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OBSERVERS AND DYNAMIC CONTROLLERS FOR LINEAR
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Abstract. We study state-estimation and stabilization by dynamicltfeek for linear differential-algebraic
systems which are not necessarily regular. We show thathibereer synthesis approach for behavioral systems
in [M.E. Valcher and J.C. WillemsEEE Trans. Autom. Contrp44 (1999), pp. 2297-2307] can be applied to
differential-algebraic systems in a closed form, i.e., thservers and dynamic controllers are again differential-
algebraic systems. The concept of an (asymptotic, exasgrebr is introduced and existence is characterized.
Since initialization of the observer is an important issue imvestigate regular and freely initializable observers,
whose existence can be characterized in terms of impulsenaislity. The observers are then exploited for the
construction of dynamic controllers. We show that therestexa stabilizing controller if, and only if, the given
system is both behaviorally stabilizable and behaviorddiiectable.
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1. Introduction. We study state-estimation and stabilization of linear timariant
systems (th@lant) given by differential-algebraic equations (DAES) of tloer

9EX(t) = AX(t) +Bu(t)
y(t) =Cx(t) +Du(t),

whereE,A € R B e R*™M C e RP*", D € RP*!, Systems of that type are also calkie-
scriptor systemsThe set of systemd. (1) is denoted by , m p, and we writelE,A,B,C, D] €
2 nmp- DAE systems of the formi(1) naturally occur when modeling dynamical systems
subject to algebraic constraints; for a further motivatiom refer to b, 22, 38, 40, 47] and
the references therein. In the present paper we put speuahasis on the non-regular
case, i.e., wado not assumehat SE — A is regular, which would mean that = n and
detse—A) € R[g]\ {0}.

The functionsu: R — R™andy : R — RP are callednputandoutputof the system, resp.
A trajectory(x,u,y) : R — R" x R™x RP is said to be &olutionof (1.1), if it belongs to the
behaviorof (1.1):

(1.1)

Exe #¢(R;R') and(x,u,
BEABCD ‘= { (X,U,Y) € Loo(R;R" x R™ x RP) (RR ) and(x,u.y) } :

solves {.)) fora.ateR

For the notation we refer to the list at the end of this intrtduy section. Recall thdEx €
% (R;R') implies continuity ofE x (thoughx itself may be discontinuous). For the analysis
of DAE systems irz| , mp we assume that the states, inputs and outputs of the syseem ar
fixed a priori by the designer. This is different from othepegaches based on the behavioral
setting [L2,24,53].

In the present paper we aim to construct a stabilizing fegldbantroller that does not
have direct access to the state of the plant, but only usesmaftion about its output. This
is motivated by practice: An operator of the system has oodgss to the external variables
of the system. The state is an internal variable which in ggrmannot be measured directly.
We follow the classical approach: First we construct a dyinahsystem whose input is
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2 T. BERGER AND T. REIS

composed of the input and outputy of the plant. The output of the to-be-built dynamical
system will be a variable which approximates the statén a certain sense. Such a system
will be calledobserverand we assume that it is itself a DAE,

$EXo(t) = Aoo(t) + Bo (1) )

1.2)
2(t) = Coxolt) + Do ) )

with [Eo, Ao, Bo,Co, Do) € Zj, n,.mt-p,n- Obvious applications for observers are diagnosis and
error detection34)]. In the case of feedback control, the approximate statdywred by the
observer is used for stabilization of the system by feedback

For linear ODE systems (i.eE, = ) the above described procedure is well-known (see
the textbook $1]) and goes back to the work by Luenbergés,[44]. In this case, roughly
speaking, an observer is a dynamical system with the prpfgeat a zero initial observation
error implies a zero observation error for all times. It candown that this leads to the
general structure of an observer as depicted in Figuke

u(t) X(t) =AX(t) + Bu(t) y(t)

¥o(t) = (A+LC)xo(t) + [B+LD, —L] (;8) 20
Z(t) =Xo(t)

Fig. 1.1: Observer for ODE systems

Therefore, the observer only depends on the choice of thexrlate R™P. If L is
chosen such that(A+LC) C C_, i.e., the paifA,C] is detectable, then the observation error
decays exponentially for any initial value; the observehen called an asymptotic observer.
If additionally [A, B] is stabilizable, then there existse R™" such thato(A+BF) C C_.
Together with an asymptotic observer the feedbackuéw= Fz(t) leads to asymptotically
closed-loop system, see Figure, and thus solves the stabilization problem. Conversely, if
there exists a stabilizing feedback controller, th&rB,C] is stabilizable and detectable.

In the present paper we generalize the above theorem to tBgeosystems, see The-
orem4.2 This leads to a set of new results for DAE observers and dimeomtrollers in
the nonregular as well as in the regular case. We stressacthBNE systems the situation is
more subtle than for ODE systems. Apart from the study of tregatibility of the intercon-
nections, questions such as regularity and free initibliitg of the observers and dynamic
controllers must be treated.

The paper is organized as follows: In Secti®nve collect the concepts used in the
present paper and some results on their algebraic charatien. In Sectior8 we introduce
the concepts of (asymptotic, exact) observers for DAE systand characterize their
existence in terms of observability and detectability. W@ give sufficient criteria for DAE
observers being regular or freely initializable. The obees are exploited in Sectichfor
the construction of stabilizing dynamic controllers for BAystems; special care has to be
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N

u(t) y(t)
o(t) = (A+LC)x(t) + [B+LD, ~L] ()
T A =%(t) —
u(t) =Fz(t)

Fig. 1.2: Controller for regular systems

taken with the compatibility of the controllers. It is shownTheoremd4.2that there exists
a stabilizing controller if, and only if, the given plant ieth behaviorally stabilizable and
behaviorally detectable. We show that in the regular casedimtroller structure simplifies
to some well known results.

Notation

N, Ng the set of natural numbe®Ny = NU {0}

a),lal length/(a) =1 and absolute valuler | = Z!:l a; of a multi-index
a=(a,...,q)eN

C4(CL) open set of complex numbers with positive (negative) red, pa
resp.

R[g,R(s) the ring of polynomials with coefficients iR and its quotient
field, resp.

R>m the set ofn x mmatrices with entries in a ring

imA, kerA, rkr A image, kernel and rank of the matdxe R™™, resp.

GIh(R) the group of invertible matrices R™"

a(A) the spectrum oA € R™"

[1X] = x"x, the Euclidean norm of € R"

M closure of the sel

LL(R;RM) the set of locally Lebesgue integrable functiohs R — R",
where [, || f(t)|| dt < o for all compacK C R

AC(R;R") the set of absolutely continuous functiohsR — R"

f (M) the (-th) weak derivative off € ZL (R;R"), i € N, see [,
Chap. 1]

= g the functionsf,g € %%C(R;R“) are equal “almost everywhere”,
i.e., f(t)=g(t) foralmostall (a.a.J e R

esssup|| f|| the essential supremum of the measurable functio® — R"

overl CR
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fl, the restriction of the functioi : R — R"tol CR

2. Preliminaries. We consider different notions of observability, detedigband sta-
bilizability for DAE systems. For the definitions of thesencepts in time domain and for a
detailed discussion we refer to the surveys 13]. In the following we give definitions using
the algebraic characterizations ] Cor. 4.3] and 13, Prop. 6.1 & Cor. 9.5].

DEFINITION 2.1. A systenjE,A,B,C,D] € X hm p is called

(i) impulse observableéf kergk ENA~L(img E) Nkerz C = {0}.

(i) behaviorally observablef kerz(AE — A)NkerrC = {0} forall A € C.

(iii) behaviorally detectablgf kerc(AE — A) NkerzC = {0} forall A € C.

(iv) strongly detectableif kerg E N A~1(img E) Nkerr C = {0} and kerc(AE —A)N

kercC = {0} forall A € C;..

(v) behaviorally stabilizablef rkgs) [SE— A,B] = rkc[AE — A, B| forall A € C,.

Note that behavioral detectability and behavioral staability are not dual concepts, see
also [L3 for a comprehensive discussion of this issue.

ForE,A € R'™*" we consider the homogeneous system

JEX(t) = AX(t); (2.1)
the set of those systems is denotechy. Thebehaviorof (2.1) is given by

Bien = { xe 2L (R;R") | Exe o/%(R;R") andx satisfies 2.1) for almost allt € R } :

From [, 11] we recall the following concepts.
DEFINITION 2.2. ADAE[E,A| € 3, , is called
(a) behaviorally stable

= VXEBEa: tIim esssup. [[x[| =0.
; e g
(b) autonomous
. . ae. ae.
= VX:L’XZ e %[E,A] . X1|(—oo70) = X2|(—°°,O) —> X1 = Xo.

For a further discussion of autonomy of DAE systems 42eRem. 3.3]. Here we recall
the important equivalent characterization that

[E,Al € 5 nis autonomous <= VXE B! (EX(O) =0 = x=¥ O) . (2.2)

The following result is an immediate consequenceldf Cor. 5.2].
LEMMA 2.3.Let[E,A] € | ,. Then the following holds true:
(i) [E,A]is behaviorally stable if, and only ifkc(AE —A) =nforall A € C,.
(ii) [E,A]is autonomous if, and only ifkg ) (SE—A) = n.
(i) x% 0forallx e B 4 if, and only if,rkc(AE —A) =nforall A € C.

3. Observers. In this section we first present rigorous definitions of thacapt of an
(asymptotic, exact) observer. To this end we use the appriog&3] for the more general
class of behaviors described by linear constant coeffidéfearential equations of possi-
bly higher order. Thereafter, we consider observer desighcharacterize the existence of
(asymptotic, exact) observers. In principle, we prese®EDversions” of the results irbd].
Though we treat a smaller class th&3]| there is a certain benefit and novelty of our results:
Observers for DAE systems can be chosen to be DAE systemséies. Thereafter we in-
troduce the classes of “freely initializable” and “regutdoservers”. The first means that the
plant does not influence the set of consistent initial vabfake observer. The latter means
that the observer is neither under- nor overdetermined ertaio sense.
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3.1. Definitions. First of all, an observer, i.e., a dynamical system whichsaiorecon-
struct the state, should be able to process the signals pfahewithout influencing the plant
itself. This is subject of the following definition.

DEFINITION 3.1 (Acceptor). Consider a systeniE,A,B,C,D] € % nmp. Then
[Eo, Ao, Bo,Co, Do) € Z|07n07m+p7fo is called anacceptor fofE, A, B,C, D], if for all (x,u,y) €
BE apcp) there exist x € £ (R;R™), ze 41 (R;RP) such that

(Xos (y) 12) € BiEy A0 Bo,Co.Dol-

The above definition means that there is a one-directed Isiilgmafrom [E, A B,C,D] to
its acceptofE,, Ao, Bo,Co, Do| Via input and output (see Fi§.1). Thatis,[E, A B,C,D] may
influencelE,, Ao, Bo, Co, Do) but not vice-versa. Also compare the general structuregn31
with the ODE case depicted in Fif).1

u(t) 9EX(t) =AX(t) +Bu(t) y(t)
y(t) =Cx(t) + Du(t)
| $Ex() =Axo(®) +Bo (3] ) | ztt)

N/

2(t) =Coxo(t) + Do () )

Fig. 3.1: Interconnection with an acceptor

DEFINITION 3.2 (Observer). Consider the systenE,A,B,C,D] € Z nymp. Then
[Eo,Ao, Bo,Co, Do] € Z|07n07m+p7n |S Ca.”ed
a) anobserver foflE, A B,C,D], if it is an acceptor foE, A, B,C, D], and

Y (X,U,Y,%0,2) € L2 (R;R" x R™x RP x R x R":

(%u,y) € Beapco] N (%o (v):2) € By Ao BoCo.Do] ae
( A EZ0) = EX(0) — =%

b) anasymptotic observer fdE, A, B,C, D], if it is an observer fofE,A,B,C, D], and

Y (X,U,Y,%0,2) € ZE(R;R"x R™Mx RP x R™ x R":
((Xv uy) € Beapcp A (Xos (3%2) € SB[Eo,Ao,Bo,Co,Do])
= limesssup,, [|z—x||=0.
t—o0 ’

c) anexact observer folE, A, B,C,D], if it is an acceptor foilE, A, B,C, D], and

Y (X,U,Y,%0,2) € ZL(R;R"x R™x RP x R™ x R":

((Xv uy) e BeapcD N (Xo: (y),2) € %[EO,AO,BO,CO,DO]) = z=x
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REMARK 3.3 (Observer).
a) We have the following implications for[E,A,B,C,D] € % nmp and

[E07A0; BOaCOa DO] € Zlo7no,m+p,n:

© [EosA0sBo,Co,D
EooBoCoDol | i Eefel@ld e ABeCoDd
is an observer for ‘<= totic observer for <= s an exact observer :
[E,AB,C,D] b [E.AB.C.D] Do for [E,A,B,C,D]

b) The property of an observer being an acceptor is naturalitfe name suggesemn
observer shall only observe and not influence the sysidra further property says
that once the observer matches the state of the plant, it doiesose track.

For an asymptotic observer, the state trajectory of the piarfurther attractive:
Independent of the past of the observer,dbservation error

e(t) = z(t) — x(t) (3.2)

tends to zero for t+ . Whereas, an exact observer matches the overall state tra-
jectory.

c) Our definition of an observer slightly differs from the ofoe behavioral sys-
tems by Valcher and Willems i53, Def. 3.1], where, adapted to our DAE setup,
[Eo, Ao, Bo,Co, D] is called an observer fofE, A, B,C, D], if

(%UY) €Beapco A (% (1), € Ble,anBocobo] AN Z(-w0 = X(-wg
ae.
= z=Xx (3.2

Our definition therefore seems to be stronger at a glance. Weewever see in
Remark3.6that for DAE systems, our definition is equivalent to the on&8].

3.2. Observer design.We now consider the construction of (asymptotic, exact) ob-
servers for a given systef&,A,B,C,D] € Z nymp. In [46, p. 351] Polderman and Willems
give a preeminently nice and picturesque interpretatiorobservers, which we would like
to quote completely at this place:

“How then should we choose the equations governing a stagsv@® The design
that we put forward has a very appealing logic. The two céideas are:
1. the observer contains a copy of the plant, callethtarnal model
2. the observer is driven by thienovations by the error feedback, that is, by a
signal that expresses how far the actual observed outgatsiffom what we
would have expected to observe.
This logic functions not unlike what happens in daily lifeugpose that we meet
a friend. How do we organize our thoughts in order to deduseohiher mood,
or other latent properties, from the observed manifestdriggsed on past expe-
rience, we have an “internal model” of our friend in mind, aardestimate of the
“associated state” of his/her mood. This tells us what feastto expect. When we
observe an action or hear a response, then this may causeipddate the state of
this internal model. If the observed reaction agrees withtwre expected from our
current estimate, then there is no need to change the estifiaé more the reac-
tion differs from our expectations, the stronger is the rteagbdate. The difference
between what we actually observe and what we had expectdibénwe is what we
call the innovations. Thus it is logical to assume that thaatipg algorithm for the
estimate of the internal model is driven by the innovation&e may also interpret
the innovations as theurprise factor”
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We propose a new observer which thoroughly matches thisesieeg Given a plant
[E,A,B,C,D] € % nmp, letk € Ny, Ly € Rk andL, € RP*K, and consider the following
observer design,

JEZt) = AZt)+Bult) +Ld(t),
y(t) = Czt)+Du(t) +Lyd(t), (3.3)
internal model innovations

or, in terms of (.2),

[Eo:A0,Bo,Co.Do] = [[58] [ 2] . [§ 9] .11 0] Onimep| € Tispaikmepn:  (34)

The observer is additively composed of an internal model, & copy of the plant (or friend),
and a further term which involves the variales . (R;R¥) and takes the role of the
innovations term (osurprise summandLoosely speaking, the smallerdsthe better are the
variables in the internal model of the plant (which is parthef observer) in coincidence with
the variables in the actual plant (and the better is the astage matched by the approximate
state). The only difference is that our innovations termasan error feedback that is driven
by a signal which expresses how far the actual observed btdiffers from what we would
have expected to observe. The variath(e) is rather a measure for the correctness of the
overall internal model at time We will show in Remark3.9that, if sE— A is square, the
innovations term is indeed a feedback.

The interconnection o, A, B,C, D] and|[E,, Ao, Bo,Co, Do| is described by the control
system

E 0 0 O] /xt) A 0 0 0] /xt B
0 00 Ofyt)y| [c =1 0 of |y D

a 0 0 E Of|zt)] |0 0 A L[|zt + gl u®)- (3.9)
0 0 0 0 \d) 0 -1 C Ly| \d@) D

Now considering the observation errt) = z(t) — x(t) and multiplying 8.5 from the left
with

I 0O 0 O
lo 1, 00
W= - O I, 0|’
0 —lp 0 I
we obtain
E 0 0 0 /xt) A 0 0 0] /xt B
4000 0ofyt)y| _|c -1 o of [y D
0o 0E oflet)| [0 0 A LJ|ew |t |ofu®  G8

0 0 0 o \dt o o c L|\dt/ |o

In particular, the error satisfies the DAE

d|E Of fe(t)\ _[A L«| [et) (3.7)
@lo of\dt)) = |c L|\dt)) :
THEOREM 3.4. Consider the systefiE, A, B,C,D] € Z| nmp and let ke No, Ly € R'*K
and L, € RP*K be such that

rk M —k (3.8)

Then we have the following for the systfg, Ao, Bo,Co, Do as in(3.4):
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a) [Eo,Ao,Bo,Co, Do) is an acceptor fofE, A B,C,D].
b) [Eo, Ao, Bo,Co,Do] is an observer fofE, A,B,C, D] if, and only if,

—sE+A Ly
rkR(s> |: c Ly:| =n+k (39)

¢) [Eo,Ao,Bo,Co, Do) is an asymptotic observer fgE, A, B,C, D] if, and only if,

ke ["‘?A tﬂzmk VA eTh. (3.10)

d) [Eo,As,Bo,Co, Dol is an exact observer fdE, A B,C, D] if, and only if,

ke [_’\ E*A b] —nt+k VAeC. (3.11)

Proof.
a) The systenfEy, Ao, Bo,Co, Do) in (3.4) is an acceptor fofE, A,B,C, D], since for all
(X, u,y) € %[E,A,B,C,D] we have

((8)5(y) %) € BEq0,80.Co.D0]

b) =: Suppose thaE,, Ao, Bo,Co, Do) in (3.4) is an observer fofg, A,B,C,D]. Con-
sider a solutior{ §) of the DAE 3.7) with

581 (55) =(8). (3.12)
By (3.5 and @.6), we have
(0,0,0)€ Beapco, A ((§):(2).€) € Bie,a0BoCoDo- (3.13)

The definition of an observer together witB. 12 impliese 22 0. Then we obtain
from (3.7) and (3.8 thatd 2 0. We may now conclude that the DAB.J) is au-
tonomous, and hence we may infer from Lem2nathat 3.9 holds.

<! Assume that 3.9 is satisfied and considefx,u,y) € Bagcp and
(&),(y),2¢€ DB (E,.A0Bo.Co.Do] With EZ(0) = EX(0). Then the definition of the obser-

vation error leads t&e(0) = 0 and thug § §] (gig))) =0. Again using Lemma.3,
the assumption3(9) gives autonomy of the DAE3(7). Then it follows from @.2)
thate 2% 0 or, equivalentlyx 2 z. This means thgEo, Ao, Bo,Co, Do) in (3.4) is an
observer folE,A,B,C,D].

c) =: Assume that[E,,As,By,Co,Do] in (3.4 is an asymptotic observer for
[E,A,B,C,D]. Consider a solution(§) of the DAE @.7). Then the rela-
tions in 3.13 again hold true. The definition of an asymptotic observeegi
lim;_, €SSSUR,) [|€]| = 0. Hence, for all solutionég) of (3.7) we have

fmesssup | (58] (&) =©

Since @.7) is furthermore autonomous by b), it follows frol] Cor. 5.1] that 8.7)
is behaviorally stable. Then we obtain from Lemtathat 3.10 holds true.
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<. Now assume that3(10 is satisfied and considéx,u,y) € Bg apcp] and

((8),(),2) € Ble, Ao BoCono)- BY (3.6, () satisfies 8.7). Using Lemma2.3
we see that3.10 implies

. e —
lim esssup.) [[(d)[l = O.

The system[E,, Ao, Bo,Co,Do] in (3.4) is therefore an asymptotic observer for
[E,A,B,C,D].
d) =: Assume thafE,, A, Bo,Co, Do) in (3.4) is an exact observer fdE, A,B,C,D].
Consider a solutiori§) of the DAE 3.7). Then the relations in3(13 again hold
true. The definition of an exact observer yief& 0, whence, by3.7) and 3.9),
we haved 2 0. Hence, the solutions of the DAB.{) vanish almost everywhere,
and we obtain from Lemm2.3that (3.11) holds true.
<: Now assume that3(1]) is satisfied and considéx,u,y) € BEABC.D and
((8),(3):2) € Bgy AooCoo)- BY (3.6, (§) satisfies 8.7). Lemma2.3together
with (3.11) then implies in particular thag 220, i.e,x2 z In other words,
[Eo, Ao, Bo,Co, Do) in (3.4) is an exact observer foE, A, B,C, D].
0
Note that the propertie3(9—(3.11) in Theorem3.4 are related to the so callexkro
dynamicsof the systemE,A,Lx,C,Ly] € 2,k p (see B9 for linear DAEs). It is shown
in [6] that (using the terminology of])

(3.9 <= thezerodynamics dE,A Ly,C,Ly| are autonomous,
(310 <= the zerodynamics dE,A, Lx,C,Ly| are asymptotically stable,
(3.1) <« the zerodynamics dE,A Lx,C,Ly| are trivial.

3.3. Existence of observers. Here we show that the special observer
[E0,A0,B0,Co,Do] € Zi4pnkmipn iN (3.4 has a universal property in a certain sense:
If an (asymptotic, exact) observer exists, then it can bestranted to be of the fornB(4).

THEOREM 3.5 (Characterization of existence of observeFsy.[E,A,B,C,D] € | nmp
the following holds true:

a) There exists an observer f{i, A B,C, D] if, and only if,

—SE+A
rk]R(s) [ C ] =N (3.14)

b) There exists an asymptotic observer[ierA, B,C, D] if, and only if,

ke [’\ 'é* A} —n VAeC. (3.15)

c) There exists an exact observer fir A B,C, D] if, and only if,

ke ["‘E*A} —n VAcC. (3.16)

Proof. We start with proving £=” for a), b) and c) together: Consider the acceptor
[Eo,A0,Bo,Co,Do] € Zi4pntkmepn iN (3.4 with k=0, Ly = 0o andLy = Opo. Then, by
Theorem3.4a) (resp. b), ¢))[Eo, Ao, Bo,Co, Do] is an (asymptotic, exact) observer, %14
(resp. 8.15, (3.16) hold true.

It remains to prove=>" for a), b) and c):
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a) Suppose thdEy, A, Bo,Co, Do) € Zj, n,, m*f”‘ is an observerfo[rE A,B,C,D]. Con-
siderx € AL (R;R") with Exe /¢ (R;R") =0and

g

=%

Then(X, 0, 0) € %[E,A,B,C,D] and
(O’ (8) ’O) € %[EO-,AOeBO;CmDO]' (3.18)

Since [Eo, Ao, Bo,Co, Do] is an observer fofE,A,B,C,D] we obtainx 2% 0. This
proves that3.17) is an autonomous DAE, whence Lem&8yields 3.14.

b) Suppose thatEy, Ao,Bo,Co,Do] € Xy nomipn IS an asymptotic observer for
[E,A,B,C,D]. Considerx € £L (R;R") with Ex € &/%(R;R') which satis-
fies 3.17). Then(x,0,0) € %[EAB’QD]. Again consider the trivial trajector (18
of the observer. The assumption thiBg, Ay, Bo,Co, Do) is an asymptotic observer
leads to

tIiﬁrrc]oesssu[:gm) IIx—0] =

This shows that the DAE3(17 is behaviorally stable. Then Lemnta3 im-
plies 3.19.

c) Suppose thgdEy, Ao, Bo,Co, Do) € Zj, n,m+p,n IS an exact observer fE, A, B,C,D].
Considerx € ZL.(R;R") with Ex € /% (R;R") which satisfies%.17). Again we
have(x,0,0) € &B[EAB’QD] and we can consider the trivial trajecto/18 of the
observer. Now using the assumption tfa$, Ay, Bo,Co, Do) is an exact observer,
we obtainx 22 0. This shows that all solutions of the DAB.(7 vanish almost
everywhere. Then we obtain from Lemma that 3.16 holds true.

O

Note that conditiong.19) is equivalent to[ [§ ], [A]] € &1 pn being autonomous, con-
dition (3.15 is equivalent tdE, A, B,C, D] being behaviorally detectable and conditiBnl©
is equivalent tdE, A, B,C, D] being behaviorally observable.

REMARK 3.6 (Obervers Il).Recall from Remarl3.3c) that the observer definition
in [53] is slightly different from ours. Namely, it is characteg by(3.2) in the case where
both the plant and observer behavior are represented by DARBsstated in Remar&.3 c)
an observer according to our Definitidh2is an observer according tdbB, Def. 3.1]. Here
we state that also the converse is true for the obs€fgio, Bo,Co, Do € 2|1 pnikm+pn S
in (3.4): If Ee(0) = 0, then the autonomy of the DAB.7) implies that €80 (in the case
of an observer according tdbB, Def. 3.1], autonomy of3.7) can be shown similar to the
proof of Theoren8.4b)) and, in particular, ﬁiw’o} 22 0. The general reason is that, for an
autonomous DAE, an initial state completely describesuhad behavior. This is no longer
true for the behavior systems treated #6[53], since these are described by differential
equations of possibly higher order.

Further note that our criteria for existence of (asymptpégact) DAE observers are equiva-
lent to those obtained for behaviors i53, Prop. 3.2].

3.4. Regular and freely initializable observers. Though the name suggests, an ex-
act observer is not ideal from a practical point of view: Tgi¢al situation is that an ob-
server will be turned on at an initial moment. [Ey, Ao, Bo,Co, D] is @an exact observer for
[E,A,B,C,D], then a consistent initialization ¢y, Ay, Bo,Co, Do| requires the full informa-
tion about the initial value ofE, A,B,C,D]. As a consequence, we have a certain redundancy



OBSERVERS AND DYNAMIC CONTROLLERS FOR DAE SYSTEMS 11

in the observation problem: The goal of an observer is to@pprate the state trajectory
of [E,A,B,C,D] by means ofu andy. On the other hand, by a combination of Lemgha
and Theoren3.5 a) the state trajectory is, in case of existence of an obserospletely de-
termined byu, y andEx(0). That is, initialization of an exact observer already cetssof the
problem that needs to be solved by the observer itself. ingef the picturesque explanation
in [46, p. 351] (see also ®), there is no space for innovations at all. An exact obsereeds
to have a complete picture of his/her friend’s mood alredadii@beginning!

Another problem in the construction of the exact observeh@proof of Theoren3.5
(i.e.,[Eo, Ao, Bo,Co, Do) € 211 p nikmspn in (3.4 with k=0, Lx = 0, o andLy = Op o) concerns
robustness issuefE,, Ag, Bo,Co, Do is not anymore an acceptor if the systémA, B,C, D]
is slightly perturbed (in terms of the explanation #6] p. 351], this may be a slightly false
estimation of the character of the friend).

The above findings lead to the wish for a design of observeoswimitialization is not
influenced by the initial state ¢k, u,y) € Bg apcpj atall.

DerINITION 3.7 (Regular/freely initializable observer)et a systemE,A B,C,D]|
2 nmp be given and lefEy, Ao, Bo,Co,Do| € Zi fimipn be an observer fofE,A,B,C,D].
Then we cal[Eo, Ay, Bo, Co, Do)

a) regularif | = A and sk — A is regular;
b) freely initializable if for all (x,u,y) € Bgapcp) and R € R there exist ¥ €
L (R;RT), ze £L (R;RM) such that

(%o, (¥),2) € Bl Ao BoCodo] @Nd  EoXo(0) = EoxXJ.

In order to study the above concepts we need to introduce dliemof an index of
a regular matrix pencil: The index € Np of a regular matrix pencE — A € R[g]™" is
defined via its (quasi-)Weierstral forth(} 38,40]: if for someS T € Gl,(R)

sl —J 0 then v '— 0, if r=n,
0  SN—In|’ T min{keN |Nk=0}, ifr<n,

whereN is nilpotent. The index is independent of the choic&df and can be computed via
the Wong sequences correspondings- A as shown in10].

Next we give sufficient conditions for the existence of regaind and freely initializable
observers. In particular, it will turn out that an observeists if, and and only if, a regular
observer exists.

THEOREM 3.8 (Existence of regular and freely initializable obsesye Let a system
[E,A,B,C,D] € 3| hmp be given.

a) If (3.14 holds true (equivalently, an observer exists, see The@t&m), then there
exist ke No, Ly € Rk and L, € RP*K such tha{Eo, Ao, Bo, Co, Do) € Zi4 pnikmipn
as in(3.4) is a regular observer fofg, A, B,C,D].

b) If (3.15 holds true (equivalently, an asymptotic observer exists, $eorer3.5 b)),
then there exist k No, Ly € R"*k and L, € RP*K such that[Eo, Ao, Bo,Co, Do] €
2+ pntkmipn @s in(3.4) is a regular asymptotic observer ¢, A,B,C, D].

c) If [E,A B,C,D] is impulse observable, then there exist Ko, Ly € R"** and Ly €
RP*K such that the pencil

SSE-A)T =

{—sE—i—A LX] (3.19)

c

is square, regular and its index is at most one.
In this case, the observeE,, Ao, Bo,Co, Do| € Z1 4 pnikmrpn as in(3.4) is regular
and freely initializable.
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d) If [E,A B,C,D] is strongly detectable, then there exist Ko, Ly € R and L, €
RP*K such that the penci3.19 is square, regular, its index is at most one and it
satisfieq3.10.

In this case[Eo, Ao, Bo,Co, Do) € Zi4 pn+kmipn as in(3.4) is a regular and freely
initializable asymptotic observer f¢E, A, B,C, D].
Proof.

a) We show the existence &fc No, Ly € R'*k andL, € RP*K such that the pencil

in (3.19 is square and regular. For the proof we introduce the fatigmotation:

Forj € Nlet
o 0 0 ) )
Rl K = Li — ]\ RU-Dx]
Jem N e [N

0,

1

Nj = { \\
10

Further, Ietelm € RJ be theith canonical unit vector, and, for some multi-index

a=(0y,...,0;) € N', we define

Ng =diagNg, ,...,Ng, ) € RloxIal,

Ko =diagKay, .. .,Kq, ) € RUGI=HO)>lal,
Ly =diagLq,,...,Lq, ) € RUI=Ha)x]al
Eq =diages?, ... elf")) e RIaI<!(@),

By [13, Thm. 4.4] there exisB € GI|(R),T € GIn(R),V € Gly(R),L € R'*P such
that

[SET, SAT—LCT,VCT]

lgg 0 00 0 0 Ne 0 00 00
0K; 00 0O oLl 00 0O
0 01,0 0 0 o 6K, 0 0 o |Ee0 0000
OOgKSOO’ oOgLEOO, 0 ogj ooo| |, (3.20)
0 0 0ON/ O 0 0 0 Ol O 000000
0 0 00 Oly 0 000 0Ay
for some multi-indicesr, 8, v, €,k and a matrixAg € R"o*"o,
ChoosingF¢ = 0, the system
.
d |ljal 0} _[Na R
& 2t) = |7 Z(t) (3.21)
dt|:0 0 Ea *Ié(a)

is clearly regular and has index at most one. Furthermore, fo
aj = [ajo,- -, ayp-2,1 " € RA;
with the property that the polynomials
pi(s) = +ajp 1 T +.. . +ajo € R[s
are Hurwitz forj = 1,...,¢(B), the choice
Bp = diag(ay, ..., a,p)) € RIFXP)

leads to the system

Z(t) Z(t)
§Kg,0 (u(t)) = [Lg,Bg] (u(t)). (3.22)
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We see that the input is uniquely determined by = —Eg_lz, wheref3 —1 =

(Bi—1,...,Byp)—1) andif B; = 1 for somej, then the respectivecomponent does
not exist and the equation simply reagis= 0. With Bg_; = diag(&y, ..., & g)),
whered]j = [ajo,...,ajBJ,Z]T, a permutation of rows in3(22 and insertion ofu
gives

2(t) = (Ng_1—Bg_1Eg_1)z(t),
u(t) = Eg_,2(t).

It is now clear, that the pend[K; ,0] — [Lg, Bg] in system 8.22) is regular and has
index at most one. Furthermore, the characteristic polyabohNg_1 + BB_lET

B-1
(which is a block diagonalization of companion matrices)iien by
¢(B)
det(sl — (Ng_1+Bg_1E5 ;) = H P;(s),
j=1

which is Hurwitz, since alpj(s) are Hurwitz. Therefore 322 is also behaviorally
stable.
Now, assumption3.14) implies¢(e) = 0 and hence the choice

k=£(a)+4(B)+ (p—£(a)—L(y)),
F, 0 O
0 B O — 0 0
N B 3 ((a) 3.23
ix=|0 0 0| eR*K Ly:|i 0 O 0 ]eRpXk,( )
0 0 0 0 0 lpra@ruy
0 0 O
leads to

n+k= (la|+[B|—€(B)+ |y + K|+ o) + (L(a) + £(B) + (p—L(a) — £(V)))
= (la| + 1B+ IV~ £(y) + |k| +no) + p=1 +p,

by which the pencil

—SSET+SAT-LCT [k
VCT Ly

is square and regular. Therefore, with
Ly=S Mx+Lv i, L=V 'L, (3.24)

the pencil 8.19 is square and regular. We can further conclude from The8rérn)
that[Eq, Ao, Bo,Co, Do) € X1 pntkmspn @s in @.4) is an observer fof, A, B,C, D].

If (3.15 is true, thenE, A,B,C, D] is behaviorally detectable and b%3, Cor. 9.3]
we find¢(e) = 0 ando(Ag) C C_ in (3.20. By [51, Thm. 4.20] there existBy €
RA@)xIal sych that, using the same notation as in&), +EqFy) € C_. There-
fore, system3.2]) is additionally behaviorally stable. Then, using the saimaice
asin @3.23 and (3.249, it follows from the fact that the system3.21) and @.22 are
regular and behaviorally stable, that the pencil3nL is square and regular and
it satisfies 8.10. Then, by Theorer3.4 c) [Eo, Ao, Bo,Co,Do] € Zi4pnikmipn @S
in (3.4) is an asymptotic observer fg,A,B,C, D].
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¢) Impulse observability implies, invokindgB, Lem. 5.1], thaty| = ¢(y), ¢(¢) =0 and
|k| = ¢(k) in (3.20. Then, using the same choice as323 and .24, it follows
from the fact that the system3.21) and @.22 are regular and of index at most one,
that the pencil in3.19 is square, regular and its index is at most one. Next we prove
that [Eo, Ao, Bo,Co, Do) € Zi pntkmspn @s in B.4) is a freely initializable observer
for [E,A,B,C,D]:
Let(x,u,y) € Bgapcp andZ’ € R". Since the pencil3.19 is square, regular and
its index is at most one, there exist Z1.(R;R") andd € 4L (R;R¥) such that
Eec #%(R;R'), Eg0) = E(X —x(0)), and the DAE 8.7) is satisfied for almost
allt € R. Now considez = x+e € £ (R;R"). Then, byExe &% (R;R'), we
obtainEze #% (R;R') and

(53)- (045 -e

By (x,u,y) € BEascp and @.7) we obtain that §.6) holds true. Hence, the
DAE (3.5 is satisfied. In particular, we have

(&) (5) ,2) € By Ao.Bo.Co.Do)

d) Strong detectability implies, invokind B, Cor. 9.3], thaty| = £(y), ¢(€) =0, |k| =
(k) ando(As) C C_ in (3.20. As in b) we may choosE, € R/(@)*Ial sych that
0(Ng +EgFg) C C_ and hence syster3 21) is behaviorally stable. Then, using the
same choice as irB(23 and @.249), it follows from the fact that the system3.21)
and @B.22 are regular, of index at most one and behaviorally stahbg, the pencil
in (3.19 is square, regular, its index is at most one and it satisBed)( Then,
by TheorenB.4 c) [Eo, Ao, Bo,Co, Do) € Zjpnskmipn @S in B.4) is an asymptotic
observer fofE, A, B,C,D]. Regularity and free initializability ofEo, Ao, Bo,Co, Do)
follow from c).

O

Note that it is an open problem as to whether the conversedatjans in Theoren3.8 c)
andd) hold true.

REMARK 3.9 (Regular observers for square systembkgt a systenig,A,B,C,D] €
Znnmp be given.

a) If sE— A € R[g™" is regular, then[E,A B,C,D] has property(3.14, whence a
regular observer exists by Theoreh8a).

b) By [13, Thm. 9.8] the following holds true:

(i) If [E,A,B,C,D] is impulse observable, then there exists soneeR"*P such
that SE— (A+LC) is regular and its index is at most one.

(i) If [E,A,B,C,D] is behaviorally detectable, then there exists soneR"*P
such that s&- (A+LC) is regular and[E, A+ LC] is behaviorally stable.

(iii) If [E,A,B,C,D] is strongly detectable, then there exists someR"™P such
that SE— (A+LC) is regular, its index is at most one aftd, A+ LC] is behav-
iorally stable.

As a consequence, if SEA is square, we may conclude from

ln L][-SE+A —L][ln 0] [-SE+A+LC 0
0 Ip]| C | [-C 1o 0 I

that we can make the choicg & Ip, Ly = —L for the matrices in Theorer8.8
and(3.19 is square and regular. Therefore, we have

d(t) =Czt) + Du(t) — y(t)

(3.25)
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in the observer realizatio(B8.3). Inserting this into the first equation {{3.3) we can
eliminate the auxiliary variable d, and we obtain

SEZt) = (A+LC)z(t) + (B+LD)u(t) — Ly(t) (3.26)

Hence, we find that regular (asymptotic, freely initialilgbobservers for square
systems can always be chosen of the (8126, i.e.,

[Eo,Ao,Bo,Co,Do] = [E,A+LC,[B+LD, —L], In,Onmyp) - (3.27)

3.5. Notes and referencesObservers for differential-algebraic systems have bean co
sidered in various publications. The existing results (al as ours) all rely on the principal
idea by Luenberger in the seminal worki[44] for systems governed by ODEs. It has been
first observed by Dai and Wan&4, 59 that the classical Luenberger observer straightfor-
wardly generalizes to DAE systenfig, A,B,C,D] € >, nmp With regularsE— A (this is a
special case of Remafk9). Further aspects of observer design[terA,B,C,D] € Znnmp
with regularsE — A have been presented i?, B1,33,48,60]. These results have been applied
to models for mechanical multibody systems 3@

The articles B0, 35] treat observer design for general DAE systejfisA,B,C,D] €

) nmp With the property rl{? é] =n+rkE, i.e., impulse observable systems are consid-

ered. It has been proved i8()] that systems with this property admit observers which aan b
realized by ODEs. This corresponds to our result in Thedsedt) where we have proved
that observer$Eo, Ao, Bo,Co, Do) € Zj, n,,m+pn Can be constructed witly = ny, and a regu-
lar pencilsk, — A, whose index is at most one. By resolving the algebraic caimt;, this
observer can indeed be reformulated as an ODE.

The results for the regular case have been generalizdd@+#2()] to input-output systems
which are governed by DAEs with variable coefficients. Otsedesign for classes of non-
linear DAEs has been treated iR1] 23, 29, 39, 50, 61]. In particular, the article39| gives
criteria for the existence of observers with index at most.on

Numerical aspects of observer design for DAEs are presém{dd, 15, 32,42, 45].

4. Dynamic controllers. In the present section we consider the problendyfiamic
compensatiorthat is, a suitable interconnection with a controller sgstvhich only uses the
knowledge of the output to stabilize a given plé&tA,B,C,D] € % nmp. We will consider
design of stabilizing controllers and present equival@niditions for their existence.

4.1. Definitions. We use concept of control in the behavioral sense which basigin
in the works by Willems, Polderman and Trentelmdip, 52,58,59], where differential be-
haviors and their stabilization vi@ontrol by interconnectiors considered. The latter means
a systematic addition of some further (differential) edure such that a desired behavior is
achieved, see Figk. 1

Note that, ify = x one could make the extreme cholee=0,A: =0,B. =1,Cc. =0,D. =
0 for the controller, which would result in an interconnecsystem where each trajectory
vanishes. This, however, is not suitable from a practicaitpaf view, since in this intercon-
nection, the space of consistent initial differential afes is a proper subset of the initial dif-
ferential variables which are consistent with the origgyaltemE, A, B,C, D]. Consequently,
the interconnected system does not have the causality piyopthat is, the implementation
of the controller at a certain tintec R is not possible, since this causes jumps in the differ-
ential variables. To avoid this, we introduce the conceptarfipatibility In order to define
compatibility we need to introduce the space of consisteitial differential variables for
[E,A,B,.C,D] € % nmp:

V[Si,f/fx,s,c,o] ={x°eR" | 3(xuy) € Beapcp : EXO0)=EX }.
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LExc(t) =Acxc(t) + Bey(t)
u(t) =CeXe(t) + Dey(t)

Fig. 4.1: Interconnection with a controller

DEFINITION 4.1 (Compatible/stabilizing/freely initializable coalier). Let a system
[E,A,B,C,D] € %) hmp be given. Then we call a systeéBt, Ac, Bc,Ce, Dc] € 2 ne,p,m
(a) acompatible controllefor [E,A,B,C,D], if

vx° e ”f/[.‘_;’ifi\,s,cp] F(XU,Y) € BEapcD IX € Lo R;R™) :
EX(0) =EX A (x,y,u) € B E. Ac.Be.Co.De)-

(b) astabilizing controllerif it is a compatible controller, and

V(X,U,Y) € BEapcD] VX € L (R;R™) :

(D=0

VX0 € 12 gep) VI ER™ I (X Uy) € Beapcp) % € Loc(RiR™) :
Ex(0) = EX A Ecxc(0) = E A (Xe,Yiu) € BE.Ac.Be.Co.De)-

<(XCayau>€%[Ec,Ac,BC7CC7DC] = tlmesssup,@

(c) afreely initializable controllerif

Note that the above definition of compatibility is a slightdifacation of the concept in-
troduced by Julius and van der Schaft 87[where an interconnection is called compatible,
if any trajectory of the system without control law can becatenated with a trajectory of the
interconnected system. This certainly implies that thesmd initial differential variables of
the interconnected system cannot be smaller than the pomdig set for the nominal sys-
tem. The above compatibility definition also generalizesabmpatibility concept introduced
in [5,11] for DAE control systems.

We like to stress that any freely initializable controllgiin particular compatible.

4.2. Controller design and existenceln the following we show that the existence of
a stabilizing controller is equivalent to behavioral sliabbility and behavioral detectability.
We also investigate when a stabilizing controller is freilyializable. We start with the
statement of the main result of this section.

THEOREM 4.2 (Stabilizing controllers).Let [E,A,B,C,D] € % ,mp be given. Then
there exists a stabilizing controller fdE,A,B,C,D] if, and only if, [E,A,B,C,D] is both
behaviorally stabilizable and behaviorally detectable.

Proof of Necessity in Theorefn2
Let [Ec,Ac,Bc,Ce, Dc] € Z) e, p,m b€ a stabilizing controller folE, A, B,C,D].
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Step 1:We prove thafE, A, B,C, D] is behaviorally stabilizable.
Let (x,u,y) € B apcp), thenx? € “//[gif{\,B’c’D]. By compatibility of [E, A¢, Be,Ce, Dc] for
[E,A,B,C,D], there exists som&, (1,y) € B apc,p) With EX(0) = EX(0) and somex; €
L2 (R;R™) such that{xc,¥,0) € Bje, A Be.con- SinCe[Ec,Ac,Be,Ce, D¢l is stabilizing we
further obtain that

tIiﬁrrc]oesssu[:gm) IX]| = 0.
We have shown that

V(x,uy) e BEABCD 3 (X,0,Y) € BEABCD !
EX(0) = Ex(0) A tI|_r)TD1°esssu[p’m) |IX]| = O.

Using the same arguments as in, for instant&, Rem. 3.7] it can be shown that the above
property is equivalent to behavioral stabilizability[&f, A, B,C, D].

Step 2:We prove thafE, A, B,C, D] is behaviorally detectable.
Let (x,0,0) € Bgapcp)- Then, by using0,0,0) € B, a.p.c.n] and the property that
[Ec,Ac, Be,Ce, D¢] is a stabilizing controller, we obtain

tlm essSUR,,) [[X]| =0.

This proves thatE, A, B,C, D] is behaviorally detectablél.

The proof of sufficiency in Theorerh2is based on a construction of a suitable controller
for a given behaviorally stabilizable and behaviorallyedtable systemE, A B,C,D] €
2 nmp: Iffull information on the state is available (i.€€,= I5), then a stabilizing controller
can be constructed wits; = O (i.e., it is actually not dynamic anymore), séd4,[Thm. 5.4].
To this end, leKy € R'e*" andK € R'e*™ be such that the DAE

1 98- 2
is behaviorally stable.

For the general case, we use the basic strategy in the @bapjgroach44]: We couple
the plant with an observer to approximate the state. Theoxppate state is then used (as if
it was the state) to determine an input which stabilizes yiséesn.

More precisely, we add the static relation

Kyz(t) + Kyu(t) =0 (4.1)
to the model of the plant coupled with an asymptotic obseo¥d¢hne form @.4), the output

of which is the approximate state see Figuret.2 Then we obtain the closed-loop system
described by the DAE

E 0 0 0 0 /x) A 0 0 0 BJ]/xt
0 0 0 0 0fyd C —lp 0 0 D[y
dio o E 0 Of|zt)[=|0 0 A L B||z)|. (4.2)
0 0 0 0 0 [d) 0 —lp C L, D |d
0 0 0 0 0 \u(t) 0 0 Ky O K| \u)
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Dynamic controller

$EXo(t) =Aco(t) +Bo (41 ) | att)

2(t) =Coxo(t) + Do (1))

Fig. 4.2: Controller structure

By using

I 0O 0O O Ofl|-se+A O 0 0O Bf|ln O 0O O O
0 0 0 0 I C —I 0 0 D{{0 O O O Ip
- 0 1, 0 O 0 0 —se+A Lk Bf|lh 0 I, 0 O
0 -, 01, O 0 —I C Ly D{[0 O O Ik O
0O I, 0 0 O 0 0 Kx 0 Ky|[O Im O O O

-sE+A B 0 0 O

Kx Ky Kx 0 O
= 0 0 —sE+A Lx 0],

0 0 C Ly, O

C D 0 0 —lp

we obtain thak, u,y,z d solve @.5) if, and only if, y(t) = Cx(t) + Du(t) and, using the obser-

vation errore(t) = z(t) — x(t), we have
E 0 O O] /x(t) A B 0 0 /x{t)
&0 0 E Of |et) 0 0 A L |et)]’ '
0 0 O O \d() 0 0 C Ly \d)

Next we analyze the properties of the previously introduzatroller. To this end, for given
[E,A,B,C,D] € %) nmp, COnsider

[EC7AC; BC;CC7 DC]

E 0O [A L B][O (4.4)
- O 0 0 5 C Ly D 5 7|p 5 [O 0 Im} 7Om’p S Zl+p+|c,n+k+m,p,m-
0 0O

K« 0 Ky 0
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By an interconnection of this system wifg, A B,C,D] as depicted in Figurd.1, we see
that the state of the controller contains a cagyof the inputu. The closed-loop system is
therefore described by the DAE.Q).

In the following we analyze the properties of the contralted) in terms of the following
properties of[E,A,B,C,D] € | nmp and the matricey € Rlex", K, € Rlex™, L, € Rk
Ly € RP*K,

(C1) [0,Ky,Kx,Im,Q] is a compatible controller fdE, A, B, In,0].

(C2) The DAE[[E Y], [ @]] is behaviorally stable.
(C3) For all f € L5 (R;R"), x° € ¥ zcp there existx € L5 (RiR"), u €

L (R;R™) with Exe /% (R;R'), Ex(0) = EXC and, for almost alt € R,

loc
2l o (W) - < ] G0)+ ()
a0 O \ult)) |Kx Ku| \u(t) f(t))”
(C4) [Eo,Ao,Bo,Co,Do| as in B.4) (for somek € Np) with (3.8) is an asymptotic observer
for [E,A B,C,D].
(C5) [Eo,Ao,Bo,Co,Dg| as in B.4) (for somek € Np) with (3.8 is a freely initializable
observer fofE,A,B,C,D].

Note that(C4)is equivalent to behavioral detectability [&, A, B,C, D] and(C5) implies
strong detectability ofg, A,B,C,D].

Before we present the main result on properties of the cbatr@l.4), we show that
for a behaviorally stabilizable system we can always fiace R'e*", K, € Rle*™ with the
propertieC1)C3).

LEMMA 4.3. Let[E,A,B,C,D] € Z| ,mp be behaviorally stabilizable. Then there exist
lc € No, Ky € Rlex" K, € Rle*™ with the propertiegC1), (C2)and(C3).

Proof. The propertie$C1) and(C2) are an immediate consequence®fThm. 3.4.10].
Property (C3) follows from the fact that in the construction used in the girof [5,
Thm. 3.4.10] the inhomogeneity is only applied to a regular subsystem, thus solutions
exist for all such inhomogeneities and all consistentahitaluesO

THEOREM4.4. Let[E,A,B,C,D] € 5| nmpand letklc € Noand K, € Rlexn, K, € Rlex™,
Lx € R™K L, € RP*k Then we have the following féEc, Ac, Bc,Ce, D] as in(4.4):

a) If (C1)holds, thenE., A, Bc,Ce, D¢ is @ compatible controller fofE, A, B,C, D).

b) If (C1), (C2) and (C4) hold, then[E., Ac,Bc,Cc,D¢] is a stabilizing controller for
[E,A,B,C,D].

c) If (C1)HC5) hold, then|[Ec,Ac, B¢, Ce, D] is a freely initializable stabilizing con-
troller for [E,A,B,C,D].

Proof.

a) Assume thax® e ”I/[g”;BCD]. Then by(C1) there existgx,u) € SBHE 912 211
ABE 0 0)'[Kx Ky
with Ex(0) = ExX’. Then we obtain that the DAE4(2) is satisfied fory = Cx+

Du, z=x andd = 0. Therefore, we havéx,u,y) € B agcpj, EX0) = EX’, and
(X, Y;U) € B, A Be.Co.De] TOF X = (é) This shows compatibility of the controller
[EC7AC; BC;CC7 DC]

b) Assume thaf{C1), (C2) and(C4) hold true. Compatibility of Ec, Ac, Bc,Ce, D¢] is
a consequence of statement a). Next we show, y§i2yjand(C4), that the closed-

loop system is behaviorally stable. B¢2) together with Lemm&.3 and (C4)
together with Theorera.4 c) we have

-AE+A B
KX Ku

-AE+A L

VA eCy: rk(c[ c L
y

}:m—m/\rk@[ }:m—k,
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thus
—-AE+A B 0 0
. Kx Ku Kx o _
YAeCy: rke 0 0 AE+A L =2n+m+Kk.
0 0 C Ly

Then Lemma2.3 implies that the DAE 4.3 is behaviorally stable. Now, let
(X,U,y) € Bapcp andx. € ZL(R;R™) such that(xc,y,U) € Bje, Ac BoCe.D-

Write X; = (é) according to the decomposition id.4). Then, fore=z—x,
(x,u,d,e) solves &.3) and hence, by behavioral stability,

tlm esSSUR,) =0.

DO Qc X

Therefore, invoking alsg = Cx+ Du, we further find

lim esssup, [yl =0 A lim esssup., x|l = 0.

This shows thaE., A, B¢,Cc, D¢] is a stabilizing controller.
c) Assume tha(C1){(C5) hold true. By b), we obtain thdE;, A, B¢,Cc, D¢ is a sta-
bilizing controller for[E,A,B,C,D]. To prove statement c), it therefore suffices to

show that for albk® € 72 ; andz® € R", there exists a solution of the DAB.Q)

with Ex(0) = x® andEZ0) = EZ.

Assume that® ¢ 7/[;;{;(78] andZ’ € R". By (C5), [Eo,Ao,Bo,Co,Do] as in @.4) is

a freely initializable observer fdE, A, B,C, D]. Thus, by an application of the defi-
nition of freely initializable observers to the trivial jegtory (0,0,0) € g agcp)s
we obtain that there exists some soluti@d) of the DAE 3.7) with Eg(0) =

E(Z2 —x%). Moreover, by(C3), there exists a solutiofx, u) of the DAE

E O] /xt)\ [A B]/x(t) 0 -
a [o o} (u(t)) = [Kx Ku] (u(t)) + (Kxe(t))’ Ex(0) = EX.
Hence, the DAE 4.3 is solved by(x,u,e,d). Thereforex, u, z=x+e¢e, d and
y = Cx+ Du satisfy @.2) with Ex(0) = EX° and

EZ0) = Ex(0) + E€0) = EX+E(X - xX°) = EZ.
This proves the desired result.

We are now in the position to finish the proof of Theoréra

Proof of Sufficiency in Theorem2
The assertion follows from Theore#n b)together with Lemma.3and Theoren3.4c) O

REMARK 4.5 (Controllers). Assume thafE,A,B,C,D] € X nmp is behaviorally sta-
bilizable. By the Kalman decomposition frorh3[ Thm. 13.1] (see also3]) there exist
W e Gl|(R), T € Glp(R) such that

SE11—A11 sEo—Ap B
W(SE—-A)T = WB= CT=|0 C
( ) 0 SEzzAzz} ’ [Bz] ’ [ 2]
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where [Ez2, A22,B2,Co,D] € 2, n, mp IS completely observable (in the sense b§]] and
behaviorally stabilizable, andk [Ecﬂ = no. Therefore,[Ezz, A2z, B2,Cp, D] is in particu-
lar strongly detectable. From Theore®i8 d) Lemma4.3 and Theoren#.4 c)we may then
conclude that there exists a freely initializable stalilgzcontroller[Ecy, A2, Bep,Ce2, De2] €
Z|Q’nC2,p’m for [Ezz,Azz, Bz,Cz, D].

REMARK 4.6 (Controllers for regular systems).et a behaviorally stabilizable and
behaviorally detectable systejf, A,B,C,D] € Z,nmp be given such that s A € R[g]™"
is regular. Then, by Remaik 9, we can make the choicg k& Ip, Lx = —L in the observer
realization(3.4). Elimination of the variable d gives rise to an asymptoticelver(3.26. If
[E,A,B,C,D] is additionally impulse observable, then, invoking RensagkL can be chosen
such that(3.26 is a regular and freely initializable observer.

By regularity of sSE- A and behavioral stabilizability dE, A, B,C, D], there exists some E
R™" such thatrke (AE — (A+BF)) =n for all A € C, (in particular, SE— (A+ BF) is
regular). By using

ln —B][-SE+A B][ln 0] [-SE+A+BF 0
0 Ip|| —F Im]|F 1]~ 0 Ip

together with regularity of sE- (A+ BF), we now obtain tha{C1)«C3) hold true for
Kx = —F and K, = Im. In other words, we add the feedback relatioft)u= Fz(t) to the
observer(3.26), see Figured.3.

u(t) dEX(t) =AX(t) +Bu(t) y(t)

N

Dynamic controller

7
A

dEZt) = (A+LC)z(t) + (B+LD)u(t) — Ly(t)

Z(t)

Fig. 4.3: Controller structure in the regular case

Altogether, this means thatt) = Fz(t) and
d(t) = CZt) +Du(t) —y(t) = (C+ DF)z(t) - y(t),

thus we can eliminate the variables d and the copy of the iiptite controller realiza-
tion (4.4), to obtain the following simplified controller realization

SEZt) =(A+LC+BF + LDF)Z(t) — Ly(t),
U(t) = FZ(t),

see Figured.4.
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9EZAt) = (A+LC+BF +LDF)z(t) — Ly(t)
u(t) =Fz(t)

Fig. 4.4: Controller for regular systems

4.3. Notes and referencesDynamic controllers are also callelynamic compensators
or output regulatorsn literature. Research on generalization of Luenberggeas for ODEs
to the DAE case started in the 1980’s.

Dai and Wang used the following approach for strongly sizddile and strongly detectable
systemgE, A, B,C,0] € 2, nm p With regularsE— A € R[s]™*" (see P5,26,56,57]): First, it is
shown that there exists a proportional output feedhgick= Ky(t) + v(t) for someK € R™P,
such that for the closed-loop system

[EK,AK,BK,CK,DK] = [E,A+ BKC, B,C,O]

we have thasEc — Ak is regular and its index is at most one. Thereafter, a rdadizaf
this system by an ODE is considered and an ordinary staiglizontroller{ln,, Ac, B¢, 0] €
Zne,ne,p,m according to Luenberger’s approach is applied. A stabijziontroller is then given
by [Ine, Ac, Be, K.

The more direct approach for regular systems as describRdrmark4.6 has been pre-
sented in16,16,27,28,41,49,62.

To the authors’ best knowledge, controller design for systevith singulaisE — A has
not been studied before.

5. Conclusions. In this paper we have studied existence and design of olbrsefwe
linear time-invariant differential-algebraic systemse¥hare not necessarily regular. Thereby
we have followed the definition of (asymptotic, exact) olees for behavioral system from
[M.E. Valcher and J.C. WillemdEEE Trans. Autom. Contrpl4 (1999), pp. 2297-2307].
In particular, we have been interested in existence andjdegiobservers which are again
an differential-algebraic system. Existence of such olessthas been characterized in terms
of behavioral detectability and observability of the todigserved system. Further, novel
formulas for observers have been presented. We have moreonsidered existence and
design of (asymptotic) observers exist whose initial valaa chosen arbitrarily. It turned
out that a sufficient criterion for the existence of such obmes is impulse observability and
strong detectability, respectively.

After that, we have used our results on observers for desigreristence of differential-
algebraic stabilizing controllers for differential-algaic systems. Existence of stabilizing
controllers turned out to be equivalent to behavioral $tadhility and behavioral detectabil-
ity of the to-be-controlled system. As well we have studigtence and design of com-
patible and freely initializable controllers. That is, antwller which can be interconnected
to the system in arbitrary initial state and, respectivalgontroller might have an arbitrary
initial state.
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