treatment of dry cells and the discrete representation of
steady states (well-balancing). Furthermore, the scheme must stably deal with a
possibly ill-conditioned velocity near the wet/dry interface when computations
are carried out with fluid depth and momentum as primary variables and the
velocity is computed as quotient of both quantities. This is especially the case
in Godunov-type schemes, which employ the use of Riemann solvers for the flux
computation at discontinuous interfaces in the discrete solution.

There have been various approaches to deal with wetting and drying, most
of them using finite volume discretization techniques. In this area, the work
of Audusse et al. [1] introduced a general treatment of inundation modeling.
Their principle of hydrostatic reconstruction together with a well-balanced dis-
cretization of the source term has become widely used and further developed
[see e.g. 16, 18, 26]. Although finite volume methods have demonstrated their
robustness and can perfectly conserve mass, they also have their shortcomings.
Most notably, they only provide cell mean values as solution components and
the computation of higher order approximations involves an increasing stencil
of cells [14, 20], which becomes complicated for unstructured grids. On the
other hand, continuous finite element methods provide pointwise solutions, and
they can relatively easily be extended to higher order by using higher order
shape functions. The problem in using finite element methods for advection
dominated problems is the continuity condition on the solution, which renders
most methods unconditionally unstable, and they must be stabilized by adding
artificial viscosity.

In this context, discontinuous Galerkin (DG) methods are a good compro-
mise. They borrow the conservation property from finite volume methods by us-
ing local shape functions which are discontinuous across cell interfaces. Commu-
nication between cells is modeled by fluxes as in finite volume methods. Higher-
order accuracy can be achieved by using high-order shape functions. Compared
to continuous finite elements of the same order, discontinuous Galerkin meth-
ods need a higher number of degrees of freedom and have a strict time step
restriction, but the locality of their shape functions simplifies adaptivity and
the parallelization of the method.
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Modeling wetting and drying in shallow water flows using discontinuous
Galerkin methods is still a very young research area and mostly restricted to
linear elements. Bokhove [5] applied a moving mesh approach with free bound-
ary elements at the wet/dry interface, while other approaches were based on
fixed meshes. A nodal flux modification technique was introduced by Gourgue
et al. [12]. The most common approach is based on slope-limiting. Kesserwani
& Liang [15] directly adapted the idea of hydrostatic reconstruction to a Runge-
Kutta discontinuous Galerkin (RKDG) discretization. The works in [6, 9, 27]
introduced a scaling around the mean within each cell to obtain positivity of
the fluid depth as well as mass conservation. Most of these studies concentrated
on the positivity of the fluid depth and the well-balancing property, so far. The
ill-conditioned computation of the velocity has only been implicitly dealt with
by using restrictive limiters, such as the corrected Minmod-limiter in [27], or,
as in [9] by setting an upper problem dependent tolerance of the velocity.

The problem of stably computing the velocity is addressed in this study in
the context of a limiter based treatment of inundation events. The basic idea
is that the momentum variable is modified on the basis of the resulting velocity
distribution given a fixed (but already limited) distribution of the fluid depth.
This results in a stable flux computation which usually involves the computa-
tion of the velocity at some point. The general idea is borrowed from finite
volume methods, where limiting in other than the primary flow variables often
enhances the solution. However, in finite volume methods, these limited values
are only used for the flux computation at the cell interfaces. In discontinuous
Galerkin methods, on the other hand, the solution itself is limited and further
used throughout the computations. Therefore, the non-trivial in-cell functional
behavior of the velocity, which is the quotient of two polynomials, cannot be
ignored in the limiting process. To the authors’ knowledge this concept of lim-
iting in other than the primary variables has not been thoroughly transferred
to discontinuous Galerkin methods, yet.

In addition, the proposed method is fully mass conservative and well-balanced
in that it preserves the steady state at rest. Here, we restrict ourselves to the
one-dimensional case to introduce the basic principles and to better analyze the
details of the algorithm. The extension of the scheme to two space dimensions
will be left to a sequel study. Starting from the governing equations, the Runge-
Kutta discontinuous Galerkin method is introduced in the next section. On this
basis, a detailed description of the new wetting and drying treatment is given
in section 3, which is verified in several test cases in section 4. The paper closes
with a final discussion and conclusions in section 5.

2. The shallow water equations and their RKDG discretization

The one-dimensional shallow water model is defined by two equations, the
first stating the conservation of mass and the second describing the balance of
forces in form of the momentum equation. The system can be written in the
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compact conservative form

Ut + F(U)x = S(U) (1)

where the vector of unknowns is given by U = (h, hu)T. Here and below, we
have written the partial derivatives with respect to time t and space x as indices,
i.e., Ut ≡ ∂U

∂t . The quantity h = h(x, t) denotes the fluid depth of a uniform
density water layer and u = u(x, t) is the depth-averaged horizontal particle
velocity. The flux function is defined by F(U) = (hu, hu2 + g

2h
2)T, where g is

the gravitational constant. Furthermore, the bathymetry (bottom topography)
b = b(x) is represented by the source term S(U) = (0,−ghbx)T.

For the discretization the governing equations are solved on the domain
[xmin, xmax], which is divided into intervals (cells) Ii = (xi−1/2, xi+1/2). On each
interval, the equations (1) are multiplied by a test function ϕ and integrated.
Integration by parts of the flux term leads to the weak DG formulation∫

Ii

Utϕdx−
∫
Ii

ϕxF(U) dx+
[
F∗(U)ϕ

]xi+1/2

xi−1/2

=

∫
Ii

S(U)ϕdx . (2)

Note that the interface flux F∗ is not defined in general, since the solution can
have different values at the interface in the adjacent cells. This problem is
circumvented in the discretization by using the (approximate) solution of the
corresponding Riemann problem. For the simulations in this study we used the
Rusanov solver [24], but other Riemann solvers such as HLLE [8] gave similar
results.

System (2) is further discretized using a semi-discretization in space with a
piecewise polynomial ansatz for the discrete solution components and test func-
tions ϕk. To obtain second-order accuracy, we use piecewise linear functions,
which are represented by nodal Lagrange basis functions [10, 13]. In view of a
two-dimensional extension of the scheme, n-point Gauß-Legendre quadrature is
applied to obtain an (exact) discretization of the integral terms. In each cell,
this discretization in space leads to a system of ordinary differential equations
(ODEs) for the vector of degrees of freedom Ũi(t), where U(x, t) =

∑
j(Ũi)jϕj

for x ∈ Ii. It is of the form

∂Ũi

∂t
=

∫
Ii

(
ϕ̂xF(U) + ϕ̂S(U)

)
dx−

[
ϕ̂F∗(U)

]xi+1/2

xi−1/2

=: Hh(Ũi), (3)

where ϕ̂ = M−1(ϕk)k and M is the local mass matrix with Mjk =
∫
Ii
ϕj ·ϕk dx.

The resulting system for the degrees of freedom of all cells Ũh is then solved
using a total-variation diminishing (TVD) s-stage Runge-Kutta scheme [11, 19],
which is of the general form

Ũ
(0)
h = Ũn

h

Ũ
(p)
h = Πh

{
p−1∑
q=0

αpqŨ
(q)
h + βpq∆tnHh

(
Ũ

(q)
h

)}
for p = 1 . . . s

Ũn+1
h = Ũ

(s)
h
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with Runge-Kutta coefficients αpq and βpq and a time step size ∆tn = tn+1 −
tn. Hh(Ũh) represents the right hand side of the ODE (3) extended to all
cells. The limiter Πh, which is applied in each Runge-Kutta stage p to an

intermediate solution U
(p)
h , is usually employed to stabilize the scheme in case of

discontinuities. However, as stated above it can be also used for dealing with the
problem of wetting and drying. In the remainder of this article, we use Heun’s
method, which is the second-order representative of a standard Runge-Kutta
TVD scheme. This completes the description of the Runge-Kutta discontinuous
Galerkin (RKDG) method.

For (2), exact quadrature rules are a basic requirement for well-balancing
[25]. At the cell interfaces no problems occur, since we use a continuous rep-
resentation for the bottom topography. Otherwise, one can use the technique
introduced in [25, 27], which is based on hydrostatic reconstruction of the in-
terface values [1] and adds a higher order correction to the source term.

3. Wetting and drying algorithm

When it comes to wetting and drying, i.e. parts of the domain have water
depth h = 0, several problems arise which must be handled by the numerical
algorithm. First, the wet-dry transition might be within a cell and cannot be
exactly represented by a piecewise (smooth) polynomial DG discretization (cf.
Figure 1). The result is the occurrence of artificial gradients in the surface ele-
vation that can influence the tendencies of the momentum equation and render
the scheme unbalanced. Furthermore, one must ensure that the fluid depth
remains non-negative. Otherwise the shallow water equations are undefined at
these points. The third and in the authors’ opinion least investigated problem
is that near the wet/dry interface, both, fluid depth and momentum go to zero,
which yields an ill-conditioned computation of the velocity u = (hu)/h in these
regions.

In the following, it is first described how to deal with the occurrence of
artificial gradients at the wet/dry interface. After that a new limiter is in-
troduced, which prevents the fluid depth from being negative and controls the
ill-conditioned computation of the velocity through the limitation of the mo-
mentum variable.

3.1. The wet/dry interface

Depending on the flow configuration a DG discretization might be more
or less of physical nature near the wet/dry interface. According to Bates &
Hervouet [3] (see also [6]) we distinguish between two general situations, which
will be referred to as of “flooding”-type and “dam-break”-type (Figure 1). In
the flooding-type situation the water comes from the deep water and the water
level might successively rise. This situation also includes the still water lake
at rest, where nothing happens. This can lead to unphysical gradients of the
surface elevation as can be seen in the left part of Figure 1. In the “dam-break”
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Figure 1: Discretization of different semi-dry cell types using the discontinuous Galerkin
scheme with piecewise linear elements (red: surface elevation, green: bottom topography).
Displayed are flooding-type (left) and two different dam-break-type (middle and right) cells.
Note the artificial gradient in surface elevation introduced by the discretization in the flooding-
type situation.

situation the water comes from above, like in the event of an upstream dam-
break. There are two different configurations which are displayed in the middle
and on the right of Figure 1 and considered to be discretized physically correct.

Therefore, we only modify the computation of the momentum tendencies
in the flooding-type situation. Such cells can be identified by comparing the
maximum value of the surface elevation H = h+b with the maximum in bottom
topography b within each cell, i.e., for cell Ii we check if

max
x∈Ii

H(x)−max
x∈Ii

b(x) < TOLwet ,

where TOLwet is a tolerance for the water depth under which it is considered
dry. Since in the given piecewise linear configuration the extreme values are
attained in the two vertices (Lagrange nodes) of a cell, it suffices to check the
condition in these two points.

In the flooding-type cells the inner flux and source terms due to gravitational
forces are neglected, which is equivalent to setting g equal to zero in these terms.
The interface flux at the dry node is zero due to zero fluid depth. However, the
flux term at the wet interface has to be considered, since it is also present for
the adjacent wet cell. In order to be well-balanced in the semi-dry cell, we add
a flux term including only the gravitational part computed on the basis of the
fluid depth from the semi-dry cell at the wet interface. For a configuration as
in Figure 1 (left) – assuming that this is cell Ii – the momentum equation in
this cell then reads ∫

Ii

(hu)tϕdx−
∫
Ii

ϕxhu
2 +
�
�g

2
h2 dx+[

(((
(((((F ∗huϕ)(xi+1/2)− (F ∗huϕ)(xi−1/2)

]
+
g

2
(h2ϕ)(xi−1/2,+) = 0 ,

where (h2ϕ)(xi−1/2,+) is the value of h2ϕ at xi−1/2 based on the function values
from cell Ii. Since (F ∗huϕ)(xi−1/2) = g

2 (h2ϕ)(xi−1/2,+) and u ≡ 0 in the still
water steady state this ensures that all flux terms vanish and the momentum
tendency is zero.
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3.2. Velocity based “limiting” of momentum

While limiting was originally introduced to obtain stable computations in-
volving shocks, here we employ this numerical technique to stably discretize
the wet/dry interface. Since the limiting modifies the solution itself in a DG
method, and not only the values for the computation of the interface fluxes as in
finite volume methods, further care must be taken for well-balancing. Therefore,
we require that the limiter does not alter the steady state of the lake at rest.
This is ensured by the Barth-Jespersen limiter [2] with limiting in hydrostatic
variables, i.e., in H = h + b, which will be used throughout this work. This
limiter essentially limits the in-cell distribution such that it does not exceed the
minimum and maximum cell mean values of the surrounding cells. As we will
see in the test cases, numerical evidence shows that limiting in fluid depth h
improves the drying process at the coast in some situations considerably. As
an alternative we propose a blending between the two limiting procedures in H
and in h to balance the different requirements for the scheme.

Concerning the positivity of the fluid depth, Xing et al. [27] have shown that
a fluid depth, which is initially positive in certain quadrature points, leads to
positive mean values provided a suitable CFL condition is met. For piecewise
linear polynomials the quadrature points of the trapezoidal rule are relevant.
These are the nodal values in each cell. The resulting CFL condition to ensure
positivity in the mean is cmax∆t/∆x ≤ 1/2, where cmax = max{|u|+√gh}. This
condition is less restrictive than the CFL condition for linear stability of the DG
method, the latter being cmax∆t/∆x ≤ 1/3 for piecewise linear polynomials.
Positivity of the whole distribution is then obtained by scaling around the cell
mean values. Further details can be found in [27].

The linear momentum distribution is “limited” by analyzing the resulting
velocity distribution. This provides a stable computation near the wet/dry
interface in the situation when both, h and (hu) get small. As we will see, the
modified momentum can have a higher in-cell variation in some cases.

We start the description of the limiter by specifying the limiting process
in H = h + b (resp. h) on a nodal basis. Let Hi−1/2,+ = Hi(xi−1/2) and
Hi+1/2,− = Hi(xi+1/2) be the nodal values based on the linear distribution
within cell Ii, and define the cell mean value and variation by

Hi =
Hi+1/2,− +Hi−1/2,+

2
and ∆Hi =

Hi+1/2,− −Hi−1/2,+

2
.

Then in a nodal based form the limiting in H can be computed from a limited
in-cell variation, which is given by

∆H lim
i = sign(∆Hi) ·min{|∆Hi|, |Hi+1 −Hi|, |Hi −Hi−1|} .

The limited nodal values are

H lim
i−1/2,+ = Hi−1/2,+ + (∆Hi −∆H lim

i ) and

H lim
i+1/2,− = Hi+1/2,− + (∆H lim

i −∆Hi) .
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The limited values for the fluid depth are obtained from hlim,final
i±1/2,∓ = H lim

i±1/2,∓ −
bi±1/2,∓.

This procedure can be applied in the same way to h, resulting in different,
unbalanced in-cell distributions, but it can improve the drying process as stated
above. Therefore, we introduce an alternative limiting procedure. Since both
results from either limiting in H or h are linear and preserve the mean state,
any convex linear combination does so, as well. We define a blending parameter,
which linearly varies between 0 and 1 for minimum in-cell surface elevations
Hmin between the minimum and maximum in-cell bathymetry values bmin and
bmax. It is given by

λ = max

(
0,min

(
1,
Hmin − bmin

bmax − bmin

))
and the final nodal values are computed by

hlim,final
i±1/2,∓ = λ (H lim

i±1/2,∓ − bi±1/2,∓) + (1− λ)hlim
i±1/2,∓ .

For the velocity based “limiting” of the momentum variable let ui = (hu)i/hi =
(hu)i(xi)/hi(xi) be the velocity resulting from the mean values and ui±1/2,∓ =
(hu)i(xi±1/2)/hi(xi±1/2) the velocities in the vertices based on the distributions
of cell Ii. Then the minimum and maximum velocities computed from the mean
values of the surrounding cells are denoted by

umin
i = min{ui−1, ui, ui+1} and umax

i = max{ui−1, ui, ui+1} .

Each vertex value is limited to be within the bounds of umin
i and umax

i

ulim−
i−1/2,+ = max{min{ui−1/2,+, u

max
i }, umin

i }
ulim +
i+1/2,− = max{min{ui+1/2,−, u

max
i }, umin

i }

and the resulting velocity in the respective other vertex is computed by assuming
a linear momentum distribution with prescribed mean value and a (fixed) linear
distribution of the fluid depth:

ulim−
i+1/2,− =

(hu)i +
(
(hu)i − hlim

i−1/2,+ · ulim−
i−1/2,+

)
hlim
i+1/2,−

ulim +
i−1/2,+ =

(hu)i −
(
hlim
i+1/2,− · ulim +

i+1/2,− − (hu)i
)

hlim
i−1/2,+

Finally, the momentum distribution with the smallest in-cell velocity variation
is chosen. We set

∆mlim
i =


ulim +
i+1/2,− · hlim

i+1/2,− − (hu)i if
∣∣∣ulim +

i+1/2,− − ulim +
i−1/2,+

∣∣∣ <∣∣∣ulim−
i+1/2,− − ulim−

i−1/2,+

∣∣∣
(hu)i − ulim−

i−1/2,+ · hlim
i−1/2,+ otherwise

8



Figure 2: Visualization of the velocity based “limiting” of the momentum. Initial distribution
in surface elevation, momentum and velocity (top row) and limiting procedure (bottom row).

and compute the nodal values of the momentum by

(hu)lim
i−1/2,+ = (hu)i−1/2,+ + (∆mi −∆mlim

i ) ,

(hu)lim
i+1/2,− = (hu)i+1/2,− + (∆mlim

i −∆mi) ,

where ∆mi = (hu)i+1/2,− − (hu)i. For further stabilization we set the momen-
tum to zero in all nodes where the fluid depth drops under the wet tolerance:

(hu)lim,final
i±1/2,∓ =

{
0 if hlim

i±1/2,∓ < TOLwet

(hu)lim
i±1/2,∓ otherwise.

To illustrate the velocity based limiting it is visualized in Figure 2, where
we have compiled a possible configuration in surface elevation and momentum
at the wet/dry interface in the top row. The resulting velocity distribution is
displayed in the rightmost figure. As one can see, the velocity in the center
cell has an unphysical extreme value at x = 2, where both, fluid depth and
momentum become small. For the limiting, the cell mean values of h and (hu)
are computed and upper and lower limits for the velocity are derived (dashed
magenta line). This results in two limited velocity and associated momentum
distributions, which are marked as red and green with triangles at the end
points. The final distribution is the velocity distribution with the smallest in-
cell variation – in this case it is the red one. As one can see the associated
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momentum distribution has a slightly bigger in-cell variation compared to the
original one.

4. Numerical results

In this section the presented numerical scheme is tested against different
configurations with wet/dry interfaces. Some address the well-balancing prop-
erty of the method such as the classical “lake at rest”, others elaborate on the
stability such as the oscillatory flow in a parabolic basin. A more realistic sit-
uation is simulated by a long-wave runup onto a beach, which resembles the
arrival of a tsunami at the coast. In all simulations the gravitational constant
is set to g = 9.81. Here and below we omit the dimensions of the physical
quantities, which should be thought in the standard SI system with m (meter),
s (seconds) etc. as basic units. The discrete initial conditions and the bottom
topography are derived from the analytical ones by interpolation at the nodal
(cell interface) points. The wet tolerance is set to TOLwet = 10−8, and we use
limiting in H = h+ b if not stated otherwise. As stated above, a CFL number
cfl ≤ 1/3 results in a time step ∆t = cfl∆x/cmax which provides a stable and
positive solution. In the following simulations, we always choose a fixed time
step which satisfies this stability constraint. Besides fluid depth and momentum
we also often show the velocity, which is derived by the quotient of the two other
quantities.

4.1. Lake at rest

To verify the well-balancing property of the scheme, a basin is setup with a
fluid at rest and an initially horizontal surface elevation. The test domain [0, 1]
has periodic boundary conditions. In the middle of the domain is an island,
which is defined by the bottom topography

b(x) = b̃(r) =

{
a · exp(−0.5/(r2m−r

2))
exp(−0.5/r2m) if r < rm,

0 otherwise

where r = |x − 0.5|, and the parameters are set to a = 1.2 and rm = 0.4.
The initial fluid depth is h(x, 0) = min(0, 1 − b(x)) (see Figure 3). The initial
momentum is set to (hu)(x, 0) ≡ 0, which means that the fluid is in steady
state. The domain is discretized into 50 cells, and the timestep is set to 0.002.
This corresponds to a CFL number of 0.3. The solution is integrated over 10 000
timesteps until tmax = 20.

As in case of the exact solution, the discrete initial conditions should be
preserved and only small deviations due to numerical truncation errors should
occur. In Figure 4 the errors in fluid depth and momentum are displayed over
time using the maximum norm. It can be seen that for both variables only
errors within the range of machine accuracy develop.
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Figure 3: Initial surface elevation for the “lake at rest” test case. Depicted are the bathymetry
(grey) and total water depth (blue).
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Figure 4: Errors in fluid depth (left) and momentum (right) over time for the “lake at rest”
test case measured in the L∞ norm.

4.2. Small perturbation over under-resolved bathymetry

To further study the well-balancing property of the method, a small per-
turbation is added to a fluid at rest. During the experiment, one of the two
resulting waves should travel over an exponential bottom topography which is
touching the fluid surface only in one point. This numerically challenging test
case was proposed by Xing et al. [27]. The domain [−5, 5] is given with a bottom
topography b(x) = 0.5 exp(−10x2), and the initial condition (see Figure 5) is
defined by

h(x, 0) =

{
0.5− b(x) + 0.0001 if − 3 ≤ x ≤ 2,

0.5− b(x) otherwise,
and u(x, 0) ≡ 0 .

From the zoomed-in version of the initial data one can see that the tip of the
bottom topography becomes singular for coarse grid resolutions. The two waves
emerging from the perturbation travel at characteristic speeds ±√gh to the left
and right direction.

In Figure 6 snapshots of the surface elevation at times 0.8, 1.6 and 2.4 are
displayed for different resolutions. Due to the singularity of the bottom tip
the flow develops some artificial oscillations when the right going wave travels
over the tip. This happens especially at the relatively coarse resolution of 250
uniform grid cells. As the resolution becomes finer, the artificial oscillations
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Figure 5: Small perturbation over under-resolved bathymetry. Bottom topography and initial
surface elevation. Full view with bottom topography (left), zoomed-in version showing details
of initial surface elevation (right).

vanish, which can be seen for the grids with 1250 and 6250 uniform cells. Such
oscillatory behavior was also observed by Xing et al. [27] when applying their
limiter to the surface elevation H.

4.3. Riemann problems with wet/dry fronts

Riemann problems are usually considered to assess the shock-capturing ca-
pabilities of a scheme. Furthermore, they provide an analytical solution to
compare with. Here, we setup two different Riemann problems which include
dry areas and have been used before to evaluate similar inundation schemes
[5, 6, 27] to demonstrate the positivity-preserving capability of the methods.
Both problems have a flat bottom (b ≡ 0).

The first considered test is a dam break problem with fluid on the left side
and a dry area on the right side. The computational domain is [−300, 300] with
transparent boundary conditions. The initial conditions are

h(x, 0) =

{
10 if x ≤ 0,

0 otherwise,
and u(x, 0) ≡ 0 .

The analytical solution of this problem is a rarefaction wave and can be found
in [5].

For the discretization the domain is divided into 200 uniform intervals. The
timestep is 0.05 resulting in a CFL number 0.17. The solution (cell mean values)
is displayed at times t = 4, 8 and 12 in Figure 7 together with the analytical
solution. Besides the fluid depth and the momentum we have also plotted the
resulting velocity distribution. The exact solution is well approximated by the
simulation results and no instabilities occur. Only a small lag of the wet/dry
interface in the numerical solution compared to the exact one can be observed,
which can be best seen from the velocity distributions.
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Figure 6: Small perturbation over under-resolved bathymetry. Numerical results of surface
elevation at times 0.8, 1.6 and 2.4 (from left to right) for grid resolutions of 250 cells (top),
1250 cells (middle) and 6250 cells (bottom).

Figure 7: Numerical and exact solution of the dam break problem at times t = 4, 8 and 12.
Cell mean values of fluid depth (top left), momentum (top right) and velocity (bottom). The
exact solution is given by the black line.
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Figure 8: Numerical and exact solution of the Riemann problem with two expansion waves
at times t = 2, 4 and 6. Cell mean values of fluid depth (top left), momentum (top right),
velocity (bottom). The exact solution is given by the black line.

In the second Riemann problem the domain [−200, 400] is initially wet ev-
erywhere with initial conditions

h(x, 0) =

{
5 if x ≤ 0,

10 otherwise,
and u(x, 0) =

{
0 if x ≤ 0,

40 otherwise.

Due to the drying condition
√
ghl + ul < −

√
ghr + ur, a dry region emerges for

t > 0, and two expansion waves traveling into opposite directions occur. The
analytical solution to this problem can be also found in [5].

The domain is discretized into 200 uniform cells and the timestep is 0.01,
which results in a CFL number 0.17. The cell mean values of the simulation
are compared to the exact solution in Figure 8 at times t = 2, 4 and 6. Also
in this case the analytical solution is well captured. The only problem occurs
in the drying area, where the discrete fluid depth does not get below the wet
tolerance, resulting in an artificial velocity profile there.

4.4. Oscillatory flow in a parabolic bowl

A numerically challenging test goes back to Thacker [22], where he considers
an oscillatory flow in a domain with parabolic bottom topography. Even the
analytical solution for the nonlinear shallow water equations is known in this
case. This test case has become another standard test problem for inundation
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Figure 9: Free surface elevation of an oscillatory flow in a parabolic bowl. Initial condition.

schemes and has been applied to several schemes [e.g. 15, 27]. On the domain
[−5000, 5000] the bottom topography is defined by b(x) = h0(x/a)2, where
a = 3000 and h0 = 10 define the shape of the parabolic basin. Note that the
boundary conditions for the domain are irrelevant since the boundary is in the
dry part of the solution. The analytical solution of the water surface is then
given by

h(x, t) + b(x) = h0 −
B2

4g
(1 + cos(2ωt))− Bx

2a

√
8h0

g
cosωt,

where we set ω =
√

2gh0/a and B = 5. Furthermore, the velocity in the wet
part is given by

u(x, t) ≡ Baω√
2h0g

sinωt.

Thus, the solution involves a periodical movement of the wet/dry interface at
both sides of the basin. The initial conditions are shown in Figure 9.

The domain is discretized using 200 uniform cells, and a timestep of 1.0 is
used, which approximately corresponds to a maximum CFL number of 0.3. We
should note that in this case the maximum CFL number with respect to the fluid
velocity is about 0.18. This value is achieved in the simulations in the vicinity
of the wet/dry interfaces. Therefore, this test case drives the inundation scheme
to its stability limits.

The simulation is executed until tmax = 3000, when the flow has oscillated a
bit more than two periods. The numerical solution compared to the exact one is
shown in Figure 10 at times 1000, 2000, 3000. Fluid depth and momentum are
well approximated by the DG scheme and indistinguishable from the analytical
solution. Only in the velocity field deviations are visible in the vicinity of the
wet/dry interface and mostly in case of receding fluid (drying). In these cases a
thin film of fluid is left for some time steps and the division of small numbers to
compute the velocity leads to these numerical errors. Despite everything, these
deviations stay bounded.

These artifacts become smaller if blended limiting is done as described in
Section 3.2. This can be seen in Figure 11. Limiting in h clearly improves the
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Figure 10: Free surface elevation, momentum and velocity of an oscillatory flow in a parabolic
bowl. Numerical (red) and exact solution (blue dashed) at times t = 1000, t = 2000, t = 3000
(from top to bottom). Wet/dry tolerance is set to 10−8. Limiting in surface elevation H.

solution in the vicinity of receding fluid. The discrete solutions for fluid depth
and momentum (not shown) are almost indistinguishable from the exact one
also in this case.

The test case of an oscillatory flow in a parabolic bowl is also suitable to
evaluate the conservation of mass and of total energy E =

∫
Ω
hu2/2+gh(h/2+b)

for the numerical method, since there is no flow across the boundary of the
domain. In Figure 12 we have plotted the relative mass error and change in
total energy with respect to the initial data over time. It can be seen that the
mass error is in the range of machine accuracy and there are also only very small
fluctuations in total energy.

Figure 11: Velocity of an oscillatory flow in a parabolic bowl. Numerical (red) and exact
solution (blue dashed) at times t = 1000, t = 2000, t = 3000 (from left to right). Wet/dry
tolerance is set to 10−8. Blended limiting.
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Figure 12: Relative mass error (left) and relative change in total energy of the numerical
solution simulating The oscillatory flow in a parabolic bowl.

Another question is the order of convergence of the method. While we cannot
expect second order accuracy due to the non-smooth transition between wet and
dry regions in the flow variables, the accuracy should be at least around one.
For the convergence calculation we have computed the solution up to t = 1000
on several grids with cells ranging from 50 to 3200 and fixed CFL number. The
experimental convergence rate is calculated by the formula

γfc :=
log(‖ec‖/‖ef‖)
log(∆xc/∆xf )

.

In this definition, ec and ef are the computed error functions of the solution
on a coarse and a fine grid (denoted by the number of cells) and ∆xc and ∆xf
are the corresponding grid spacings. The results are shown in Figure 13 and
Table 1 for the L2 and L∞ norms. It can be seen that in the L2 norm the mean
convergence rate is close to 1.5 for both, fluid depth and momentum. In the
L∞ the rates are around 1.0. These low values can be probably explained by
the errors arising in the zone of receding water, leading to a small phase error
that spoils the maximum norm, but is rather harmless in the two-norm.

We varied the wet tolerance TOLwet for this test case to see how much the
stability of the scheme depends on it. Interestingly, we could vary it over a
broad range from 10−14 to 100 and did not even get any stability issues. The
parameter merely affected the accuracy of the solution. For TOLwet = 100 = 1,
when the parameter is of the order of the solution, large deviations from the
exact solution become visible. On the other hand, for a value of 10−2 the errors
in the velocity field vanish for the most part as can be seen in Figure 14.

4.5. Tsunami runup onto a sloping beach

A more realistic test case is given by the propagation of a tsunami wave onto
a uniformly sloping beach. It was originally defined as a benchmark problem in
[23]. Besides the slope of the beach the initial surface elevation (Figure 15) and
momentum with (hu)(x, 0) ≡ 0 is given. The solution is sought on the domain
[−500, 50 000] and the bottom topography is set to b(x) = 5000 − 0.1x. At
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Figure 13: Error of the oscillatory flow in a parabolic bowl test case at t = 1000 in the L2

(blue) and L∞ (green) norms for different grid sizes. Left: fluid depth, right: momentum.

L2(h) L2(m) L∞(h) L∞(m)

γ100
50 1.4437 1.5684 0.8172 0.8462

γ200
100 1.8429 1.5948 1.4587 1.4583

γ400
200 1.3640 1.5168 1.0561 1.0355

γ800
400 1.6303 1.6657 0.9664 1.0002

γ1600
800 1.1152 1.2658 0.6804 0.6908

γ3200
1600 1.8154 1.7689 1.4353 1.4384

γfitted 1.5191 1.5503 1.0567 1.0648

Table 1: Convergence rates between different grid levels for the oscillatory flow in a parabolic
bowl for fluid depth (h) and momentum (m) in the L2 and L∞ norms. Also displayed is the
mean convergence rate γfitted, which is obtained by a least squared fit.

Figure 14: Velocity of an oscillatory flow in a parabolic bowl. Numerical (red) and exact
solution (blue dashed) at times t = 1000, t = 2000, t = 3000 (from top to bottom). Wet/dry
tolerance is set to 10−2. Limiting in surface elevation H.
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Figure 15: Tsunami runup onto a sloping beach. Initial surface elevation at t = 0.

the right boundary of the domain a simple transparent boundary condition is
implemented. However, the crucial task is to correctly simulate the inundation
process on the interval [−400, 800]. The analytical solution at times t = 160,
175 and 220 can be derived by the initial-value-problem technique introduced
by Carrier et al. [7] and can be found in [23].

In the presented simulation, the domain is discretized into 1010 uniform cells
and the timestep is 0.05, which approximately corresponds to a CFL number of
0.22 at the deepest point (right side) of the domain. The results are displayed for
the inundation zone in Figure 16, where the fluid depth can also be compared to
the analytical solution. At the first observation time t = 160 the water recedes,
whereas t = 175 is the reversal point between drainage and flooding. At the final
observation t = 220 the coast is still flooded. As in the previous test cases, the
analytical fluid depth is well approximated by the discretization. Some spurious
velocity deviations can be seen especially in the drying process (t = 160, 175),
but these are bounded and do not grow over time.

For comparison of the two different limiting procedures, the results for the
velocity with blended limiting is shown in Figure 17 (as opposed to limiting
in surface elevation in Figure 16). In this case the velocity distributions show
slightly more deviations near the wet/dry interface. However, the maximum
CFL number with respect to the fluid velocity is much smaller in this test case
due to the large fluid depth at the wet end of the domain.

5. Conclusions

In this work a wetting and drying treatment has been proposed for piecewise
linear discontinuous Galerkin discretizations of the one-dimensional shallow wa-
ter equations. It features a velocity based “limiting” of the momentum variable
which ensures the schemes’ stability in the vicinity of wet/dry interfaces. The
non-destructive limiting of steady states at rest together with a flux modification
of semi-dry cells result in a well-balanced method. Several test cases verified
the applicability of the scheme to a variety of flow regimes. They show that
the scheme is well-balanced, mass conservative and stable for rapid transitions
of the edge of the water body. Furthermore, the experimental order of conver-
gence is approximately 1.5 in the L2 norm and 1 in the maximum norm. The
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Figure 16: Tsunami runup onto a sloping beach. Computed surface elevation, momentum
and velocity from the DG method (red) compared to the exact solution (blue dashed, only
for surface elevation) at times t = 160 (top), t = 175 (middle), t = 220 (bottom). Limiting in
surface elevation H.

Figure 17: Tsunami runup onto a sloping beach. Computed velocity from the DG method at
times t = 160 (top), t = 175 (middle), t = 220 (bottom). Blended limiting.

scheme has only one parameter, which is the wet tolerance, under which a node
value is considered to be dry. Computations suggest that the scheme is robust
with respect to the particular value of this parameter. Two different limiting
strategies were developed in this work: Either by limiting only in the surface
elevation H = h + b as it is done in hydrostatic reconstruction methods, or by
blending limiting in H and the fluid depth h, the latter resulting in more stable
computations in case of rapid wetting and drying. It still has to be investigated,
which strategy is better for practical computations.

Beside the major goal of the development of a robust inundation scheme we
achieved a simple and straight forward algorithmic structure, which should make
it possible to apply the proposed treatment to other DG models. The method
is implemented into a second order Runge-Kutta scheme by only a small flux
modification and the implementation of the new limiter. The need for positivity,
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well-balancedness and stability were clearly addressed by specific components
of the algorithm.

The development of limiters for discontinuous Galerkin methods is still under
heavy development. The velocity based “limiting” of the momentum resembles
the limiting procedure in finite volume methods of other than the primary flow
variables (like limiting in primitive or characteristic variables when otherwise
working in conservative variables). We are optimistic that the general concept
proposed in this work might be transferable to other problems such as DG
methods for the solution of invicid compressible flow applications.

Concerning the wetting and drying treatment our target applications are
tsunami and storm surge simulations. In this respect the extension of the algo-
rithm to the two-dimensional case is ongoing research. Furthermore, possibili-
ties to extend the proposed concept to higher than linear discontinuous Galerkin
elements are investigated.
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