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Abstract

We study the regularization problem for linear differential-algebraic systems. As an improvement of former results we show that any
system can be regularized by a combination of state-space and input-space transformations, behavioral equivalence transformation
and a reorganization of variables. The additional state feedback which is needed in earlier publications is shown to be superfluous.
We provide an algorithmic procedure for the construction of the regularization and discuss computational aspects.
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1. Introduction

We study linear descriptor systems given by differential-
algebraic equations (DAEs) of the form

d
dt Ex(t) = Ax(t)+Bu(t) (1)

where E,A ∈ Rl×n, B ∈ Rl×m. The set of systems (1) is de-
noted by Σl,n,m and we write [E,A,B] ∈ Σl,n,m. DAE systems of
the form (1) naturally occur when modeling dynamical systems
subject to algebraic constraints; for a further motivation we re-
fer to [3, 7, 11, 12, 14] and the references therein. The system
[E,A,B] is called regular, if the matrix pencil sE−A is regular,
that is, l = n and det(sE−A) ∈ R[s]\{0}.

The functions x : R→Rn and u : R→Rm are usually called
state and input of the system, resp. However, in the general
case u might be constrained and some of the state variables can
play the role of an input. In the present paper we will take
the viewpoint of the behavioral approach due to Willems [15],
see also [16, 17]. Within this framework, the variables of the
system do not have the interpretation of states and inputs un-
til an analysis of the system reveals the free variables. These
free variables should then be interpreted as inputs, since “they
can be viewed as unexplained by the model and imposed on
the system by the environment” [13]. This approach obeys the
physical meaning of the system variables and it may turn out
that in the original model the choice of states and inputs was
inappropriate.

The behavior of the DAE system (1) is introduced as the
following set of solutions of (1):

B[E,A,B] := {(x,u) ∈L 1
loc(R;Rn×Rm) | Ex ∈A C (R;Rl),

(x,u) satisfies (1) for almost all t ∈ R },
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where L 1
loc and A C denote the space of locally (Lebesgue) in-

tegrable and absolutely continuous functions, resp. DAE con-
trol systems based on the above behavior have been studied in
detail e.g. in [3].

In the present paper we study the regularization of DAE sys-
tems, which relies on a procedure developed in [8]. In [8] it is
shown that, given any DAE system [E,A,B] ∈ Σl,n,m, by a com-
bination of behavioral equivalence transformation, proportional
state feedback and reorganization of variables (due to a possibly
inappropriate initial choice of states and inputs) a new system
[Ereg,Areg,Breg] can be obtained where sEreg − Areg is regular
and has index at most one. In the linear case, explicit transfor-
mations and a characterization of the regularized system have
been obtained in [6]. In the present paper, we improve the re-
sults of [8, 6] by showing that an application of state feedback
is not necessary. Furthermore, we derive a numerically stable
algorithm of cubic complexity which establishes the regulariza-
tion of the system.

The paper is organized as follows: In Section 2 we intro-
duce some preliminary concepts and notation and give a pre-
cise problem formulation. The regularization algorithm, which
is the main result of the paper, is presented in Section 3 and
proved to be feasible for any given system. Numerical reliabil-
ity and the computational speed of the regularization algorithm
is discussed in Section 4.

2. Preliminaries and problem formulation

In the present paper we use the following notation: R and
C denote the field of real and complex numbers, resp.; R[s]
is the ring of polynomials with coefficients in R; Rn×m is the
set of n×m matrices with entries in a ring R; On denotes the
set of orthogonal real n× n matrices. A polynomial matrix
U(s) ∈R[s]n×n is called unimodular, if it is invertible over R[s]
or, equivalently, if detU(s) is a nonzero constant.

The rank of a matrix M ∈Kn×m, where K=R or K=C, is
denoted by rkM. If M ∈ Rn×m with rkM = r, then, using QR
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factorization with pivoting [10], there exists T ∈ On such that

T M =

[
Σr
0

]
,

where Σr ∈ Rr×m with rkΣr = r, see also [1]. We will call T a
row compression of the matrix M. Similarly, we call S ∈ Om a
column compression, if

MS = [Σ̂r,0],

where Σ̂r ∈ Rn×r with rk Σ̂r = r.
The index ν ∈ N0 of a regular matrix pencil sE − A ∈

R[s]n×n is defined via its (quasi-)Weierstraß form [4, 11, 12]:
if for some invertible S,T ∈ Rn×n

S(sE−A)T =

[
sIr− J 0

0 sN− In−r

]
, N nilpotent,

then ν :=
{

0, if r = n,
min

{
k ∈ N0

∣∣ Nk = 0
}
, if r < n.

The index is independent of the choice of S,T .
Finally, we recall the concept of behavioral equivalence

which has been introduced for general behaviors in [13].
Roughly speaking, two systems are behaviorally equivalent, if
their behaviors coincide.

Definition 2.1. Two systems [Ei,Ai,Bi] ∈ Σl,n,m, i = 1,2, are
called behaviorally equivalent, if

B[E1,A1,B1]∩C ∞(R;Rn×Rm) =B[E2,A2,B2]∩C ∞(R;Rn×Rm),

where C ∞ denotes the space of infinitely times differentiable
functions; we write

[E1,A1,B1] 'B [E2,A2,B2].

In order to obtain a behaviorally equivalent system, it is al-
lowed that some of the equations in (1) are differentiated (and
hence we require smooth solutions). This leads to a trans-
formation of the form U( d

dt )(
d
dt E − A)x(t)−U( d

dt )Bu(t) = 0
with some U(s) ∈ R[s]l×l . Furthermore, since the behaviors
must coincide (on C ∞) the transformation U(s) must be re-
versible, i.e., U(s) must be unimodular. As shown in [13,
Thms. 2.5.4 & 3.6.2] this is exactly the set of transformations
that characterizes behavioral equivalence; this is summarized in
the following lemma.

Lemma 2.2. Let [Ei,Ai,Bi] ∈ Σl,n,m, i = 1,2. Then
[E1,A1,B1] 'B [E2,A2,B2] if, and only if, there exists a uni-
modular U(s) ∈ R[s]l×l such that

[sE1−A1,−B1] =U(s)[sE2−A2,−B2].

In the present paper we consider the following regulariza-
tion problem.

Problem 2.3. For a given system [E,A,B] ∈ Σl,n,m, find a uni-
modular matrix U(s) ∈ R[s]l×l , orthogonal state space and in-
put space transformations T ∈ On, V ∈ Om and a permutation

matrix P ∈ On+m such that

[sE−A,−B]
[

T 0
0 V

]
P =U(s)

[
0 0

sEreg−Areg −Breg

]
, (2)

where sEreg−Areg ∈ R[s]n̂×n̂ is regular and has index at most
one.

Each kind of the transformations in Problem 2.3 have an
interpretation in terms of their physical meaning:

(i) T and V represent coordinate changes in state space and
input space respectively,

(ii) U(s) represents an equivalence transformation which
does not change the behavior of the system,

(iii) P represents a permutation of state and input variables.
Here, we seek a permutation of free state variables with
constraint input variables, so that in the resulting system
the free variables are exactly the input variables. This
may be viewed as a reinterpretation of certain states as
inputs and vice versa.

At first glance it may be surprising that (2) in Problem 2.3
does not read

V (s)[sE−A,−B]
[

T 0
0 V

]
P =

[
0 0

sEreg−Areg −Breg

]
, (3)

where V (s) ∈ R[s]l×l is unimodular. The reason is that U(s)
in (2) may be easier to compute than V (s) in (3). In fact, we
show in Section 3 that U(s) has degree 1, i.e., it is a matrix
pencil, and it is obtained with cubic complexity. On the other
hand, the inverse V (s) = U(s)−1 may have higher degree and
can only be obtained with quartic complexity in general, see
Section 4.

3. Regularization algorithm

In this section we provide a step by step procedure for the
derivation of the regularization of a descriptor system as in (2).

Initialization. Let [E,A,B] ∈ Σl,n,m be given.
Step 1. Compute a row compression S1 ∈ Ol such that

S1B =
[ 0

B2

]
, where B2 has full row rank r. Consider

S1[sE−A,−B] =
[

sE1−A1 0
sE2−A2 −B2

]
,

where sE1−A1 ∈ R[s](l−r)×n,sE2−A2 ∈ R[s]r×n.
Step 2. Compute orthogonal S2 ∈ Ol−r,T2 ∈ On that take

sE1−A1 into staircase form

S2(sE1−A1)T2

=


sEη −Aη 0 0 0
∗ sE∞−A∞ 0 0
∗ ∗ sE f −A f 0
∗ ∗ ∗ sEε −Aε

 ,
where
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(i) Eη ,Aη ∈ Rlη×nη , lη > nη , are such that rk(λEη −Aη) =
nη and rkEη = nη ;

(ii) E∞,A∞ ∈ Rn∞×n∞ , A∞ is invertible and A−1
∞ E∞ is nilpo-

tent;

(iii) E f ,A f ∈ Rn f×n f and E f is invertible;

(iv) Eε ,Aε ∈ Rlε×nε , lε < nε , are such that rk(λEε −Aε) = lε
and rkEε = lε .

This form can be computed by a numerically stable algorithm,
see [9, 1].

Step 3. Compute an embedding of the pencil[
sEη−Aη 0
∗ sE∞−A∞

]
, i.e.,

[
K1
K2

]
∈ R(lη+n∞)×(lη−nη ) such that

U1(s) :=
[

K1 sEη −Aη 0
K2 ∗ sE∞−A∞

]
∈ R[s](lη+n∞)×(lη+n∞)

is unimodular; we call U1(s) the embedding of the given pencil.
A numerically stable algorithm for the solution of this embed-
ding problem using the staircase form is given in [2].

Step 4. Compute column compressions T3 ∈ Onε
, V3 ∈ Om

such that
Eε T3 = [Σ1,0], B2V3 = [Σ2,0],

where Σ1 ∈ Rlε×lε and Σ2 ∈ Rr×r are invertible. Consider

[
sE−A −B

][T2 0
0 Im

]In−nε
0 0

0 T3 0
0 0 V3


= S>1

[
S>2 0
0 Ir

][
U1(s) 0

0 Il−lη−n∞

]

×

 0 0 0 0
−Inη+n∞ 0 0 0
sE31−A31 sE f−A f 0 0
sE41−A41 ∗ sΣ1−A43 −A44
sE51−A51 ∗ ∗ sE54−A54

∣∣∣∣∣∣∣
0 0

0 0
0 0
0 0

−Σ2 0


︸ ︷︷ ︸

=:
[
sÊ− Â −B̂

]
Step 5. Define the unimodular matrix

U2(s) :=


Ilη−nη

0 0 0 0
0 Inη+n∞

0 0 0
0 −sE31 +A31 In f 0 0
0 −sE41 +A41 0 Ilε 0
0 −sE51 +A51 0 0 Ir

 ∈ R[s]l×l .

Step 6. Compute a singular value decomposition of E54 ∈
Rr×(nε−lε ), i.e., S4 ∈ Or, T4 ∈ Onε−lε such that

S4E54T4 =

[
Σ3 0
0 0

]
,

where Σ3 ∈Rq×q is invertible. Compute, using QR factorization
(without pivoting), a column operation V4 ∈ Or such that

S4Σ2V4 =

[
Σ21 0
∗ Σ22

]
,

where Σ21 ∈ Rq×q,Σ22 ∈ R(r−q)×(r−q) are invertible. Then

[
sÊ− Â −B̂

][ In+lε−nε
0 0 0

0 T4 0 0
0 0 V4 0
0 0 0 Im−r

]
=U2(s)

[
Il−r 0
0 S>4

]

×


0 0 0 0 0

−Inη+n∞ 0 0 0 0
0 sE f−A f 0 0 0
0 ∗ sΣ1−A43 −Ã44 −Ã45
0 ∗ ∗ sΣ3−Ã54 −Ã55
0 ∗ ∗ −Ã64 −Ã65

∣∣∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0
0 0 0
−Σ21 0 0
∗ −Σ22 0


︸ ︷︷ ︸

=:
[
sẼ− Ã −B̃

]
.

Step 7. Define the permutation matrix

P :=


Inη+n∞+n f +lε+q 0 0 0 0

0 0 0 Inε−lε−q 0
0 0 Iq 0 0
0 Ir−q 0 0 0
0 0 0 0 Im−r

 ∈ R(n+m)×(n+m).

Then[
sẼ− Ã −B̃

]
P =

0 0 0 0 0
−Inη+n∞ 0 0 0 0

0 sE f−A f 0 0 0
0 ∗ sΣ1−A43 −Ã44 0
0 ∗ ∗ sΣ3−Ã54 0
0 ∗ ∗ −Ã64 −Σ22

∣∣∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0
0 −Ã45 0
−Σ21 −Ã55 0
∗ −Ã65 0


=:
[

0(lη−nη )×n̂ 0(lη−nη )×m
sEreg−Areg −Breg

]
where it should be noted that the system on the right hand side
has other dimensions of state space and input space than the
system on the left hand side.

Theorem 3.1. Let [E,A,B] ∈ Σl,n,m and let [Ereg,Areg,Breg] ∈
Σn̂,n̂,m̂ be the result of the regularization algorithm. Then
sEreg−Areg ∈ R[s]n̂×n̂ is regular and has index at most one.

Proof. Denote

sEreg−Areg =


−Inη+n∞ 0 0 0 0

0 sE f−A f 0 0 0
0 sE42−A42 sΣ1−A43 −Ã44 0
0 sE52−A52 sE53−A53 sΣ3−Ã54 0
0 sE62−A62 sE63−A63 −Ã64 −Σ22


and observe that

det
(
sEreg−Areg

)
= (−1)nη+n∞+r−q det(Σ22)det(sE f −A f )

×det
([

sΣ1−A43 −Ã44
sE53−A53 sΣ3− Ã54

])
,

which is a nonzero polynomial since
[

Σ1 0
E53 Σ3

]
is invertible. This

shows regularity of sEreg−Areg. To show that the index does not
exceed one, we use that by [5, Eq. (3.4)] the index of sEreg−
Areg is at most one if, and only if,

imAreg ⊆ imEreg +Areg kerEreg.
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It is a simple calculation that

kerEreg = im

Inη+n∞
0

0 0
0 Ir−q


and hence

imEreg +Areg kerEreg

= im

 0
In f +lε+q

∗

+ im

Inη+n∞
0

0 0
0 Σ22

= Rl .

This shows that sEreg−Areg has index at most one.

Note that the outcome of the regularization algorithm in par-
ticular improves [6, Thm. 5.1], because here we show that the
additional state feedback used in [6] is not necessary. In other
words, we may always choose F = 0 in [6, Thm. 5.1].

4. Computational aspects

In this section we discuss the numerical reliability and the
computational speed of the regularization algorithm presented
in Section 3.

The computations in Steps 1 and 4–7 are certainly numer-
ically stable, since they are based on the singular value de-
composition and QR factorization (with pivoting) or they are
mere definitions using the data at hand. The staircase form in
Step 2 can also be computed by a numerically stable algorithm,
see [9, 1]. For the computation of the unimodular embedding
U1(s) in Step 3, we propose to use the numerically stable algo-
rithm developed in [2].

We analyze the computational complexity for each step of
the regularization algorithm separately:

Step 1. The computation of the row compression relies on a QR
factorization with pivoting [10], which has a computa-
tional cost of O(m(l2 +m2)) flops in the worst case ac-
cording to [1]. Here, “flop” means floating point opera-
tion, which is a scalar addition or multiplication.

Step 2. By [1] the computation of the staircase form is possible
with a cost of O(l2n) flops.

Step 3. According to [2] the computation of the embedding,
which also uses the staircase form, has a computational
cost of O(l(l2 +n2)+ l2n) flops.

Step 4. The computation of the column compressions again use
QR factorization with pivoting and requires O(n(l2+n2))
and O(m(l2 +m2)) flops in the worst case, resp.

Step 5. U2(s) is obtained at no cost.

Step 6. The singular value decomposition has a cost of O(n(l2 +
n2)) flops in the worst case according to [10], and the QR
factorization of the invertible matrix S4Σ2 has a cost of
O(m3) flops.

Step 7. P is obtained at no cost.

Summarizing, the computational cost of the regularization
algorithm for a given system [E,A,B] ∈ Σl,n,m is

O
(
l2(l +n+m)+n2(l +n)+m3),

and hence the algorithm is cubic in the dimensions of the sys-
tem.

Remark 4.1. If a relation of the form (3) is sought for the solu-
tion of the regularization problem, then U(s) as in (2) computed
by the regularization algorithm needs to be inverted. First recall
that U(s) = sU1+U2 ∈R[s]l×l is a matrix pencil. For the inver-
sion of this pencil an algorithm is proposed in [2]. Again, the
staircase form is used for the computation of V (s) = U(s)−1,
however the inversion of a triangular matrix is required as well.
This cannot be avoided in general, see also the discussion in [2].
Hence, the algorithm is numerically stable up to the feasibility
of this inversion problem.
Concerning computational complexity, the computation of V (s)
needs O(ql3) flops, where q = degV (s). As discussed in [2] it
is important to keep the degree q as small as possible. How-
ever, even if q is chosen minimal, in the worst case it may be
as large as l− 1 and hence the computation of V (s) has quar-
tic complexity in general. Note that q is also the index of the
pencil sU1 +U2, which is regular and equivalent to a pencil of
the form sN− I for some nilpotent matrix N. This index is also
revealed by the application of the staircase form.

5. Conclusion

In the present paper we have presented a numerically stable
algorithm for the computation of the regularization of a linear
descriptor system by a combination of behavioral equivalence
transformation, orthogonal state-space and input-space trans-
formation and a permutation of variables. The latter is nec-
essary since the initial choice of variables may not have been
appropriate within the framework of the behavioral approach.
A consequence of our algorithm is that the application of ad-
ditional state feedback used in earlier publications [8, 6] is not
necessary. We show that the regularization algorithm requires
O(p3) operations, where p is the largest dimension of the de-
scriptor system.
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