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Abstract We consider nonlinear differential-algebraic equations arising in model-
ling of electrical circuits using modified nodal analysis and modified loop analysis.
A condensed form for such equations under the action of a constant block diagonal
transformation will be derived. This form gives rise to an extraction of over- and
underdetermined parts and an index analysis by means of the circuit topology. Fur-
thermore, for linear circuits, we construct index-reducedmodels which preserve the
structure of the circuit equations.

1 Introduction

One of the most important structural quantities in the theory of differential-algebraic
equations (DAEs) is theindex. Roughly speaking, the index measures the order of
derivatives of the inhomogeneity entering to the solution.Since (numerical) diffe-
rentiation is an ill-posed problem, the index can - inter alia - be regarded as a quan-
tity that expresses the difficulty in numerical solution of DAEs. In the last three
decades various index concepts have been developed in orderto characterize dif-
ferent properties of DAEs. These are thedifferentiation index[7], thegeometric in-
dex[26], theperturbation index[13], thestrangeness index[22], and thetractability
index[24], to mention only a few. We refer to [25] for a recent survey on all these
index concepts and their role in the analysis and numerical treatment of DAEs.

In this paper, we present a structure-preserving condensedform for DAEs mo-
delling electrical circuits with possibly nonlinear components. This form is inspired
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by the canonical forms for linear DAEs developed by KUNKEL and MEHRMANN

[17,22]. The latter forms give rise to the so-called strangeness index concept which
has been successfully applied to the analysis and simulation of structural DAEs
from different application areas, see the doctoral theses [2, 6, 14, 27, 31–33, 36, 38]
supervised by VOLKER MEHRMANN. The great advantage of the strangeness index
is that it can be defined for over- and underdetermined DAEs. Our focus is on circuit
DAEs arising frommodified nodal analysis[9, 15, 35] andmodified loop analysis
[9, 29]. We show that such DAEs have a very special structure which is preserved
in the developed condensed form. In the linear case, we can, furthermore, construct
index-reduced models which also preserve the special structure of circuit equations.

Nomenclature

Throughout this paper, the identity matrix of sizen×n is denoted byIn, or simply
by I if it is clear from context. We writeM > N (M ≥ N) if the square real matrix
M −N is symmetric and positive (semi-)definite. The symbol‖x‖ stands for the
Euclidean norm ofx ∈ R

n. For a subspaceV ⊂ R
n, V⊥ denotes the orthogonal

complement ofV with respect to the Euclidean inner product. The image and the
kernel of a matrixA are denoted by imA and kerA, respectively, and rankA stands
for the rank ofA.

2 Differential-Algebraic Equations

Consider a nonlinear DAE in general form

F(ẋ(t),x(t), t) = 0, (1)

whereF : Dẋ × Dx × I → R
k is a continuous function,Dẋ,Dx ⊆ R

n are open,
I = [t0, t f ] ⊂ R, x : I → Dx is a continuously differentiable unknown function, and ˙x
denotes the derivative ofx with respect tot.

Definition 2.1. A function x: I → Dx is said to be asolutionof the DAE(1) if it
is continuously differentiable for all t∈ I and (1) is fulfilled pointwise for all t∈ I.
This function is called asolution of the initial value problem (1)and x(t0) = x0 with
x0 ∈ Dx if x is the solution of(1) and satisfies additionally x(t0) = x0. An initial
value x0 ∈ Dx is calledconsistent, if the initial value problem(1) and x(t0) = x0 has
a solution.

If the functionF has the formF(ẋ,x, t) = ẋ− f (x, t) with f : Dx × I → R
n,

then (1) is an ordinary differential equation (ODE). In thiscase, the assumption of
continuity of f gives rise to the consistency of any initial value. If, moreover, f is
locally Lipschitz continuous with respect tox then any initial condition determines
the local solution uniquely [1, Section 7.3].

Let F( ˙̂x, x̂, t̂) = 0 for some( ˙̂x, x̂, t̂) ∈ Dẋ×Dx× I. If F is partially differentiable
with respect to ˙x and the derivative∂

∂ ẋF( ˙̂x, x̂, t̂) is an invertible matrix, then by the
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implicit function theorem [34, Section 17.8] equation (1) can locally be solved for
ẋ resulting in an ODE ˙x(t) = f (x(t), t). For general DAEs, however, the solvability
theory is much more complex and still not as well understood as for ODEs.

A powerful framework for analysis of DAEs is provided by the derivative array
approach introduced in [8]. For the DAE (1) with a sufficiently smooth functionF ,
the derivative array of order l∈ N0 is defined by stacking equation (1) and all its
formal derivatives up to orderl , that is,

Fl (x
(l+1)(t),x(l)(t), . . . , ẋ(t),x(t), t) =




F(ẋ(t),x(t), t)
d
dtF(ẋ(t),x(t), t)

...
dl

dtl
F(ẋ(t),x(t), t)


 = 0. (2)

Loosely speaking, the DAE (1) is said to have thedifferentiation indexµd ∈ N0 if
l = µd is the smallest number of differentiations required to determine ẋ from (2)
as a function ofx andt. If the differentiation index is well-defined, one can extract
from the derivative array (2) a so-calledunderlying ODEẋ(t) = φ(x(t), t) with the
property that every solution of the DAE (1) also solves the underlying ODE.

Another index concept, calledstrangeness index, was first introduced by KUNKEL

and MEHRMANN for linear DAEs [17, 19, 23] and then extended to the nonlinear
case [20, 22]. The strangeness index is closely related to the differentiation index
and, unlike the latter, can also be defined for over- and underdetermined DAEs [21].
For our later proposes, we restrict ourselves to a linear time-varying DAE

E(t)ẋ(t) = A(t)x(t)+ f (t), (3)

whereE ,A : I → R
k,n and f : I → R

k are sufficiently smooth functions. Such a sys-
tem can be viewed as a linearization of the nonlinear DAE (1) along a trajectory. Two
pairs(E1(t),A1(t)) and(E2(t),A2(t)) of matrix-valued functions are calledglobally
equivalentif there exist a pointwise nonsingular continuous matrix-valued function
U : I → R

k,k and a pointwise nonsingular continuously differentiable matrix-valued
functionV : I → R

n,n such that

E2(t) = U(t)E1(t)V(t), A2(t) = U(t)A1(t)V(t)−U(t)E1(t)V̇(t).

For (E(t),A(t)) at a fixed pointt ∈ I, the local characteristic valuesr, a ands are
defined as

r = rank(E), a = rank(Z⊤AT), s= rank(S⊤Z⊤AT ′),

where the columns ofZ, T, T ′, andS span kerE⊤, kerE , imE⊤, and kerT⊤A⊤Z,
respectively. Considering these values pointwise, we obtain functionsr,a,s: I→N0.
It was shown in [17] that under the constant rank conditionsr(t) ≡ r, a(t) ≡ a and
s(t) ≡ s, the DAE (3) can be transformed to the globally equivalent system
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


Is 0 0 0 0
0 Id 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0







ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)




=




0 A12(t) 0 A14(t) A15(t)
0 0 0 A24(t) A25(t)
0 0 Ia 0 0
Is 0 0 0 0
0 0 0 0 0







x1(t)
x2(t)
x3(t)
x4(t)
x5(t)




+




f1(t)
f2(t)
f3(t)
f4(t)
f5(t)




. (4)

Note that the componentx1 satisfies the pure algebraic equation (the fourth equa-
tion in (4)) and its derivative is also involved in (4). Adding the differentiated fourth
equation to the first one, we eliminate the derivative ˙x1 from the first equation. The
resulting system can again be transformed into the form (4) with new global charac-
teristic valuesr, a ands. This procedure is repeated untilsbecomes zero. The mini-
mal numberµs of steps required to extract a DAE withs= 0 is called thestrangeness
indexof the DAE (3). By construction, the strangeness index reduces by one for each
elimination step described above. A DAE with vanishing strangeness index is called
strangeness-free. Since the characteristic values are invariant under global equiva-
lence transformations,µs is also invariant under global equivalence transformations.
One can also show that the strangeness indexµs is one below the differentiation in-
dexµd provided that both indices exist (except for the case, wherethe differentiation
index is zero, then the strangeness index vanishes as well),see [17,22].

This index reduction procedure has a rather theoretical character since the global
equivalence transformations are difficult to determine numerically. It was shown
in [19] that the solvability properties of the DAE (3) can also be established from
the associated derivative array given by

Ml (t)żl (t) = Nl (t)zl (t)+gl (t),

where
[
Ml

]
i j =

(
i
j

)
E (i− j)−

(
i

j +1

)
A(i− j−1), i, j = 0, . . . , l ,

[
Nl

]
i j =

{
A(i) for i = 0, . . . , l , j = 0,
0 else,[

zl
]

i = x(i),
[
gl

]
i = f (i), i = 0, . . . , l ,

with the convention that
(

i
j

)
= 0 for i < j. If the strangeness indexµs is well-

defined, then the DAE (3) satisfies the following hypothesis.

Hypothesis 2.2. There exist integersµ , a, d and w such that the pair(Mµ ,Nµ)
associated with(E ,A) has the following properties:

1. For all t ∈ I, we haverankMµ(t) = (µ + 1)k− a−w. This implies the exis-
tence of a smooth full rank matrix-valued function Z of size((µ + 1)k,a+ w)
satisfying Z⊤Mµ = 0.

2. For all t ∈ I, we haverank
(
Z(t)⊤Nµ(t)

[
In 0 . . . 0

]⊤)
= a and without loss of

generality Z can be partitioned as
[
Z2 Z3

]
with Z2 of size((µ +1)k,a) and Z3

of size((µ +1)k,w) such thatA2 = Z⊤
2 Nµ

[
In 0 . . . 0

]⊤
has full row rank and
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Z⊤
3 Nµ

[
In 0 . . . 0

]⊤
= 0. Furthermore, there exists a smooth full rank matrix-

valued function T2 of size(n,n−a) satisfyingA2T2 = 0.
3. For all t ∈ I, we haverank

(
E(t)T2(t)

)
= d, where d= k−a−wµ and

wµ = k− rank
[
Mµ Nµ

]
+ rank

[
Mµ−1 Nµ−1

]

with the convention thatrank
[
M−1 N−1

]
= 0. This implies the existence of

a smooth full rank matrix function Z1 of size(k,d) such thatE1 = Z⊤
1 E has full

row rank.

The smallest possibleµ in Hypothesis 2.2 is the strangeness index of the DAE
(3) andu = n− d− a defines the number of undertermined components. Introdu-
cingA1 = Z⊤

1A, f1(t) = Z⊤
1 f (t), f2(t) = Z⊤

2 gµ(t) and f3(t) = Z⊤
3 gµ(t), we obtain

a strangeness-free DAE system


E1(t)

0
0


 ẋ(t) =



A1(t)
A2(t)

0


x(t)+




f1(t)
f2(t)
f3(t)


 (5)

which has the same solutions as (3). The DAE (3) is solvable iff3(t) ≡ 0 in (5).
Moreover, an initial conditionx(t0) = x0 is consistent ifA2(t0)x0 + f2(t0) = 0. The
initial value problem with consistent initial condition has a unique solution ifu= 0.

3 Modified Nodal and Modified Loop Analysis

In this section, we consider the modelling of electrical circuits by DAEs based on the
Kirchhoff laws and the constitutive relations for the electrical components. Deriva-
tions of these relations from Maxwell’s equations can be found in [28].

A general electrical circuit with voltage and current sources, resistors, capacitors
and inductors can be modelled as a directed graph whose nodescorrespond to the
nodes of the circuit and whose branches correspond to the circuit elements [9–11,
28]. We refer to the aforementioned works for the graph theoretic preliminaries
related to circuit theory. Letnn, nb andnl be, respectively, the number of nodes,
branches and loops in this graph. Moreover, leti(t) ∈ R

nb be the vector of currents
and letv(t)∈R

nb be the vector of corresponding voltages. Then Kirchhoff’s current
law [11, 28] states that at any node, the sum of flowing-in currents is equal to the
sum of flowing-out currents, see Fig. 1. Equivalently, this law can be written as
A0i(t) = 0, whereA0 = [akl ] ∈ R

nn×nb is anall-node incidence matrixwith

akl =





1, if branchl leaves nodek,

−1, if branchl enters nodek,

0, otherwise.

Furthermore, Kirchhoff’s voltage law [11, 28] states that the sum of voltages along
the branches of any loop vanishes, see Fig. 2. This law can equivalently be written
asB0v(t) = 0, whereB0 = [bkl ] ∈ R

nl×nb is anall-loop matrixwith
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i1(t)

i2(t)
i3(t)

i4(t)

iN(t)

⇒ i1(t)+ . . .+ iN(t) = 0

Fig. 1: Kirchhoff’s current law

v1(t)
v2(t)

v3(t)

vN(t)

⇒ v1(t)+ . . .+vN(t) = 0

Fig. 2: Kirchhoff’s voltage law

bkl =





1, if branchl belongs to loopk and has the same orientation,

−1, if branchl belongs to loopk and has the contrary orientation,

0, otherwise.

The following proposition establishes a relation between the incidence and loop
matricesA0 andB0.

Proposition 3.1. [10, p. 213]Let A0 ∈ R
nn×nb be an all-node incidence matrix and

let B0 ∈ R
nl×nb be an all-loop matrix of a connected graph. Then

kerB0 = imA⊤
0 , rankA0 = nn−1, rankB0 = nb−nn +1.

We now consider the full rank matricesA∈ R
nn−1×nb andB∈ R

nb−nn+1×nb ob-
tained fromA0 andB0, respectively, by removing linear dependent rows. The ma-
tricesA andB are called thereduced incidenceandreduced loop matrices, respec-
tively. Then the Kirchhoff laws are equivalent to

Ai(t) = 0, Bv(t) = 0. (6)

Due to the relation kerB = imA⊤, we can reformulate Kirchhoff’s laws as follows:
there exist vectorsη(t) ∈ R

nn−1 andι(t) ∈ R
nb−nn+1 such that

i(t) = B⊤ι(t), v(t) = A⊤η(t). (7)

The vectorsη(t) andι(t) are called the vectors ofnode potentialsandloop currents,
respectively. We partition the voltage and current vectors
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v(t) =
[
v⊤C (t) v⊤L (t) v⊤R (t) v⊤

V
(t) v⊤I (t)

]⊤
,

i(t) =
[

i⊤C (t) i⊤L (t) i⊤R (t) i⊤
V

(t) i⊤I (t)
]⊤

into voltage and current vectors of capacitors, inductors,resistors, voltage and cur-
rent sources of dimensionsnC , nL , nR , nV andnI , respectively. Furthermore, parti-
tioning the incidence and loop matrices

A =
[
AC AL AR AV AI

]
, B =

[
BC BL BR BV BI

]
, (8)

the Kirchhoff laws (6) and (7) can now be represented in two alternative ways,
namely, in the incidence-based formulation

AC iC (t)+AL iL(t)+AR iR (t)+AV iV (t)+AI iI(t) = 0, (9)

vC (t) = A⊤
C η(t), vL(t) = A⊤

L η(t), vR (t) = A⊤
R η(t), (10)

vV (t) = A⊤
V η(t), vI(t) = A⊤

I η(t), (11)

or in the loop-based formulation

BR vR (t)+BC vC (t)+BLvL(t)+BV vV (t)+BIvI(t) = 0, (12)

iC (t) = B⊤
C ι(t), iL(t) = B⊤

L ι(t), iR (t) = B⊤
R ι(t), (13)

iV (t) = B⊤
V ι(t), iI(t) = B⊤

I ι(t). (14)

The dynamics of electrical circuits are not only relying on the Kirchhoff laws, but
their behaviour is also determined by the components being located at the branches.
The branch constitutive relations for capacitors, inductors and resistors are given by

iC (t) =
d
dt

q(vC (t)), (15)

vL(t) =
d
dt

ψ(iL(t)), (16)

iR (t) =g (vR (t)), (17)

respectively, whereq : R
nC → R

nC is thecharge function, ψ : R
nL → R

nL is the
flux function, andg : R

nR → R
nR is theconductance function. We now give our

general assumptions on the considered circuit elements. For an interpretation of
these assumptions in terms of total energy of the circuit, werefer to [28].

(A1) The charge, flux and conductance functions are continuouslydifferentiable.
(A2) The Jacobian of the charge function

C (vC ) :=
d

dvC
q(vC )

is symmetric and pointwise positive definite.
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(A3) The Jacobian of the flux function

L(iL) :=
d

diL
ψ(iL)

is symmetric and pointwise positive definite.
(A4) The conductance function satisfiesg (0) = 0 and there exists a constantc > 0

such that

(vR ,1−vR ,2)
⊤
(
g (vR ,1)−g (vR ,2)

)
≥ c‖vR ,1−vR ,2‖

2 (18)

for all vR ,1,vR ,2 ∈ R
nR .

Using the chain rule, the relations (15) and (16) can equivalently be written as

iC (t) =C (vC (t))
d
dt

vC (t), (19)

vL(t) =L(iL(t))
d
dt

iL(t). (20)

Furthermore, the property (18) implies that the Jacobian ofthe conductance function

G(vR ) :=
d

dvR
g (vR )

fulfils
G(vR )+G⊤(vR ) ≥ 2cI > 0 for all vR ∈ R

nR . (21)

Thus, the matrixG(vR ) is invertible for all vR ∈ R
nR . Applying the Cauchy-

Schwarz inequality to (18) and taking into account thatg (0) = 0, we have

‖g (vR )‖‖vR ‖ ≥ v⊤R g (vR ) ≥ c‖vR ‖2 for all vR ∈ R
nR

and, hence,‖g (vR )‖ ≥ cr‖vR ‖. Then it follows from [37, Corollary, p. 201] thatg
has a global inverse function. This inverse is denoted byr = g−1 and referred to as
theresistance function. Consequently, the relation (17) is equivalent to

vR (t) = r (iR (t)). (22)

Moreover, we obtain from (18) that

(
iR ,1− iR ,2

)⊤(
r (iR ,1)− r (iR ,2)

)
=

(
g (r (iR ,1))−g (r (iR ,2))

)⊤(
r (iR ,1)− r (iR ,2)

)

=
(
r (iR ,1)− r (iR ,2)

)⊤(
g (r (iR ,1))−g (r (iR ,2))

)
≥ c‖r (iR ,1)− r (iR ,2)‖

2

holds for all iR ,1, iR ,2 ∈ R
nR . Then the inverse function theorem implies that the

Jacobian

R (iR ) :=
d

diR
r (iR )
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fulfils R (iR ) = (G(r (iR )))−1. In particular,R (iR ) is invertible for all iR ∈ R
nR ,

and the relation (21) yields

R (iR )+R ⊤(iR ) > 0 for all iR ∈ R
nR .

Having collected all physical laws for an electrical circuit, we are now able to
set up a circuit model. This can be done in two different ways.The first approach
is based on the formulation of Kirchhoff’s laws via the incidence matrices given
in (9)-(11), whereas the second approach relies on the equivalent representation of
Kirchhoff’s laws with the loop matrices given in (12)-(14).

a) Modified nodal analysis (MNA)
Starting with Kirchhoff’s current law (9), we eliminate theresistive and capaci-
tive currents and voltages by using (17) and (19) as well as Kirchhoff’s voltage
law in (10) for resistors and capacitors. This results in

AC C (A⊤
C η(t))A⊤

C
d
dt η(t)+AR g (A⊤

R η(t))+AL iL(t)+AV iV (t)+AI iI(t) = 0.

Kirchhoff’s voltage law in (10) for the inductive voltages and the component
relation (20) for the inductors give

−A⊤
L η(t)+L(iL(t)) d

dt iL(t) = 0.

Using Kirchhoff’s voltage law in (11) for voltage sources, we obtain finally the
MNA system

AC C (A⊤
C η(t))A⊤

C
d
dt η(t)+AR g (A⊤

R η(t))+AL iL(t)+AV iV (t)+AI iI(t)=0,

−A⊤
L η(t)+L(iL(t)) d

dt iL(t)=0,

−A⊤
V η(t)+vV (t)=0.

(23)
In this formulation, voltages of voltage sourcesvV and currents of current
sourcesiI are assumed to be given, whereas node potentialsη , inductive cur-
rentsiL and currents of voltage sourcesiV are unknown. The remaining physical
variables such as voltages of the resistive, capacitive andinductive elements as
well as resistive and capacitive currents can be algebraically reconstructed from
the solution of system (23).

b) Modified loop analysis (MLA)
Using the loop matrix based formulation of Kirchhoff’s voltage law (12), the
constitutive relations (20) and (22) for inductors and resistors, and the loop ma-
trix based formulation of Kirchhoff’s current law in (13) for the inductive and
resistive currents, we obtain

BL L(B⊤
L ι(t))B⊤

L
d
dt ι(t)+BR r (B⊤

R ι(t))+BC vC (t)+BIvI(t)+BV vV (t) = 0.

Moreover, Kirchhoff’s voltage law in (13) for capacitors together with the com-
ponent relation (19) for capacitors gives
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−B⊤
C ι(t)+C (vC (t)) d

dt vC (t) = 0.

Combining these two relations together with Kirchhoff’s voltage law in (14) for
voltage sources, we obtain the MLA system

BL L(B⊤
L ι(t))B⊤

L
d
dt ι(t)+BR r (B⊤

R ι(t))+BC vC (t)+BIvI(t)+BV vV (t) =0,

−B⊤
C ι(t)+C (vC (t)) d

dt vC (t) =0,

−B⊤
I ι(t)+ iI(t) =0.

Here, the unknown variables are loop currentsι , capacitive voltagesvC and vol-
tages of current sourcesvI , and, as before,vV andiI are assumed to be known.

Thus, the overall circuit is described by the resistance lawiR (t) = g (vR (t)) or
vR (t) = r (iR (t)), the differential equations (19) and (20) for capacitors and induc-
tors, and the Kirchhoff laws either in the form (9)-(11) or (12)-(14). By setting

x(t) =




η(t)
iL(t)
iV (t)





resp. x(t) =




ι(t)
vC (t)
vI(t)






in the MNA (resp. MLA) case, we obtain a nonlinear DAE of the form (1).
In the linear case, the capacitance matrixC (vC (t)) ≡ C and the inductance ma-

trix L(iL(t)) ≡ L are both constant, and the component relations (17) and (22)for
resistors read

iR (t) = GvR (t), vR (t) = R iR (t),

respectively, withR = G−1 ∈ R
nR ×nR , G + G⊤ > 0 andR + R ⊤ > 0. Then the

circuit equations can be written as a linear DAE system

E ẋ(t) = Ax(t)+Bu(t), (24)

whereu(t) =
[
i⊤I (t), v⊤

V
(t)

]⊤
, and the system matrices have the form

E=




AC CA⊤
C 0 0

0 L 0

0 0 0


, A=



−AR GA⊤

R −AL −AV

A⊤
L 0 0

A⊤
V

0 0


, B=



−AI 0

0 0

0 −InV


 (25)

in the MNA case and

E=




BL LB⊤
L 0 0

0 C 0

0 0 0


, A=



−BR R B⊤

R −BC −BI

B⊤
C 0 0

B⊤
I 0 0


, B=




0 −BV

0 0

−InI 0


 (26)

in the MLA case.
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4 Differential-Algebraic Equations of Circuit Type

In this section, we study a special class of DAEs. First of allnote that both the MNA
and MLA systems can be written in a general form as

0 = EΦ
(
E⊤x1(t)

)
E⊤ẋ1(t) + Fρ

(
F⊤x1(t)

)
+G2x2(t)+G3x3(t) + f1(t),

0 = Ψ
(
x2(t)

)
ẋ2(t) − G⊤

2 x1(t) + f2(t),

0 = − G⊤
3 x1(t) + f3(t),

(27)

with the matricesE ∈ R
n1×m1, F ∈ R

n1×m2, G2 ∈ R
n1×n2, G3 ∈ R

n1×n3 and the
continuously differentiable functionsΦ : R

m1 → R
m1×m1, Ψ : R

n2 → R
n2×n2 and

ρ : R
m2 → R

m2 satisfying

Φ(z1) > 0 for all z1 ∈ R
m1, (28)

Ψ(z2) > 0 for all z2 ∈ R
n2, (29)

d
dz

ρ(z)+

(
d
dz

ρ(z)

)⊤

> 0 for all z∈ R
m2. (30)

We now investigate the differentiation index of the DAE (27). The following result
has been proven in [28] with the additional assumptionf2(t) = 0. However, this
assumption has not been required in the proof.

Theorem 4.1. [28, Theorem 6.6] Let a DAE(27) be given and assume that the
functionsΦ : R

m1 → R
m1×m1, Ψ : R

n2 → R
n2×n2 and ρ : R

m2 → R
m2×m2 satisfy

(28)–(30). Further, assume that the matrices E∈ R
n1×m1, F ∈ R

n1×m2, G2 ∈ R
n1×n2

and G3 ∈ R
n1×n3 fulfil

rank
[
E F G2 G3

]
= n1, rankG3 = n3. (31)

Then the differentiation indexµd of (27) is well-defined and it holds

a) µd = 0, if and only if n3 = 0 andrankE = n1.
b) µd = 1, if and only if it is not zero and

rank
[
E F G3

]
= n1, ker

[
E G3

]
= kerE×{0}. (32)

c) µd = 2, if and only ifµd /∈ {0,1}.

The additional assumptions (31) ensure that the DAE (27) is neither over- nor
underdetermined, i.e, a solution of (27) exists for sufficiently smoothf1, f2 and f3,
and it is unique for any consistent initial value. Note that the assumptions (31) will
not be made in the following. We will show that from any DAE of the form (27) one
can extract a DAE of differentiation index one which has the same structure as (27).
This extraction will be done by a special linear coordinate transformation.

To this end, we first introduce the matricesW1, W′
1, W11, W′

11, W12, W′
12, W2,

W′
2, W3, W′

3, W31, W′
31, W32 andW′

32 which have full column rank and satisfy the
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following conditions:

(C1) imW1 = kerE⊤, imW′
1 = imE,

(C2) imW11 = ker
[
F G3

]⊤
W1, imW′

11 = imW⊤
1

[
F G3

]
,

(C3) imW12 = kerG⊤
2 W1W11, imW′

12 = imW⊤
11W

⊤
1 G2,

(C4) imW2 = kerW⊤
11W

⊤
1 G2, imW′

2 = imG⊤
2 W1W11,

(C5) imW3 = kerW⊤
1 G3, imW′

3 = imG⊤
3 W1,

(C6) imW31 = kerG3W3, imW′
31 = imW⊤

3 G⊤
3 ,

(C7) imW32 = kerW⊤
3 G⊤

3 W′
1, imW′

32 = imW′⊤
1 G3W3.

The following lemma provides some useful properties for these matrices.

Lemma 4.2. Let E∈ R
n1×m1, F ∈ R

n1×m2, G2 ∈ R
n1×n2 and G3 ∈ R

n1×n3 be given,
and let Wj and W′

j for j ∈ J := {1,11,12,2,3,31,32} be matrices of full column
rank satisfying the conditions(C1)–(C7). Then the following holds true:

a) The relations(imWj)
⊥ = imW′

j are fulfilled for j∈ J.
b) The matrix W1W11 has full column rank with

imW1W11 = ker
[
E F G3

]⊤
. (33)

c) The matrix W1W11W12 has full column rank with

imW1W11W12 = ker
[
E F G2 G3

]⊤
. (34)

d) The matrix W3W31 has full column rank with

imW3W31 = kerG3. (35)

e) The matrix W′⊤31 W⊤
3 G⊤

3 W′
1W

′
32 is square and invertible.

f) The matrix W′⊤
12 W⊤

11W
⊤
1 G2W′

2 is square and invertible.

Proof. The proof mainly relies on the simple fact that kerM⊤ = (imM)⊥ holds for
any matrixM ∈ R

m×n.

a) The casej = 1 simply follows from

(imW1)
⊥ = (kerE⊤)⊥ = imE = imW′

1.

The remaining relations can be proved analogously.
b) The matrixW1W11 has full column rank as a product of matrices with full co-

lumn rank. Furthermore, the subset relation “⊆” in (33) is a consequence of[
E F G3

]⊤
W1W11 = 0 which follows from (C1) and (C2). To prove the reverse

inclusion, assume thatx∈ ker
[
E F G3

]⊤
. Then

x∈ kerE⊤ = imW1 and x∈ ker
[
F G3

]⊤
.
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Hence, there exists a vectory such thatx = W1y. We have

[
F G3

]⊤
W1y =

[
F G3

]⊤
x = 0.

The definition ofW11 gives rise to the existence of a vectorzsatisfyingy=W11z.
Thus,x = W1y = W1W11z∈ imW1W11.

c) The matrixW1W11W12 has full column rank as a product of matrices with full
column rank. The inclusion “⊆” in (34) follows from

[
E F G2 G3

]⊤
W1W11W12 = 0

which can be proved using (C1)–(C3). For the proof of the reverse inclusion,

assume thatx∈ ker
[
E F G2 G3

]⊤
. Thenx∈ ker

[
E F G3

]⊤
. Hence, due b) there

exists a vectory such thatx = W1W11y. Consequently,G⊤
2 W1W11y = G⊤

2 x = 0.
The definition ofW12 gives rise to the existence of a vectorz such haty = W12z,
and, thus,x = W1W11y = W1W11W12z∈ imW1W11W12.

d) The matrixW3W31 has full column rank as a product of matrices with full column
rank. The inclusion “⊆” in (35) follows from G3W3W31 = 0. For the proof of
the reverse inclusion, assume thatx ∈ kerG3. Thenx ∈ kerW⊤

1 G3, whence, by
definition ofW3, there exists a vectory with x = W3y. Then 0= G3x = G3W3y
and, by definition ofW31, there exists a vectorz such thaty = W31z. This gives
x = W3y = W3W31z∈ imW3W31.

e) First, we show that
kerW′⊤

31 W⊤
3 G⊤

3 W′
1W

′
32 = {0}. (36)

Assume thatx∈ kerW′⊤
31 W⊤

3 G⊤
3 W′

1W
′
32. Then

W⊤
3 G⊤

3 W′
1W

′
32x∈ kerW′⊤

31 = (imW′
31)

⊥ = (imW⊤
3 G⊤

3 )⊥,

and, hence,W⊤
3 G⊤

3 W′
1W

′
32x∈ imW⊤

3 G⊤
3 ∩ (imW⊤

3 G⊤
3 )⊥ = {0}. Thus, we have

W′
32x∈ kerW⊤

3 G⊤
3 W′

1 = (imW′⊤
1 G3W3)

⊥ = (imW′
32)

⊥,

and, therefore,W′
32x = 0. SinceW′

32 has full column rank, we obtain thatx = 0.
Next, we show that

kerW′⊤
32 W′⊤

1 G3W3W
′
31 = {0}. (37)

Assume thatx∈ kerW′⊤
32 W′⊤

1 G3W3W′
31. Then

W′⊤
1 G3W3W

′
31x∈ kerW′⊤

32 = (imW′
32)

⊥ = (imW′⊤
1 G3W3)

⊥

and, therefore,W′⊤
1 G3W3W′

31x = 0. This gives

G3W3W
′
31x∈ kerW′⊤

1 = (imW′
1)

⊥ = imW1 = kerW⊤
3 G⊤

3 = (imG3W3)
⊥,

whenceG3W3W′
31x = 0. From this we obtain

W′
31x∈ kerG3W3 = (imW⊤

3 G⊤
3 )⊥ = (imW′

31)
⊥.
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Thus,W′
31x = 0. The property thatW′

31 has full column rank leads tox = 0.
Finally, (36) and (37) together imply thatW′⊤

31 W⊤
3 G⊤

3 W′
1W

′
32 is nonsingular.

f) First, we show that
kerW′⊤

12 W⊤
11W

⊤
1 G2W

′
2 = {0}. (38)

Assuming thatx∈ kerW′⊤
12 W⊤

11W
⊤
1 G2W′

2, we have

W⊤
11W

⊤
1 G2W

′
2x∈ kerW′⊤

12 = (imW′
12)

⊥ = (imW⊤
11W

⊤
1 G2)

⊥,

whenceW⊤
11W

⊤
1 G2W′

2x = 0. This gives rise to

W′
2x∈ kerW⊤

11W
⊤
1 G2 = (imG⊤

2 W1W11)
⊥ = (imW′

2)
⊥,

and, therefore,W′
2x = 0. The fact thatW′

2 has full column rank leads tox = 0.
We now show that

kerW′⊤
2 G⊤

2 W1W11W
′
12 = {0}. (39)

Let x∈ kerW′⊤
2 G⊤

2 W1W11W′
12. Then

G⊤
2 W1W11W

′
12x∈ kerW′⊤

2 = (imW′
2)

⊥ = (imG⊤
2 W1W11)

⊥,

and, thus,G⊤
2 W1W11W′

12x = 0. Then we have

W′
12x∈ kerG⊤

2 W1W11 = (imW⊤
11W

⊤
1 G2)

⊥ = (imW′
12)

⊥,

whenceW′
12x = 0. SinceW′

12 has full column rank, we obtain thatx = 0. Finally,
it follows from (38) and (39) thatW′⊤

12 W⊤
11W

⊤
1 G2W′

2 is nonsingular.

⊓⊔

We use the previously introduced matrices and their properties to decompose the
vectorsx1(t), x2(t) andx3(t) in the DAE (27) as

x1(t) = W′
1W

′
32x11(t)+W′

1W32x21(t)+W1W
′
11x31(t)

+W1W11W
′
12(W

′⊤
2 G⊤

2 W1W11W
′
12)

−1x41(t)+W1W11W12x51(t),

x2(t) = W′
2x12(t)+W2x22(t),

x3(t) = W′
3x13(t)+W3W

′
31(W

′⊤
32 W′⊤

1 G3W3W
′
31)

−1x23(t)+W3W31x33(t).

(40)

Introducing the vector-valued functions and matrices

x̃1(t) =




x11(t)

x21(t)

x31(t)

x41(t)

x51(t)




, T1 =




W′⊤
32 W′⊤

1

W⊤
32W

′⊤
1

W′⊤
11 W⊤

1

(W′⊤
12 W⊤

11W
⊤
1 G2W′

2)
−1W′⊤

12 W⊤
11W

⊤
1

W⊤
12W

⊤
11W

⊤
1




, (41)
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x̃2(t) =

[
x12(t)
x22(t)

]
, T2 =

[
W′⊤

2

W⊤
2

]
,

x̃3(t) =




x13(t)
x23(t)
x33(t)


 , T3 =




W′⊤
3

(W′⊤
31 W⊤

3 G⊤
3 W′

1W
′
32)

−1W′⊤
31 W⊤

3

W⊤
31W

⊤
3


 ,

(42)

equations (40) can be written as

x1(t) = T⊤
1 x̃1(t), x2(t) = T⊤

2 x̃2(t), x3(t) = T⊤
3 x̃3(t). (43)

Note that, by construction of the matricesWj andW′
j , j ∈ J, the matricesT1, T2

andT3 are nonsingular, and, hence, the vectorsx̃1(t), x̃2(t) and x̃3(t) are uniquely
determined byx1(t), x2(t) andx3(t), respectively. Further, we define

f̃1(t)=




f11(t)
f21(t)
f31(t)
f41(t)
f51(t)




=T1 f1(t), f̃2(t)=

[
f12(t)
f22(t)

]
=T2 f2(t), f̃3(t)=




f13(t)
f23(t)
f33(t)


=T3 f3(t).

Multiplying the DAE (27) from the left by diag(T1,T2,T3) and substituting the vec-
torsx1(t), x2(t) andx3(t) as in (43), we obtain an equivalent DAE

0 = ẼΦ
(
Ẽ⊤x̃1(t)

)
Ẽ⊤ ˙̃x1(t) + F̃ρ

(
F̃⊤x̃1(t)

)
+ G̃2x̃2(t)+ G̃3x̃3(t) + f̃1(t),

0 = Ψ
(
x̃2(t)

) ˙̃x2(t) − G̃⊤
2 x̃1(t) + f̃2(t),

0 = − G̃⊤
3 x̃1(t) + f̃3(t),

(44)

with the matrices

Ẽ =




E1

E2

0
0
0




, F̃ =




F1

F2

F3

0
0




, G̃2 =




G2,11 G2,12

G2,21 G2,22

G2,31 G2,32

I 0
0 0




, G̃3 =




G3,11 I 0
G3,21 0 0
G3,31 0 0

0 0 0
0 0 0




, (45)

which are partitioned according to the partition ofx̃i(t) in (41) and (42). The matrix
blocks in (45) have the form

E1 = W′⊤
32 W′⊤

1 E, E2 = W⊤
32W

′⊤
1 E,

F1 = W′⊤
32 W′⊤

1 F, F2 = W⊤
32W

′⊤
1 F, F3 = W′⊤

11 W⊤
1 F,

G2,11 = W′⊤
32 W′⊤

1 G2W
′
2, G2,21 = W⊤

32W
′⊤
1 G2W

′
2, G2,31 = W′⊤

11 W⊤
1 G2W

′
2,

G2,12 = W′⊤
32 W′⊤

1 G2W2, G2,22 = W⊤
32W

′⊤
1 G2W2, G2,32 = W′⊤

11 W⊤
1 G2W2,

G3,11 = W′⊤
32 W′⊤

1 G3W
′
3, G3,21 = W⊤

32W
′⊤
1 G3W

′
3, G3,31 = W′⊤

11 W⊤
1 G3W

′
3.

(46)

This leads to the following condensed form of the DAE (27):
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


0

0

0

0

0

0

0

0

0

0




=




E1Φ
(
E⊤

1 x11(t)+E⊤
2 x21(t)

)
E⊤

1 ẋ11(t)+E1Φ
(
E⊤

1 x11(t)+E⊤
2 x21(t)

)
E⊤

2 ẋ21(t)

E2Φ
(
E⊤

1 x11(t)+E⊤
2 x21(t)

)
E⊤

1 ẋ11(t)+E2Φ
(
E⊤

1 x11(t)+E⊤
2 x21(t)

)
E⊤

2 ẋ21(t)

0

0

0

W′⊤
2 Ψ

(
W′

2x12(t)+W2x22(t)
)
W′

2ẋ12(t)+W′⊤
2 Ψ

(
W′

2x12(t)+W2x22(t))W2ẋ22(t)

W⊤
2 Ψ

(
W′

2x12(t)+W2x22(t)
)
W′

2ẋ12(t)+W⊤
2 Ψ

(
W′

2x12(t)+W2x22(t)
)
W2ẋ22(t)

0

0

0




+




F1ρ
(
F⊤

1 x11(t)+F⊤
2 x21(t)+F⊤

3 x31(t)
)

F2ρ
(
F⊤

1 x11(t)+F⊤
2 x21(t)+F⊤

3 x31(t)
)

F3ρ
(
F⊤

1 x11(t)+F⊤
2 x21(t)+F⊤

3 x31(t)
)

0

0

0

0

0

0

0




+




0 0 0 0 0G2,11 G2,12 G3,11 I 0

0 0 0 0 0G2,21 G2,22 G3,21 0 0

0 0 0 0 0G2,31 G2,32 G3,31 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−G⊤
2,11 −G⊤

2,21 −G⊤
2,31 −I 0 0 0 0 0 0

−G⊤
2,12 −G⊤

2,22 −G⊤
2,32 0 0 0 0 0 0 0

−G⊤
3,11 −G⊤

3,21 −G⊤
3,31 0 0 0 0 0 0 0

−I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0







x11(t)

x21(t)

x31(t)

x41(t)

x51(t)

x12(t)

x22(t)

x13(t)

x23(t)

x33(t)




+




f11(t)

f21(t)

f31(t)

f41(t)

f51(t)

f12(t)

f22(t)

f13(t)

f23(t)

f33(t)




(47)
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The following facts can be seen from this structure:

a) The componentsx51(t) andx33(t) are actually not involved. As a consequence,
they can be chosen freely. It follows from (40) and Lemma 4.2 c) that the vec-
tor x51(t) is trivial, i.e., it evolves in the zero-dimensional space,if and only if

ker
[
E F G2 G3

]⊤
= {0}. Furthermore, by Lemma 4.2 d) the vectorx33(t) is

trivial if and only if kerG3 = {0}.
b) The componentsf51(t) and f33(t) have to vanish in order to guarantee solvabi-

lity. Due to Lemma 4.2 c), the equationf51(t) = 0 does not appear if and only

if ker
[
E F G2 G3

]⊤
= {0}. Moreover, Lemma 4.2 d) implies that the equation

f33(t) = 0 does not appear if and only if kerG3 = {0}.
c) We see from a) and b) that over- and underdetermined parts occur in pairs. This

is a consequence of the symmetric structure of the DAE (27).
d) The remaining components fulfil the reduced DAE

0= ẼrΦ
(
Ẽ⊤

r x̃1r(t)
)
Ẽ⊤

r
˙̃x1r(t) + F̃rρ

(
F̃⊤

r x̃1r(t)
)
+ G̃2r x̃2r(t)+ G̃3r x̃3r(t) + f̃1r(t),

0= Ψ
(
x̃2r(t)

) ˙̃x2r(t)− G̃⊤
2r x̃1r(t) + f̃2r(t),

0= − G̃⊤
3r x̃1r(t) + f̃3r(t),

(48)
with the matrices, functions and vectors

Ẽr =




E1

E2

0
0


 , F̃r =




F1

F2

F3

0


 , G̃2r =




G2,11 G2,12

G2,21 G2,22

G2,31 G2,32

I 0


 , G̃3r =




G3,11 I
G3,21 0
G3,31 0

0 0


 , (49)

x̃1r(t) =




x11(t)
x21(t)
x31(t)
x41(t)


 , f̃1r(t) =




f11(t)
f21(t)
f31(t)
f41(t)


 ,

x̃2r(t) =

[
x12(t)
x22(t)

]
= x̃2(t), f̃2r(t) =

[
f12(t)
f22(t)

]
= f̃2(t),

x̃3r(t) =

[
x13(t)
x23(t)

]
, f̃3r(t) =

[
f13(t)
f23(t)

]
.

(50)

Note that this DAE has the same structure as (27) and (44). It is obtained from
(44) by cancelling the componentsx51(t) andx33(t) and the equationsf51(t) = 0
and f33(t) = 0.

We now analyze the reduced DAE (48). In particular, we show that it satisfies the
preliminaries of Theorem 4.1. For this purpose, we prove thefollowing auxiliary
result.

Lemma 4.3. Let E∈ R
n1×m1, F ∈ R

n1×m2, G2 ∈ R
n1×n2 and G3 ∈ R

n1×n3 be given.
Assume that the matrices Wj and W′

j , j ∈ J, are of full column rank and satisfy the
conditions(C1)–(C7). Then for the matrices in(46), the following holds true:
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a) ker
[
E⊤

1 E⊤
2

]
= {0};

b) ker
[
F3 G3,31

]⊤
= {0};

c) kerG3,31 = {0}.

Proof.

a) First, we show that the matrixE⊤W′
1 has full column rank. Assume that there

exists a vectorx such thatE⊤W′
1x = 0. Then

W′
1x∈ kerE⊤ = imW1 = (imW′

1)
⊥,

and, hence,W′
1x = 0. SinceW′

1 has full column rank, we obtain thatx = 0. Con-
sider now an accordingly partitioned vector

[
x1

x2

]
∈ ker

[
E⊤

1 E⊤
2

]
.

From the first two relations in (46) we have

[
W′

32 W32
][

x1

x2

]
∈ kerE⊤W′

1 = {0}.

Then Lemma 4.2 a) yieldsx1 = 0 andx2 = 0.

b) Letx∈ ker
[
F3 G3,31

]⊤
. Then, 0= G⊤

3,31x = W′⊤
3 G⊤

3 W1W′
11x, which gives

G⊤
3 W1W

′
11x∈ kerW′⊤

3 = (imW′
3)

⊥ = (imG⊤
3 W1)

⊥.

Hence,G⊤
3 W1W′

11x= 0. It follows fromF⊤
3 x= 0, that

[
F G3

]⊤
W1W′

11x= 0, and,
therefore,

W′
11x∈ ker

[
F G3

]⊤
W1 = (imW⊤

1

[
F G3

]
)⊥ = (imW′

11)
⊥.

This yieldsW′
11x = 0. SinceW′

11 has full column rank, we obtainx = 0.
c) Assume thatx∈ kerG3,31. Then 0= G3,31x = W′⊤

11 W⊤
1 G3W′

3x, which gives

W⊤
1 G3W

′
3x∈ kerW′⊤

11 = (imW′
11)

⊥ = (imW⊤
1

[
F G3

]
)⊥ ⊂ (imW⊤

1 G3)
⊥.

Thus, we obtainW⊤
1 G3W′

3x = 0, which is equivalent to

W′
3x∈ kerW⊤

1 G3 = (imG⊤
3 W1)

⊥ = (imW′
3)

⊥.

As a consequence, we haveW′
3x = 0, and the property ofW′

3 to be of full column
rank givesx = 0.

⊓⊔
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It follows from Lemma 4.3 a) and b) that ker
[
Ẽr F̃r G̃2r G̃3r

]⊤
= {0}, whereas

Lemma 4.3 c) implies that ker̃G3r = {0}. In this case, the index of the DAE (48)
can be established using Theorem 4.1.

Theorem 4.4. Let a reduced DAE(48) be given with matrices and functions as in
(49)and (50), respectively. Then the differentiation indexµ̃d of (48) fulfils

a) µ̃d = 0 if and only ifẼr = E2, F̃ = F2, G̃2r = G2,22 and the matrixG̃3r is empty.
b) µ̃d = 1 if and only if it is not zero and

Ẽr =

[
E2

0

]
, F̃r =

[
F2

F3

]
, G̃2r =

[
G2,22

G2,32

]
, G̃3r =

[
G3,21

G3,31

]
. (51)

c) µ̃d = 2 if and only if µ̃d /∈ {0,1}.

Proof. a) If Ẽr = E2 and the matrixG̃3r is empty, then Lemma 4.3 a) implies that
Ẽr has full row rank. Then Theorem 4.1 a) impliesµ̃d = 0. On the other hand,
if µ̃d = 0, then Theorem 4.1 a) yields that the lower two blocks ofẼr in (49)
vanish. Hence, the identity matrix iñG2r has zero columns and rows meaning
that the first block column iñG2r vanishes. Furthermore, the absence ofG̃3r

implies that the first row iñEr , F̃r andG̃2r vanishes, which gives̃Er = E2, F̃ = F2,
andG̃2r = G2,22.

b) First assume that̃µd > 0 and (51) holds true. Then it follows from Lemma 4.3 a)
and b) that

[
Ẽr F̃r G̃3r

]
=

[
E2 F2 G3,21

0 F3 G3,31

]

has full row rank. We can further conclude from Lemma 4.3 c) that

ker
[
Ẽr G̃3r

]
= ker

[
E2 G3,21

0 G3,31

]
= kerE2×{0} = kerẼr ×{0}.

Theorem 4.1 b) implies̃µd = 1.
To prove the converse implication, assume thatµ̃d = 1. Seeking for a contradic-
tion, assume that the second block column ofG̃3r in (49) hasr columns forr > 0.
Then there exists a vectorx3 ∈ R

r \{0}. Lemma 4.3 a) implies that there exists
a vectorx1 such that [

E1

E2

]
x1 =

[
x3

0

]
.

Then using Theorem 4.1 b) we have


−x1

0
x3


 ∈ ker

[
Ẽr G̃3r

]
= kerẼr ×{0}.

This is a contradiction.
It remains to prove that the forth block row of̃Er , F̃r , G̃2r and G̃3r vanishes.
Seeking for a contradiction, assume that the forth block rowhasr > 0 rows.
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Then there exists somex3 ∈ R
r \{0}, and




0
0
x3


 ∈ ker

[
Ẽr F̃r G̃3r

]⊤
= ker




E⊤
2 0 0

F⊤
2 F⊤

3 0
G⊤

3,21 G⊤
3,31 0


 .

Hence,
[
Ẽr F̃r G̃3r

]
does not have full row rank. Then Theorem 4.1 b) implies

that µ̃d > 1, which is a contradiction.
⊓⊔

It follows from Lemma 4.3, Theorem 4.4 and the construction of the matrices̃Er ,
F̃r , G̃2r andG̃3r that µ̃d = 0 if and only if

rank
[
E F G3

]
= rank

[
E F G2 G3

]
and G3 = 0.

Furthermore, we havẽµd = 1 if and only if

rank
[
E F G3

]
= rank

[
E F G2 G3

]
and ker

[
E G3

]
= kerE×kerG3.

Remark 4.5. Theorem 4.4 essentially states that the blocks in(47) corresponding
to identity matrices are responsible for the index rising toµ̃d = 2. The equations
in (47) corresponding to these blocks are algebraic constraints onvariables whose
derivatives are also involved in the overall DAE.KUNKEL and MEHRMANN call
this phenomenonstrangeness [17,18,22].

5 Index Reduction for Linear DAEs of Circuit Type

In this section, we consider index reduction of the DAE (27) based on the repre-
sentation (48) in which the over- and underdetermined partsare already eliminated.
We restrict ourselves to linear time-invariant systems. Roughly speaking, index re-
duction is a manipulation of the DAE such that another DAE with lower index is
obtained whose solution set does not differ from the original one. Our approach is
strongly inspired by the index reduction approach by KUNKEL and MEHRMANN for
linear DAEs with time-varying coefficients [17,22] briefly described in Section 2.

Consider the DAE (27), where we assume that the functionsΦ : R
m1 → R

m1×m1

andΨ : R
n2 → R

n2×n2 are constant, that is,

Φ(z1) = Φ for all z1 ∈ R
m1 and Ψ(z2) = Ψ for all z2 ∈ R

n2

with symmetric, positive definite matricesΦ ∈ R
m1×m1 andΨ ∈ R

n2×n2. Further-
more, we assume that the functionρ : R

m2 → R
m2 is linear, that is,ρ(z) = Pz for

someP ∈ R
m2×m2 with P+ P⊤ > 0. Then by Remark 4.5 we can apply the index

reduction technique proposed in [17]. To this end, we perform the following steps:
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(i) multiply the ninth equation in (47) from the left byE1ΦE⊤
1 , differentiate it

and add to the first equation;
(ii) multiply the ninth equation in (47) from the left byE2ΦE⊤

1 , differentiate it
and add to the second equation;

(iii) replacex23(t) by a new variable

x̃23(t) = E1ΦE⊤
2 ẋ21(t)+E1ΦE⊤

1 ḟ23(t)+x23(t).

(iv) multiply the fourth equation in (47) from the left byW′⊤
2 ΨW′

2, differentiate it
and subtract from the sixth equation;

(v) multiply the fourth equation in (47) from the left byW⊤
2 ΨW′

2, differentiate it
and subtract from the seventh equation;

(vi) replacex41(t) by a new variable

x̃41(t) = −W′⊤
2 ΨW2ẋ22(t)+W′⊤

2 ΨW′
2 ḟ41(t)+x41(t).

Thereby, we obtain the DAE




0

0

0

0

0

0

0

0

0

0




=




0
E2ΦE⊤

2 ẋ21(t)

0

0

0

0

W⊤
2 ΨW2ẋ22(t)

0

0

0




+




F1PF⊤
1 x11(t)+F1PF⊤

2 x21(t)+F1PF⊤
3 x31(t)

F2PF⊤
1 x11(t)+F2PF⊤

2 x21(t)+F2PF⊤
3 x31(t)

F3PF⊤
1 x11(t)+F3PF⊤

2 x21(t)+F3PF⊤
3 x31(t)

0

0

0

0

0

0

0




+




0 0 0 0 0G2,11 G2,12 G3,11 I 0

0 0 0 0 0G2,21 G2,22 G3,21 0 0

0 0 0 0 0G2,31 G2,32 G3,31 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−G⊤
2,11 −G⊤

2,21 −G⊤
2,31 −I 0 0 0 0 0 0

−G⊤
2,12 −G⊤

2,22 −G⊤
2,32 0 0 0 0 0 0 0

−G⊤
3,11 −G⊤

3,21 −G⊤
3,31 0 0 0 0 0 0 0

−I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0







x11(t)

x21(t)

x31(t)

x̃41(t)

x51(t)

x12(t)

x22(t)

x13(t)

x̃23(t)

x33(t)




+




f11(t)

f̃21(t)

f31(t)

f41(t)

f51(t)

f12(t)

f̃22(t)

f13(t)

f23(t)

f33(t)




(52)
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with f̃21(t) = f21(t)+ E2ΦE⊤
1 ḟ23(t) and f̃22(t) = f22(t)−W⊤

2 ΨW′
2 ḟ41(t) which is

again of type (27). Furthermore, it follows from Theorem 4.1and Lemma 4.3 that
the differentiation index of the resulting DAE obtained from (52) by removing the
redundant variablesx51(t) andx33(t) as well as the constrained equations for the
inhomogeneity componentsf51(t) = 0 and f33(t) = 0 is at most one.

Remark 5.1.

a) We note that the previously introduced index reduction heavily uses linearity. In
the case where, for instance,Φ depends on x11(t) and x21(t), the transformation
(ii) would be clearly dependent on these variables as well. This causes that the
unknown variables x11(t) and x21(t) enter the inhomogeneity f21(t).

b) Structure-preserving index reduction for circuit equations has been considered
previously in[3–5]. An index reduction procedure presented there provides a re-
duced model which can be interpreted as an electrical circuit containing con-
trolled sources. As a consequence, the index-reduced system is not a DAE of type
(27)anymore.

6 Consequences for Circuit Equations

In this section, we present a graph-theoretical interpretation of the previous results
for circuit equations. First, we collect some basic concepts from the graph theory,
which will be used in the subsequent discussion. For more details, we refer to [10].

LetG = (V ,B) be a directed graph with a finite setV of vertices and a finite set
B of branches. Forνk1,νk2, an ordered pairbk1 = 〈νk1,νk2〉 denotes a branch leaving
νk1 and enteringνk2. A tuple (bk1, . . . ,bks−1) of branchesbk j = 〈νk j ,νk j+1〉 in G is
called apath connectingνk1 andνks if all verticesνk1, . . . ,νks are different except
possiblyνk1 andνks. A path isclosedif νk1 = νks, andopen, otherwise. A closed
path is called aloop. A graphG is calledconnectedif for every two different vertices
there exists an open path connecting them.

A subgraphK = (V ′,B′) of G = (V ,B) is a graph withV ′ ⊆ V and
B′ ⊆ B |V ′=

{
bk1 = 〈νk1,νk2〉 ∈ B : νk1,νk2 ∈ V ′

}
. A subgraphK = (V ′,B′) is

calledspanningif V ′ = V . A spanning subgraphK = (V ,B′) is called acutsetof
a connected graphG = (V ,B) if a complementary subgraphG−K = (V ,B \B′)
is disconnected andK is minimal with this property. For a spanning subgraphK of
G, a subgraphL of G is called aK-cutset, if L is a cutset ofK. Furthermore, a path
ℓ of G is called aK-loop, if ℓ is a loop ofK.

For an electrical circuit, we consider an associated graphG whose vertices cor-
respond to the nodes of the circuit and whose branches correspond to the circuit
elements. LetA∈R

nn−1×nb andB∈R
nb−nn+1×nb be the reduced incidence and loop

matrices as defined in Section 3. For a spanning graphK of G, we denote byAK

(resp.AG−K) a submatrix ofA formed by the columns corresponding to the branches
in K (resp. the complementary graphG −K). Analogously, we construct the loop
matricesBK andBG−K. By a suitable reordering of the branches, the reduced inci-
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dence and loop matrices can be partitioned as

A =
[
AK AG−K

]
, B =

[
BK BG−K

]
. (53)

The following lemma from [28] characterizes the absence ofK-loops and
K-cutsets in terms of submatrices of the incidence and loop matrices. It is crucial
for our considerations. Note that this result has previously been proven for incidence
matrices in [30].

Lemma 6.1 (Subgraphs, incidence and loop matrices [28, Lemma 4.10]). Let G
be a connected graph with the reduced incidence and loop matrices A∈ R

nn−1×ne

and B∈ R
ne−nn+1×ne. Further, letK be a spanning subgraph ofG. Assume that the

branches ofG are sorted in a way that(53) is satisfied.

a) The following three assertions are equivalent:
(i) G does not containK-cutsets;

(ii) kerA⊤
G−K = {0};

(iii) kerBK = {0}.

b) The following three assertions are equivalent:
(i) G does not containK-loops;

(ii) kerAK = {0};
(iii) kerB⊤

G−K = {0}.

The next two auxiliary results are concerned with properties of subgraphs of
subgraphs and give some equivalent characterizations in terms of their incidence
and loop matrices. These statements have first been proven for incidence matrices
in [30, Propositions 4.4 and 4.5].

Lemma 6.2(Loops in subgraphs [28, Lemma 4.11]). LetG be a connected graph
with the reduced incidence and loop matrices A∈ R

nn−1×ne and B∈ R
ne−nn+1×ne.

Further, letK be a spanning subgraph ofG, and letL be a spanning subgraph of
K. Assume that the branches ofG are sorted in a way that

A =
[
AL AK−L AG−K

]
, B =

[
BL BK−L BG−K

]
. (54)

Then the following three assertions are equivalent:
(i) G does not containK-loops except forL-loops;

(ii) For some (and hence any) matrix ZL with imZL = kerA⊤
L holds

kerZ⊤
LAK−L = {0};

(iii) For some (and hence any) matrix YK−L with imYK−L = kerB⊤
K−L holds

Y⊤
K−LBG−K = 0.

Lemma 6.3(Cutsets in subgraphs [28, Lemma 4.12]). LetG be a connected graph
with the reduced incidence and loop matrices A∈ R

nn−1×ne and B∈ R
ne−nn+1×ne.
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Further, letK be a spanning subgraph ofG, and letL be a spanning subgraph of
K. Assume that the branches ofG are sorted in a way that(54) is satisfied. Then the
following three assertions are equivalent:

(i) G does not containK-cutsets except forL-cutsets;
(ii) For some (and hence any) matrix YL with imYL = kerB⊤

L holds

kerY⊤
L BK−L = {0};

(iii) For some (and hence any) matrix ZK−L with imZK−L = kerA⊤
K−L holds

Z⊤
K−LAG−K = 0.

We use these results to analyze the condensed form (47) for the MNA equations
(23). The MLA equations can be treated analogously. For a given electrical circuit
whose corresponding graph is connected and has no self-loops (see [28]), we intro-
duce the following matrices which take the role of the matricesWi andW′

i defined
in Section 4. Consider matrices of full column rank satisfying the following condi-
tions:

(C1′) imZC = kerA⊤
C , imZ′

C = imAC ,

(C2′) imZR V −C = ker
[
AR AV

]⊤
ZC , imZ′

R V −C = imZ⊤
C

[
AR AV

]
,

(C3′) imZL−C R V = kerA⊤
L ZC ZR V −C , imZ′

L−C R V = imZ⊤
R V −C Z⊤

C AL ,

(C4′) im Z̄L−C R V = kerZ⊤
R V −C Z⊤

C AL , im Z̄′
L−C R V = imA⊤

L ZC ZR V −C ,

(C5′) im Z̄V −C = kerZ⊤
C AV , im Z̄′

V −C = imA⊤
V ZC ,

(C6′) im Z̃V −C = kerAV Z̄V −C , im Z̃′
V −C = im Z̄⊤

V −C A⊤
V ,

(C7′) im Z̃C V C = kerZ̄⊤
V −C A⊤

V Z′
C , im Z̃′

C V C = imZ′⊤
C AV Z̄V −C .

Note that the introduced matrices can be determined by computationally cheap
graph search algorithms [12, 16]. We have the following correspondences to the
matricesWi andW′

i :

ZC =̂W1, Z′
C =̂W′

1, ZR V −C =̂W11, Z′
R V −C =̂W′

11,

ZL−C R V =̂W12, Z′
L−C R V =̂W′

12, Z̄L−C R V =̂W2, Z̄′
L−C R V =̂W′

2,

Z̄V −C =̂W3, Z̄′
V −C =̂W′

3, Z̃V −C =̂W31, Z̃′
V −C =̂W′

31,

Z̃C V C =̂W32, Z̃′
C V C =̂W′

32.

Using Lemmas 4.2 and 6.1–6.3, we can characterize the absence of certain blocks
in the condensed form (47) in terms of the graph structure of the circuit. Based on
the definition ofK-loop andK-cutset, we arrange the following way of speaking.
An expression like “C V -loop” indicates a loop in the circuit graph whose branch
set consists only of branches corresponding to capacitors and/or voltage sources.
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Likewise, an “LI-cutset” is a cutset in the circuit graph whose branch set consists
only of branches corresponding to inductors and/or currentsources.

a) The matrixZC has zero columns if and only if the circuit does not contain any
R LV I-cutsets (Lemma 6.1 a)).

b) The matrixZ′
C has zero columns if and only if the circuit does not contain any

capacitors.
c) The matrixZR V −C has zero columns if and only if the circuit does not contain

anyLI-cutsets (Lemma 4.2 b) and Lemma 6.1 a)).
d) The matrixZ′

R V −C
has zero columns if and only if the circuit does not contain

anyC LI-cutsets except forLI-cutsets (Lemma 6.3).
e) The matrixZL−C R V has zero columns if and only if the circuit does not contain

anyI-cutsets (Lemma 4.2 c) and Lemma 6.1 a)).
f) The matrixZ′

L−C R V
(and by Lemma 4.2 f) also the matrix̄Z′

L−C R V
) has zero

columns if and only if the circuit does not contain anyC R V I-cutsets except for
I-cutsets (Lemma 4.2 b) and Lemma 6.3).

g) The matrixZ̄L−C R V has zero columns if and only if the circuit does not contain
anyR C V L-loops except forR C V -loops (Lemma 4.2 b) and Lemma 6.2)).

h) The matrixZ̄V −C has zero columns if and only if the circuit does not contain
anyC V -loops except forC -loops (Lemma 6.2).

i) The matrix Z̄′
V −C

has zero columns if and only if the circuit does not contain
anyR C LI-cutsets except forR LI-cutsets (Lemma 6.3).

j) The matrix Z̃V −C has zero columns if and only if the circuit does not contain
anyV -loops (Lemma 4.2 d) and Lemma 6.1 b)).

k) The matrixZ̃′
C V C

(and by Lemma 4.2 e) also the matrixZ̃′
V −C

) has zero columns
if and only if the circuit does not contain anyC V -loops except forC -loops and
V -loops (this can be proven analogous to Lemma 6.2).

Exemplarily, we will show a) only. Other assertions can be proved analogously.
For the MNA system (23), we haveE = AC . Then by definition, the matrixZC

has zero columns if and only if kerA⊤
C = {0}. By Lemma 6.1 a), this condition is

equivalent to the absence ofR LV I-cutsets.
In particular, we obtain from the previous findings that the condensed form (47)

does not have any redundant variables and equations if and only if the circuit neither
containsI-cutsets norV -loops. We can also infer some assertions on the differen-
tiation index of the reduced DAE (48) obtained from (47) by removing the redun-
dant variables and equations. The DAE (48) has the differentiation indexµ̃d = 0 if
and only if the circuit does not contain voltage sources andR LI-cutsets except for
I-cutsets. Furthermore, we haveµ̃d = 1 if and only if and the circuit neither contains
C V -loops except forC -loops andV -loops norLI-cutsets except forI-cutsets.
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7 Conclusion

In this paper, we have presented a structural analysis for the MNA and MLA equa-
tions which are DAEs modelling electrical circuits with uncontrolled voltage and
current sources, resistors, capacitors and inductors. These DAEs are shown to be
of the same structure. A special condensed form under lineartransformations has
been introduced which allows to determine the differentiation index. In the linear
case, we have presented an index reduction procedure which provides a DAE sys-
tem of the differentiation index one and preserves the structure of the circuit DAE.
Graph-theoretical characterizations of the condensed form have also been given.
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