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Abstract. We are concerned with matrices over nondivision algebras and show by an example
from an R

4 algebra that these matrices do not necessarily have eigenvalues, even if these matrices are
invertible. The standard condition for eigenvectors x 6= 0 will be replaced by the condidition that x

contains at least one invertible component which is the same as x 6= 0 for division algebras. The topic
is of principal interest, and leads to the question what qualifies a matrix over a nondivision algebra
to have eigenvalues. And connected with this problem is the question, whether these matrices are
diagonalizable or triangulizable and allow a Schur decomposition. There is a last section where the
question whether a specific matrix A has eigenvalues is extended to all eight R4 algebras by applying
numerical means. As a curiosity we found that the considered matrix A over the algebra of tessarines,
which is a commutative algebra, introduced by J. Cockle, 1849, [2, 3], possesses eigenvalues.

1. Introduction. By standard matrices we understand square matrices with
entries from R,C,H, the fields of real numbers, complex numbers, and quaternions,
respectively. They have in common that they form a division algebra. By algebras in
general we will understand the vector space R

N equipped with an associative multi-
plication R

N × R
N → R

N , with a one, often abbreviated as 1, where N ∈ N, the set
of positive integers. For algebras in this general sense, we will use the notation A.
More details can be found in a book by Garling, [5]. The name geometric algebra is
often used for these algebras, [6].

A division algebra is an algebra, where the zero element is the only noninvertible
element. Square matrices which have n rows and n columns are called matrices of
order n. This paper will deal with matrices of order n ∈ N, where the entries are from
some algebra in the sense mentioned. In this context we also speak of matrices over an
algebra A. We also write A ∈ An×n to denote a square matrix of order n with entries
from an algebra A. At some occasions we also have to deal with nonsquare matrices
which are denoted by A ∈ Am×n. If m = 1, A is called row vector, if n = 1, A is
called column vector.

The question whether standard matrices have eigenvalues does not come up, since
it is known, that these matrices have always eigenvalues and the number of eigenvalues
never exceeds the order n. See Horn and Johnson, [7] for matrices over R,C, and
Brenner, [1], and Zhang, [19] for matrices over H. For matrices over A the term
number of eigenvalues will be made more precise a little later.

However, for matrices over nondivision algebras the answer to the question are
there eigenvalues at all is not so clear, and in the first place one should make clear
what an eigenvalue is. Let A ∈ An×n where A is a division algebra. The standard
definition is

Ax = xλ, x 6= 0(1.1)
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for an eigenvalue λ ∈ A with respect to an eigenvector x ∈ An×1. Even in the
standard case it is reasonable, to write xλ instead of λx, because λ may be regarded
as a 1× 1 matrix. The vector 0 is the zero column vector. In a division algebra, the
condition x 6= 0 is equivalent to saying that the vector x contains at least one invertible
component. However, if we transfer this definition also to nondivision algebras, then
x 6= 0 would allow that all components of x are noninvertible. We will see a little
later, that this definition does not lead to a reasonable theory of eigenvalues.

Definition 1.1. Let A be a nondivision algebra. We denote the set of nonin-
vertible elements of A by NA. An element λ ∈ A will be called an eigenvalue with
respect to an eigenvector x of a matrix A ∈ An×n if

Ax = xλ, x /∈ (NA)
n×1.(1.2)

The set of all eigenvalues of a matrix A will be denoted by σ(A). If (λ,x) only solves
(1.1), then, λ will be called a candidate for an eigenvalue with respect to x.

Definition 1.2. Let A be an algebra. Two elements a, b ∈ A are called similar,
denoted by a ∼ b, if there is an invertible element h ∈ A such that a = h−1bh. The
set of all elements similar to a is denoted by [a] and

[a] := {b = h−1ah for all h /∈ NA}

is called the similarity class of a. See also [18] for an early paper in this context. We
will see in the next theorem, that the existence of one eigenvalue λ will imply that
the whole similarity class [λ] consists of eigenvalues.

Theorem 1.3. Let λ be an eigenvalue of A with respect to the eigenvector x.
Then, h−1λh is also an eigenvalue of A with respect to xh for all h /∈ NA.

Proof. Multiply the defining equation (1.2) from the right by h. Then,

A(xh) = xλh = (xh)(h−1λh).

Since x /∈ (NA)
n×1, the same is true for xh, since h is invertible.

In view of Theorem 1.3 the number of eigenvalues of a matrix A is defined as the
number of similarity classes which contain eigenvalues. We see in the next theorem
that one of the essential requirements for eigenvalues is valid in the framework of this
definition of eigenvalues.

Theorem 1.4. Let A be a matrix over an arbitrary algebra A and let there be two
eigenvalues λ1 and λ2 of A with respect to the same eigenvector x. Then, λ1 = λ2.

Proof. By definition, Ax = xλj , j = 1, 2. This implies 0 = x(λ1 − λ2). Since,
also by definition, x contains an invertible component, we have λ1 − λ2 = 0.

We also see here already that the assumption x 6= 0 alone would not allow the
conclusion of the last theorem.

Let us turn to the question, whether all matrices over nondivision algebras have
eigenvalues. There are two strategies. If one believes that there are always eigenvalues,
one has to prove it. Otherwise, life is a little easier, one has to find one example of a
matrix which does not have eigenvalues. We will pursue this line.

2. Some elementary properties of R4 algebras . In order to find an example
we will restrict our search to the eight algebras of R

4. These algebras with their
multiplication rules are summarized in the following table. The four units in these
algebras are denoted by 1, i, j,k.
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Table 2.1. Eight R
4 algebras with their essential multiplication rules and

names.1

No Name of algebra Short name i2 j2 k2 ij jk ki

1 Quaternions H −1 −1 −1 k i j

2 Coquaternions Hcoq −1 1 1 k −i j

3 Tessarines Htes −1 1 −1 k i −j

4 Cotessarines Hcotes 1 1 1 k i j

5 Nectarines Hnec 1 −1 1 k i −j

6 Conectarines Hcon 1 1 −1 k −i −j

7 Tangerines Htan 1 −1 −1 k −i j

8 Cotangerines Hcotan −1 −1 1 k −i −j

The full multiplication table of the eight listed algebras can be obtained by mul-
tiplying the last three columns in Table 2.1 from the right by j,k, i, respectively.
We note that the four algebras Htes,Hcotes,Htan,Hcotan with the numbers 3,4,7,8 are
commutative. See [8, Table 12.1].

Elements in all these algebras will be denoted by a = (a1, a2, a3, a4) which is the
same as a = a1 + a2i+ a3j+ a4k, where a1, a2, a3, a4 ∈ R. The first component a1 of
a is called real part of a and it is denoted by ℜ(a). An algebra element of the form
(a1, 0, 0, 0), a1 ∈ R is called real and the set of real elements is also identified with R.
The set R plays a special role in all noncommutative R

4 algebras. All elements of R
(and no others) commute with all algebra elements. Let a, b ∈ A where A is one of
the eight R4 algebras. Then,

ℜ(ab) = ℜ(ba).

For the four noncommutative algebras (No 1,2,5,6) we define the conjugate of an
element a = (a1, a2, a3, a4) in the notation a or conj(a) by

a = conj(a) := (a1,−a2,−a3,−a4),

and we use the notation

abs2(a) := a a

for the product a a. The essential properties are given in the next theorem.
Theorem 2.2. Let A be one of the four noncommutative algebras of Table 2.1.

Then abs2(a) = a a = a a is real, and a is invertible if and only if abs2(a) 6= 0. For
the inverse of a there is the formula

a−1 =
a

abs2(a)
, if abs2(a) 6= 0.

Let a, b ∈ A. Then, there is the property that abs2 is multiplicative:

abs2(ab) = abs2(ba) = abs2(a)abs2(b).

Two nonreal elements a, b ∈ A are similar if and only if

ℜ(a) = ℜ(b) and abs2(a) = abs2(b).(2.1)

1The names of the algebras with the numbers 5 to 8 where given by Schmeikal, [16].
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For abs2(a) there is the formula

abs2(a) =







a21 + a22 + a23 + a44 for a ∈ H,
a21 + a22 − a23 − a44 for a ∈ Hcoq,
a21 − a22 + a23 − a44 for a ∈ Hnec,
a21 − a22 − a23 + a44 for a ∈ Hcon.

(2.2)

Proof. See [8].

It should be noted, that the additional condition in (2.1) that a, b are nonreal, can-
not be omitted for all three noncommutative R4 algebras different from quaternionsH.
Otherwise a = (1, 0, 0, 0) and b = (1, 5, 4, 3) would be similar in Hcoq, a = (1, 0, 0, 0)
and b = (1, 4, 5, 3) would be similar in Hnec and a = (1, 0, 0, 0) and b = (1, 3, 4, 5)
would be similar in Hcon. However, in all four noncommutative R

4 algebras a real
element is never similar to a nonreal element. In Pogoruy and Rodŕıguez-Dagnino,
[15], this condition is missing.

Since eigenvalues appear always in similarity classes, we can reduce the eigenvalues
to certain representatives of the similarity classes.

Lemma 2.3. All eigenvalues of matrices over H can be given the form a + bi.
All eigenvalues of matrices over Hcoq and over Hnec can be given the form a + bi or
a+ bj. All eigenvalues of matrices over Hcon can be given the form a+ bi or a+ bk,
where in all cases b ≥ 0.

Proof. This follows from (2.2) in dependence of the sign of abs2 together with
(2.1).

For this reason all eigenvalues of matrices over H can be represented as complex
numbers, see Brenner, [1] and therefore, the eigenvalue theory of matrices over H is
very similar to the standard case of matrices over R or over C.

For later use we will provide two tables for simple multiplication rules.

Lemma 2.4. Let a ∈ A where A is one of the eight R
4 algebras of Table 2.1.

Then, the multiplication of a by i, j,k from the left and from the right results apart
from the signs in a permutation of the four components of a. Let a = (1, 2, 3, 4), then
the corresponding permutations (inclusive the signs) are given in the following two
tables.

Proof. Apply the multiplication rules.

Table 2.5. Multiplication table of i a, j a, k a, a = (1, 2, 3, 4).

A i a j a k a
H (−2, 1,−4, 3) (−3, 4, 1,−2) (−4,−3, 2, 1)
Hcoq (−2, 1,−4, 3) (3,−4, 1,−2) (4, 3, 2, 1)
Htes (−2, 1,−4, 3) (3, 4, 1, 2) (−4, 3,−2, 1)
Hcotes (2, 1, 4, 3) (3, 4, 1, 2) (4, 3, 2, 1)
Hnec (2, 1, 4, 3) (−3, 4, 1,−2) (4,−3,−2, 1)
Hcon (2, 1, 4, 3) (3,−4, 1,−2) (−4, 3,−2, 1)
Htan (2, 1, 4, 3) (−3,−4, 1, 2) (−4,−3, 2, 1)
Hcotan (−2, 1,−4, 3) (−3,−4, 1, 2) (4,−3,−2, 1)
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Table 2.6. Multiplication table of a i, a j, ak, a = (1, 2, 3, 4).

A a i a j ak
H (−2, 1, 4,−3) (−3,−4, 1, 2) (−4, 3,−2, 1)
Hcoq (−2, 1, 4,−3) (3, 4, 1, 2) (4,−3,−2, 1)
Htes (−2, 1,−4, 3) (3, 4, 1, 2) (−4, 3,−2, 1)
Hcotes (2, 1, 4, 3) (3, 4, 1, 2) (4, 3, 2, 1)
Hnec (2, 1,−4,−3) (−3,−4, 1, 2) (4, 3, 2, 1)
Hcon (2, 1,−4,−3) (3, 4, 1, 2) (−4,−3, 2, 1)
Htan (2, 1, 4, 3) (−3,−4, 1, 2) (−4,−3, 2, 1)
Hcotan (−2, 1,−4, 3) (−3,−4, 1, 2) (4,−3,−2, 1)

3. One dimensional eigenvalue problems and matrix representations.

All algebras (at least those considered here) are isomorphic to certain real matrix
spaces. So it is reasonable in an eigenvalue problem over an algebra A to replace
the algebra elements by isomorphic matrices so that the eigenvalue problem over A
appears as a problem in real matrices.2 Since these matrices can have only real or
complex eigenvalues, it is of interest to study the connection between these eigenvalues
and the eigenvalues of the underlying matrices over A. For this purpose we study the
simplest, one dimensional case

ax = xλ, a, x, λ ∈ A, x invertible.(3.1)

A (1 × 1) matrix a may be regarded simultaneously as a diagonal and a triangular
matrix. Therefore, the reults of the Lemma 4.7, p. 14 are valid for the problem (3.1).

Lemma 3.1. Let A be an arbitrary algebra. The eigenvalue problem (3.1) is
always solvable and the solution is

λ ∈ [a].(3.2)

Proof. The invertible eigenvector x = 1 solves the problem. Multiplying equation
(3.1) from the left by x−1, yields λ = x−1ax = a. The remaining part follows from
Theorem 1.3.

How to find the matrix equivalents of an algebra element a ∈ A. The simplest
idea is, to regard the mapping

ℓa : A → A defined by ℓa(x) := ax, x ∈ A(3.3)

as a linear mapping over R. Let A have dimension N and a = (a1, a2, . . . , aN ) ∈ A.
Define

col(a) := (a1, a2, . . . , aN )T ∈ R
N ,

where T defines transposition, such that col(a) is a real column vector of length N .
Then according to a well known theory (see Horn and Johnson, [7, Chapter 0]) all
linear transformations over R can be represented by a real N×N matrix M such that
the linearity of ℓa defined in (3.3) implies that

col(ℓa(x)) = Mcol(x).(3.4)

2 For some algebras, also complex matrix representations are possible. For quaternions see [17,
p. 55]. Here, we will restrict ourselves to real matrix representations.
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Details for computing the matrix M are in [8, 9, 12]. Now, we compare the (known)
real or complex eigenvalues of M with the corresponding representatives of [a]. For
all R4 algebras the eight 4×4 matrix representations are given in [8, Table 12.2]. The
four matrices belonging to the noncommutative cases have a minimal polynomial of
degree only 2, such that there are (at most) two distinct eigenvalues. The eigenvalues
of all eight matrices are listed in Table 3.2.

Table 3.2. List of all eigenvalues λ1,2,3,4 of M in all eight R
4 algebras. The

eigenvalues λ1,3 correspond to the +sign, and eigenvalues λ2,4 to the −sign. We use
the abbreviation A := abs2(a)− a21, with abs2(a) from (2.2).

No Name of algebra λ1,2 λ3,4

1 Quaternions a1 ±
√
A i a1 ±

√
A i

2 Coquaternions a1 ±
√
A i a1 ±

√
A i

3 Tessarines a1 + a3 ± (a2 + a4) i a1 − a3 ± (a2 − a4) i
4 Cotessarines a1 − a2 ± (a3 − a4) a1 + a2 ± (a3 + a4)

5 Nectarines a1 ±
√
A i a1 ±

√
A i

6 Conectarines a1 ±
√
A i a1 ±

√
A i

7 Tangerines a1 + a2 ± (a3 + a4) i a1 − a2 ± (a3 − a4) i
8 Cotangerines a1 + a4 ± (a2 − a3) i a1 − a4 ± (a2 + a3) i

In the following Theorem we give a reconstruction scheme for representatives of
eigenvalues in [a], from the real and complex eigenvalues λℓ, ℓ = 1, 2, 3, 4 of M (see
Table 3.2), where a is a member of one of the eight R4 algebras.

Theorem 3.3. Let a = (a1, a2, a3, a4) ∈ A where A is one of the eight R
4

algebras. Let the real or complex eigenvalues of M be λℓ, ℓ = 1, 2, 3, 4, which are
listed in Table 3.2. A representative of [a] is given by the entries of Table 3.4.
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Table 3.4. List of representatives of [a] in terms of matrix eigenvalues
λj , j = 1, 2, 3, 4 for all eight R4 algebras, A := abs2(a)− a21.

algebra representatives of [a] case

H a1 = ℜ(λ1), a2 = ℑ(λ1), a3 = a4 = 0 A ≥ 0
Hcoq a1 = ℜ(λ1), a2 = ℑ(λ1), a3 = a4 = 0 A ≥ 0
Hcoq a1 = (λ1 + λ2)/2, a3 = abs((λ1 − λ2)/2), a2 = a4 = 0 A < 0.
Hnec a1 = ℜ(λ1), a3 = ℑ(λ1), a2 = a4 = 0 A ≥ 0
Hnec a1 = (λ1 + λ2)/2, a2 = abs((λ1 − λ2)/2), a3 = a4 = 0 A < 0
Hcon a1 = ℜ(λ1), a4 = ℑ(λ1), a2 = a3 = 0 A ≥ 0
Hcon a1 = (λ1 + λ2)/2, a2 = abs((λ1 − λ2)/2), a3 = a4 = 0 A < 0

commutative algebras

Htes a1 =
1

4
(λ1 + λ2 + λ3 + λ4), a2 = − i

4
(λ1 − λ2 + λ3 − λ4)

a3 =
1

4
(λ1 − λ2 − λ3 − λ4), a4 = − i

4
(λ1 − λ2 − λ3 + λ4)

Hcotes a1 =
1

4
(λ1 + λ2 + λ3 + λ4), a2 =

1

4
(−λ1 − λ2 + λ3 + λ4)

a3 =
1

4
(λ1 − λ2 + λ3 − λ4), a4 =

1

4
(−λ1 + λ2 + λ3 − λ4)

Htan a1 =
1

4
(λ1 + λ2 + λ3 + λ4), a2 =

i

4
(λ1 + λ2 − λ3 − λ4)

a3 =
1

4
(λ1 − λ2 − λ3 − λ4), a4 =

i

4
(λ1 − λ2 − λ3 + λ4)

Hcotan a1 =
1

4
(λ1 + λ2 + λ3 + λ4), a2 = − i

4
(λ1 − λ2 + λ3 − λ4)

a3 = − i

4
(−λ1 + λ2 + λ3 − λ4), a4 =

1

4
(λ1 + λ2 − λ3 − λ4)

Proof. For the noncommutative cases we use Lemma 2.3 by keeping the similarity
class of [a] with the help of formula (2.1). For the commutative cases we reconstruct
the four values of aj from the four eigenvalues λj , j = 1, 2, 3, 4.

The cases A < 0 in the first part of Table 3.4 always mean that the eigenvalues
λj , j = 1, 2 are real. We will provide two simple examples, one for the noncommu-
tative, one for the commutative case, which show, that allowing eigenvectors with all
components noninvertible may lead to not uniquely determined eigenvalues and to
other strange situations.

Example 3.5. Example 1. Let A = Hcoq. Define

A = (1, 3, 2, 3) ∈ Hcoq
1×1 and x = (1, 3,−1, 3) ∈ Hcoq

1×1.

Then, Ax = (−1,−3, 1,−3). Note, that x is noninvertible. The equation Ax = xλ
has the following solutions for λ: choose λ1, λ2 arbitrarily and determine λ3, λ4 by

λ3 =
−4− 4λ1 − 3λ2

5
, λ4 =

−3− 3λ1 + 4λ2

5
.

Examples for λ are λ = (−4, 4, 0, 5), λ = 1
10
(−5, 0,−4,−3). The first one is invert-

ible, the second one is noninvertible. This example shows, that there are infinitely
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many similarity classes which contain eigenvalues and the eigenvalues may be invert-
ible and not invertible. The inverse of A is A−1 = 1

3
(−1, 3, 2, 3). If we would exclude

noninvertible eigenvectors, the solutions of Ax = xλ would be only λ ∼ A.
Example 2. Let A = Hcotes. Note, that Hcotes is commutative. Define

A = (2, 3, 2,−1) ∈ Hcotes
1×1 and x = (1,−1, 1,−1) ∈ Hcotes

1×1.

Then, Ax = (2,−2, 2,−2). The solutions of Ax = xλ are all λ ∈ Hcotes with

λ1 − λ2 + λ3 − λ4 = 2.

The matrix A is invertible, A−1 = 1
24
(4, 1, 4,−5), the eigenvector x is not invert-

ible and in the set of possible eigenvalues λ there are invertible and noninvertible
eigenvalues. An invertible example is λ = (3,−1, 4, 6), a noninvertible example is
λ = (0,−1, 0,−1). This shows also, that an invertible matrix A may have noninvert-
ible eigenvalues. On the other hand, if noninvertible eigenvectors are excluded, then,
the only eigenvalue of A is λ = A.

Now we can apply these results also to larger matrices over noncommutative
algebras by replacing the algebra elements in the matrix by real matrices according to
formula (3.4). And by distinguishing between real and complex, nonreal eigenvalues
we can obtain information on the eigenvalues of the original matrix by applying the
results of Table 3.4. However, there is a serious drawback. Since we are using standard
techniques to find the eigenvalues of real matrices, the standard condition x 6= 0 is
invoked. Thus, whether the eigenvalues computed by standard techniques are also
eigenvalues of the underling algebraic matrix is a priori unknown. We will use one
example to demonstrate the details. Let

A :=

[
1 i

j k

]

(3.5)

be a matrix in Hcoq that will play a central role in this paper. If we replace the
four entries of A by corresponding real 4× 4 matrices we obtain a real 8× 8 matrix
which has the (double) eigenvalues ±

√
2 and 1± i. Now the second and third row of

Table 3.4 tells us, that the eigenvalues of A are (possibly)

λ1 := 1 + i and λ2 :=
√
2 j.(3.6)

If we have a look at the standard eigenvectors we see that they all have the form
(a, b, b, a, c, d, d, c). If we speculate that the first and second four elements are co-
quaternionic elements, then they are noninvertible. We will see in the next section,
that the true eigenvectors belonging to A are indeed all noninvertible.

4. A counterexample. We will eventually show, that the matrix A defined in
(3.5)

will have no eigenvalues in Hcoq. We note, that A is invertible in Hcoq and

A−1 :=
1

2

[
1 j

−i k

]

.(4.1)

We denote the eigenvectors of A by

x :=

[
x1

x2

]

:=

[
(u1, u2, u3, u4)
(v1, v2, v3, v4)

]

,(4.2)
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and require for a λ ∈ Hcoq to qualify as eigenvalue of A with respect to an eigenvec-
tor x that

Ax = xλ, x contains at least one invertible component.(4.3)

See the Definition 1.1. We will first show, that the two candidates for eigenvalues
λj , j = 1, 2 obtained in (3.6) are not eigenvalues of A. Then we will show that in
general no eigenvalues exist.

Lemma 4.1. λ = 1 + i is not an eigenvalue of A, where A is defined in (3.5).
Proof. Let λ := 1 + i. Then, we have to find the eigenvectors x := (x1, x2)

T

(T means transposition) from the defining equations

x1 + ix2 = x1(1 + i),

jx1 + kx2 = x2(1 + i).

By using the tables 2.5, 2.6, the first equation can be written as

(u1, u2, u3, u4) + (−v2, v1,−v4, v3) = (u1, u2, u3, u4) + (−u2, u1, u4,−u3),

which implies

u1 = v1, u2 = v2, u3 = −v3, u4 = −v4,

and the second equation as

(u3,−u4, u1,−u2) + (v4, v3, v2, v1) = (v1, v2, v3, v4) + (−v2, v1, v4,−v3).

Comparing all four components and using the results from the first equation, we
obtain eventually the pair of equations

v1 + v2 = v3 + v4, v1 − v2 = −v3 + v4.

Adding and subtracting these equations yields

v1 = v4, v2 = v3,

Thus, altogether with v1, v2 ∈ R, |v1|+ |v2| > 0 the eigenvector components are

x1 = (v1, v2,−v2,−v1), x2 = (v1, v2, v2, v1),

and both components are not invertible. Thus, 1+i is not an eigenvalue ofA, however,
it is a candidate for an eigenvalue.

Lemma 4.2. λ =
√
2 j is not an eigenvalue of A, where A is defined in (3.5).

Proof. In this case x := (x1, x2)
T is wanted which solves

x1 + ix2 =
√
2x1 j,

jx1 + kx2 =
√
2x2 j.

The first and second equation can be written as (see Tables 2.5, 2.6)

(u1, u2, u3, u4) + (−v2, v1,−v4, v3) =
√
2 (u3, u4, u1, u2),

(u3,−u4, u1,−u2) + (v4, v3, v2, v1) =
√
2 (v3, v4, v1, v2),

and these equations imply, respectively
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v1 =
√
2 u4 − u2, v2 = u1 −

√
2u3, v3 =

√
2u2 − u4, v4 = u3 −

√
2 u1,

u1 =
√
2 v1 − v2, u2 = v1 −

√
2 v2, u3 =

√
2 v3 − v4, u4 = v3 −

√
2 v4.

From the first set of equations, we deduce
v1 +

√
2 v3 = u2,

√
2 v1 + v3 = u4,

√
2 v2 + v4 = −u3, v2 +

√
2 v4 = −u1.

Comparing with the second set of equations yields
v1 = −v4, v2 = −v3, u3 = u2, u1 = u4.

This finally yields with u1 =
√
2 v1−v2, u2 = v1−

√
2 v2 and arbitrary v1, v2 ∈ R with

|v1|+ |v2| > 0:
x1 = (u1, u2, u2, u1), x2 = (v1, v2,−v2,−v1).

Both components of x are noninvertible, and
√
2 j is not an eigenvalue of A, but it is

a candidate for an eigenvalue.

Now we come to the general case. In the first place we show that the eigenvalue
problem can be expressed by two real, linear homogeneous 4× 4 systems.

Lemma 4.3. Let A = Hcoq, A defined in (3.5), x defined in (4.2) and λ =
(λ1, λ2, λ3, λ4). The eigenvalue problem

Ax = xλ

in A can be given the real form

Mm = 0, Nn = 0,(4.4)

where M and Nare two parameter dependent, real 4× 4 matrices as follows:

M :=







−1 0 λp2,3 λm1,4

0 −1 −λp1,4 λm2,3

λm2,3 λp1,4 −1 0
−λm1,4 λp2,3 0 −1






,(4.5)

N :=







−1 0 −λm2,3 −(λp1,4 + 2)
0 −1 λm1,4 + 2 −λp2,3

λp2,3 λm1,4 −1 0
−λp1,4 λm2,3 0 −1






,(4.6)

where

m := (u1 − u4, u2 − u3, v1 + v4, v2 + v3)
T,(4.7)

n := (u1 + u4, u2 + u3, v1 − v4, v2 − v3)
T,(4.8)

λm1,4 := λ1 − λ4 − 1, λm2,3 := λ2 − λ3,(4.9)

λp1,4 := λ1 + λ4 − 1, λp2,3 := λ2 + λ3.(4.10)

Proof.

We apply the rules given in Table 2.5 for Hcoq and obtain

Ax =: y =

[
(u1 − v2, u2 + v1, u3 − v4, u4 + v3)

(u3 + v4,−u4 + v3, u1 + v2,−u2 + v1)

]

=

[
(u1, u2, u3, u4)λ
(v1, v2, v3, v4)λ

]

(4.11)
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The multiplication rule in Hcoq is

(u1, u2, u3, u4)λ = (u1λ1 − u2λ2 + u3λ3 + u4λ4,

u1λ2 + u2λ1 − u3λ4 + u4λ3,

u1λ3 − u2λ4 + u3λ1 + u4λ2,

u1λ4 + u2λ3 − u3λ2 + u4λ1).

For (v1, v2, v3, v4)λ the same rule applies. Comparing the four components of the two
parts of (4.11) yields (after some reordering)

u1 = v1λ3 − v2(λ4 + 1) + v3λ1 + v4λ2,(4.12)

−u2 = v1(λ4 − 1) + v2λ3 − v3λ2 + v4λ1,(4.13)

u3 = v1λ1 − v2λ2 + v3λ3 + v4(λ4 − 1),(4.14)

−u4 = v1λ2 + v2λ1 − v3(λ4 + 1) + v4λ3,(4.15)

v1 = u1λ2 + u2(λ1 − 1)− u3λ4 + u4λ3,(4.16)

−v2 = u1(λ1 − 1)− u2λ2 + u3λ3 + u4λ4,(4.17)

v3 = u1λ4 + u2λ3 − u3λ2 + u4(λ1 − 1),(4.18)

−v4 = u1λ3 − u2λ4 + u3(λ1 − 1) + u4λ2.(4.19)

From these equations we deduce by adding and subtracting two sets of four linear
equations each. The first set is

u1 − u4 = (λ2 + λ3)(v1 + v4) + (λ1 − λ4 − 1)(v2 + v3),(4.20)

u2 − u3 = −(λ1 + λ4 − 1)(v1 + v4) + (λ2 − λ3)(v2 + v3),(4.21)

v1 + v4 = (λ2 − λ3)(u1 − u4) + (λ1 + λ4 − 1)(u2 − u3),(4.22)

v2 + v3 = −(λ1 − λ4 − 1)(u1 − u4) + (λ2 + λ3)(u2 − u3).(4.23)

The second set is
u1 + u4 = −(λ2 − λ3)(v1 − v4)− (λ1 + λ4 + 1)(v2 − v3),(4.24)

u2 + u3 = (λ1 − λ4 + 1)(v1 − v4)− (λ2 + λ3)(v2 − v3),(4.25)

v1 − v4 = (λ2 + λ3)(u1 + u4) + (λ1 − λ4 − 1)(u2 + u3),(4.26)

v2 − v3 = −(λ1 + λ4 − 1)(u1 + u4) + (λ2 − λ3)(u2 + u3).(4.27)

The equations (4.12) to (4.19) form a homogeneous linear system in the eight variables
u1, u2, . . . , v4. If we choose λ at random, then we have to expect that the above 8× 8
system has full rank and thus, λ is not a candidate for an eigenvalue. By adding and
subtracting we can recover the solution of the 8× 8 system from the solutions of the
two 4 × 4 systems. In short form the two 4 × 4 systems defined by (4.20) to (4.23)
and by (4.24) to (4.27) are the forms given in the lemma.

Lemma 4.4. Let λ ∈ Hcoq be arbitrary and let at least one of the matrices M,N
have rank four. Then λ is not an eigenvalue.

Proof. Let both matrices have rank four. Then, m = n = 0 (for definition see
(4.7), (4.8)) which implies u1 = u2, · · · = v4 = 0 (see (4.2)) and λ is not a candidate
for an eigenvalue. If only one of the two matrices has rank four, then either m = 0

or n = 0, which implies that the two components x1, x2 of the eigenvector x are both
noninvertible. Thus, λ is not an eigenvalue.

Therefore, only those λ can qualify for an eigenvalue, which render the ranks of
both M and N less than four.

Lemma 4.5. Matrix M has only the ranks two and four, matrix N all ranks ≥ 2.
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Matrix M has rank two if and only if

λ ∈ [1 + i].(4.28)

Matrix N has rank two if and only if

λ ∈ [
√
2 j] or λ = ±

√
2.(4.29)

Matrix N has rank three if and only if λ 6= ±
√
2, λ /∈ [

√
2 j] and

abs2
(
(λ1 ±

√
2, λ2, λ3, λ4)

)
= 0.(4.30)

For the definition of abs2 see (2.2). Formula (4.30) has the following special cases.

λ = (λ1, 0, λ3, 0), λ1λ3 6= 0 : (λ1 ±
√
2)2 = λ2

3,(4.31)

λ = (λ1, λ2, λ3, λ4), λ
2
2 − λ2

3 = 0, λ1λ4 6= 0 : (λ1 ±
√
2)2 = λ2

4.(4.32)

Proof. We put both matrices in block formM,N =

[
−I II

III −I

]

, where all blocks

consist of 2 × 2 matrices. Because of the presence of I, which is the 2 × 2 identity
matrix, the rank of both matrices M,N is at least two. Because of the similarity of
the matrices II, III of M (they have the same trace and determinant), the rank of M
cannot be three. For N all ranks ≥ 2 are possible. Rank two implies that there are
two linear combinations of the first two columns which allow to represent the third
and the fourth column. This restricts the set of possible λ and yields eventually (4.28)
and (4.29). In more detail, for the case rank(M) = 2 one has to solve

[
−1 0
0 −1

] [
a1
a2

]

=

[
λp2,3

−λp1,4

]

,

[
−1 0
0 −1

] [
b1
b2

]

=

[
λm1,4

λm2,3

]

.

The solution is a1 = −λp2,3, a2 = λp1,4; b1 = −λm1,4, b2 = −λm2,3.
Let the four columns of M be c1, c2, c3, c4, then, the resulting conditions are

a1c1 + a2c2 = c3; b1c1 + b2c2 = c4.

In explicit terms

−λp2,3







−1
0

λm2,3

−λm1,4






+ λp1,4







0
−1

λp1,4
λp2,3






=







λp2,3
−λp1,4

−1
0






,

−λm1,4







−1
0

λm2,3

−λm1,4






− λm2,3







0
−1

λp1,4
λp2,3






=







λm1,4

λm2,3

0
−1






.

By definition, only the last two rows are needed and imply

− λp2,3λm2,3 + (λp1,4)
2 = −1,(4.33)

λp2,3λm1,4 + λp1,4λp2,3 = 0,(4.34)

−λm1,4λm2,3 − λm2,3λp1,4 = 0,(4.35)

(λm1,4)
2 − λm2,3λp2,3 = −1.(4.36)

If we subtract the last from the first equation, we obtain
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λ4(λ1 − 1) = 0.

The middle two equations can be written as
λp2,3(λm1,4 + λp1,4) = 0,

λm2,3(λm1,4 + λp1,4) = 0,

which is the same as
(λ2 + λ3)(λ1 − 1) = 0,

(λ2 − λ3)(λ1 − 1) = 0,

If we do not put λ = 1, it follows, that λ2 = λ3 = λ4 = 0, however, this λ neither
obeys (4.33) nor (4.36). So we have to choose λ1 = 1, and λ2, λ3, λ4 obeying (4.33),
(4.36) results in λ2

2 − λ2
3 − λ2

4 = 1, which is (4.28).

Now let us treat the case, where rank(N) = 2. The technique to find the corre-
sponding conditions is the same as for M. The equations corresponding to (4.33) to
(4.36) are

λm2,3λp2,3 − (λm1,4 + 2)λm1,4 = −1,(4.37)

−λm2,3λp1,4 − (λm1,4 + 2)λm2,3 = 0,(4.38)

(λp1,4 + 2)λp2,3 + λp2,3λm1,4 = 0,(4.39)

−(λp1,4 + 2)λp1,4 + λp2,3λm2,3 = −1.(4.40)

Subtracting (4.40) from (4.37) yields
(λp14 − λm1,4)(λp1,4 + λm1,4 + 2) = 0,

The middle two equations can be written as
λm2,3(λp1,4 + λm1,4 + 2) = 0,

λp2,3(λp1,4 + λm1,4 + 2) = 0.

Let λp14 + λm14 + 2 = 2λ1 6= 0. Then λp1,4 − λm1,4 = 2λ4 = 0, λm2,3 = λ2 − λ3

= 0, λp2,3 = λ2 + λ3 = 0. Hence; λ2 = λ3 = λ4 = 0. Putting this in (4.37), (4.40)
yields λ1 = ±

√
2. Now let λ1 = 0. Then, (4.37), (4.40) imply λ2

2 − λ2
3 − λ2

4 = −2
which is equivalent to λ ∈ [

√
2 j]. Thus, (4.29) is shown.

LetN have rank three and denote, as before, the four columns ofN by c1, c2, c3, c4.
In order to find the linear combination to represent the last column by the first
three columns we have to find a1, a2, a3 from the first three rows and columns of
a1c1 + a2c2 + a3c3 = c4. Explicitly this reads





−1 0 −λm2,3

0 −1 λm1,4 + 2
λp2,3 λm1,4 −1









a1
a2
a3



 =





−(λp1,4 + 2)
−λp2,3

0



 .(4.41)

If the coefficients a1, a2, a3 are known, then, by using the fourth row of N, (see (4.6))
there is only one condition to satisfy:

− a1λp1,4 + a2λm2,3 = −1.(4.42)

It remains, to find the coefficients. We reduce (4.41) to triangular form. Then, the
third row becomes

[0, 0, (λm1,4 + 2)λm1,4 − (λm2,3λp2,3 + 1)] . . . = [−λp2,3(λm1,4 + λp1,4 + 2)].
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The solution formula, by backward substitution, is, therefore,

(
(λm1,4 + 2)λm1,4 − (λm2,3λp2,3 + 1)

)
a3 = −λp2,3(λm1,4 + λp1,4 + 2),(4.43)

−a2 + (λm1,4 + 2)a3 = −λp23,(4.44)

−a1 − λm2,3a3 = −(λp1,4 + 2).(4.45)

We insert a1, from (4.45) and a2 from (4.44) into the condition (4.42) and obtain

{λm2,3a3 − (λp1,4 + 2)}
︸ ︷︷ ︸

−a1

λp1,4 + {(λm1,4 + 2)a3 + λp2,3}
︸ ︷︷ ︸

a2

λm2,3 = −1.

Sorting yields

(
λm2,3λp1,4 + (λm1,4 + 2)λm2,3

)
a3 = −1 + (λp1,4 + 2)λp1,4 − λp2,3λm2,3.

In terms of the components of λ, this condition reads

2λ1(λ2 − λ3)a3 = (λ1 + λ4)
2 − (λ2

2 − λ2
3)− 2.

The equation (4.43) for a3 in terms of the λ components reads

(
(λ1 − λ4)

2 − (λ2
2 − λ2

3)− 2
)
a3 = −2λ1(λ2 + λ3).(4.46)

We put only for this proof

A := λ2
2 − λ2

3 + 2

and note that the factor (λ1 − λ4)
2 − A in (4.43) at a3 cannot vanish, because the

assumption that N has rank three implies that the three coefficients a1, a2, a3 are
uniquely defined. Inserting a3 into condition (4.46) yields

− 4λ2
1(λ

2
2 − λ2

3) =
(
(λ1 + λ4)

2 −A
)(
(λ1 − λ4)

2 −A
)
⇒

−4λ2
1(A− 2) = (λ2

1 − λ2
4)

2 − 2A(λ2
1 + λ2

4) +A2 ⇒
0 =

(
λ2
1 − λ2

4 +A
)2 − 8λ2

1

= (λ2
1 − λ2

4 +A− 2
√
2λ1)(λ

2
1 − λ2

4 +A+ 2
√
2λ1).(4.47)

which proves (4.30) and the special cases follow.
We summarize our results.
Theorem 4.6. The matrix A ∈ Hcoq

2×2 defined in (3.5) has no eigenvalues in
Hcoq, the algebra of coquaternions.

Proof. The previous Lemma 4.5 says, that λ defined by (4.28), (4.29), (4.30) are
the only candidates for eigenvalues of A over Hcoq. However, for all λ ∈ Hcoq at least
one of the matrices M,N has rank four. Thus, Lemma 4.4 applies and gives the final
result.

Lemma 4.7. Let D be a diagonal matrix of order n ∈ N over an algebra A with
diagonal elements d1, d2, . . . , dn. Then all diagonal elements dj , j = 1, 2, . . . , n are
eigenvalues of D. Let T be a triangular matrix (upper or lower) of order n ∈ N over
an algebra A with diagonal elements t1, t2, . . . , tn. Then, at least the first diagonal
element t1 is an eigenvalue of T.

Proof. Let ej ∈ An×1 be the the jth unit vector, where the jth component consists
of the algebraic one, and all other components consist of the algebraic zero. Then,
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Dej = djej = ejdj . Therefore, dj is a candidate for an eigenvalue with respect to ej ,
and since ej contains one invertible element, dj is an eigenvalue for all j = 1, 2, . . . , n.
Now, Te1 = t1e1 = e1t1, and t1 is an eigenvalue of T for the same reasons.

Corollary 4.8. The matrix A, defined in (3.5) is neither diagonalizable nor
triangulizable.

Proof. Since similar matrices have the same set of eigenvalues, and following
Lemma 4.7, diagonal and triangular matrices contain eigenvalues, they cannot be
similar to a matrix without eigenvalues.

In general terms that means, we cannot expect, that a matrix of order n over a
nondivision algebra has a Schur decomposition.

In the formulas (4.28) to (4.30) we have listed all possible candidates for eigenval-
ues ofA (for A see (3.5)), over Hcoq, the algebra of coquaternions, which by definition
obey the equation Ax = xλ, x 6= 0. And even if we count only similarity classes, we
see from formula (4.30) that this number is infinite since distinct real parts λ1 define
different similarity classes. In a paper by Erdoğdu and Özdemir, [4], only candidates
for eigenvalues over Hcoq are considered. More recent information on problems related
to quaternions and coquaternions with extensions to other algebras can be found in
papers by the current authors in [8] to [13].

5. Eigenvalues in the other R
4 algebras. In this section we give only a short

overview on the problem whether the same matrix A, defined in (3.5) has eigenvalues
in the eight R4 algebras or not. If there are eigenvalues, we also present corresponding
eigenvectors. Our results are mainly based on numerical computations which produce
eigenvalues and eigenvectors. We would like to mention one principal difficulty for
the noncommutative algebras. In this computation eigenvalues are computed with
four components, but not in reduced form. What is reduced form? Theorem 1.3 says
that λ ∈ σ(A) implies [λ] ⊂ σ(A) and because of the similarity identity relation (2.1)
arbitrary eigenvalues in the noncommutative cases can be reduced to the short form:

in H: λ = a+ bi,

in Hcoq and in Hnec: λ = a+ bi, or λ = a+ bj,

in Hcon: λ = a+ bi, or λ = a+ bk, with b ≥ 0 in all cases.

See Lemma 2.3.

5.1. Quaternions H. Let A = H. The matrix A is invertible and

A−1 =
1

2

[
1 −j

−i −k

]

.

There are two similarity classes of eigenvalues, defined by

λ1 := −0.5(
√
3− 1) + 0.5(1 +

√
3)i, λ2 := 0.5(1 +

√
3) + 0.5(

√
3− 1)i.

Eigenvector belonging to (similar to λ1 := −0.5(
√

3− 1) + 0.5(1 +
√

3)i)
λ1 = (−0.366025403784439, −0.589308751210507, 0.407721950377747, 1.162971801339703),

x1 = (−0.116136124516394, 0.096493215055665, 0.431633726722537, −0.047102562471017),

x2 = (0.457810452774262, −0.094301599467715, 0.222988193305220, 0.721434818892009),

Eigenvector belonging to (similar to λ2 := 0.5(1 +
√

3) + 0.5(
√

3− 1)i)
λ2 = (1.366025403784439, 0.292559107612189, −0.028933142042057, 0.218051915974833),

x1 = (−0.429690495367038, 0.355279404544183, 0.182197205333501, 0.666799771941649),

x2 = (0.063352481853988, 0.401343292837369, 0.086788018699258, −0.196730093155170).
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Since H is a division algebra, both eigenvalues and all components of the eigenvectors
are invertible.

5.2. Coquaternions Hcoq. Let A = Hcoq. The matrix A is invertible and

A−1 =
1

2

[
1 j

−i k

]

.

See (4.1). However, there are no eigenvalues. This is the main result of this paper.

5.3. Tessarines Htes. Let A = Htes. This algebra is commutative. The matrix
A is noninvertible. There are the following eigenvalues and eigenvectors:

λ1 = 0.5(1,−1,−1, 1),

x1 = (−0.210579839771015, 0, 0.281296438799224, −0.613619136436347),

x2 = (0.552747707503293, −0.271451268704069, 0.060871428933054, 0.342167867732278),

λ2 = 0.5(1, 1, 1, 1),

x1 = (−0.696986695461977, −0.026411017838051, 0.008934460636402, 0.115897281671691),

x2 = (−0.272871967657917, −0.308217446132369, −0.415180267167659, 0.397703709966010).

Both eigenvalues are not invertible, but all components of the eigenvectors are invert-
ible in the algebra Htes.

5.4. Cotessarines Hcotes. Let A = Hcotes. This algebra is commutative. The
matrix A is not invertible and the search for eigenvalues ended without success.

5.5. Nectarines Hnec. Let A = Hnec. The matrix A is invertible and

A−1 =
1

2

[
1 −j

i k

]

.

The search for eigenvalues ended without success.

5.6. Conectarines Hcon. Let A = Hcon. The matrix A is invertible and

A−1 =
1

2

[
1 j

i −k

]

.

The eigenvalues are

λ1 := −0.5(
√
3− 1) + 0.5(1 +

√
3)k, λ2 := 0.5(1 +

√
3) + 0.5(

√
3− 1)k.

The computed results are:

λ1 = (−0.366025403784439, 0.109391181348465, 1.502346361480742, −2.033478896914270),

x1 = (0.084922455358793, 0.024284516474671, −0.184640427677686, 0.411620233598415),

x2 = (0.219050248350320, 0.446277464435259, −0.678289927178981, 0.285396781196364),

λ2 = (1.366025403784437, 1.565586637796200, 2.519533443137362, −2.988826674089547),

x1 = (−0.586632672352341, −0.537466377582145, 0.392122232068913, −0.043672536102042),

x2 = (−0.053199649549185, −0.198737203109869, −0.230707718431950, 0.340253046200944).

The eigenvalues and all components of the eigenvectors are invertible. For comparison,
the first 20 digits of 0.5(

√
3− 1), 1 + 0.5(1 +

√
3) are

0.36602 54037 84438 64676, 1.36602 54037 84438 64676,

respectively, which shows, that the computed numerical values are almost precise until
the last digit.
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5.7. Tangerines Htan. Let A = Htan. This algebra is commutative. The matrix
A is not invertible. There are the following eigenvalues:

λ1 = 0.5(1, 1, 1, 1), λ2 = (0, 0, 0, 0), λ3 = (1, 0, 0, 1), λ4 = 0.5(1,−1,−1, 1),

and the corresponding eigenvectors are:

x1 = (−0.355400905909388, −0.263459947802152, 0.488848439984882, 0.255550884770960),

x2 = (−0.418170141431539, −0.326229183324303, −0.192781649248809, −0.426079204462732),

x1 = (0.175671087331868, −0.481857471056402, 0.180972667058841, −0.451887088154085),

x2 = (0.481857471056402, −0.175671087331868, 0.451887088154085, −0.180972667058841),

x1 = (−0.487207160802510, 0.069582586598201, 0.311355535868199, 0.401055078996997),

x2 = (−0.311355535868199, −0.401055078996997, −0.487207160802510, 0.069582586598201),

x1 = (0.221176703745355, −0.216764176048914, 0.118351465078905, 0.624569522483968),

x2 = (0.250902764854311, −0.255315292550752, −0.152490053884302, −0.590430933678571).

All eigenvalues are not invertible, wheras all components of the eigenvectors are in-
vertible.

5.8. Cotangerines Hcotan. Let A = Hcotan. This algebra is commutative. The
matrix A is not invertible. The search for eigenvalues ended without success.

5.9. Concluding remarks for this section. These results, apart from those
for coquaternions, are based on numerical computations. The statement The search

for eigenvalues ended without success means that at least 100 trials with random
initial values were carried out, in some cases even several hundreds. In contrast to
the cases where there are eigenvalues, which were found in almost all cases within
the first ten trials. So there is some likelihood, that not only A over Hcoq does not
contain eigenvalues, but also A over Hcotes,Hnec,Hcotan. And it even may be, that in
all nondivision algebras A there are matrices over A without eigenvalues.

In order to facilitate the computations, we have used the overloading technique

offered by MATLAB, which allows to use the standard algebra for matrices in all eight
R

4 algebras, and we steered the selection of the algebras by just one global integer
parameter with values from one to eight. By this it is very easy to program Newton’s
method only once for finding eigenvalues and eigenvectors in all eight R4 algebras. A
technique which is described by Lauterbach and Opfer in [14] was applied.
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