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Abstract

The determination of frequencies that occur in a signal is regarded as
a challenging problem in information processing. One particular instance
is that of parameter estimation for bivariate exponential sums. Recently
proposed methods solve this problem by the application of one-dimensional
reconstruction schemes from frequency projections along only a few lines.
In this case, sparse samples of projections from the unknown frequency
vectors are taken. This, however, may lead to undesired cancellations in
the reconstruction of the frequencies. In this paper, we show how to tackle
this problem and we discuss how many lines are necessary for reliable re-
constructions in such critical situations.
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1 Introduction

Exponential sums model signals which are sparse in the frequency domain. Of-
ten, one wishes to recover the unknown frequencies of such signals from only
a few samples. In the special case of one dimension, i.e., for univariate ex-
ponential sums, the reconstruction is well understood and a vast literature is
available. Moreover, a variety of numerical algorithms have been developed,
including APM [9], ESPRIT [13], and matrix pencil methods [14].

In the special case of two dimensions, one wishes to estimate the parameters
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of a bivariate exponential sum

f(x) =

M∑
j=1

cje
iyj ·x for x ∈ R2, (1)

i.e., the pairwise distinct frequency vectors yj ∈ R2 and coefficients cj ∈ C\{0}.
Several methods for parameter estimation of bivariate exponential sums rely

on gridded data [2, 6, 7, 12, 15]. Quite recently, a new algorithm has been
proposed, where only a few samples are needed [8, 10]. The key idea in this new
approach is to first apply a univariate parameter estimation along specific lines
in the plane, before the resulting information are combined to obtain estimations
for the frequency vectors yj in (1).

This contribution follows along the lines of our ideas in our previous work [3],
where the outline of this paper is briefly as follows. In Section 2, we prove that
M frequencies yj in (1), with arbitrary non-zero coefficients cj , are uniquely
determined already by their projections onto M+1 non-parallel lines. Moreover,
we discuss the reconstruction of the frequencies from their projections, where
special emphasize is placed on the critical issue of cancellation. This then leads
us, in Section 3, to parameter estimation of bivariate exponential sums sampled
along scattered lines. In Section 4, we show how to recover linear combinations
of shifted basic functions from samples in the Fourier domain. For the purpose
of illustration, we finally provide one numerical example in Section 5.

In the following of this paper, we use bold letters to denote vectors. Moreover,
for x ∈ Rn we let ‖x‖0 denote the number of non-zero components of x. The
number of elements in a finite set X is denoted by |X|, and we let C∗ = C \ {0}.
Finally, ∂S denotes the boundary of a set S ⊂ Rd.

2 Projection of Frequency Vectors onto Scattered Lines

We denote the set of all bivariate exponential sums by

E =

⎧⎨
⎩

M∑
j=1

cje
iyj ·x :M ∈ N, cj ∈ C∗, yj ∈ R2 pairwise distinct

⎫⎬
⎭

where we call M the order of f ∈ E in (1). We first remark that the restriction
f |� of any f ∈ E to a line � ⊂ R2 gives a univariate exponential sum. To see this,
we represent any line � ⊂ R2, for some vector v ∈ R2 and scalar b ∈ R, as

� ≡ �v,b = {λv + bη :λ ∈ R} ⊂ R2,

where we assume the orthogonality relation v ⊥ η. In this case,

f |�(λ) =
M∑
j=1

cje
iyj ·(λv+bη) =

M∑
j=1

cje
ibyj ·ηeiλyj ·v =

M�∑
j=1

c�je
iλy�j , (2)
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where we arrange the representation of f |� on the right hand side of (2), such
that the values y�j = yj · v from the frequency projections onto � are pairwise
distinct. Moreover, we assume non-vanishing coefficients c�j ∈ C∗, so that the
order M� ≤ M of f |� is minimal.

Now we consider sampling f |�, where we take at least 2M equidistant samples.
For simplicity, we assume ‖yj‖2 < π and chose h = 1 for the sampling distance.
By the application of any suitable parameter estimation method for univariate
exponential sums, e.g. ESPIRIT [13], we can determine the values

(y�j , c
�
j) for j = 1, . . . ,M� (3)

from the taken samples. Therefore, it remains to recover the unknown parameters

(yj , cj) for j = 1, . . . ,M. (4)

of f in (1) from the parameters (3) of univariate exponential sums f |� for several
choices of �.

To reformulate this reconstruction problem, we let X = {yj : j = 1, . . . ,M}
and c = (c1, . . . , cM )T ∈ CM , to associate the data (4) with the weight function
wX,c : R2 → C satisfying

w ≡ wX,c(x) =

{
cj for x = yj ,

0 for x ∈ R2 \X,
(5)

so that the support of wX,c is supp(wX,c) = X. This allows us to define, for any
line �v,b ⊂ R2, the projection wv,b : R → C of wX,c onto �v,b by

wv,b(x) =
∑
y∈X
v·y=x

w(y)eiby·η, (6)

where w denotes the weight function in (5). Therefore, the reconstruction prob-
lem for the parameters in (4) boils down to reconstructing wX,c from a finite
number of projections wvk,bk , for k = 1, . . . , L.

In the special case, where bk = 0, for all k = 1, . . . , L, and cj ∈ R>0, for
all j = 1, . . . ,M , this leads us to a classical reconstruction problem, as this was
studied in [11]. But our situation is somewhat different from that in [11]. To
further explain this, note that for v ·X = {v ·x :x ∈ X} we have the inequalities

|supp(wv,b)| ≤ |v ·X| ≤ |X|. (7)

If the second inequality in (7) is strict, then some points in X must feature the
same projection onto �v,b. In this case, their weights are added. If the sum of
their weights is zero, then the first inequality in (7) is also strict. But if equality
holds for the second inequality in (7), then so for the first inequality in (7). We
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remark that for the special case considered in [11] the first inequality in (7) is an
equality, i.e., |supp(wv,b)| = |v ·X|.

Now note that v 	→ wv,b is a linear mapping, i.e., we have

(w + tw̃)v,b = wv,b + tw̃v,b for any t ∈ R and v ∈ R2.

Moreover, for the scaling of vector v, we immediately find the identity

wtv,b(x) =
∑
y∈X

tv·y=x

w(y)eiby·η =
∑
y∈X

v·y=x/t

w(y)eiby·η = wv,b(x/t) for t 
= 0.

In this setting, the result of Renyi in [11] can be stated as follows.

Theorem 2.1 (Renyi, 1952). For M + 1 scalar values b1, . . . , bM+1 ∈ R and
pairwise linearly independent vectors v1, . . . ,vM+1 ∈ R2, let their projections
wvj ,bj satisfy

supp(wvj ,bj ) = vj ·X for all j = 1, . . . ,M + 1.

Then, wX,c is uniquely determined by the M+1 projections wv1,b1 , . . . , wvM+1,bM+1
.

Proof. We follow an idea of Heppes [5]. To this end, we consider the point set

X̃ = {x ∈ R2 :vj · x ∈ supp(wvj ,bj ) for all j = 1, . . . ,M + 1} ⊂ R2.

Since supp(wvj ,bj ) = vj ·X, for j = 1, . . . ,M +1, we have the inclusion X ⊂ X̃.
To show the inclusion X̃ ⊂ X, let x ∈ X̃ be an arbitrary point in X̃. By
definition, we find, for each j = 1, . . . ,M+1, one xj ∈ X satisfying vj ·x = vj ·xj .
As we have picked up M + 1 points xj , there is, by the pigeon hole principle, at
least one pair of indices j 
= k with xj = xk. But in this case we have

vj · x = vj · xj and vk · x = vk · xk = vk · xj .

Since vj ,vk are linearly independent, this implies x = xj ∈ X, and so X̃ ⊂ X.
In conclusion, the set X = supp(wX,c) is uniquely determined by X̃ = X.

It remains to recover the weights c of wX,c under constraints (5). To this
end, note that any yk ∈ X yields M +1 projections vj · yk ∈ supp(wvj ,bj ) in X̃.
But since there are only M − 1 points in X \ {yk}, there must be at least one
vector vj satisfying wvj ,bj (vj · yk) = wX,c(yk) = ck. This way, the weights c of
wX,c are uniquely determined.

We can conclude that, under the assumptions of Theorem 2.1, any weight
function wX,c : R2 → C of order M satisfying (5) can uniquely be recovered
from M + 1 projections wv,b of the form (6). As already pointed out in [11],
the lower bound M + 1 for the required number of projections wv,b, as given by
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Theorem 2.1, is sharp. To see this, let us make one simple example with only M
projections. To this end, we regard the 2M vertices xj of a regular 2M polygon
P2M ⊂ R2, here labelled counterclockwise with indices j = 1, . . . , 2M . If we let
bj = 0 and if we denote by vj the 2M outer normals of P2M , then the M vertices
with even indices, Xe = {x2j : j = 1, . . . ,M}, have the same projections wvj ,0,
j = 1, . . . ,M , as the M vertices with odd indices, Xo = {x2j−1 : j = 1, . . . ,M}.

Further examples are given in [11]. Whether or not the lower bound M + 1
for the number of projections, from Theorem 2.1, continues to be sharp for the
more general situation, where arbitrary sets of lines are allowed, is still an open
problem. Nevertheless, we can show that for any finite set of lines (i.e., finite
set of projections), there are at least two different weight functions with equal
projections.

Lemma 2.2. Let {�v1,b1 , . . . , �vL,bL} ⊂ R2 be a set of L pairwise distinct lines.
Then there is a non-vanishing weight function w : R2 → C, w 
≡ 0, satisfying
wvj ,bj = 0 for all j = 1, . . . , L.

Proof. We define the convolution of two weight functions w, w̃ : R2 → C by

(w ∗ w̃)(x) =
∑

x1+x2=x

w(x1)w̃(x2). (8)

Note that w ∗ w̃ ≡ 0 implies w ≡ 0 or w̃ ≡ 0. Indeed, choosing x1 ∈ supp(w)
and x2 ∈ supp(w̃) with the largest first component (if multiple choices are avail-
able, we choose the vector with the largest second component), respectively, we
see that the equation x1 + x2 = x has one unique solution with vectors in the
support of w and w̃. Hence, x ∈ supp(w ∗ w̃). Further, it is clear that for
any pair w, w̃ of weight functions, the sum in (8) is finite. Moreover, the set of
weight functions, being equipped with the convolution in (8), is an algebra. The
projection of a convolution between two weight functions is given as

(w ∗ w̃)v,b(x) =
∑

(x1+x2)·v=x

eib(x1+x2)·ηw(x1)w̃(x2).

We now show that the set of weight functions

Iv,b = {w : R2 → C :wv,b = 0}

is an ideal. In fact, for any w ∈ Iv,b and an arbitrary weight function w̃ we have

(w ∗ w̃)v,b(x) =
∑

x1∈ supp(w̃)

eibx1·ηw̃(x1)
∑

x2∈ supp(w)
x2·v=x−x1·v

eibx2·ηw(x2)

=
∑

x1∈ supp(w̃)

eibx1·ηw̃(x1)wv,b(x− x1 · v) = 0.
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Note that Iv,b 
= {0}, since for instance the weight w satisfying

w(0) = 1, w(η) = −1, and w(x) = 0 otherwise

is contained in Iv,b. But then

Iv1,b1 ∗ · · · ∗ IvL,bL ⊂
L⋂

j=1

Ivj ,bj

and so there is one non-trivial weight w satisfying wvj ,bj = 0 for j = 1, . . . , L.

We can conclude that it is not possible to uniquely recover any weight function
w from an a priori fixed finite number of projections (i.e., from a finite number
of lines). This disproves a conjecture in [8].

Note that the proof of Theorem 2.1 is constructive, where we can determine
X from X̃. In the more general situation, where |supp(wvj ,bj )| < |vj · X|, the
set X̃ does not contain X. In this case, X cannot be determined from X̃.
Nevertheless, we can show that M + 1 projections are sufficient to uniquely
determine w ≡ wX,c.

Theorem 2.3. For a finite set X = {yj : j = 1, . . . ,M}, let wX,c denote a weight
function satisfying (5). Moreover, let b1, . . . , bM+1 ∈ R and v1, . . . ,vM+1 ∈ R2

be pairwise linearly independent vectors. Then, wX,c is uniquely determined by
the M + 1 projections wv1,b1 , . . . , wvM+1,bM+1

among all weight functions with
support size smaller or equal to M .

Proof. Let w̃ be a different weight function with support size smaller or equal to
M satisfying

wvj ,bj = w̃vj ,bj for j = 1, . . . ,M + 1,

i.e., (w− w̃)vj ,bj ≡ 0 for j = 1, . . . ,M+1. In the following of this proof, we show
|supp(w − w̃)| ≥ 2M + 2, which is a contradiction to |supp(w)|, |supp(w̃)| ≤ M .

To this end, denote supp(w− w̃) by Y and note that for any combination of
x ∈ Y and vj there must be one y ∈ Y , y 
= x, satisfying x · vj = y · vj . Now
we consider for vj the strip

Sj = {x ∈ R2 : min (vj · Y ) ≤ x · vj ≤ max (vj · Y )} ⊂ R2.

Note that each of the connected components of the boundary of Sj is a line
containing at least two elements from Y . Further note that Y is contained in Sj ,
i.e., Y ⊂ Sj , for all j = 1, . . . ,M + 1, and so the intersection

P =

M+1⋂
j=1

Sj
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is a convex polygon containing Y , i.e., Y ⊂ P .
Now the polygon P has 2M+2 edges. Indeed, for any index k ∈ {1, . . . ,M+

1}, the boundary lines of Sk have a non-empty intersection with the polygon

Pk =

M+1⋂
j=1
j �=k

Sj .

In fact, this intersection ∂Sk∩Pk is given by two line segments, containing at least
two points from Y that are lying on the boundary of Sk. But these line segments
cannot be edges in Pk, since the vectors vj were assumed to be pairwise linearly
independent. In conclusion, P has 2M + 2 edges, two from each intersection
Sk ∩ Pk, for k = 1, . . . ,M + 1. Moreover, each edge of P contains at least two
elements from Y . Therefore, Y has at least 2M + 2 elements.

But this implies |supp(w)| = |X| > M , which completes our proof.

We remark that, in contrast to Theorem 2.1, the proof of Theorem 2.3 is not
constructive, and so the support X of wX,c cannot be recovered directly. But it
is possible to construct a finite candidate set, containing X.

Lemma 2.4. Let M ∈ N. Moreover, for b1, . . . , bM+1 ∈ R and pairwise linearly
independent vectors v1, . . . ,vM+1 ∈ R2, let wvj ,bj , j = 1, . . . ,M+1, denote their
corresponding projections. Then we have the inclusion

X ⊂ X̃ = {x ∈ R2 :vj · x ∈ supp(wvj ,bj ) for at least two distinct j}. (9)

Proof. Let x ∈ X. If x 
∈ supp(wvj ,bj ), for one index j ∈ {1, . . . ,M + 1}, then
there must be one xj ∈ X satisfying x · vj = xj · vj . Since we can pick only at
most M − 1 = |X \ {x}| pairwise distinct points xj from X \ {x}, there must be
at least two distinct indices j, k ∈ {1, . . . ,M +1} satisfying vj ·x ∈ supp(wvj ,bj )
and vk · x ∈ supp(wvk,bk).

If we wish to use Lemma 2.4 to recover X, then we would have to check all
subsets of X̃ in (9) of size at most M . Since |X̃| ≤ (

M
2

)
M2 this is computationally

not feasible. Yet it is possible to reduce the size of the candidate set X̃.

Lemma 2.5. Under the same assumptions and notations as in Lemma 2.4, let
the index set J = {r1, ..., rs} ⊂ {1, ...,M + 1} be chosen such that

|supp(wvr,br)| ≥ M − 1 for all r ∈ J.

Then we have the inclusion

X ⊂ XJ = {x ∈ X̃ :x · vr ∈ supp(wvr,br) for all r ∈ J}.
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Moreover, the set

X̃J = {x ∈ XJ : ∀j ∈ {1, . . . ,M + 1} \ J :
x · vj ∈ supp(wvj ,bj ) or ∃y ∈ XJ ,x 
= y,with x · vj = y · vj}

also contains X, i.e., X ⊂ X̃J .

Proof. If |supp(wvr,br)| ≥ M − 1, then vr ·X = supp(wvr,br), and so X ⊂ XJ . If
x ∈ XJ is not contained in supp(wvj ,bj ) but in X, then there is one y ∈ X \ {x}
with the same projection onto �vj ,bj . This yields X ⊂ X̃J .

Unfortunately, there are cases where J = ∅ or |J | = 1 and X � X̃J . But
the reduction of the candidate set, as suggested in Lemma 2.5, works only for
|X| = M , whereas the other results in this section also hold for |X| ≤ M .

We conclude this section by referring to a few other possibilities to perform
an efficient recovery of X. In [8], an adaptive choice of lines �vj ,bj is considered.
In fact, as shown in [8], if two lines �vj ,bj with supp(wvj ,bj ) = vj ·X, j = 1, 2, are
known, the projection onto an adaptively chosen third line �v3,b3 is sufficient to
uniquely recover the weight function w, where �v3,b3 depends on wvj ,bj , j = 1, 2.

The problem to recover a set of vectors from a finite number of projections is
also discussed in [1]. We can state one of their results in our setting as follows.
For given projections onto s =

(
M
2

)
+2 lines �vj , bj — with points vj , j = 1, . . . , s,

in general position — there are at least two distinct lines r1, r2 with |vrj ·X| = M .
Note that this implies |supp(wvrj ,b

)| = M .

3 Sampling along Scattered Lines

We now return to the problem of parameter estimation for bivariate exponential
sums. The following result is a direct consequence from Theorem 2.3.

Corollary 3.1. Let f ∈ E be a bivariate exponential sum of order M and let
�v1,b1 , . . . , �vM+1,bM+1

be pairwise non-parallel lines. Moreover, let G be a set
containing at least 2M equidistant sample points along each of the lines �vj ,bj ,
j = 1, . . . ,M +1, taken with step size one. Further, assume that every frequency
vector y of f satisfies ‖y‖2 < π. Then, f is uniquely determined among all
exponential sums of order at most M by its samples at the points in G.

To describe a procedure how to recover f ∈ E from its restrictions f |�vj ,bj ,
we reformulate Lemma 2.4 as follows.

Corollary 3.2. Under the assumptions and notations of Corollary 3.1, let Xj

be the frequency set of the restriction f |�vj ,bj , j = 1, . . . ,M + 1. Moreover, let

X̃ = {x ∈ R2 :x · vj ∈ Xj for at least two distinct j}.
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Then the optimization problem

min
c∈R|X̃|

‖c‖0

subject to
∑
x∈X̃

cxe
ix·w = f(w) for all w ∈ G

(10)

has a unique solution corresponding to f .

Proof. First note that the optimization problem (10) has a solution satisfying
‖c‖0 = M , corresponding to f . Any other solution with ‖c̃‖0 ≤ M gives rise to
an exponential sum f̃ of order at most M with f(w) = f̃(w) for all w ∈ G. But
this implies f = f̃ , on Corollary 3.1.

Unfortunately, the optimization problem (10) is NP-hard, see [4]. Moreover,
we cannot expect its system matrix to satisfy the restricted isometric property,
which would allow us to consider the convex relaxation with replacing ‖c‖0 by
‖c‖1. Also, X̃ is very large. If we knew M exactly, we could possible reduce |X̃|
quite significantly by the application of Lemma 2.5.

We close this section by providing a numerical algorithm to recover any bi-
variate exponential sum f ∈ E of order M ∈ N. The following algorithm can be
viewed as a modification of the Sparse Approximate Prony Method in [10].

Algorithm 3.3. Let f ∈ E be an exponential sum of order M ∈ N. Choose
ε, ε̃ > 0 and �v1,b1 , . . . , �vL,bL for L ≥ M . Take 2L samples from f along each
line �vj ,bj , at equidistant sample points and for step size one, respectively.

1. Apply algorithm ESPRIT [13] along each line �vj ,bj , with rank estimation
parameter ε. Let Xj be the frequencies observed on the j-th line �vj ,bj .

2. Let J = {r1, ..., rs} be the index set with |Xj | ≥ L − 1. Build X̃J as in
Lemma 2.5. Eliminate point pairs with Euclidean distance smaller than ε̃.

3. Solve

min
c∈R|X̃J |

‖c‖0

subject to
∑
x∈X̃J

cxe
ix·w = f(w) for all w ∈ G

(11)

We remark that the tolerance ε in Algorithm 3.3 should to be chosen with
respect to the noise level, whereas ε̃ could be adapted to the separation distance
of the candidate set X̃J . If M is known, then we usually have X̃J = X, in which
case the solution of the optimization problem (11) is feasible.
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4 Reconstruction from Fourier Data

In this section, we apply the parameter estimation method of the previous section
to reconstruct linear combinations of a shifted basic function from samples in the
Fourier domain (cf. [8, 16]). To this end, we follow along the lines of our work [3].

We define the (continuous) Fourier transform f̂ of a function f ∈ L1(R2) by

f̂(w) =
1

2π

∫
Rd

f(x)eix·wdx for w ∈ R2.

Let Φ : R2 → R be an even function. For f we assume the form

f(x) =
M∑
j=1

cjΦ(x− xj), (12)

where Φ ∈ L1(R2). The Fourier transform of f is then given by

f̂(w) = Φ̂(w)

M∑
j=1

cje
iw·xj .

Sampling f̂ at a finite point set G leads us to a reconstruction problem for
bivariate exponential sums, provided that Φ̂ 
≡ 0 on G. As Φ is assumed to be
even, Φ̂ is real-valued. If Φ̂ is strictly positive (or strictly negative) on R2, then
we do not need to make any assumptions on G. To further explain this, note
that

Φ̂(w) > 0 for all w ∈ R2

implies that Φ is a positive definite function, by Bochner’s theorem. Positive
definite functions are often considered in approximation theory. Prototypical
examples of such functions are the Gaussians Φ(x) = e−α‖x‖22 , for α > 0. Their
Fourier transform is given by

Φ̂(w) =
1

2α
e−‖w‖22/(4α) > 0.

Other examples are the inverse multiquadrics

Φ(x) =
(
1 + ‖x‖22

)β for − 2 < β < 0.

Now we can transfer our preceding considerations, in particular Algorithm 3.3,
to obtain a reconstruction method for functions f of the form (12).

(1) Sample f̂ on enough lines, as described in Algorithm 3.3.
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(2) Calculate

g(w) =
f̂(w)

Φ̂(w)
=

M∑
j=1

cje
iw·xj

for all sample points.

(3) Use Algorithm 3.3 to reconstruct the frequencies and coefficients of g. The
frequencies are the shift vectors xj ∈ R2.

Although the above algorithm works fine at the absence of noise, it is not
very stable: As we divide by Φ̂(w), we require Φ̂ to be uniformly bounded away
from zero, i.e.,

Φ̂(w) > C > 0 (13)

for some sufficiently large constant C. Otherwise any noise added to f̂ will get
amplified significantly. But due to the Riemann-Lebesgue lemma, we have

Φ̂(w) −→ 0 for w → ∞,

for Φ ∈ L1(R2). Therefore, (13) can only hold on a bounded set.

5 Numerical Example

For the purpose of illustration, we finally provide one numerical example. Let

(
y1 y2 y3 y4 y5

)
=

(
1 1.5 2 2 2.8
1 2.7 1 2.2 1.6

)
c =

(
1 2 −1 3 0.5

)
We sample along four lines with bj = 0 and vj = (cos(ϕj), sin(ϕj)), where
ϕj = 0, π/2, π/4,−π/4. This example is numerically critical, as cancellation
occurs: The vectors y1 and y2 have the same projection onto �v2,0 and their
coefficients sum up to zero. Ignoring �v2,0 does not help in this case, as then two
additional frequency vectors appear and X � X̃J .

We apply Algorithm 3.3 to this problem with letting ε = ε̃ = 10−3 and
L = 5. Thus, the reduction step of Lemma 2.5 is applicable. We decided to
take 21 samples along each line. As all coefficients are real-valued and bj = 0 for
j = 1, ..., 5, we may rely on the identity f(−x) = f(x).

Thus, we can use 41 samples for each univariate method. Further, we have
added noise, uniformly and independently distributed in [−δ, δ] to each sample.
We performed each calculation 100 times and recorded the errors

efreq = max
j=1,...,5

‖yj − ỹj‖∞ and ecoef = max
j=1,...,5

‖cj − c̃j‖∞
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Table 1: Results of the Example
δ efreq ecoef fails

0 4.9e-15 2.7e-14 0

10−6 3.5e-7 5.1e-7 0

10−3 2.9e-4 4.9e-4 0

10−2 2.6e-3 4.8e-3 10

We averaged the error over the 100 experiments. Any time when the number
of frequencies was not estimated correctly, we counted one fail. We observed
that fails occur whenever ESPRIT did not estimate the number of frequencies
along one of the lines correctly. Our numerical results are shown in Table 1.
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