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Abstract This work concerns the development of a meshfree semi-implicit numer-

ical scheme based on the Smoothed Particle Hydrodynamics (SPH) method, here

applied to free surface hydrodynamic problems governed by the shallow water equa-

tions. In explicit numerical methods, a severe limitation on the time step is often due

to stability restrictions imposed by the CFL condition. In contrast to this, we propose

a semi-implicit SPH scheme, which leads to an unconditionally stable method. To

this end, the discrete momentum equation is substituted into the discrete continuity

equation to obtain a linear system of equations for only one scalar unknown, the

free surface elevation. The resulting system is not only sparse but moreover sym-

metric positive definite. We solve this linear system by a matrix-free conjugate gra-

dient method. Once the new free surface location is known, the velocity can directly

be computed at the next time step and, moreover, the particle positions can subse-

quently be updated. The resulting meshfree semi-implicit SPH method is validated

by using a standard model problem for the shallow water equations.
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1 Introduction

In this work, we propose a meshfree semi-implicit SPH scheme for two-dimensional

inviscid hydrostatic free surface flows. These flows are governed by the shallow

water equations which can be derived either vertically or laterally averaged from

the three dimensional incompressible Navier-Stokes equations with the assumption

of a hydrostatic pressure distribution (see [5, 6]).

Several methods have been developed for both structured and unstructured

meshes using finite difference, finite volume and finite element schemes ([5, 6, 7, 8,

19]). Explicit schemes are often limited by a severe time step restriction, due to the

Courant-Friedrichs-Lewy (CFL) condition. In contrast, semi-implicit methods lead

to stable discretizations allowing large time steps at reasonable computational costs.

In staggered grid methods for finite differences and finite volumes, discrete vari-

ables are often defined at different (staggered) locations. The pressure term, which

is the free surface elevation, is defined in the cell center, while the velocity compo-

nents are defined at the cell interfaces. In the momentum equation, both the pres-

sure term, due to the gradients in the free surface elevations, and the velocity term,

in the mass conservation, are discretized implicitly, whereas the nonlinear convec-

tive terms are discretized explicitly. In mesh-based schemes, the semi-Lagrangian

method discretizes these terms explicitly (see [3, 12, 13]).

In this work a new semi-implicit Smoothed Particle Hydrodynamics (SPH)

scheme for the numerical solution of the shallow water equations in two space di-

mensions is proposed, where the flow variables are the particle free surface eleva-

tion, the particle total water depth, and the particle velocity. The discrete momentum

equations are substituted into the discretized mass conservation equation to give a

discrete equation for the free surface leading to a system in only one single scalar

quantity, the free surface elevation location. Solving for one scalar quantity in a sin-

gle equation distinguishes our method, in terms of efficiency, from other methods.

The system is solved for each time step as a linear algebraic system. The compo-

nents of the momentum equation at the new time level can directly be computed

from the new free surface, which we conveniently solve by a matrix-free version

of the conjugate gradient (CG) algorithm [17]. Consequently, the particle veloci-

ties are computed at the new time step and the particle positions are then updated.

In this semi-implicit SPH method, the stability is independent of the wave celerity.

Therefore, large time steps can be permitted to enhance the numerical efficiency [5].

The rest of this paper is organized as follows. The problem formulation, including

the two-dimensional shallow water equations and the utilized models for the particle

approximations, is given in Section 2. Our meshfree semi-implicit SPH scheme is

constructed in Section 3. Numerical results, to validate the proposed semi-implicit

SPH scheme, are presented in Section 4. Concluding remarks are given in Section 5.
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2 Problem Formulation and Models

This section briefly introduces the utilized models and particle approximations. Vec-

tors are defined by reference to Cartesian coordinates. Latin subscripts are used to

identify particle locations, where subscript i refers to the focal particle and sub-

script j denotes the neighbor of particle i.

2.1 The Kernel Function

We use a mollifying function W , a positive decreasing radially symmetric function

with compact support, of the generic form

W (r,h) =
1

hd
W

(

‖r‖
h

)

for r ∈ [0,∞) and h > 0.

In our numerical examples, we work with the B-spline kernel of degree 3 [15], given

as

W (r,h) = Wi j = K ×



1 − 3

2

(

r

h

)2

+
3

4

(

r

h

)3

for 0 ≤ r
h
≤ 1

1

4

(

2 − r

h

)3

for 1 ≤ r
h
≤ 2

0 for r
h
> 2

where the normalisation coefficient K takes the value 2/3 (for dimension d = 1),

10/(7π) (for d = 2), or 1/π (for d = 3). For the mollifyer W ∈ W3,∞(Rd ), h > 0

is referred to as the smoothing length, being related to the particle spacing ∆P by

h = 2∆P . The smoothing length h can vary locally according to

hi j =
1

2
[hi + h j ] where hi = σ

d

√

m j

ρ j
. (1)

In this study, we use the smoothing length in (1). Moreover, σ is in [1.5,2.0], which

ensures approximately a constant number of particle neighbors of between 40 − 50

in the compact support of each kernel. A popular approach for the kernel’s normali-

sation is by Shepard interpolation [18], where

W ′i j =
Wi j

∑N
j=1

m j

ρ j
Wi j

.

Normalisation is of particular importance for particles close to free surfaces, since

this will reduce numerical instabilities and other undesired effects near the boundary.

The gradient of the kernel function is corrected by using the formulation pro-

posed by Belytschko et al [1]. For the sake of notational convenience, we will from

now refer to the kernel function W ′
i j

as Wi j and to its gradient ∇W ′
i j

as ∇Wi j .
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Fig. 1 Sketch of the flow domain: the free surface (light) and the bottom bathymetry (thick).

2.2 Governing Equations

The governing equations considered in this work are nonlinear hyperbolic conserva-

tion laws of the form

Lb(Φ) + ∇ · (F (Φ,x, t)) = 0 for t ∈ R+,Φ ∈ R (2)

together with the initial condition

Φ(x,0) = Φ0(x) for x ∈ Ω ⊂ R
d ,Φ0 ∈ R

where Lb is the transport operator given by

Lb(Φ) =
∂Φ

∂t
+ ∇ · ((bΦ))

and

x = (x1, ..., xd ), F = (F1, ...,Fd ), b = (b1, ...,bd ),

where b is a regular vector field in R
d , F is a flux vector in R

d , and x is the position.

Fig. 1 gives a sketch of the flow domain, i.e., the free surface elevation and the

bottom bathymetry. In this configuration, the vertical variation is much smaller than

the horizontal variation, as typical for rivers flowing over long distances of e.g. hun-

dreds or thousands of kilometers. We consider the frictionless, inviscid two dimen-

sional shallow water equations in Lagrangian derivatives, given as
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Dη

Dt
+ ∇ · (Hv) = 0 (3)

Dv

Dt
+ g∇η = 0 (4)

Dr

Dt
= v (5)

where η = η(x, y, t) is the free surface location,

H (x, y, t) = h(x, y) + η(x, y, t)

is the total water depth with bottom bathymetry h(x, y), and where v = v(x, y, t) is

the particle velocity, r = r (x, y, t) the particle position, and g the gravity accelera-

tion.

2.3 Hydrostatic Approximation

In geophysical flows, the vertical acceleration is often small when compared to the

gravitational acceleration and to the pressure gradient in the vertical direction. This

is the case in our flow model shown in Fig. 1. If we consider, for instance, tidal

flows in the ocean, the velocity in the horizontal direction is of the order of 1m/s,

whereas the velocity in the vertical direction is only of the order of one meter per

tidal cycle. Therefore, the advective and viscous terms in the vertical momemtum

equation of the Navier-Stokes equation are neglected, in which case the pressure

equation becomes
dp

dz
= −g, (6)

with normalised pressure, i.e., the pressure is divided by a constant density. The

solution of (6) is given by the hydrostatic pressure

p(x, y, z, t) = p0(x, y, t) + g[η(x, y, t) − z],

where p0(x, y, t) is the atmospheric pressure at the free surface, taken as constant.

3 Construction of a Meshfree Semi-implicit SPH Scheme

There are several numerical methods for solving equations (3)-(5), including finite

differences, finite volumes or finite elements, explicit or implicit methods, conserva-

tive or non-conservative schemes, mesh-based or meshfree methods. The meshfree

SPH scheme of this work relies on the semi-implicit finite difference method of

Casulli [4].
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Explicit numerical methods are often, for the sake of numerical stability, limited

by the CFL condition. The resulting stability restrictions are usually leading to very

small time steps, in contrast to implicit methods. In fact, fully implicit discretisa-

tions lead to unconditionally stable methods. On the down side, they typically re-

quire solving a large number of coupled nonlinear equations. Moreover, for the sake

accuracy, the time step size in implicit methods cannot be chosen arbitrarily large.

Semi-implicit methods, e.g. that of Casulli [4], aim to reduce the shortcomings of

explicit and fully implicit methods. Following along the lines of [4], we achieve

to balance accuracy and stability, at reasonable time step sizes, by a semi-implicit

SPH scheme for the two-dimensional shallow water equations, as supported by our

numerical results.

3.1 The Smoothed Particle Hydrodynamics Method

Let us briefly recall the basic features of the smoothed particle hydrodynamics

(SPH) method. The SPH method is regarded as a powerful tool in computational

fluid dynamics. Due to the basic concept of SPH, numerical simulations for fluid

flow are obtained by discretisations of the flow equations with using finite sets of

particles. Moreover, the target flow quantity, say A(t,x), e.g., the velocity field or

water height, is smoothed by a suitable kernel function W (x,x ′,h), by smoothing

parameter h > 0, w.r.t. the measure that is associated with the mass density ρ(t,x)

of the flow, i.e.,

A(t,x) =

∫

Ω

A(t,x ′)

ρ(t,x ′)
W (x − x

′,h)ρ(t,x ′)dx ′ for h > 0.

Due to the Lagrangian description of SPH, the smoothed quantities are approxi-

mated by a set of Lagrangian particles, each carrying an individual mass mi , density

ρi and field property Ai . Accordingly, for a given point x in space, the field prop-

erty Ai , defined at the particles, located at x j , can be interpolated from neighboring

points:

A(t,x) ≈
N
∑

j=1

m j

Aj (t)

ρ j (t)
W (x − x j ,h),

i.e., the field property A at point x is approximated by the sum of contributions from

particles at x j surrounding x, being weighted by the distance from each particle. The

smoothing kernel W (x − x
′,h) is required to satisfy the following properties.

• Unit mass:
∫

Ω

W (x − x
′,h)dx ′ = 1 for all x and h > 0.

• Compact support:
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W (x − x
′,h) = 0 for |x − x

′ | > αh,

where the scaling factor α > 0 determines the shape (i.e., flatness) of W .

• Positivity:

W (x − x
′,h) ≥ 0 for all x,x ′ and h > 0.

• Decay: W (x − x
′,h) should, for any h > 0, be monotonically decreasing.

• Localisation:

lim
hց0

W (x − x
′,h) = δ(x − x

′) for all x,x ′,

where δ denotes the usual Dirac point evaluation functional.

• Symmetry: W (x − x
′,h) should, for any h > 0, be an even function.

• Smoothness: W should be sufficiently smooth (yet to be specified).

3.2 Classical SPH Formulation

The standard SPH formulation discretizes the computational domainΩ(t) by a finite

set of N particles, with positions ri . According to Gingold and Monaghan [10], the

SPH discretization of the shallow water equations (3)-(5) are given as

ηn+1
i
− ηn

i

∆t
+

N
∑

j=1

m j

ρ j
Hi j v j∇Wi j = 0 (7)

v
n+1
i
− vn

i

∆t
+ g

N
∑

j=1

m j

ρ j
η j∇Wi j = 0 (8)

Dri

Dt
= vi (9)

where the particles are advected by (9), with ∆t being the time step size, m j the par-

ticle mass, ρ j the particle density, and ∇Wi j is the gradient of kernel Wi j w.r.t. xi .

In the scheme [10, 15] of Gingold & Monaghan, ∇ · (Hv) and ∇η are explicitly

computed. We remark that eqns. (7)-(9) follow from a substitution of the flow vari-

able with corresponding derivatives, using integration by parts, and the divergence

theorem.

3.3 SPH formulation of Vila and Ben Moussa

In the construction of our proposed semi-implicit SPH scheme, we use the concept

of Vila & Ben Moussa [2, 21], whose basic idea is to replace the centered approxi-

mation
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(F (vi , xi , t) + F (v j , x j , t)) · ni j
of (2) by a numerical flux G(ni j ,vi ,v j ), from a conservative finite difference scheme,

satisfying

G(n(x),v,v) = F (v, x, t) · n(x)

G(n,v,u) = −G(−n,u,v).

With using this formalism, the SPH discretization of equations (7)-(8) becomes

ηn+1
i
− ηn

i

∆t
+

N
∑

j=1

m j

ρ j
2Hi jvi j∇Wi j = 0,

v
n+1
i
− vn

i

∆t
+ g

N
∑

j=1

m j

ρ j
2ηi j∇Wi j = 0.

In this way, we define for a pair of particles, i and j, the free surface elevation ηi ,

η j and the velocity vi , v j , respectively (see Fig. 2). In our approach, we, moreover,

use a staggered velocity vi j between two interacting particles i and j as

vi j =
1

2
(vi + v j ) · ni j

in the normal direction n
d=1,2
i j

at the midpoint of the two interacting particles, where

n1
i j =

x j − xi

‖x j − xi ‖
and n2

i j =
y j − yi

‖y j − yi ‖

for the two components of vector ni j . Moreover,

δ1
i j = ‖x j − xi ‖ and δ2

i j = ‖y j − yi ‖

gives the distance between particles i and j. Since the velocities at the particles’

midpoint are known, we can use kernel summation for velocity updates.

3.4 Semi-implicit SPH Scheme

For the derivation of the semi-implicit SPH scheme, let us regard the governing

equations (3)-(5). Writing equations (3)-(5) in a non-conservative quasi-linear form

by expanding derivatives in the continuity equation and momentum equations (with

assuming smooth solutions), this yields

ut + uux + vuy + gηx = 0 (10)

vt + uvx + vvy + gηy = 0 (11)

ηt + uηx + vηy + H (ux + vy ) = −uhx − vhy . (12)
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ηi vi

η j v j

ni j

vn
i j

Fig. 2 Staggered velocity defined at the midpoint of two pair of interacting particles i and j .

Rewriting (10)-(12) in matrix form, we obtain

Qt + AQx + BQy = C, (13)

where

A =
*..
,

u 0 g

0 u 0

H 0 u

+//
-

B =
*..
,
v 0 0

0 v g

0 H v

+//
-

Q =
*.
,
u

v

η

+/
- C =

*.
,

0

0

−uhx − vhy

+/
- .

Equation (13) is a strictly hyperbolic system with real and distinct eigenvalues. The

characteristic equation, given by

det(qI + rA + sB) = 0 , (14)

can be simplified as

(q + ru + sv)
[
(q + ru + sv)2 − gH (r2

+ s2)
]
= 0 , (15)

where the solution (r, s,q) of equation (15) are the directions normal to a character-

istic cone at the cone’s vertex. We split equation (15), whereby we obtain

q + ru + sv = 0

and

(q + ru + sv)2 − gH (r2
+ s2) = 0 , (16)

with the characteristic curves u = dx/dt and v = dy/dt. If the characteristic cone

has a vertex at (x, y, t), then this cone consist of the line passing through vertex
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(x, y, t) and parallel to the vector (u,v,1), satisfying

((x − x) − u(t − t))2
+ ((y − y) − v(t − t))2 − gH (t − t)2

= 0. (17)

In particlar, the gradient of the left hand side of (17) satisfies (16) on the cone surface.

After solving (14), the solution yields

λ1,2 = v ±
√

gH.

When the particle velocity v is far smaller than the particle celerity
√
gH, i.e., |v | ≪√

gH, the particle flow is said to be strictly subcritical and thus the characteristic

speeds λ1 and λ2 have opposite directions. The maximum wave speed is given as

λmax = max(
√

gHi ,

√

gH j ).

In this case,
√
gH represents the dominant term which originates from the off diag-

onal terms g and H in the matrix A and B.

We now have tracked back where the term
√
gH originates from in the governing

equations. We remark that the first part of the characteristic cone in (15) depends

only on the particle velocity u and v. Equation (16), defining the second part of the

characteristic cone, depends only on the celerity
√
gH. As we can see, gH in (15)

comes from the off-diagonal terms g and H in the matrices A and B. The terms g

and H represent the coefficients of the derivative of the free surface elevation ηx
in (10), the coefficient of the derivative ηy in (11) for the momentum equations, and

the coefficient of velocity ux and vy in the volume conservation equation (12). We

want to avoid the stability to depend on the celerity
√
gH, therefore we discretize

the derivatives ηx , ηy and ux , vy implicitly.

Further along the lines of the above analysis, we now develop a semi-implicit

SPH scheme for the two-dimensional shallow water equations. To this end, the

derivatives of the free surface elevation ηx and ηy in the momentum equation and

the derivative of the velocity in the continuity equation are discretized implicitly.

The remaining terms, such as the nonlinear advective terms in the momentum equa-

tion, are discretized explicitly, so that the resulting equation system is linear.

Let us consider the continuity equation in the original conservative form, given

as

ηnt + ∇ · (Hn
v
n+1) = 0.

The velocity v is discretized implicitly, whereas the total water depth H is dis-

cretized explicitly. In our following notation, for implicit and explicit discretization,

we use n + 1 and n for the superscript, respectively, i.e.,

v
n
t + g · ∇ηn+1

= 0

ηnt + ∇ · (Hn
v
n+1) = 0.
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We discretize the particle velocities and free surface elevation in time by the Θ

method, for the sake of time accuracy and computational efficiency, i.e., n+1 = n+Θ,

and so

v
n
t + g · ∇ηn+Θ = 0 (18)

ηnt + ∇ · (Hn
v
n+Θ) = 0 (19)

where the Θ-method notation reads as

ηn+Θ = Θηn+1
+ (1 − Θ)ηn

v
n+Θ
= Θv

n+1
+ (1 − Θ)vn .

The implicitness factor Θ should be in [1/2,1], according to Casulli & Cattani [5].

The general semi-implicit SPH discretization of (18)-(19) then takes the form

v
n+1
i j
− Fv

n
i j

∆t
+

g

δi j
Θ(ηn+1

j − ηn+1
i ) +

g

δi j
(1 − Θ)(ηnj − η

n
i ) = 0 (20)

ηn+1
i
− ηn

i

∆t
+ Θ

N
∑

j=1

m j

ρ j
(2Hn

i jv
n+1
i j )∇Wi j · ni j

+ (1 − Θ)

N
∑

j=1

m j

ρ j
(2Hn

i jv
n
i j )∇Wi j · ni j = 0

(21)

where

Hn
i j = max(0,hn

i j + η
n
i ,h

n
i j + η

n
j ).

In a Lagrangian formulation, the explicit operator Fvn
i j

in (20) has the form

Fvni j =
1

2
(vi + v j ),

where vi and v j denote the velocity of particles i and j at time tn . The velocity at

time tn+1 is obtained by summation,

vn+1
i = vn

i +

N
∑

j=1

m j

ρ j
(vn+1

i j − vn
i )Wi j . (22)

Note that in (20) we have not used the gradient of the kernel function for the

discretization of the gradient of η. We rather used a finite difference discretization

for the pressure gradient. This increases the accuracy, since F in (20) corresponds to

an explicit spatial discretization of the advective terms. Since SPH is a Lagrangian

scheme, the nonlinear convective term is discretized by the Lagrangian (material)
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derivative contained in the particle motion in (9). Equation (22) is used to interpolate

the particle velocities from the particle location to the staggered velocity location.

3.5 The Free Surface Equation

Let the particle volume ωi in (21) be given as ωi = mi/ρi . Irrespective of the

form imposed on F, equations (20)-(21) constitute a linear system of equations

with unknowns vn+1
i

and ηn+1
i

over the entire particle configuration. We solve this

system at each time step for the particle variables from the prescribed initial and

boundary conditions. To this end, the discrete momentum equation is substituted

into the discrete continuity equation. This reduces the model to a smaller model,

where ηn+1
i

is the only unknown.

Multiplying (21) by ωi and inserting (20) into (21), we obtain

ωiη
n+1
i − gΘ2∆t2

δi j

N
∑

j=1

2ωiω j

[
Hn

i j (η
n+1
j − ηn+1

i )∇Wi j · ni j

]
= b

n
i , (23)

where the right hand side bn
i

represents the known values at time level tn given as

b
n
i = ωiη

n
i − ∆t

N
∑

j=1

2ωiω j Hn
i jFv

n+Θ
i j ∇Wi j · ni j

+ gΘ(1 − Θ)
∆t2

δi j

N
∑

j=1

2ωiω j

[
Hn

i j (η
n
j − η

n
i )∇Wi j · ni j

]
,

(24)

with Fv
n+Θ
i j
= ΘFv

n
i j
+ (1 − Θ)vn

i j
. Since Hn

i j
, ωi , ω j are non-negative numbers,

equations (23)-(24) constitute a linear system of N equations for ηn+1
i

unknowns.

The resulting system is symmetric and positive definite. Therefore, the system

has a unique solution, which can be computed efficiently by an iterative method.

We obtain the new free surface location by (23), and (20) yields the particle veloc-

ity v
n+1
i

.

3.6 Neighboring Search Technique

The geometric search for neighboring particles j around a focal particle i at some

specific position xi can be done efficiently. To this end, we create a background

Cartesian grid (see Fig. 3). This background grid contains the fluid with a mesh

size of 2L, and the grid is kept fixed throughout the simulation. The grid comprises

macrocells which consist of particles (see [16] for computational details), quite sim-

ilar to the book-keeping cells used in [14].
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To compute the free surface elevation η and the fluid velocity v, only particles

inside the same macro cell or in the surrounding macro cells contribute. Ferarri et

al. [9] explain the neigboring search in detail: The idea is to build a list of particles

in a given macro cell and, vice versa, to keep a list of indices, one for each particle,

pointing to macro cells containing that particle. We store the coordinates of each

particle to reduce the time required for the neighbor search. In our neighbor search,

a particle can only interact with particles in its macro cell or in neigboring macro

cells. For the two-dimensional case of the present study we only need to loop over

the bounding box of nine macro cells (see Fig. 3).

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

bb

b

b

b

b

b

2L

bc

Fig. 3 Fictitious Cartesian grid: neigboring search is done within the 9 cells in a two-dimensional

space. The smoothing length is constant and the support domain for the particles is 2L.

4 Numerical Results

Now we evaluate the performance of the proposed semi-implicit SPH scheme. This

is done by employing a standard test problem for the 2d shallow water equations. In

this model problem, we assume a smooth solution, i.e., a collapsing Gaussian bump.
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4.1 A Collapsing Gaussian Bump

We consider a smooth free surface wave propagation, by the initial value problem

η(x, y,0) = 1 + 0.1e

−
1

2
*.
,

r2

σ2
+/
-,

u(x, y,0) = v(x, y,0) = h(x, y) = 0,

in the domain Ω = [−1,1] × [−1,1] with a prescribed flat bottom bathymetry, i.e.,

h(x, y) = 0, where σ = 0.1 and r2
= x2

+ y
2. The computational domain Ω

is discretized with 124,980 particles. The final simulation time is t = 0.15, and

the time step is chosen to be ∆t = 0.0015. We have used the implicitness factor

Θ = 0.65. The smoothing length is taken as hi = α(ωi )
1/d , where α = [1.5,2]

and d = 2. The obtained numerical solution is shown in Fig. 5. The profiles in

Fig. 4 show the three dimensional surface plots of the free surface elevation at times

t = 0.0s,0.05s,0.10s,0.15s. Due to the radial symmetry of the problem, we ob-

tain a reference solution by solving the one-dimensional shallow water equations

with a geometric source term in radial direction: a method based on the high order

classical shock capturing total variation diminishing (TVD) finite volume scheme

is employed for computing the reference solution using 5,000 points and the Osher-

type flux for the Riemann solver, see [20] for details. The comparison between our

numerical results obtained with semi-implicit SPH scheme and the reference solu-

tion is shown. A good agreement between the two solutions is observed in Fig. 5. We

attribute the (rather small) differences in the plots to the fact that the SPH method

has a larger effective stencil, which may increase the numerical viscosity. The cross

section of the free surface elevation and the velocity in the x− direction is shown

in Fig. 5

5 Conclusion

We have proposed a meshfree semi-implicit smoothed particle hydrodynamics

(SPH) method for the shallow water equations in two space dimensions. In our

scheme, the momentum equation is discretized by a finite difference approxima-

tion for the gradient of the free surface and the SPH appoximation for the mass

conservation equation. By the substitution of the discrete momentum equations into

the discrete mass conservation equations, this leads to a sparse linear system for the

free surface elevation. We solve this system efficiently by a matrix-free version of

the conjugate gradient (CG) algorithm.

The key features of the proposed semi-implicit SPH method are briefly as follows:

The method is mass conservative; efficient; time steps are not restricted by a stability

condition (coupled to the surface wave speed), thus large time steps are permitted.
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Fig. 4 3d surface plot of the free-surface: SISPH solution at times t = 0.0s, 0.05s, 0.10s, 0.15s

with 124, 980 particles.

Ongoing research is devoted to nonlinear wetting and drying problems, applica-

tion to shock problems, and extension of the scheme to the fully three-dimensional

case.
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Fig. 5 Cross section of semi-implicit solution (green) versus reference solution (red): Free-surface

(left), velocity (right) in the x− direction at times t = 0.0s, 0.05s, 0.10s, 0.15s.


