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The zero dynamics form for nonlinear
differential-algebraic systems

Thomas Berger

Abstract—We show that any nonlinear differential-algebraic
system can be locally transformed into zero dynamics form, which
is a normal form with respect to the input-output behavior. Only
mild assumptions on the maximal output zeroing submanifold are
required and thus the zero dynamics form even generalizes the
Byrnes-Isidori form for nonlinear systems with existing vector
relative degree. Left- and right-invertibility of the system can be
studied in terms of the solution properties of a subsystem in the
zero dynamics form. This is the basis for the investigation of
various classical control problems, such as output regulation and
trajectory tracking.

Index Terms—Differential-algebraic systems, nonlinear sys-
tems, descriptor systems, zero dynamics, output zeroing subman-
ifold, system inversion.

Nomenclature:
N, N0 set of natural numbers, N0 = N∪{0}

Rn×m the set of real n×m matrices

rkA, imA rank and image of A ∈ Rn×m

Gln(R) the group of invertible matrices in Rn×n

C k(X ;Y ) set of k-times continuously differentiable
functions f : X →Y , k ∈N0∪{∞}; if k = ∞

the function f is called smooth

dom f the domain of the function f

f |I restriction of the function f to the set I

I. INTRODUCTION

We consider nonlinear descriptor systems governed by
differential-algebraic equations (DAEs) of the form

E(x(t)) ẋ(t) = f (x(t))+g(x(t))u(t),

y(t) = h(x(t)),
(1)

where X ⊆Rn is open with 0∈ X , f ∈C (X ;Rl),h∈C (X ;Rp)
are vector-valued functions such that f (0) = 0, h(0) = 0, and
E ∈ C (X ;Rl×n), g ∈ C (X ;Rl×m) are matrix-valued functions.
The set of these systems is denoted by ΣX

l,n,m,p; and we write
[E, f ,g,h] ∈ ΣX

l,n,m,p. Note that any system

F(x(t), ẋ(t)) = g(x(t))u(t)

with F ∈ C (X ×Rn;Rl) can be put into the form (1) by
augmenting the state space, namely

d
dt

[
In 0
0 0

](
x(t)
y(t)

)
=

(
y(t)

−F(x(t),y(t))

)
+

[
0

g(x(t))

]
u(t).
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In particular, the input-output behavior of the original system
is not affected by this transformation. Therefore, the class
ΣX

l,n,m,p encompasses any linear descriptor system (which may
even be non-regular1) and various important classes of non-
linear descriptor systems (e.g. chemical process systems [1],
mechanical systems [2], [3] and modified nodal analysis
models of electrical circuits [4]). Nonlinear descriptor systems
seem to have been first considered by LUENBERGER [5]; see
also the recent textbooks [6], [7].

The functions u : I → Rm and y : I → Rp are called input
and output of the system, resp. Since solutions not necessarily
exist globally (e.g. finite escape times may arise) we consider
maximal solutions of (1).

Definition I.1 (Solutions). For [E, f ,g,h]∈ΣX
l,n,m,p a trajectory

(x,u,y) ∈ C (I;X ×Rm ×Rp) is called a solution of (1), if
I = domx ⊆ R is an open interval, x ∈ C 1(I;Rl) and (x,u,y)
solves (1) for all t ∈ I. A solution (x,u,y) of (1) is called
maximal, if any other solution (x̃, ũ, ỹ) of (1) satisfies

J := dom x̃ ∩ domx 6= /0 ∧ (x̃, ũ, ỹ)|J = (x,u,y)|J
=⇒ dom x̃⊆ domx.

The behavior of (1) is defined as the set of maximal solution
trajectories

B(1) := {(x,u,y) ∈ C (I;X×Rm×Rp) | I ⊆ R open
interval, (x,u,y) is maximal solution of (1)}.

In the present paper, we derive the zero dynamics form for
a system (1), which is a local input-output normal form. In
the zero dynamics form, the zero dynamics of the system are
decoupled. The zero dynamics are, loosely speaking, those
dynamics that are not visible at the output and they are defined
as the set of trajectories

Z D (1) := { (x,u,y) ∈B(1) | y = 0 } .

If the system (1) is governed by an ordinary differential
equation (ODE), i.e., n = l and E(x) = I, then the con-
cept of zero dynamics has been introduced by BYRNES and
ISIDORI [8] and studied extensively since then, see e.g. the
textbooks [9], [10]. The zero dynamics of DAE systems have
been investigated in detail recently [11]–[13].

For the derivation of the zero dynamics form we require
a maximal output zeroing submanifold Z∗ that satisfies that
E(0)T0Z∗+ img(0) has maximal dimension and we require
that h is a submersion at x = 0. These are very mild as-

1A linear descriptor system Eẋ(t) = Ax(t)+Bu(t), y(t) =Cx(t) is called
regular, if E,A ∈ Rn×n and det(sE−A) 6≡ 0.
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sumptions and they are always satisfied if the system is an
ODE and has some vector relative degree. A special feature
of the zero dynamics form is that, using the local state space
transformation ϕ : X1 → X2, there exist smooth vector fields
F1 and F2 such that for all (x,u,y) ∈B(1) with x(t) ∈ X2 for
all t ∈ domx we have, with

( z1
z2
z3

)
= ϕ−1(x),

(x,u,0) ∈Z D (1) ⇐⇒


ż1(t) = F1(z1(t)),

u(t) = F2(z1(t)), ∀ t ∈ domx

z2 = 0, z3 = 0.

This characterizes the zero dynamics as a set of solution
trajectories of an ODE even though the original system was
a (possibly singular) DAE. The zero dynamics form also
allows to study invertibility properties in terms of the solution
properties of one of its subsystems. This is the basis for
the investigation of various classical control problems for
nonlinear DAEs, such as output regulation and trajectory
tracking as shown for linear DAEs in [12].

The present paper is organized as follows: In Section II
we present some preliminary results, which are used for the
derivation of the zero dynamics form in Section III; this is the
main result of the present paper. System invertibility properties
are studied in terms of the zero dynamics form in Section IV.
Some conclusions are given in Section V.

II. PRELIMINARIES

We use the terminology of smooth manifolds and other
differential geometric concepts as in [14]. Apart from that,
by a submanifold we will always mean an embedded smooth
k-submanifold of Rn for some k ≤ n. Furthermore, we define
the tangent space to a submanifold M of Rn at x ∈M as the
linear subspace

TxM :={
v ∈ Rn

∣∣∣∣ ∃ I ⊆ R open interval ∃γ ∈ C ∞(I;M) :
γ(0) = x ∧ γ̇(0) = v

}
.

The above definition is different from the standard concept
of the tangent space, usually introduced as the set of all
derivations at x. However, by [14, Lem. 3.11] the derivations
can be identified with tangent vectors to smooth curves, which
in turn can be embedded into Rn; cf. also [15, Thm. 2.2].
Again using smooth curves, we define the boundary ∂M of a
submanifold M of Rn (if it exists) as the set

∂M :=
{

v ∈ Rn
∣∣∣∣ v 6∈M, ∃γ ∈ C ∞((a,b);M),a < b :

limt→b γ(t) = v

}
.

Let X ⊆Rn be an open set (which is a manifold) and M⊆X
be submanifold. For any x0 ∈M there exist U ⊆ X open with
x0 ∈U , W ⊆Rk open for k = dimM≤ n and a diffeomorphism
ϕ : M∩U →W . Without loss of generality, W and ϕ can be
chosen such that 0 ∈W and ϕ(x0) = 0. (U,ϕ) is a coordinate
chart for M at x0 and ϕ is a coordinate map. Since ϕ is a
diffeomorphism between submanifolds (in the sense of [14])
and M ⊆ Rn, ϕ is a diffeomorphism in the sense of classical
calculus, i.e., ϕ ∈ C ∞(M∩U ;W ) and ϕ−1 ∈ C ∞(W ;M∩U).

We call ψ := ϕ−1 a parametrization for M at x0 and record
the following result which is important in due course.

Lemma II.1 (Parametrization and tangent space). Let M be
a submanifold of an open set X ⊆Rn and let ψ : W →M∩U
be a parametrization of M at x0 ∈M. Then

∀x ∈M∩U : TxM = imψ
′(ψ−1(x)).

An important class of submanifolds in control theory are
(locally) controlled invariant submanifolds, which have been
introduced by ISIDORI and MOOG [16]. A characterization of
these submanifolds for DAE systems has been derived in [13].

Definition II.2 (Controlled invariant submanifolds). Let
[E, f ,g,h] ∈ ΣX

l,n,m,p and M be a connected submanifold of X
such that 0∈M. Then M is called locally controlled invariant,
if there exists an open neighborhood U of 0 ∈ X such that

∀x0 ∈M∩U ∃(x,u,y) ∈B(1) ∃ t0 ∈ domx, x(t0) = x0 :(
∀ t ∈ domx, t ≥ t0 : x(t) ∈M∩U

)
∨
(
∃ t̂ ∈ domx, t̂ > t0 ∀ t ∈ [t0, t̂) :

x(t) ∈M∩U ∧ x(t̂) ∈ ∂ (M∩U)
)
.

Roughly speaking, M is locally controlled invariant, if for
any point x0 in a neighborhood M∩U there exists a maximal
solution (x,u,y) with x starting at x0 and staying in M ∩U
or reaching its boundary in finite time. The latter is a special
feature of local controlled invariance in the nonlinear case
which cannot be prevented in general. Since the submanifold
may be bounded, for instance it may be an open ball in Rn,
solutions starting in it may reach the boundary in finite time.
However, until they do so they stay in M∩U .

Of particular importance for the derivation of the zero
dynamics form is the following concept of output zeroing
submanifolds.

Definition II.3 (Output zeroing submanifold). Let [E, f ,g,h]∈
ΣX

l,n,m,p and M be a connected submanifold of X such that
0 ∈ M. Then M is called output zeroing, if M is locally
controlled invariant and h(x) = 0 for all x ∈ M. An output
zeroing submanifold M is called locally maximal, if there
exists an open neighborhood U of 0 ∈ X such that any output
zeroing submanifold M̃ satisfies M̃∩U ⊆M∩U .

In the following we restate [13, Thm. 13], which provides
a sequence of submanifolds which converges to a locally
maximal output zeroing submanifold. This is called the zero
dynamics algorithm and has been developed for ODE systems
in [16], [17].

Theorem II.4 (Zero dynamics algorithm). Let [E, f ,g,h] ∈
ΣX

l,n,m,p be such that E, f ,g and h are smooth. Define M0 :=
h−1(0) and for any k ∈ N the set Mk recursively as follows:
Suppose that for some open neighborhood Uk−1 of 0 ∈ X,
Mk−1∩Uk−1 is a submanifold, define

M̃k−1 :=
⋃{

Mk−1∩U
∣∣∣∣ U ⊆ X open, Mk−1∩U

is a submanifold

}
,

let Mc
k−1 be the connected component of M̃k−1 which contains
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0 ∈ X and define

Mk :=
{

x ∈Mc
k−1

∣∣ f (x) ∈ E(x)TxMc
k−1 + img(x)

}
. (2)

Then we have the following:
(i) The sequence (Mk) is nested, terminates and satisfies

∃k∗ ∈ N0 ∀ j ∈ N : M0 ) M1 ) . . .) Mk∗

⊇Mc
k∗ = Mk∗+ j = Mc

k∗+ j.

(ii) If Z∗ := Mc
k∗ satisfies, for some open neighborhood U of

0 ∈ X, that dimE(x)TxZ∗ and dim
(
E(x)TxZ∗+ img(x)

)
are both constant for x ∈ Z∗ ∩U, then Z∗ is a locally
maximal output zeroing submanifold.

(iii) There exists an open neighborhood U of 0 ∈ X such that
for all open O⊆U and all solutions (x,u,y) ∈ C (I;X ×
Rm×Rp) of (1) with x(t) ∈ O for all t ∈ I, we have

y = 0 ⇐⇒ x(t) ∈ Z∗∩O ∀ t ∈ I.

III. ZERO DYNAMICS FORM

In this section we derive the main result of the present
paper, the zero dynamics form, and give some remarks on it.
The zero dynamics form is derived using a locally maximal
output zeroing submanifold which also allows for a decoupling
of the zero dynamics in the new local coordinates. We need
to assume that E(0)T0Z∗+ img(0) has maximal dimension,
which generalizes the assumption in the linear case (see [12,
Thm. 3.6]) and guarantees so called locally autonomous zero
dynamics (see [13, Thm. 17]). By further assuming that the
output function h is a submersion at x = 0 it is possible to
obtain the output variables as a part of these new coordinates.

Theorem III.1 (Zero dynamics form). Let [E, f ,g,h]∈ ΣX
l,n,m,p

be such that E, f ,g and h are smooth and assume, for the sets
Mk as in (2), that for some open neighborhood Uk of 0 ∈ X,
Mk∩Uk is a submanifold, for all k ∈N0. Use the notation from
Theorem II.4 and assume furthermore that
(1) dim

(
E(0)T0Z∗+ img(0)

)
= q+m, where q = dimZ∗, and

(2) h is a submersion at x = 0, i.e., h′(0) has full row rank p.
Then there exist open neighborhoods X1,X2 of 0 ∈ X, a
diffeomorphism ϕ : X1→ X2 and S∈C ∞(X1;Gll(R)) such that
the local coordinate transformation z(t) = ϕ−1(x(t)) and left-
multiplication by S put system (1) into the form

Ẽ(z(t))ż(t) = f̃ (z(t))+ g̃(z(t))u(t),

y(t) = h̃(z(t)),
(3)

where

[Ẽ, f̃ , g̃, h̃] = [S (E ◦ϕ)ϕ
′,S( f ◦ϕ),S(g◦ϕ),h◦ϕ]. (4)

Each of these functions is defined on X1 and smooth and they
satisfy, for all z ∈ X1,

Ẽ(z) =

Iq E12(z) E13(z)
0 E22(z) E23(z)
0 E32(z) E33(z)

 , f̃ (z) =

 f1(z)
f2(z)
f3(z)

 ,

g̃(z) =

 0
Im
0

 , h̃(z) = [0, Ip,0]z,

where E22 : X1→Rm×p, E33 : X1→Rl3×n3 ,n3 = n−q− p, l3 =
l − q− m, and all other entries are of appropriate sizes.
Furthermore,

∀z1 ∈ Rq :
(

z1
0

)
∈ X1 =⇒ f3

((
z1
0

))
= 0,

and any solution (z1,z3) ∈ C 1(I;Rq×Rn3), I ⊆ R an open
interval, of the subsystem

ż1(t)+E13(z1(t),0,z3(t)) ż3(t) = f1(z1(t),0,z3(t)),

E33(z1(t),0,z3(t)) ż3(t) = f3(z1(t),0,z3(t))
(5)

with
(

z1(t)
0

z3(t)

)
∈ X1 for all t ∈ I satisfies z3 = 0.

Proof. Step 1: By assumption (2) and the submersion theorem,
there exist open sets V1,W1 ⊆ X with 0 ∈ V1, 0 ∈W1, and a
diffeomorphism ϕ1 : V1→W1 with ϕ1(0) = 0 (since h(0) = 0)
such that

(h◦ϕ1)(z) = [0p×q, Ip,0p×n3 ]z

for all z ∈ V1, where n3 = n− q− p. Then the set V ∗ :=
{ v ∈V1 | ϕ1(v) ∈ Z∗ } is a connected submanifold of X with
0 ∈ V ∗ and dimV ∗ = dimZ∗ = q.

Step 2: Let ψ : V → V ∗∩U be a parametrization of V ∗ at
0 ∈ V ∗, where V ⊆ Rq open with 0 ∈ V . Since Z∗ ⊆ h−1(0)
we find that

V ∗ ⊆ (h◦ϕ1)
−1(0) =V1∩ im

Iq 0
0 0
0 In3

 .
By Lemma II.1,

imψ
′(0) = T0V

∗ ⊆ im

Iq 0
0 0
0 In3


and hence

[
ψ ′(0),

[ 0q×p
Ip

0n3×p

]]
has full column rank q+ p. Let

W ∈ Rn×n3 be such thatψ
′(0),

 0q×p
Ip

0n3×p

 ,W
 ∈Gln(R).

Define

ϕ2 : V ×Rp×Rn3 → Rn,

z1
y
z3

 7→ ψ(z1)+

 0q×p
Ip

0n3×p

y+Wz3.

We calculate that

ϕ
′
2(0) =

ψ
′(0),

 0q×p
Ip

0n3×p

 ,W
 ∈Gln(R)

and hence, invoking the inverse function theorem, ϕ2 is locally
a diffeomorphism on a neighborhood of 0 ∈ X . Therefore, we
may choose open V2 ⊆ V ×Rp×Rn3 sufficiently small with
0 ∈ V2 such that W2 := ϕ(V2) ⊆ V1 and ϕ2 : V2 → W2 is a
diffeomorphism.

Step 3: Since ϕ1 ◦ψ : V → Z∗ ∩ Ũ is a parametrization of
Z∗ at 0 ∈ Z∗ for some open set Ũ it follows from Lemma II.1
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that

T0Z∗ = im(ϕ1 ◦ψ)′
(
(ϕ1 ◦ψ)−1(0)

)
= imϕ

′
1(0)ψ

′(0).

Then, by assumption (1) and ϕ2(0) = 0 we have that

rk[E(0)ϕ ′1(0)ψ
′(0),g(0)] = q+m

= rk[E(ϕ1(ϕ2(0)))ϕ ′1(ϕ2(0))ψ ′([Iq,0] ·0),g(ϕ1(ϕ2(0)))]

and from continuity we may infer existence of an open
neighborhood V3 ⊆V2 of 0 ∈ X such that, for all z ∈V3,

rk[E(ϕ1(ϕ2(z)))ϕ ′1(ϕ2(z))ψ ′([Iq,0]z),g(ϕ1(ϕ2(z)))] = q+m.

Therefore, we may apply [13, Lem. 7] to its transpose and this
gives existence of an open neighborhood V4 ⊆V3 of 0∈ X and
S ∈ C ∞(V4;Gll(R)) such that

S(z)[E(ϕ1(ϕ2(z)))ϕ ′1(ϕ2(z))ψ ′([Iq,0]z),g(ϕ1(ϕ2(z)))]

=

Iq 0
0 Im
0 0

 .
for all z ∈V4. Let W4 := ϕ1(ϕ2(V4)).

Step 4: Define the diffeomorphism ϕ := ϕ1 ◦ϕ2 : V4→W4

and calculate that, for all z =
( z1

y
z3

)
∈V4,

S(z)E(ϕ(z))ϕ ′(z) = S(z)E(ϕ(z))ϕ ′1(ϕ2(z))ϕ ′2(z)

= S(z)E(ϕ(z))ϕ ′1(ϕ2(z))

ψ
′(z1),

 0q×p
Ip

0n3×p

 ,W


=

 Iq
0m×q
0l3×q

 ,S(z)
 0q×p

Ip
0n3×p

 ,S(z)W
=

Iq E12(z) E13(z)
0 E22(z) E23(z)
0 E32(z) E33(z)


where E22 : V4→Rm×p, E33 : V4→Rl3×n3 and all other entries
are of appropriate sizes. Furthermore, we obtain

S(z)g(ϕ(z)) =

0q×m
Im

0l3×m

 , h(ϕ(z)) = [0p×q, Ip,0p×n3 ]z

for all z ∈V4 and

S(z) f (ϕ(z)) =

 f1(z)
f2(z)
f3(z)


with f1 : V4→ Rq, f2 : V4→ Rm, f3 : V4→ Rl3 .

Step 5: Using assumption (1), we may infer from [13,
Thm. 9] that there exists an open neighborhood O of 0 ∈ X
such that f (x) ∈ E(x)TxZ∗+ img(x) for all x ∈ Z∗∩O. Define

M := { z ∈V4 | ϕ(z) ∈ Z∗∩O } ,

and observe that M is a connected submanifold of X with
0 ∈ M and dimM = dimZ∗ = q. Then we obtain that for all
z ∈M,

f (ϕ(z)) ∈ E(ϕ(z))Tϕ(z)Z
∗+ img(ϕ(z))

= E(ϕ(z))ϕ ′(z)TzM+ img(ϕ(z))

since ϕ is a diffeomorphism, and therefore

S(z) f (ϕ(z)) ∈ S(z)E(ϕ(z))ϕ ′(z)TzM+ imS(z)g(ϕ(z))

=⇒

 f1(z)
f2(z)
f3(z)

 ∈
Iq E12(z) E13(z)

0 E22(z) E23(z)
0 E32(z) E33(z)

TzM+ im

 0
Im
0

 .
It is no loss of generality to assume that Z∗ ∩O ⊆ Z∗ ∩ Ũ .
Then, for any z ∈M there exists z1 ∈V with

( z1
0
0

)
∈V4 such

that
ϕ(z) = ϕ1(ψ(z1)).

Therefore,

ϕ(z) = ϕ1

(
ϕ2

(( z1
0
0

)))
= ϕ

(( z1
0
0

))
and this gives z =

( z1
0
0

)
. On the other hand, for every such z

we have ϕ(z) = ϕ1(ψ(z1))∈ Z∗∩O whenever z1 is sufficiently
small. It follows that there exists an open neighborhood V5 ⊆
V4 of 0 ∈ X such that

M = im

Iq
0
0

∩V5 and TzM = im

Iq
0
0


for all z ∈M. Finally, f1(z)

f2(z)
f3(z)

 ∈
Iq 0

0 Im
0 0


for all z ∈M and this gives

∀z1 ∈ Rq :
(

z1
0

)
∈V5 =⇒ f3

((
z1
0

))
= 0.

Step 6: Let Û be an open neighborhood of 0 ∈ X as given
by Theorem II.4 (iii) and define V6 := ϕ−1(ϕ(V5)∩ Û). Let
(z1,z3)∈C 1(I;Rq×Rn3), I⊆R an open interval, be a solution

of (5) with
(

z1(t)
0

z3(t)

)
∈V6. Define

u(t) := E23

((
z1(t)

0
z3(t)

))
ż3(t)− f2

((
z1(t)

0
z3(t)

))
, t ∈ I,

then
(( z1

0
z3

)
,u,y = 0

)
solves (3) and hence(

ϕ

(( z1
0
z3

))
,u,y = 0

)
solves (1) for all t ∈ I.

Now, Theorem II.4 (iii) implies that

ϕ

((
z1(t)

0
z3(t)

))
∈ Z∗∩ϕ(V6) ∀ t ∈ I.

Without loss of generality we may assume that Z∗∩ϕ(V6)⊆
Z∗ ∩O and hence

(
z1(t)

0
z3(t)

)
∈ M for all t ∈ I which implies

z3 = 0. Identifying X1 :=V6, X2 := ϕ(V6) finishes the proof of
the theorem.

Remark III.2.
(i) The zero dynamics form derived in Theorem III.1 is a

generalization of those derived for linear DAEs in [12],
[18]. For time-varying ODE systems, a zero dynamics
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form has been derived in [?]. The form (3) generalizes
the Byrnes-Isidori form of ODE systems (see [9, Sec. 5])
since an existing vector relative degree is not required.
However, if the system has some vector relative degree
at x= 0, then the assumptions (i) and (ii) in Theorem III.1
are satisfied.

(ii) The name zero dynamics form for (3) may be justified by
the fact that in this form the zero dynamics of the system
are decoupled. With the notation from Theorem III.1, if
(x,u,y) ∈B(1) with x(t) ∈ X2 for all t ∈ domx, then ap-
plying the local coordinate transformation x(t) = ϕ(z(t))
leads to the system (3) with a corresponding partitioning
z = (z>1 ,y

>,z>3 )
>. Invoking the last statement in Theo-

rem III.1, we find that

(x,u,y) ∈Z D (1) ⇐⇒


ż1(t) = f1(z1(t),0,0),
u(t) =− f2(z1(t),0,0),

y = 0, z3 = 0.

Therefore, z1 is the solution of an ODE and it charac-
terizes the “dynamics” within the zero dynamics and the
input u is given by an algebraic equation depending on z1.

(iii) The above property implies a local “zero output invertibil-
ity”. That is, any two solution trajectories of (1) which
generate a zero output and have the same initial value
in a neighborhood of the origin must have the same
input. More precise, if (x1,u1,y1),(x2,u2,y2) ∈B(1) with
t0 ∈ J := domx1 ∩ domx2, x1(t0) = x2(t0) = x0 for some
x0 ∈ X2 and additionally y1|J = y2|J = 0, then there exists
ε > 0 such that u1|[t0,t0+ε) = u2|[t0,t0+ε). Invertibility is
discussed in more detail in Section IV.

(iv) The system (3) can be written in local coordinates as

ż1(t)+E12(z(t)) ẏ(t)+E13(z(t)) ż3(t) = f1(z(t)),

E22(z(t)) ẏ(t)+E23(z(t)) ż3(t) = f2(z(t))+u(t),

E32(z(t)) ẏ(t)+E33(z(t)) ż3(t) = f3(z(t)),
(6)

where z(t) = (z1(t)>,y(t)>,z3(t)>)>. From (6) we may
obtain a realization of the inverse system of [E, f ,g,h]
in the behavioral sense, i.e., where inputs and out-
puts have been interchanged (see e.g. [11]). To this
end we introduce the variables z2(t) := y(t) and
z4(t) := E22(z(t))ż2(t)+E23(z(t))ż3(t), where now z(t) =
(z1(t)>,z2(t)>,z3(t)>)>. The second equation in (6) can
be solved explicitly for u, which is the output of the
inverse system. The first and third equation in (6) together
with the equations for the new variables determine the
dynamics and constraints of the inverse system which
reads

ż1(t)+E12(z(t)) ż2(t)+E13(z(t)) ż3(t) = f1(z(t)),

E32(z(t)) ż2(t)+E33(z(t)) ż3(t) = f3(z(t)),

E22(z(t)) ẏ(t)+E23(z(t)) ż3(t) = z4(t),

0 =−z2(t)+ y(t),

with output equation

u(t) =− f2(z(t))+ z4(t).

In this sense the inverse system can be derived from the
zero dynamics form. In contrast to classical approaches of
system inversion for ODEs [19], [20], this procedure does
not involve the application of the structure algorithm, but
can be treated solely within the behavioral framework.

IV. SYSTEM INVERSION

In this section we show that the zero dynamics form derived
in Theorem III.1 allows to study invertibility properties of the
system (1) by means of solution properties of a subsystem of
the zero dynamics form.

The investigation of problems related to system inversion is
known to be of high relevance since the important work by
BROCKETT and MESAROVIĆ [21]. The basis for a systematic
study of invertibility has been provided by SILVERMAN [19]
and HIRSCHORN [20]. We use the following definitions.

Definition IV.1 (System invertibility). Let [E, f ,g,h]∈ ΣX
l,n,m,p

and x0 ∈ X . Then [E, f ,g,h] is called
(i) left-invertible at x0, if

∀(x1,u1,y1),(x2,u2,y2) ∈B(1) :
[
t0 ∈ J := domx1 ∩ domx2

∧ x1(t0) = x2(t0) = x0 ∧ y1|J = y2|J
]

=⇒ ∃ε > 0 : u1|[t0,t0+ε) = u2|[t0,t0+ε) .

(ii) left-invertible on an open set U ⊆ X , if it is left-invertible
at every point x0 ∈U .

(iii) right-invertible on an open set O⊆ Rp, if

∀y ∈ C ∞(R;O) ∃ I ⊆ R open intvl. ∃x ∈ C 1(I;Rn)

∃u ∈ C (I;Rm) : (x,u, y|I) is a solution of (1).

In the linear case, left-invertibility implies condition (1)
in Theorem III.1 and right-invertibility implies condition (2),
see [12]. For nonlinear DAEs this is not true in general, since
it is possible to have rank drops at the origin which do not
influence the invertibility properties.

Under the assumptions of Theorem III.1, we may study
left- and right-invertibility in terms of the zero dynamics
form. We show that left-invertibility follows from a certain
subsystem having unique solutions whenever a solution exists,
and right-invertibility follows from existence of solutions for
this subsystem.

Theorem IV.2 (Invertibility). Consider [E, f ,g,h] ∈ ΣX
l,n,m,p

and let the assumptions in Theorem III.1 be satisfied.
(i) If for all solutions wi = (zi

1,y
i,zi

3) ∈ C 1(Ii;(Rq ×Rp ×
Rn3)∩X1), i = 1,2, of the system

ż1(t)+E12(z(t)) ẏ(t)+E13(z(t)) ż3(t) = f1(z(t)),

E32(z(t)) ẏ(t)+E33(z(t)) ż3(t) = f3(z(t)),
(7)

where z(t) = (z1(t)>,y(t)>,z3(t)>)>, i.e., wi satisfies (7)
for all t ∈ Ii, we have the implication

t0 ∈ J := I1∩ I2 ∧ w1(t0) = w2(t0) ∧ y1∣∣
J = y2∣∣

J

=⇒ z1
1
∣∣
J = z2

1
∣∣
J ∧ z1

3
∣∣
J = z2

3
∣∣
J ,

then [E, f ,g,h] is left-invertible on X2.



6

(ii) Let O⊆ [0p×q, Ip,0p×n3 ]X1. If for all y ∈ C ∞(R;O) there
exists an open interval I ⊆ R and (z1,z3) ∈ C 1(I;Rq×

Rn3) such that
(

z1(t)
y(t)
z3(t)

)
∈ X1 and (7) holds for all t ∈ I,

then [E, f ,g,h] is right-invertible on O.

Proof. We show (i). Let x0 ∈ X2 and let
(x1,u1,y1),(x2,u2,y2) ∈ B(1) be such that t0 ∈ J :=
domx1 ∩ domx2, x1(t0) = x2(t0) = x0 and y1|J = y2|J .
Choose an open interval I ⊆ J with t0 ∈ I such that xi(t) ∈ X2
for all t ∈ I. Definezi

1(t)
yi(t)
zi

3(t)

 := ϕ
−1(xi(t)), t ∈ I,

and observe that it solves (7) for all t ∈ I by Theorem III.1.
Therefore, the assumption gives that z1

1(t) = z2
1(t) and z1

3(t) =
z2

3(t) for all t ∈ I and hence

u1(t) = E22(z1
1(t),y

1(t),z1
3(t)) ẏ1(t)

+E23(z1
1(t),y

1(t),z1
3(t)) ż1

3(t)− f2(z1
1(t),y

1(t),z1
3(t))

= u2(t)

for t ∈ I which proves the assertion.
We show (ii). Let y∈C ∞(R;O). By the assumption we find

an open interval I ⊆R and (z1,z3)∈C 1(I;Rq×Rn3) such that(
z1(t)
y(t)
z3(t)

)
∈ X1 and (7) holds for all t ∈ I. Defining

u(t) = E22(z1(t),y(t),z3(t)) ẏ(t)

+E23(z1(t),y(t),z3(t)) ż3(t)− f2(z1(t),y(t),z3(t))

for t ∈ I and

x(t) = ϕ

z1(t)
y(t)
z3(t)

 , t ∈ I,

leads to a trajectory (x,u, y|I) which solves (1) for all t ∈ I by
Theorem III.1.

The conditions in Theorem IV.2 represent solution proper-
ties of the DAE subsystem (7) from the zero dynamics form
which are dual in some sense. The output y is considered as
an input to this system. For left-invertibility, we require that
the DAE (7) has a unique solution (z1,z3) for any given y
whenever such a solution exists. For right-invertibility, we
require that the DAE (7) has a solution (z1,z3) for any given y.
In this sense, left- and right-invertibility correspond to the
“dual” properties of uniqueness and existence of solutions
to (7), resp.

V. CONCLUSION

In the present paper, we have derived the zero dynamics
form for nonlinear DAE systems, which is a local input-
output normal form. The zero dynamics form generalizes
the Byrnes-Isidori form for nonlinear ODE systems, since
existence of a vector relative degree is not required; only
mild assumptions on the maximal output zeroing submanifold

are needed for the derivation. In the zero dynamics form the
zero dynamics are decoupled. Furthermore, left- and right-
invertibility of the system can be studied in terms of the
solution properties of a certain subsystem. These results are the
basis for the investigation of various classical control problems
for nonlinear DAEs, such as output regulation and trajectory
tracking.
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