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A Condensed Form for Nonlinear
Differential-Algebraic Equations
in Circuit Theory

Timo Reis and Tatjana Stykel

Abstract We consider nonlinear differential-algebraic equatiorisireg in model-
ling of electrical circuits using modified nodal analysiglanodified loop analysis.
A condensed form for such equations under the action of aaonislock diagonal
transformation will be derived. This form gives rise to artragtion of over- and
underdetermined parts and an index analysis by means oirtheét tcopology. Fur-
thermore, for linear circuits, we construct index-redugextiels which preserve the
structure of the circuit equations.

1 Introduction

One of the most important structural quantities in the theddifferential-algebraic
equations (DAESs) is thindex Roughly speaking, the index measures the order of
derivatives of the inhomogeneity entering to the solut®imce (numerical) diffe-
rentiation is an ill-posed problem, the index can - intea albe regarded as a quan-
tity that expresses the difficulty in numerical solution oAEs. In the last three
decades various index concepts have been developed intordbaracterize dif-
ferent properties of DAES. These are thifferentiation index{7], the geometric in-
dex[26], theperturbation indeX13], thestrangeness indg®2], and theractability
index[24], to mention only a few. We refer to [25] for a recent syrem all these
index concepts and their role in the analysis and numerieatrnent of DAEs.

In this paper, we present a structure-preserving condeiasadfor DAES mo-
delling electrical circuits with possibly nonlinear conmgmts. This form is inspired
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by the canonical forms for linear DAEs developed byNMKEL and MEHRMANN
[17,22]. The latter forms give rise to the so-called strarggs index concept which
has been successfully applied to the analysis and simnlafictructural DAEs
from different application areas, see the doctoral the3gs, L4, 27, 31-33, 36, 38]
supervised by WLKER MEHRMANN. The great advantage of the strangeness index
is that it can be defined for over- and underdetermined DAEsf@us is on circuit
DAEs arising frommodified nodal analysif9, 15, 35] andmodified loop analysis
[9,29]. We show that such DAEs have a very special structumeltwis preserved

in the developed condensed form. In the linear case, we gethefmore, construct
index-reduced models which also preserve the speciatstriof circuit equations.

Nomenclature

Throughout this paper, the identity matrix of siz& n is denoted by, or simply

by I if it is clear from context. We writéM > N (M > N) if the square real matrix
M — N is symmetric and positive (semi-)definite. The symbgjl stands for the
Euclidean norm ofk € R". For a subspac® c R", V* denotes the orthogonal
complement of) with respect to the Euclidean inner product. The image aad th
kernel of a matrixA are denoted by irA and ke, respectively, and rank stands
for the rank ofA.

2 Differential-Algebraic Equations

Consider a nonlinear DAE in general form
F(x(t),x(t),t) =0, 1

where F : Dy x Dy x I — R¥ is a continuous functionPy, Dy C R" are open,
I =[to,tf] C R, x: I — Dy is a continuously differentiable unknown function, and
denotes the derivative afwith respect td.

Definition 2.1. A function x: T — Dy is said to be asolutionof the DAE(1) if it
is continuously differentiable for all¢ T and (1) is fulfilled pointwise for all te I.
This function is called aolution of the initial value problem (Bnd xtp) = %o with
Xo € Dy if X is the solution of(1) and satisfies additionally(3y) = Xo. An initial
value x € Dy is calledconsistentif the initial value problen{1) and Xtg) = xo has
a solution.

If the function F has the formF(x,x,t) = x— f(x,t) with f : Dy xI — R",
then (1) is an ordinary differential equation (ODE). In thase, the assumption of
continuity of f gives rise to the consistency of any initial value. If, moeo f is
locally Lipschitz continuous with respect xdthen any initial condition determines
the local solution uniquely [1, Section 7.3].

Let F(X,X,f) = 0 for some(X, X,f) € Dy x Dy x I If F is partially differentiable
with respect tox and the derivative%(]-'(x %,f) is an invertible matrix, then by the
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implicit function theorem [34, Section 17.8] equation (Anhdocally be solved for
x resulting in an ODE(t) = f(x(t),t). For general DAEs, however, the solvability
theory is much more complex and still not as well understafba ODEs.

A powerful framework for analysis of DAEs is provided by thergative array
approach introduced in [8]. For the DAE (1) with a sufficigremooth function?,
the derivative array of order k Ny is defined by stacking equation (1) and all its
formal derivatives up to ordér that is,

FIV ), xXDt),... x(t),x(t),t) = : =0. )

Loosely speaking, the DAE (1) is said to have thferentiation indexuy € Ny if

| = g is the smallest number of differentiations required to detee X from (2)
as a function ok andt. If the differentiation index is well-defined, one can extra
from the derivative array (2) a so-calledderlying ODEX(t) = @(x(t),t) with the
property that every solution of the DAE (1) also solves thdartying ODE.

Another index concept, calledfrangeness indewas first introduced by KNKEL
and MEHRMANN for linear DAEs [17, 19, 23] and then extended to the nonlinea
case [20, 22]. The strangeness index is closely relatedetdifferentiation index
and, unlike the latter, can also be defined for over- and wedermined DAEs [21].
For our later proposes, we restrict ourselves to a lineag-trarying DAE

EOX() = ALX®) + F(b), 3)

where€, A: 1 — RKM andf : I — RX are sufficiently smooth functions. Such a sys-
tem can be viewed as a linearization of the nonlinear DAEI@)ga trajectory. Two
pairs(&1(t), A1(t)) and(&2(t),.Az(t)) of matrix-valued functions are callggdobally
equivalentf there exist a pointwise nonsingular continuous matwed function

U : T — R*k and a pointwise nonsingular continuously differentiabktnin-valued
functionV : T — R™" such that

£2() =UMEMVEH),  Aplt) = U0 AV () —UDEONV (D).

For (£(t),.A(t)) at a fixed point € I, the local characteristic valuesa ands are
defined as

r=rank€), a=rankKZ'AT), s=rankS'Z'AT),

where the columns oZ, T, T/, andSspan ke€ ", ker, im& ", and kel TA'Z,
respectively. Considering these values pointwise, weilnbiactionsr,a,s: T — Np.
It was shown in [17] that under the constant rank conditigbs=r, a(t) = aand
s(t) = s, the DAE (3) can be transformed to the globally equivalestey
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Is0 000 [xi(t) 0 Ag(t) O A14(t) Ags(t) | | xa(t) f1(t)
014000| |x(t) 0 0 0Ax(t) Ass(t)| [xf(t) fa(t)
00000 [x3(t)[=]|0 O 15 O 0 x3t)| + | fa3(t)|. (4)
00000 |xaft) s 0 0 O 0 X4(t) fa(t)
00000 |xs(t) 0O 0 0 O 0 xs(t) f5(t)

Note that the componemnyg satisfies the pure algebraic equation (the fourth equa-
tion in (4)) and its derivative is also involved in (4). Addithe differentiated fourth
equation to the first one, we eliminate the derivatiyérom the first equation. The
resulting system can again be transformed into the form {) mew global charac-
teristic values, a ands. This procedure is repeated urgtbecomes zero. The mini-
mal numbelus of steps required to extract a DAE wih= 0 is called thestrangeness
indexof the DAE (3). By construction, the strangeness index rediny one for each
elimination step described above. A DAE with vanishingrsgeness index is called
strangeness-freesSince the characteristic values are invariant under ¢letpaiva-
lence transformationgis is also invariant under global equivalence transformation
One can also show that the strangeness indéx one below the differentiation in-
dexuy provided that both indices exist (except for the case, wterdifferentiation
index is zero, then the strangeness index vanishes as sedl] 17, 22].

This index reduction procedure has a rather theoreticabcker since the global
equivalence transformations are difficult to determine emoally. It was shown
in [19] that the solvability properties of the DAE (3) canalse established from
the associated derivative array given by

M)z (t) =M t)zt)+a(t),

where
[M|]i (;) (J_:_1>A(I j_l)a ivj:Ow“aIa
AD fori=0,...,1, j=0
[M]i] { IAS) )
0 else
(2], = X, | =10, i=0,..1,
with the convention tha ; =0 for i < j. If the strangeness indeys is well-

defined, then the DAE (3) satisfies the following hypothesis.

Hypothesis 2.2. There exist integergl, a, d and w such that the paitM,, NVy,)
associated with{€,.4) has the following properties:

1. For all t € I, we haverankM (t) = (4 + 1)k—a—w. This implies the exis-
tence of a smooth full rank matrix-valued function Z of gige+ 1)k, a+ w)
satisfying Z M, = 0.

2. Forallt € I, we haverank(Z(t) "V (t) [In O ... O]T) = a and without loss of
generality Z can be partitioned d%, Z3| with Z, of size((u + 1)k, a) and Z

of size((1 + 1)k, w) such thatd, = ZJ N, [1n O ... O]T has full row rank and
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ZINy[In0...0]" = 0. Furthermore, there exists a smooth full rank matrix-
valued function 7 of size(n,n— a) satisfyingA,T, = 0.
3. Forallt € I, we haveank(&(t)T(t)) = d, where d=k—a—wj, and
Wy = k—rank[My Ny] +rank[My_1 N1
with the convention thatank[M_; N_1] = 0. This implies the existence of

a smooth full rank matrix functions2of size(k,d) such that; = ZlTS has full
row rank.

The smallest possiblg in Hypothesis 2.2 is the strangeness index of the DAE
(3) andu = n—d — a defines the number of undertermined components. Introdu-
cing A = Z] A, f1(t) = Z] (1), fa(t) = Z] gu(t) and f3(t) = ZJ gy (t), we obtain
a strangeness-free DAE system

&u(t) Ai(t) fi(t)
0 | X(t)= [A2(t)| x(t)+ | f2(t) (5)
0 0 fa(t)

which has the same solutions as (3). The DAE (3) is solvabfg(if)y = 0 in (5).
Moreover, an initial conditiorx(tp) = Xo is consistent ifdx(to)xo + f2(to) = 0. The
initial value problem with consistent initial condition$a unique solution ifi = 0.

3 Modified Nodal and Modified Loop Analysis

In this section, we consider the modelling of electricataits by DAEs based on the
Kirchhoff laws and the constitutive relations for the eft&al components. Deriva-
tions of these relations from Maxwell’s equations can bentbin [28].

A general electrical circuit with voltage and current s@g,aesistors, capacitors
and inductors can be modelled as a directed graph whose nodespond to the
nodes of the circuit and whose branches correspond to tbeaitcdlements [9-11,
28]. We refer to the aforementioned works for the graph théompreliminaries
related to circuit theory. Le,, ny andn; be, respectively, the number of nodes,
branches and loops in this graph. Moreoverj(gte R™ be the vector of currents
and letv(t) € R™ be the vector of corresponding voltages. Then Kirchhoffilsent
law [11, 28] states that at any node, the sum of flowing-inents is equal to the
sum of flowing-out currents, see Fig. 1. Equivalently, tlas/ Ican be written as
Agi(t) = 0, whereAg = [a] € R™*™ js anall-node incidence matriwith

1, if branchl leaves nodg,
ag =< —1, if branchl enters nodé,
0, otherwise.

)

Furthermore, Kirchhoff's voltage law [11, 28] states tHa sum of voltages along
the branches of any loop vanishes, see Fig. 2. This law camadeutly be written
asBov(t) = 0, whereBg = [by] € R"*™ is anall-loop matrixwith
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Fig. 1: Kirchhoff’s current law

N (y

/Vs(:t)
t)+...+W(t) =0
vlm\\ — = vi(t) N (t)

Vo(t)

Fig. 2: Kirchhoff’s voltage law

1, if branchl belongs to loofk and has the same orientation,
by =< —1, if branchl belongs to loogk and has the contrary orientation,
0, otherwise.

The following proposition establishes a relation betwéenihcidence and loop
matricesAg andBy.

Proposition 3.1. [10, p. 213]Let Ay € R™*™ be an all-node incidence matrix and
let By € R"*™ be an all-loop matrix of a connected graph. Then

kerBo = imA], rankAg = n, — 1, rankBg = np — np + 1.

We now consider the full rank matricésc R™~1%" andB € R™"+1x gp-
tained fromAg and By, respectively, by removing linear dependent rows. The ma-
tricesA andB are called theeduced incidencandreduced loop matricegsespec-
tively. Then the Kirchhoff laws are equivalent to

Ai(t) =0, Bv(t) = 0. (6)

Due to the relation keB = imAT, we can reformulate Kirchhoff’s laws as follows:
there exist vectorg (t) € R™~! andi(t) € R~ ™+ such that

it)=B"1(t), v(t)=ATn(t). (7)

The vectorsg) (t) andi (t) are called the vectors abde potentialsindloop currents
respectively. We patrtition the voltage and current vectors
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T
v(t) = [V () VL) R (©) v, Vi)
. . . . . T
i(t) =160 L0 RO 150 0]
into voltage and current vectors of capacitors, induct@sistors, voltage and cur-
rent sources of dimensiomg, n., ng, Ny andng, respectively. Furthermore, parti-
tioning the incidence and loop matrices
A=[Ac AL Ag Ay Ar], B=[Bc B, Bg By Bg], (8)

the Kirchhoff laws (6) and (7) can now be represented in twerahtive ways,
namely, in the incidence-based formulation

Acic(t) +ALic(t) +Agig () +Ayig(t) +Agiz(t) =0, 9)
vet) =AM, ve®) =Arn(t), vg(t)=Azn(t),  (10)
V‘V(t) = ALI’](I), VZ(t) = A;"I (t)’ (11)

or in the loop-based formulation

Bg Vg (1) +Beve(t) +Bove(t) +Byvy(t) + Brvz(t) =0, 12)
ict)=BHI(t), i (t)=BLi(t), ig(t)=Bgi(t), (13)
iy () =BLI(t),  iz(t)=BlI(t). (14)

The dynamics of electrical circuits are not only relying de Kirchhoff laws, but
their behaviour is also determined by the components beragéd at the branches.
The branch constitutive relations for capacitors, inducend resistors are given by

o) = Save(), (15)
VL) = Sl (), (16)
(1) =g (1), a7)

respectively, wherg : R"c — R"¢ is the charge functiony : R"2 — R"z is the

flux function andg : R"®* — R"& is the conductance functioriWe now give our
general assumptions on the considered circuit elementsarfranterpretation of
these assumptions in terms of total energy of the circuitrefer to [28].

(A1) The charge, flux and conductance functions are continudifgrentiable.
(A2) The Jacobian of the charge function

Cve) = ddVquc)

is symmetric and pointwise positive definite.
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(A3) The Jacobian of the flux function
. d
Lig) = ais Wlic)
Ic

is symmetric and pointwise positive definite.
(A4) The conductance function satisfigf) = 0 and there exists a constant 0
such that

(Vg,1—Vg2) (§(Vg,1) —g(Vg 2) > Cllvg 1 — Vg 2ll® (18)
forall vg 1,vg 2 € R"%.

Using the chain rule, the relations (15) and (16) can egentd} be written as

o) = Cve(t) e ) (19)
VL) = Ll (0) T (1) (20)

Furthermore, the property (18) implies that the Jacobigh@tonductance function

d
Gvg) = @ﬂ(Vﬂ{)
fulfils
Gvg)+G (vg)>2cl >0  forall vg € R"%. (21)
Thus, the matrixG(vg) is invertible for allvg € R™. Applying the Cauchy-
Schwarz inequality to (18) and taking into account @) = 0, we have

2
lg(va)llliva |l = vg g(vg) = cllvg [[* forall vg € R™

and, hencel|g(vg)|| > cr||vg ||. Then it follows from [37, Corollary, p. 201] that
has a global inverse function. This inverse is denoted byg ! and referred to as
theresistance functionConsequently, the relation (17) is equivalent to

Vg (1) = 7(ig (t))- (22)

Moreover, we obtain from (18) that

(ig1— ix,z)T(f(iR,l) —r(ig2) = (g(r(ig1)) *ﬂ(f(iﬂ,z)))T(r(iﬂ(,l) —1(ig2))
= (rlig.1) —r(ig2)  (g(r(ig1) —g(r(ig 2)) = c|r(ig 1) — iz 2)|I?

holds for allig 1,i¢ 2 € R"&. Then the inverse function theorem implies that the
Jacobian

Rlig) = didKT(ix)
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fulfils R (ix) = (G(r(ig))) "L In particular,® (ig ) is invertible for alliz € R"%,
and the relation (21) yields

R(ig)+R (ig) >0  forall ig € R"%.

Having collected all physical laws for an electrical citgcwie are now able to
set up a circuit model. This can be done in two different wayee first approach
is based on the formulation of Kirchhoff’s laws via the ineitte matrices given
in (9)-(11), whereas the second approach relies on the @euivrepresentation of
Kirchhoff’s laws with the loop matrices given in (12)-(14).

a) Modified nodal analysis (MNA)
Starting with Kirchhoff’s current law (9), we eliminate thesistive and capaci-
tive currents and voltages by using (17) and (19) as well ashkbff’s voltage
law in (10) for resistors and capacitors. This results in

AcCAEN (0)AC G (1) +Ag g (Ag (1) +Aci£ () +Agiyp(t) +Ariz(t) = 0.

Kirchhoff’'s voltage law in (10) for the inductive voltagesdthe component
relation (20) for the inductors give

—ALN()+ L{(t)§ict) =0.

Using Kirchhoff’s voltage law in (11) for voltage sourcese wbtain finally the
MNA system

AcCACN(E)AC G (1) +Ag g (Ag N (1) +ALi L (t) +Apig(t) +Ariz(t) =0,
~ALn(t )JrL(IL(t))dg (t)— :

(1) +Va(t) =
(23)

In this formulation, voltages of voltage sourceg and currents of current
sourcesz are assumed to be given, whereas node potentiaisductive cur-
rentsi . and currents of voltage sourdgsare unknown. The remaining physical
variables such as voltages of the resistive, capacitivaraduttive elements as
well as resistive and capacitive currents can be algebaiezonstructed from
the solution of system (23).

b) Modified loop analysis (MLA)
Using the loop matrix based formulation of Kirchhoff's \adfe law (12), the
constitutive relations (20) and (22) for inductors ands&ss, and the loop ma-
trix based formulation of Kirchhoff’s current law in (13)rféhe inductive and
resistive currents, we obtain

BLL(BLI(t)B] ! (t)+Bgr(Bg (1)) +Bove(t) + Brvzr(t) + Byvy(t) =0.

Moreover, Kirchhoff’s voltage law in (13) for capacitorggther with the com-
ponent relation (19) for capacitors gives
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—BLI(t) + C(ve(t)) §ive(t) = 0.

Combining these two relations together with Kirchhoff'dtage law in (14) for
voltage sources, we obtain the MLA system

BLL(BLI(1)BL ! (t) +Bg r(Bgi(t)) +Beve(t) +Brvz(t) + Byvy(t) =0,

—BLI(t) + C(ve (1) §ve(t) =0,

~BJ1(t) +iz(t) =0

Here, the unknown variables are loop currantsapacitive voltageg, and vol-
tages of current sources, and, as beforey,, andi; are assumed to be known.

Thus, the overall circuit is described by the resistance ilg(t) = g(vg (t)) or
vg (t) = 7(ig (1)), the differential equations (19) and (20) for capacitord inluc-
tors, and the Kirchhoff laws either in the form (9)-(11) o2}4(14). By setting

I )
X(t) = |i.(t) resp. x(t) = [ve(t)
ig(t) vz(t)

in the MNA (resp. MLA) case, we obtain a nonlinear DAE of thenfio(1).
In the linear case, the capacitance matfi¥(t)) = C and the inductance ma-

trix L(i,(t)) = L are both constant, and the component relations (17) and¢R2)
resistors read

ig(t) = Gvg (),  vg(t)=Rig(t),

respectively, withR = G 1 € R"**"%, G+ G > 0and® + R > 0. Then the
circuit equations can be written as a linear DAE system

EX(t) = AX(t) + Bu(t), (24)

whereu(t) = [iz(t), v;(t)]T, and the system matrices have the form

A-CA- 00 —Ag GAx —AL —Ay ~A; 0
E=| 0 LO|, A=| A} 0 0|, B=|0 O (25)
T —
0 00 A, 0 0 0 —In,

in the MNA case and

B,LB] 00 Bz ®B; —B¢ —Bz 0 -By
E=| 0 (CO|, A=| B/ 0 0|, B=[0 O (26)
0 00 BS 0 © —In; 0O

in the MLA case.
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4 Differential-Algebraic Equations of Circuit Type

In this section, we study a special class of DAEs. First ofiatk that both the MNA

and MLA systems can be written in a general form as
0=E®E™XW)E () + Fp(Fxa(t)) + Gaxa(t) + Gaxa(t) + fa(t),
0= P (xa(t)) Xo(t) — G xa(t) + fot), (27)
0= — G3x(t) + fa(t),

with the matricesE ¢ R"m*M F ¢ RM*M G, ¢ RM*N2 Gz ¢ RM*™ and the

continuously differentiable function® : R™ — R™*M™ @ : R — R™*"%2 and
p :R™ — R™ satisfying

®(z1) >0 forallz; € R™, (28)
Y(z) >0 forallz, € R™, (29)
d d ! m
d—zp(z)+ <dzp(z)) >0 forallze R™. (30)

We now investigate the differentiation index of the DAE (2Vihe following result
has been proven in [28] with the additional assumptfeft) = 0. However, this
assumption has not been required in the proof.

Theorem 4.1. [28, Theorem 6.6] Let a DAKE27) be given and assume that the
functions® : R™ — RM>*M™ W :RM™ — R%*M2 gnd p : R™ — RM™*M satisfy
(28)30). Further, assume that the matricesER™*™ F € RM*M G, € RM*M
and G € R"*"s fylfil

rank[E F G, Ga] = nq, rankGs = ns. (31)

Then the differentiation indepy of (27)is well-defined and it holds

a) Ug =0, if and only if 3 = 0 andrankE = n;.
b) ug =1, if and only if it is not zero and

rank[E F Gg] =, ker[E Gs] = kerE x {0}. (32)

c) Mg =2, ifand only ifuy ¢ {0,1}.

The additional assumptions (31) ensure that the DAE (27¢ither over- nor
underdetermined, i.e, a solution of (27) exists for suffiliesmoothfy, f, and f3,
and it is unique for any consistent initial value. Note the assumptions (31) will
not be made in the following. We will show that from any DAE bétform (27) one
can extract a DAE of differentiation index one which has thms structure as (27).
This extraction will be done by a special linear coordinaams$formation.

To this end, we first introduce the matric@g, W,, W;,, W,;, W5, W[5, W,
W, Wy, Wi, Wy, W, W, andWj, which have full column rank and satisfy the
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following conditions:

(C1) imW, = kerE ", imW, =imE,

(C2) imWay = ker[F Gs] " W, imW,, = imW," [F Gg],
(C3) imWi, = kerG, WiWi g, imW,, =imW,[W,' Gy,
(C4 imW, = kerW, [\ W' G, imWj =imG, WiWi 1,
(C5) imWs = kerW,' Gs, imWj = imG3 W,

(C6) imWs; = kerGs\Wa, imW; =imW,' G3,
(C7) imWsy = kerWs' Gg W, imWg, = imW, " GaWs.

The following lemma provides some useful properties foséhmatrices.

Lemma4.2. LetEc R"*™M F e RM*M G, € RM*™ and G € R™*™ be given,
and let W and V\{ for j € 3:={1,11,12 2,331, 32} be matrices of full column
rank satisfying the condition€1)}(C7). Then the following holds true:

a) The relationgimW,)+ = imWj are fulfilled for je J.
b) The matrix WWi; has full column rank with

imWiWa; — ker[E F Gg] . (33)

¢) The matrix WW;1Wi 2 has full column rank with

imW1W11W12 = ker [E F G Gg] T (34)
d) The matrix W41 has full column rank with
imWs\Wa1 = kerGs. (35)

e) The matrix §§ W' GJ W)W, is square and invertible.
f) The matrix W, W,;W," GoWj is square and invertible.

Proof. The proof mainly relies on the simple fact that k&f = (imM)~+ holds for
any matrixM € R™",

a) The casg = 1 simply follows from
(imWy)t = (kerET)t =imE = imW,.

The remaining relations can be proved analogously.
b) The matrixWjWi1 has full column rank as a product of matrices with full co-
lumn rank. Furthermore, the subset relatigh”“in (33) is a consequence of

[EF Gg]Twlwll = 0 which follows from (C1) and (C2). To prove the reverse
inclusion, assume thate ker[E F Gg]T. Then

xekerE' =imWy  and  xeker[F G3]T‘
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Hence, there exists a vectpsuch tha =Wyy. We have
[F Gs] "Way = [F G3] 'x=0.

The definition ol 1 gives rise to the existence of a vectwatisfyingy =W 1z
Thus,x = Wiy =WiWy1z € imWi W 1.

c) The matrixXWyWi1Wi 2 has full column rank as a product of matrices with full
column rank. The inclusionC” in (34) follows from

[E F Gy G3] ' WiW4Wh2 = O

which can be proved using (C1)—(C3). For the proof of the nrevénclusion,
assume thatc ker[E F G, Ggf. Thenx e ker[E F G3]T. Hence, due b) there
exists a vectoy such thatx = WiWa1y. Consequentlys) WiWapy = GJ x = 0.
The definition oW » gives rise to the existence of a vecsuch haty = W,z
and, thusx = W1W11y =WiWp1Wyoz € imWi Wy W o,

d) The matriX\s\Ws; has full column rank as a product of matrices with full column
rank. The inclusion €” in (35) follows from GsWsW;51 = 0. For the proof of
the reverse inclusion, assume that kerGs. Thenx € ker\NlTGg, whence, by
definition of W5, there exists a vector with x = Wsy. Then 0= Gzx = G3\Way
and, by definition of\s;, there exists a vectarsuch thaty = Ws1z. This gives

X =Way =W5W51Z € iImWaWa;.
e) First, we show that
kerWs1 W5 G4 W)W, = {0}. (36)
Assume thak € kerW,; W5 GJ W)Wj,. Then
W' G3 WiWE,x € kerWs] = (imWj,) L = (imW5' G3 ),
and, henceW' G W)Wj,x € imWy GJ N (imWy' G )+ = {0}. Thus, we have
WX € ketWs GJW, = (imW, " GaWs)t = (imW4,) -,

and, thereforéV;,x = 0. SinceW;, has full column rank, we obtain that= 0.
Next, we show that
kerWa; W, GsWaWg,; = {0}. (37)

Assume thak € kerW,] W, " GWsWj,. Then
W, " GaWeW x € ketWss = (imWj,) L = (imW, ' GaWs)*
and, therefore\V] " GaWsWj,x = 0. This gives
GaWaW4, x € ket " = (imW))* = imW, = kerWs' GJ = (im Gs\Ws)*,

whenceGsWsW;,x = 0. From this we obtain

WX € kerGaWa = (imWs' G )+ = (imW§,)*.
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Thus,Wj;x = 0. The property thatVy; has full column rank leads t® = 0.
Finally, (36) and (37) together imply the;| W," G] W,Wj, is nonsingular.
f) First, we show that
kerW, S Wi W, GoWs = {0}. (38)

Assuming thak € kerW; ] W, W," GWj, we have
W W, GoWgx € kerW, ) = (imW,) - = (imW W, Go)
whenceW,;W," GoWjx = 0. This gives rise to
Wox € kerW i W' Gy = (im G WiWq 1)t = (imWg)*,

and, therefora\)x = 0. The fact thatVj has full column rank leads to= 0.
We now show that
ke, " G WiW4 W, = {0} (39)

Letx € ke'Wj" GJ WoWy W, ,. Then
Gy WiWi W € kerWs T = (imWj)* = (imGJWaWyp)*,
and, thusG) WiW4 W, ,x = 0. Then we have
W% € kerGy WiWyg = (imW W' Go)t = (imW,)+,

whenceV,,x = 0. SincéW, has full column rank, we obtain that= 0. Finally,
it follows from (38) and (39) thatV;} W,}W," G,W; is nonsingular.
O

We use the previously introduced matrices and their pragsetd decompose the
vectorsxy (1), xz(t) andxs(t) in the DAE (27) as

xa(t) = WiWaoxa1(t) +WiWapxaa (t) +WAW, 1 xaa(t)
+WAWA W (WS T G WAWA WK ) ~ X () + WAWG 1 W oxs1 (t),

(40)
X2(t) = Woxao(t) +Wexaa(t),
Xa(t) = Waxaa(t) -+ WaWay (W3 W, T GaWaW1) ~xaa(t) + WaWaixas(t).
Introducing the vector-valued functions and matrices
xa1(t) Wi Wi
X21(t) W:;:;W]{T
Xl(t) - X31(t) ) Tl = W]/_IW]_T ) (41)
Xa1(t) (Wi WA W GaWg) Wi Wiy Wy
X1(t) W LW, W
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a
-] el
x13(t) W3’T (42)
X3(t) = [m(t)] o Ta= | (We Ve GIWiWG,) W Wy |
xaalt) W
equations (40) can be written as
M) =T'xal), et =T'%1), xt)=Ts%d). (43)

Note that, by construction of the matricég andW/, j € J, the matricesTy, T,
andTs are nonsingular, and, hence, the vectard), X»(t) andXz(t) are uniquely
determined by (t), x2(t) andxs(t), respectively. Further, we define

i "

21(t 3(t

0= | fal) | ~Tua(0), E(t)ﬂiﬁﬂbfz(t% %(t)[f;m]m(t»
f41§t§ faa(t)
f51t

Multiplying the DAE (27) from the left by diag, T, Ts) and substituting the vec-
torsxy (1), xz(t) andxs(t) as in (43), we obtain an equivalent DAE

0= E®(E'x(t)E () + Fp(FTR(t)) +GoXa(t) + GaXa(t) + fa(t),
0= Y(%(t)%(t) — Gix(t) + fa(t), (44)
0= — G3%a(t) + fa(t),
with the matrices
E; Fy G211 Go 12 G3z1110
B2 R B G221 G222 _ G32100
E=|0|, F=|R|, Gz=|G231Gz32|, Gz=|G3300|, (45)
0 0 | 0 0 0O
0 0 0 0 0 00

which are partitioned according to the partitiorxgt) in (41) and (42). The matrix
blocks in (45) have the form
E1 =W W, E, E» =WeoW, 'E,
FL=WsW'F, F2=W5W, 'F, Fs=WiW'F,
G211 =W5 Wi 'GW5,  Go21 =WeoW ' GoWs,  Gza1 =W, Wy GWg,  (46)
Go12=W5o Wi GoWb, G20 =W5oW; GoWa, Gz 3= Wi Wy GoWs,
Ga11=WW GaWE, Gao1 =WeoW, ' GaW4,  Gzag = Wi W, GaW.

This leads to the following condensed form of the DAE (27):



o

O O O O O o o o o

[Ex®(E; x11(t) + E; Xo1(t)) Ef Xa1(t) + E1 @ (E{ xqa(t) + Ej X1(t)) E Xoa(t) ]
Ex@(E{ xa1(t) + Ej Xo1(t) ) Ef Xaa(t) + E2 @ (E{ xa1(t) + B Xo1(t) ) E] Xa(t)
0
0
0
WS T W (WhXgo(t) +Waxao(t) ) Wokao(t) W5 T W (WhKao(t) +WaXao(t) )MbXoa(t)
W, W (Woxaa(t) +Woxaa(t) Wakaa(t) +Wo' W (Woxaa(t) +Waxaa(t) ) Waxea(t)

0
0
L 0 |
(47)
_FlP(Ff—Xll(t) + FZTX21(t) + F3T)Q31(t))_ 0 0 0 0 0Gy11 G212 G311 | O] _Xll(t)_ _fll(t)_
FZ,D(FlTxll(t) + FZTXZ;L('[) + F3TX31(t)) 0 0 0 0 0G221 G222 63721 00 X21(t) f21(t)
ng(FlTX]_l(t) + FZTXZJ_('[) + F3TX31(t)) 0 0 0 0 0Gy31 Gp32 G331 0 0] | x31(t) faa(t)
0 0 0 0 00 I 0 0 00 |x41(t) fa1(t)
0 0 0 0 00 O 0 0 00 (|xs1(t) f51(t)
+ T T T +
0 —G2711 —62’21 —Gy3,-10 O 0 0 00 [xi2(t) f1o(t)
0 —G;lz _G2T,22 _G£32 00 O 0 0 0d [xft) foo(t)
0 —G;ll _G:;T,21 —G;;ﬂ 00 O 0 0 04 |xs(t) f13(t)
0 1 0 0 000 0 0 00xst)]| |fa®)
L 0 ] 0 0 0 00 O 0 0 00Q|xs3(t)] [faa(t)]

9T

19%A1S euehe] pue siay owl]
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The following facts can be seen from this structure:

a) The componentss;(t) andxss(t) are actually not involved. As a consequence,

they can be chosen freely. It follows from (40) and Lemma 4.that the vec-
tor xs41(t) is trivial, i.e., it evolves in the zero-dimensional spai€end only if
ker[E F G Gg]T = {0}. Furthermore, by Lemma 4.2 d) the vectag(t) is
trivial if and only if kerGz = {0}.
b) The components$s;(t) and fa3(t) have to vanish in order to guarantee solvabi-
lity. Due to Lemma 4.2 c), the equatidig;(t) = 0 does not appear if and only

if ker [E F Gp G|

= {0}. Moreover, Lemma 4.2 d) implies that the equation

fa3(t) = 0 does not appear if and only if kég = {0}.

c) We see from a) and b) that over- and underdetermined peats o pairs. This
is a consequence of the symmetric structure of the DAE (27).

d) The remaining components fulfil the reduced DAE

0= Ercb(ﬁfilr (t))ErTflr t) + ﬁp(ﬁjilr (t))-i-éZrin (1) +63ri3r )+ ELr (1),

0= W (%ar (1)) %Xer (t) — G ar (1) + far (1),
O: — G:;rrilr(t) + f3r(t)7
(48)
with the matrices, functions and vectors
=] Fi G211 Go12 Gz |
= E> = F = G221 Go 22 = G321 0
T O ) r F3 ) 2r GZ,3l G2$32 3r G3,3l O ) ( )
0 0| | 0 0 0
[Xq1(t)] f1a(t)
Xo1(t) £ f21(t)
t) = fi (t) =
Xlr( ) )@l(t) 5 1r( ) f3l(t) )
Xa1(t) | | fa(t) (50)
- . —Xlz(t) e ~ . flz(t) oz
XZT(t) - _X22(t):| - XZ(t)a f2l’(t) - _f22(t) = fZ(t)a
. x13(t) = [f13(t)
t)= far(t) = .
X3|'( ) _X23(t):| ) 3I’< ) _f23(t)

Note that this DAE has the same structure as (27) and (44 dlbtained from
(44) by cancelling the componends; (t) andxss(t) and the equationf; (t) =0

andfa3(t) = 0.

We now analyze the reduced DAE (48). In particular, we shatittsatisfies the
preliminaries of Theorem 4.1. For this purpose, we proveftiiewing auxiliary

result.

Lemma4.3. Let Ec R"*™ F ¢ RM*M™ G, € R™M*™ and G € R™*™ be given.

Assume that the matrices; \&nd

, ] € J, are of full column rank and satisfy the

conditions(C1)HC7). Then for the matrices i(46), the following holds true:
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a) ker[E{ E, | ={0};

b) ker[Fs (33,31]T ={0};
C) ker63731 = {O}

Proof.

a) First, we show that the matr& "W, has full column rank. Assume that there
exists a vectok such thaE "W,/x = 0. Then

Wix € kerE" =imWy = (imW,)*,

and, hence\V/x = 0. SinceW, has full column rank, we obtain that= 0. Con-
sider now an accordingly partitioned vector

X1
M e ker[E] EJ].
From the first two relations in (46) we have
i W] 2] < kereTw = (o).

Then Lemma 4.2 a) yieldg = 0 andx; = 0.
b) Letx € ker[Fs Ga1] . Then, 0= G3.31% = W3 G3 WiW;x, which gives

GsWiW, x € keWs " = (imW4)* = (im G4 W)+,

Hence GJ WiW;,x = 0. It follows fromF; x = 0, that[F Gg] ' WiW{,x=0, and,
therefore,

W x € ker[F Ga] "Wy = (imW| [F Ga])* = (imW{y)".

This yieldsWj;x = 0. SinceW,; has full column rank, we obtaix= 0.
c) Assume thak € kerGg 31. Then 0= Ggz1x = W{] W, GaWjx, which gives

W, GaWgx € kerW,{ = (imW{y)* = (imWy' [F Gg])* C (imW, G3)™.
Thus, we obtaiw," GaWjx = 0, which is equivalent to
Wix € kerW,' Gz = (imG3 W) = (imW§)*.

As a consequence, we hawéx = 0, and the property i to be of full column
rank givesx = 0.

O
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It follows from Lemma 4.3 a) and b) that kEﬁr Fr Gor ég,]T = {0}, whereas

Lemma 4.3 c) implies that k&3 = {0}. In this case, the index of the DAE (48)
can be established using Theorem 4.1.

Theorem 4.4. Let a reduced DAHE48) be given with matrices and functions as in
(49) and (50), respectively. Then the differentiation indaxof (48) fulfils

a) [ig = 0if and only ifE; = E3, F = F», Gy = G2 and the matrixGs, is empty.
b) tig = 1if and only if it is not zero and

= |B = _ |k ~ G2 ~  |Gsp1
EI’ - |:O:| 9 FI’ - |:F3:| 9 GZI‘ - |:G2732:| 3 G3I’ - |:G3 31:| . (51)

5

c) Hg = 2if and only if iy ¢ {0, 1}.

Proof. a) If E; = E, and the matrixGa is empty, then Lemma 4.3 a) implies that
E; has full row rank. Then Theorem 4.1 a) impligg = 0. On the other hand,
if iy = 0, then Theorem 4.1 a) yields that the lower two block€Epfn (49)
vanish. Hence, the identity matrix i@, has zero columns and rows meaning
that the first block column nGzr vanishes. Furthermore, the absenceG@J
implies that the first row it , andG2r vanishes, which glveEr Ey,F=P,
andGy = G222

b) First assume thaly > 0 and (51) holds true. Then it follows from Lemma 4.3 a)
and b) that

= =~ 7 |E2FRGzo1
& F Gal = [0 2 G3.3J

has full row rank. We can further conclude from Lemma 4.3 e} th

E; G321

ker[Er G| = ker{0 Gaon

] = kerE; x {0} = kerE; x {0}.

Theorem 4.1 b) impliegy = 1.

To prove the converse implication, assume flgt= 1. Seeking for a contradic-
tion, assume that the second block columsgfin (49) hag columns for > 0.
Then there exists a vectsg € R" \ {0}. Lemma 4.3 a) implies that there exists

a vectorx; such that
= ‘o — | %8
E|™t~ o]

Then using Theorem 4.1 b) we have

0 | eker[E; Gg| = kerE; x {0}.
X3

This is a contradiction. L B

It remains to prove that the forth block row &, F, Gy and Gz vanishes.
Seeking for a contradiction, assume that the forth block hasr > 0 rows.
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Then there exists somg € R" \ {0}, and

0 . E, 0 O
0| eker[E F G| =ker| R’ F 0.
X3 G321 G331 0

Hence, [E; F; G| does not have full row rank. Then Theorem 4.1 b) implies
that iy > 1, which is a contradiction.
O

__ Itfollows from Lemma 4.3, Theorem 4.4 and the constructibthe matrice<;,
Fr, Gor andGg, that iy = 0 if and only if

rank[E F Gs] =rank[E F G; Gs] and Gz =0.
Furthermore, we havgy = 1 if and only if
rank|[E F Gs] =rank[E F G; Gs| and kerlE Gs] = kerE x kerGs.

Remark 4.5. Theorem 4.4 essentially states that the block&lifj corresponding
to identity matrices are responsible for the index risingitp= 2. The equations
in (47) corresponding to these blocks are algebraic constraintsamables whose
derivatives are also involved in the overall DAKUNKEL and MEHRMANN call
this phenomenostrangeness [17, 18, 22]

5 Index Reduction for Linear DAEs of Circuit Type

In this section, we consider index reduction of the DAE (2&3dx on the repre-
sentation (48) in which the over- and underdetermined paeslready eliminated.
We restrict ourselves to linear time-invariant systemaudtdy speaking, index re-
duction is a manipulation of the DAE such that another DAEhitwer index is
obtained whose solution set does not differ from the origime. Our approach is
strongly inspired by the index reduction approach hyNKEL and MEHRMANN for
linear DAEs with time-varying coefficients [17, 22] brieflgscribed in Section 2.
Consider the DAE (27), where we assume that the functibn®&™ — RM <M

and¥ : R"™ — R™*"™ gre constant, that is,

®(z1) =@ forallzz e R™ and W(z)=VY forallz, ¢ R™

with symmetric, positive definite matriceaB € R™*™ andW € R™*"2, Further-
more, we assume that the functipn R™ — R™ is linear, that isp(z) = Pz for
someP € R™*M with P+PT > 0. Then by Remark 4.5 we can apply the index
reduction technique proposed in [17]. To this end, we perftire following steps:
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(i) multiply the ninth equation in (47) from the left b ®E,, differentiate it
and add to the first equation;
(i) multiply the ninth equation in (47) from the left b[y‘:zchlT, differentiate it
and add to the second equation;
(iii) replacexs(t) by a new variable

Ka3(t) = E1PE, %o1(t) + E1 ®E] faa(t) 4 X2a(t).

(iv) multiply the fourth equation in (47) from the left by " WWs, differentiate it
and subtract from the sixth equation;

(v) multiply the fourth equation in (47) from the left MIZTWWZ/, differentiate it
and subtract from the seventh equation;

(vi) replacexs1(t) by a new variable

Ka1(t) = W5 T UM3o(t) + W TYE f4(t) + Xaa(t).

Thereby, we obtain the DAE

0] [ 0 1 [FPF x11(t) + FiPF,) xo1(t) + F1PF; xa1(t)]
0 E2¢7E2T5(21(t) FzPFlTX]_l(t) + FzPFZTXZJ_(t) + FQPFJX;:,]_(I)
0 0 FsPF, x11(t) + FsPF, Xo1(t) + FsPFl Xa1(t)
0 0 0
0 0 0
0|~ 0 + 0
0 |W WWLxoo(t) 0
0 0 0
0 0 0
0] | 0 1L 0 |
0 0 0 0 0G211G212Gz11 1 O] [xq1(t)] [f12(t)]
0 0 0 0 0Gz21 G222 G321 00| [x(t)| | fF2a(t)
0 0 0 0 0Gz31G232G33100] |x3x(t)| | fault)
0 0 0 001 0 O 00[&Ka(t)| |Falt)
0 0 0 00 0 0 0 00|xs(t)] |fs(t)
1-6J1 ~GIp -Gl —10 0 0 0 00 |xa2t)| " |fa2ft)
—GJ1,-G2,—Gjg5 00 0 0 0 00 |xat)| |fat)
~Gy; Gl -Gy 00 0 0 0 0(|xa)| |fua(t)
— 0 0 00 0 0 0 00]|Rat)| |fa)
0 0 0 00 0 0 0 00[xst)| [fas(t)]
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with F21(t) = fou(t) + EquEir fzg(t) and ]?22('[) = foo(t) —WZTLVVVZ/ f41(t) which is
again of type (27). Furthermore, it follows from Theorem drid Lemma 4.3 that
the differentiation index of the resulting DAE obtainedrfr¢52) by removing the
redundant variablegs;(t) andxs3(t) as well as the constrained equations for the
inhomogeneity componenfgy(t) = 0 andfz3(t) = 0 is at most one.

Remark 5.1.

a) We note that the previously introduced index reducticawvite uses linearity. In
the case where, for instanc®,depends on(t) and »:(t), the transformation
(ii) would be clearly dependent on these variables as well. Thises that the
unknown variables4(t) and »%1(t) enter the inhomogeneityft).

b) Structure-preserving index reduction for circuit eqoas has been considered
previously in[3-5]. An index reduction procedure presented there provides a re
duced model which can be interpreted as an electrical circantaining con-
trolled sources. As a consequence, the index-reducedsystet a DAE of type
(27)anymore.

6 Consequences for Circuit Equations

In this section, we present a graph-theoretical interfipetaf the previous results
for circuit equations. First, we collect some basic consdpim the graph theory,
which will be used in the subsequent discussion. For moraldetve refer to [10].

LetG = (¥, %) be a directed graph with a finite sgtof vertices and a finite set
2 of branches. Fow,, , Vi, an ordered pain,, = (v, , Vk,) denotes a branch leaving
Vi, and enteringy,. A tuple (by,,...,by, ,) of branchedy; = <vkj,vkj+1) ingGis
called apath connectingv,, andyvy if all verticesvy, ..., vy, are different except
possiblyvy, andvy,. A path isclosedif vy, = v, andopen otherwise. A closed
path is called #oop. A graphg is calledconnectedf for every two different vertices
there exists an open path connecting them.

A subgraphK = (¥/,%') of G = (¥,%) is a graph withy’ C ¥ and
B C B |yr={by = (Vig, Vip) € B Vi, Vi, € V' }. A subgraphC = (77, %) is
calledspanningf ¥’ = ¥. A spanning subgrapk = (¥, %’) is called acutsetof
a connected grapfi = (¥, %) if a complementary subgragh— K = (¥, 8\ #')
is disconnected ank is minimal with this property. For a spanning subgraplof
G, a subgrapi of G is called akC-cutset if £ is a cutset ofC. Furthermore, a path
¢ of G is called akC-loop, if £ is a loop of .

For an electrical circuit, we consider an associated gtapihose vertices cor-
respond to the nodes of the circuit and whose branches pondgo the circuit
elements. LeA € R™ 1™ gndB € R™~ ™+ pe the reduced incidence and loop
matrices as defined in Section 3. For a spanning gfau G, we denote byAg
(resp.Ag_x) a submatrix oA formed by the columns corresponding to the branches
in K (resp. the complementary gragh- K). Analogously, we construct the loop
matricesBx andBg_ k. By a suitable reordering of the branches, the reduced inci-
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dence and loop matrices can be partitioned as

A= [A}C Ag_;c] , B= [B;C Bg_;d . (53)

The following lemma from [28] characterizes the absencelelbops and
KC-cutsets in terms of submatrices of the incidence and lodyieea. It is crucial
for our considerations. Note that this result has previohsken proven for incidence
matrices in [30].

Lemma 6.1 (Subgraphs, incidence and loop matrices [28, Lemma 4.1G3) G
be a connected graph with the reduced incidence and loopiceatAc R™~1xMe
and Be Re~™+1xNe Fyrther, letXC be a spanning subgraph ¢t Assume that the
branches of; are sorted in a way thats3) is satisfied.

a) The following three assertions are equivalent:
(i) G does not contairfC-cutsets;
(i) kerAj . ={0};
(iii) kerBx = {0}.
b) The following three assertions are equivalent:
(i) G does not contairiC-loops;
(i) kerAx ={0};
(iii) keng_,C = {0}.
The next two auxiliary results are concerned with propsrté subgraphs of
subgraphs and give some equivalent characterizationgnmstef their incidence

and loop matrices. These statements have first been prowémcidence matrices
in [30, Propositions 4.4 and 4.5].

Lemma 6.2(Loops in subgraphs [28, Lemma 4.11))etG be a connected graph
with the reduced incidence and loop matricegs R™~1x"e and B¢ RNe~M+1xNe,
Further, letC be a spanning subgraph ¢f, and let£ be a spanning subgraph of
K. Assume that the branches®fre sorted in a way that

A=Az Ac_rAgx|], B=[BsBx_rBgx]. (54)

Then the following three assertions are equivalent:

(i) G does not contairlC-loops except foL-loops;
(i) For some (and hence any) matrixZvithimZ, = kerAZ holds

kerZ;Ax_r = {0};
(iif) For some (and hence any) matrixY  withimYyx_, = kerB%_L holds
Y¢_Bg-x =0.

Lemma 6.3(Cutsets in subgraphs [28, Lemma 4.12]gtG be a connected graph
with the reduced incidence and loop matrices R™~1%"e and Be RNe~M+1xNe,
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Further, letC be a spanning subgraph ¢f, and let£ be a spanning subgraph of
KC. Assume that the branches@®#tre sorted in a way thags4)is satisfied. Then the
following three assertions are equivalent:

(i) G does not contaifC-cutsets except fof-cutsets;

(i) For some (and hence any) matrix YvithimY, = kerBZ holds

kerY/ Bx_r = {0};

(iif) For some (and hence any) matrixZ o withimZi_, = kerA%% holds

Zi A x=0.

We use these results to analyze the condensed form (47)dMNA equations
(23). The MLA equations can be treated analogously. For engalectrical circuit
whose corresponding graph is connected and has no sel-(sep [28]), we intro-
duce the following matrices which take the role of the mas\4/ andW' defined
in Section 4. Consider matrices of full column rank satisfythe following condi-
tions:

(C1) imZ, = kerA/., imZ. =imA¢,

(C2)  imZgy =ker[Ag Ay)'Ze,  imZpy, =imZ[ [Ag Ay],
(C3)  IMZ, gy =KerALZcZgy ¢,  IMZ,_ gy =iMZg, ZlAL,
(C4)  imZ,_;gy= kerZy o, Z-AL, imZ, cxy =MAIZcZg ¢,
(CS) imZy_ =kerz Ay, imzl, .=imA]Zc,

(C6) imZ,_ . =kerAyZy_, imZ,, ~=imz;,_ A},
(C7) iMZeq e =kerz,, ALz, imZ,.,,. =imzJ AyZy_.

Note that the introduced matrices can be determined by ctatipoally cheap
graph search algorithms [12, 16]. We have the following egpondences to the
matricesM andW':

Z EW, Z.2w, Zgy_ =W, Zy oy AW,
Z, cxwiWiz,  Zp g Wi Zp_cg W, Z) g BW,
Zy_ 2V, Z, AW, Zy_ 2y, Zyy_ =Wy,
Zcq/cév\é% Z/cq/céwél

Using Lemmas 4.2 and 6.1-6.3, we can characterize the abséwertain blocks
in the condensed form (47) in terms of the graph structurdetircuit. Based on
the definition of/C-loop and/XC-cutset, we arrange the following way of speaking.
An expression like £9/-loop” indicates a loop in the circuit graph whose branch
set consists only of branches corresponding to capacitaf%avoltage sources.
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Likewise, an “LZ-cutset” is a cutset in the circuit graph whose branch sesists
only of branches corresponding to inductors and/or cusseuatces.

a) The matrixZ- has zero columns if and only if the circuit does not contaip an
R.LVTI-cutsets (Lemma 6.1 a)).

b) The matrixZ/C has zero columns if and only if the circuit does not contaip an
capacitors.

¢) The matrixZg 4 _~ has zero columns if and only if the circuit does not contain
any LZ-cutsets (Lemma 4.2 b) and Lemma 6.1 a)).

d) The matrixZ’ngC has zero columns if and only if the circuit does not contain
any C LZ-cutsets except faLZ-cutsets (Lemma 6.3).

e) The matriXxZ,_ -4 has zero columns if and only if the circuit does not contain
anyZ-cutsets (Lemma 4.2 ¢) and Lemma 6.1 a)). _

f) The matrixZ’LfCQW (and by Lemma 4.2 f) also the matrzgfcyw) has zero

columns if and only if the circuit does not contain afiR 1/Z-cutsets except for
Z-cutsets (Lemma 4.2 b) and Lemma 6.3).

g) The matrixZ,_ -4 4 has zero columns if and only if the circuit does not contain
any R C'V L-loops except foR CV-loops (Lemma 4.2 b) and Lemma 6.2)).

h) The matrixZ,,_ has zero columns if and only if the circuit does not contain
any CV-loops except foC-loops (Lemma 6.2).

i) The matrixZﬁl/f has zero columns if and only if the circuit does not contain
any R C LZ-cutsets except faR LZ-cutsets (Lemma 6.3).

j) The matrixZ,/_C has zero columns if and only if the circuit does not contain
any V-loops (Lemma 4.2 d) and Lemma 6.1 b)).

k) The matrixZ’Cq/C (and by Lemma 4.2 e) also the matﬁi&fc) has zero columns
if and only if the circuit does not contain amy1’-loops except foC-loops and
V-loops (this can be proven analogous to Lemma 6.2).

Exemplarily, we will show a) only. Other assertions can bavpd analogously.
For the MNA system (23), we havé = A.. Then by definition, the matriZ -
has zero columns if and only if k&y. = {0}. By Lemma 6.1 a), this condition is
equivalent to the absence &f£ 1/Z-cutsets.

In particular, we obtain from the previous findings that tbedensed form (47)
does not have any redundant variables and equations if dand thre circuit neither
containsZ-cutsets norl/-loops. We can also infer some assertions on the differen-
tiation index of the reduced DAE (48) obtained from (47) bynowing the redun-
dant variables and equations. The DAE (48) has the differton indexfiq = 0 if
and only if the circuit does not contain voltage sources ®dZ -cutsets except for
Z-cutsets. Furthermore, we halig= 1 if and only if and the circuit neither contains
CV-loops except foC-loops andl/-loops norLZ-cutsets except faf-cutsets.
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7 Conclusion

In this paper, we have presented a structural analysis éoMHA and MLA equa-
tions which are DAEs modelling electrical circuits with wmtrolled voltage and
current sources, resistors, capacitors and inductorsseTBAEs are shown to be
of the same structure. A special condensed form under limaasformations has
been introduced which allows to determine the differemratindex. In the linear
case, we have presented an index reduction procedure wioelipes a DAE sys-
tem of the differentiation index one and preserves the straof the circuit DAE.
Graph-theoretical characterizations of the condensed Fave also been given.
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