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Abstract: In this paper we present the approximation of an infinite horizon optimal control
problem for evolutive advection-diffusion equations. The method is based on a model reduction
technique, using a Proper Orthogonal Decomposition (POD) approximation, coupled with
a Hamilton-Jacobi-Bellman (HJB) equation which characterizes the value function of the
corresponding control problem for the reduced system. We show that it is possible to improve
the surrogate model by means of a Model Predictive Control (MPC) solver. Finally, we present
numerical tests to illustrate our approach and to show the effectiveness of the method in

comparison to existing approaches.
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1. INTRODUCTION

In this report we investigate an infinite horizon opti-
mal control problem for time-dependent linear advection-
diffusion equations. The basic ingredient of the method is
the coupling between a POD approximation of the equa-
tion and a Dynamic Programming scheme for the station-
ary Hamilton-Jacobi-Bellman equation characterizing the
value function of the optimal control problem. Due to the
curse of dimensionality, we need to restrict the dimension
of the POD system to a rather small number (typically
3-4). This limitation naturally affects the accuracy of the
POD approximation (see Gubisch et al. (2013)), and, as
a consequence, the problem class which we can treat with
this technique.

It is well known that the solution of the HJB equation
is not an easy task from the numerical point of view
since viscosity solutions of the HJB equation are usually
just Lipschitz-continuous. Optimal control problems for
ODEs are solved by Dynamic Programming (DP), both
analytically and numerically (see Bardi et al. (1997) for a
general presentation of this theory). From the numerical
point of view, this approach has been developed for many
classical control problems obtaining convergence results
and a-priori error estimates (see the recent book by Fal-
cone et al. (2014)).

We should mention that a first tentative approach to
couple POD and HJB equations was proposed by Atwell
et al. (2001) for the control of the 1D heat equation. Then,
Kunisch et al. (1999, 2001) extended this approach to dif-
fusion dominated equations and, in particular, in Kunisch
et al. (2004) apply HIB-POD feedback control to the vis-
cous Burgers equation. We also mention an adaptive POD
technique for 1D advection dominated problems proposed
in Alla et al. (2013). Recently with this approach HIB-
POD control of Navier-Stokes equation was investigated

in Alla et al. (2015).

In general the snapshot sampling plays an important role
to build the reduced order model. In many cases, the con-
trol problem is initialized with a forecast. The surrogate
model then is adapted through an iterative process, see
e.g. Afanasiev et al. (2001), Arian et al. (2002).

In Kunisch et al. (2004), the HJB equation is solved
twice with a multilevel algorithm. They set up the reduced
model from an initial control input and the correspondent
HJB equation on a coarse grid, in order to have a quick
guess on the value function. Then, they compute HJB on
a fine grid and the optimal trajectory.

The novelty of the present paper consists in the way the
surrogate model is built. The snapshot sampling is done
taking advantage of the MPC algorithm. MPC approxi-
mates optimal control problems by means of a repeated so-
lution of open-loop control problems (see the monographs
Griine et al. (2011); Rawlings et al. (2009)). In this way
MPC helps us to set up the surrogate model with infor-
mation on the control input. It therefore is not necessary
to start with a forecast. We note that we perform MPC
on a short prediction horizon in order to avoid expensive
offline stages. Then, we switch to the HIB-POD model in
order to refine the coarse approximation.

The paper is organized as follows. We first present the opti-
mal control problem in Section 2, then we describe the DP
equation and MPC algorithm in Section 3. Proper orthog-
onal decomposition, applied to optimal control problems,
is summarized in Section 4. Finally, the numerical tests
are presented in Section 5.

2. THE OPTIMAL CONTROL PROBLEM

In this section we describe the optimal control problem.
The gouverning equation is given by the unsteady one-
dimensional advection-diffusion equation. The equation
reads:



Yt — EYpx + CYz = U in  x (0, 00],
y(-,0) = wo in 0, (1)
y(z,) =0 in 99 x (0, 00),

where Q0 = (a,b) is an open interval, y : Q x [0,00] = R
denotes the state, and the parameters ¢, ¢ are positive real
constants. The control signals are elements of U = {u : Q%
[0,T] = U, u € L*(0,00,L*(Q))}, where U is defined
as follows U = {u € Rs.t.uy, < u < wp} with given
Ug, up € R. The initial value is denoted by yo. Note that
we deal with zero Dirichlet boundary conditions. The cost
functional we want to minimize is given by

J(u) = /O‘X’ (||y(-,t;u) — 720 +a|u(t)\2) e M dt,
(2)

where 7 is the desired state, « € RT and A > 0 is
the discount factor. The optimal control problem can be
formulated as
min J(u) s. t. y(u) satisfies (1). (3)
ueU

Existence and uniqueness results for (3) can be found in,
e.g. Lions (1971).

3. OPTIMAL CONTROL TOOLS

In this section we present the optimal control problem in
abstract form and we explain how to solve it with HJB
equations and Model Predictive Control.

3.1 Hamilton-Jacobi-Bellman equations

We illustrate the dynamic programming approach for
abstract optimal control problems of the form

oo
mi, Iy (1) i= [ LG u®)e M dr ()
uelU to
subject to y(t) = f(y(¢),u(t)), y(to) = yo,

with system dynamics in R”. We assume A > 0, and L(-, -)
and f(-,) to be Lipschitz-continuous, bounded functions.
The control signals are, now, elements of i = {u : [0,T] —
U, u(-) € L*°(0,T)}, where U is a compact subset of R™.
In order to emphasize the depence on the initial condition
Yo we use the notation Jy,(u).

In this setting, a standard solution tool is the application
of the dynamic programming principle, which leads to a
characterization of the value function v(yg) := Helzf/l Jyo (1)

u

as a unique viscosity solution of the Hamilton-Jacobi-
Bellman equation (HIB)

Av(yo) — gfelfU{DU “f(yo,uw) + L(yo,u)} = 0. (5)

To approximate equation (5), we construct a fully-discrete
semi-Lagrangian scheme which is based on a discretization
of the system dynamics with time step h, and a finite ele-
ment discretization of the state space with mesh parameter
k, leading to a fully discrete approximation Vj, i (yo) of the
value function v satisfying

Vik(vo) = ?QB{(l_Ah)Il Vi) (yo+hf(yo, w))+L((yo,u)}
(6)

for every element yg of the discretized spatial domain. In
general, the arrival point yo + hf(yo,u) is not a node of

the state space grid, and therefore the value of V}, ;. at this
point is approximated by means of a first-order interpolant
of the data, denoted by I1[V}, k] which is built, in our case,
by means of the Lagrange’s method (we refer the reader
to (Bardi et al., 1997, Appendix A) for more details).

The goal is to find a feedback control law of the form wu(t) =
O (y(t), t) which steers the system to the desired trajectory.
® is called feedback map. The computation of feedback
maps is almost built in and comes straightforward from
the knowledge of the value function. In fact;

D(yy,)(t) = u™(t) = arg 3161}]1 {L(yo,w) + Vv(yo)" fyo,u)} .

The characterization of the value function is valid for all
classical problems in any dimension and its approximation
is based on a-priori error estimates (we refer to Falcone
et al. (2014) for more details).

The request to solve an HJB in high dimensions comes up
naturally whenever we want to control evolutive PDEs.
However, a direct discretization is impossible, in many
practically relevant situations, since the system of ODEs
associated to a semi-discretization in time would have the
dimension equal to the space dimension where one should
solve the HJB equation. Fortunately, at the discrete level,
the snapshot POD method (see Sirovich (1987)) allows
us to obtain low-dimensional reduced models even for
complex dynamics, and, thus, presents an oppurtunity to
circunmvent the curse of dimensionality in the numerical
solution of the HJB equation (see Section 5).

3.2 Model Predictive Control

To introduce the MPC algorithm we consider again the
abstract problem (4). This method allows to compute a
state feedback law for (4) by solving a sequence of finite
time horizon problems.

To begin with, we introduce the finite horizon cost func-
tional as follows:

t'
T te) = [ L) ule)e N de
to

where N is a natural number, t) = t; + NAt is the
final time and NAt denotes the length of the prediction
horizon for the chosen time step At > 0. The state y solves
y(t) = fly(t),u(t)), y(to) = yo, t € [to, t}}) and is denoted
by y(-, to;u(+)). Note that we have added a discount factor
which is not common in the MPC framework. Recent
work on the stabilizing properties of MPC with discounted
optimal control is presented in Gaitsgory et al. (2014).

In Algorithm 1 the method is presented and works as fol-
lows: we store the optimal control on the first subinterval
[to, to+At] together with the associated optimal trajectory.
Then, we initialize a new finite horizon optimal control
problem whose initial condition is given by the optimal
trajectory y(t) = y(t;to,u’N (t)) at t = to + At using the
optimal control ¢V (yy, (t)) = u™ (t) for t € (to, to+At]. We
iterate this process by setting tg = to+ At. Note that (7) is
an open loop problem on a finite time horizon [tg, to+ N At]
which can be treated by classical techniques, see e.g. Hinze
et al. (2009). In general, the larger the prediction horizon,
the better the feedback law one can obtain. However, one
is interested in short prediction horizons (or even hori-
zon of minimal length) while guaranteeing stabilization



Algorithm 1 (MPC algorithm)

Require: time step At > 0, finite horizon N € N,
weighting parameter A > 0.
1: forn=0,1,2,... do
2:  Compute the state y(¢,) of the system at ¢, = nAt.
3:  Set tg =t, = nAt, z = y(t,) and compute a global
solution

N ._ 0 TN
u .—argznelleyo(u,to). (7)

4:  Define the MPC feedback value ¢™ (y,, (t)) = u'¥ (),
t € (to,to + At] and use this control to compute the
associated state y = y(t;to,uN (t)) by solving the
dynamical system in (4) on [to, to + At].

5: end for

properties of the MPC scheme (see Griine et al. (2011)).
The computation of this minimal horizon is related to
a relaxed dynamic programmic principle in terms of the
value function for the finite horizon problem (7) defined
as follows:

o™ (yo, to) = 5161{{ Jé\é(u; to).

The value function vV satisfies the DPP for the finite
horizon problem for ty + kAt, 0 < k < N:

to+kAt
/ L(y(t;to;u™ (1)) dt+

ueU to

o™ (yo, to) = inf {

oNTF(y(tsto + kAL uN (1))}

The stability of the method might be expressed in terms
of the relaxed Dynamic Programming Principle:

vV (yo, to) = v (y(to + Atsto, ™ (1), t0 + AL,)) +
o™ L(yo, ¢V (o)), (8)

where oV € (0, 1].

In order to estimate a'¥ in the relaxed DPP we require
that the system is exponentially controllable. We refer the
interested readear to the monograph Griine et al. (2011)
where an explicit formula for o is given under these
assumptions.

4. MODEL ORDER REDUCTION FOR OPTIMAL
CONTROL PROBLEMS

In this section we briefly explain the Proper Orthogonal
Decomposition (POD) and demonstrate how POD can be
used to build reduced order models solving optimal control
problems. We then show how to apply this technique to
our reference problem (3).

The Reduced Order Modelling (ROM) approach to opti-
mal control problems is based on projecting the dynam-
ics onto a low dimensional manifold utilizing projectors
that contain information from the system. A common
approach here is based on the snapshot form of POD
proposed in Sirovich (1987), which in the present situation
works as follows. We compute the snapshots set y1,...,yn
of the problem corresponding to different time instances
t1,...,t, and define the POD ansatz of order ¢ for the
state y by

¢
y'(z,t) = sz‘(t)1/)z'($)a (9)
i=1

where the basis functions {1/;}{_, are obtained from the
singular value decomposition of the snapshot matrix Y =
[y1y.--syn), 1e. Y = WXV, and the first ¢ columns
of ¥ form the POD basis functions of rank ¢. Here
the SVD is based on the Euclidean inner product (-,-).
This is reasonable in our situation, since the numerical
computations performed in our numerical example are
based on a uniform grid, but other inner products which
fit better with the physics of the PDE can be treated by
a suitable modification of the snapshot matrix. Note that,

for the purpose of model reduction we consider the control

input as follows: u(z,t) := Zfil b;(z)u;(t) where the given

functions b;(x) : @ — R play the role of the so called shape
functions and w(t) is the unkonwn input.

As already mentioned, the snapshots are computed on the
basis of a stable finite difference discretization of (1) which
leads to a semi-discrete ODE system of the form

¥ =Ay+Bu, ylto) =yo. (10)
where B € R™Y with (B);; = b;(z;). Then, it is clear
that the optimal control problem (3) fits into the more
abstract setting (4).

The reduced optimal control problem is obtained through
replacing (10) by a dynamical system computed by a
Galerkin approximation with ansatz (9) for the state.
This leads to a ¢{—dimensional system for the unknown
coefficients {w;}¢_,, namely

M = A*w + Blu, (11)
Here the entries of the mass M’ and the stiffness
A matrices are given by (¥;,¢;) and (1), Ay;), re-
spectivelly. The reduced shape function is obtained by
(BY); = (bi(x;),1). The coefficients of the initial con-
dition y’(tg) € R’ are determined by w;(to) = (wo); =
(Yo, v:), 1 < i < ¢, and the solution of the reduced
dynamical problem is denoted by w(t) € R,

Then, the POD-Galerkin approximation of (4) leads to the
optimization problem

w(tp) = wo.

(12)
where v € U, w solves (11) and the cost functional is
defined by

qu()(u) = /00 L(w(s),u(s), s)e™* ds.

to

min J5_ (u),

The value function v*, defined for the initial state wy € R’
is given by , ,
vi(wo) = inf Ju, (u),

and w solves (11) with the control v and initial condition
wo. Reduced HIB equations are defined in R?, but we need
to restrict our numerically domain to a bounded subset of
R. We refer the interested reader to Alla et al. (2013) for
a detailed description.

We have not discussed yet how to build the snapshot
matrix Y. Here we propose an approach based on the
MPC algorithm which provides snapshots which carry
information of the controlled problem. The idea consists
in first solving the full problem with Algorithm 1 and to
sample state and control snapshots. In the next step the



snaposhots are used to compute the POD basis functions
and to set up the reduced model which is used for the
numerical solution of the HJB equation. We note that the
MPC algorithm, in general, is fast for tracking problems,
expecially in our case where the prediction horizion N is
short, i.e. N = 2,3. The proposed method is summarized
in Algorithm 2.

Algorithm 2 MPC-HJB-POD Algorithm

Require: time step At > 0, finite horizon N € N,
weighting parameter A > 0, time step size h > 0 |
spatial step size k > 0

Solve Algorithm 1 for a given time interval

Build the snapshot matrix Y from the MPC output.
Compute POD basis of order £

Compute the reduced value function v°.
Compute the optimal trajectory by means of the
reduced value function

5. NUMERICAL TESTS

In this section we present our numerical tests. The first
test deals with a smooth initial condition whereas in the
second test we take a non-smooth initial condition. The
first test also considers a time-dependent pertubation in
order to investigate the robustness of the feedback control.
In both examples we vary the diffusion coefficient and the
advection term and we deal with 3 POD basis functions.

5.1 Test 1: Smooth initial condition

In equation (3) we set: Q = (0,2),y0 = 5(z — 2%),\ =
1,U = {-3,0,3}. We only consider one shape function
b1(x) = yo(x). The desired configuration is given by § = 0.
In (6) we take kK = 0.1, h = 0.01. The optimal trajectory,
in this case, is also obtained with a time stepsize of 0.01.
In Figure 1, we show the solution of the uncontrolled
equation (1), i.e. u =0.

Fig. 1. Test 1: Solution of equation (1) with e = 0.1,¢ =
l,bu=0

The approximation of the optimal control problem (3)
follows Algorithm 2. The snapshots are computed by a
MPC Algorithm (see Algorithm 1) where, in order to

avoid expensive offline computations we consider a short
prediction horizon N = 3.

We, then, compute the POD basis functions and switch to
the HJB-approach. The computation of the value function
allows to have a complete overview of the problem and,
with the help of the MPC algorithm, we are able to
improve our approximation.

In Figure 2 we present the approximation of the optimal
solution following Algorithm 2.

Fig. 2. Test 1: Solution of problem (3) with ¢ = 0.1,c¢ =1
with Algorithm 2

We make a comparison between MPC solution, Algorithm
2, and the scheme proposed by Kunisch et al. (2004),
referred to as KVX in the sequel, which consists in taking
snapshots from the uncontrolled equation. For this purpose
we evaluate the cost functional for the obtained optimal
solutions. First of all we consider the advection term
¢ = 04 and € € [0.1,0.01]. As we can see in Figure 3
the best result is obtained with Algorithm 2; it turns out
the value of the cost functional in Algorithm 2 is always
below that obtained by the other schemes. The black line
represents the approach of KVX, and as we can see, as soon
as the diffusion term is decreasing the related cost function
becomes larger than that of the MPC algorithm due to the
fact that we should enlarge the number of basis functions
or enrich the snapshot set to avoid this behavior. Then, it is
interesting to study the case with the advection dominated
term ¢ = 1. As soon as we increase the advection term our
problem is close to hyperbolic settings where the decay
of the eigenvalue is not really fast. As we can see in
Figure 4, Algorithm 2 not always produces smaller cost
function values then the MPC algorithm. This is due to
the curse of dimensionality. We would need to increase the
number of basis functions for the HJB approach. But this
is not feasible at the moment. In any case we improved the
solution with our scheme obtaining smaller cost function
values than KVX in the presented examples.

Finally we present the solution of the optimal control
problem with a perturbation of the state in Figure 5.
This is important in practice since, in general, the state
is only known up to a perturbation. We note that the
perturbation is a random time-dependent function and
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Fig. 3. Test 1: Evaluation of the Cost Functional for
Algorithm 1 (red), Algorithm 2 (blue), and Algorithm
KVX (black) for ¢ = 0.4.
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Fig. 4. Test 1: Evaluation of the Cost Functional for
Algorithm 1 (red), Algorithm 2 (blue), and Algorithm
KVX (black) for ¢ = 0.1.

that the optimal trajectory is built upon the value function
already computed without noise.

5.2 Test 2: Non-smooth initial condition

In equation (3) we set: @ = (0,2),y0 = sgn(l —z),\ =
1,U = {-3,0,3},b1(z) = yo(z). The desired configuration
is given by § = 0. In equation (6) we take k = 0.1, h = 0.01
whereas the optimal trajectory is obtained with a time
stepsize of 0.01.

In Figure 6 we show the solution of the uncontrolled
equation (1).

The snapshots, shown in Figure 7, are computed by a MPC
Algorithm (see Algorithm 1) with N = 5.

In Figure 8 we present the approximation of the optimal
solution following Algorithm 2.

Finally, we present the evaluation of the cost functional
in Figure 9. As exepcted, the behaviour is not so exiciting
as in the previous tests. The non-smooth initial condition
would need a greater number of POD basis functions to

Fig. 5. Test 1: Solution of problem (3) withe = 0.1,¢ = 0.4
and perturbation on the intial condition following
Algorithm 2

Fig. 6. Test 2: Solution of equation (1) with e = 0.01,¢ =

1LLu=0

Fig. 7. Test 2: Solution of problem (3) with e =0.1,c =1

with Algorithm 1



Fig. 8. Test 2: Solution of problem (3) withe = 0.1,¢ = 0.4
with Algorithm 2
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Fig. 9. Test 2: Evaluation of the Cost Functional for
Algorithm 1 (red), Algorithm 2 (blue), and Algorithm
KVX (black) for ¢ = 0.4

describe the systems better. Nevertheless, if the diffusion
term is less than % our approximation, in this example,
delivers a lower value than the MPC solver, and, also as,
the algorithm provided by Kunisch et al. (2004).

6. CONCLUSION

We present an algorithm for the solution of the optimal
control problem (3) by means of feedback control. To deal
with HJB equation we need to work with low dimensional
model and the POD method helps us in the reduction. We
observe that the POD works better with good information
about the system and for this purpose we run a MPC
solver to compute the snapshots. In this way, for the ex-
amples considered, we provide an improvement of the low-
dimensional approximation of the HJB equation compared
to the approach proposed in Kunisch et al. (2004).
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