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ERROR ESTIMATES AND CONVERGENCE RATES
FOR FILTERED BACK PROJECTION

MATTHIAS BECKMANN AND ARMIN ISKE

Abstract. Computerized tomography allows us to reconstruct a bivariate function from Radon
samples. The reconstruction is based on the filtered back projection (FBP) formula, which gives an
analytical inversion of the Radon transform. However, the FBP formula is numerically unstable
and suitable low-pass filters with a compactly supported window function and finite bandwidth
are employed to make the reconstruction by FBP less sensitive to noise.

The objective of this paper is to analyse the intrinsic FBP reconstruction error which is
incurred by the use of a low-pass filter. To this end, we prove L2-error estimates on Sobolev
spaces of fractional order. The obtained error bounds are affine-linear with respect to the distance
between the filter’s window function and the constant function 1 in the L∞-norm. With assuming
more regularity of the window function, we refine the error estimates to prove convergence for
the FBP reconstruction in the L2-norm as the filter’s bandwidth goes to infinity. Further, we
determine asymptotic convergence rates in terms of the bandwidth of the low-pass filter and the
smoothness of the target function.

1. Introduction

The term filtered back projection (FBP) refers to a well-known and commonly used reconstruction
technique in computerized tomography (CT), which deals with the generation of medical images.
The classical reconstruction problem in CT consists in recovering the interior structure of a scanned
object from given measurements of X-ray scans. This X-ray data can be interpreted as a finite set
of line integrals of the (unknown) attenuation function of the scanned object which describes the
amount of energy that is absorbed by the medium. Thus, the CT reconstruction problem requires
the reconstruction of the scanned object’s attenuation function from its line integrals.

In order to formulate this basic reconstruction problem mathematically, we regard for f ∈ L1(R2)
its Radon transform

Rf(t, θ) =

∫
{x cos(θ)+y sin(θ)=t}

f(x, y) dx dy for (t, θ) ∈ R× [0, π).

Here, the set {(x, y) | x cos(θ) + y sin(θ) = t} ⊂ R
2 describes the straight line �t,θ with distance t

to the origin that is perpendicular to the unit vector nθ = (cos(θ), sin(θ))T . Note that the Radon
transform R maps a bivariate function f ≡ f(x, y) in Cartesian coordinates onto a bivariate function
Rf ≡ Rf(t, θ) in polar coordinates.

Now the CT reconstruction problem reads as follows.

Date: March 30, 2016.
Key words and phrases. Computerized tomography, image reconstruction, Radon transform, filtered back projec-

tion, low-pass filters, error estimates, convergence rates.
1



2 MATTHIAS BECKMANN AND ARMIN ISKE

Problem 1.1 (Basic reconstruction problem). Let Ω ⊂ R
2 be bounded. Reconstruct a bivariate

function f ≡ f(x, y) with compact support supp(f) ⊆ Ω from its Radon data

{Rf(t, θ) | t ∈ R, θ ∈ [0, π)} .
Therefore, the basic reconstruction problem seeks for the inversion of the Radon transform R.

For a comprehensive mathematical treatment of the Radon transform and its inversion, we refer to
the textbooks [3, 9].

The outline of this paper is as follows. In §2 we address the inversion of the Radon transform
by the classical FBP formula. Since the FBP formula is highly sensitive with respect to noise, we
also describe how to stabilize the reconstruction formula by using suitable low-pass filters with a
compactly supported window function and finite bandwidth. This standard approach leads us to an
approximate reconstruction formula, whose approximation quality strongly depends on the chosen
low-pass filter.

The evaluation of the reconstruction quality requires a rigorous analysis of the approximation
error, where error bounds depending on the low-pass filter’s window function, on its bandwidth
and on the regularity of the target function are of particular interest. To this end, we first recall
in §3 an error estimate from our previous work [1] concerning the FBP reconstruction error in the
L2-norm for relevant cases of target functions from Sobolev spaces of fractional order.

That error estimate from [1] allows us to show convergence of the approximate reconstruction
to the target function as the filter’s bandwidth goes to infinity, but only under rather strong
assumptions. In contrast, due to a result by Madych [4], convergence can be shown under much
weaker assumptions. This has motivated us to investigate the refinement of our previous L2-error
estimate, as detailed in §4. On the basis of our refined error estimates we are able to prove
convergence under much weaker conditions. Furthermore, this allows us to determine asymptotic
convergence rates in terms of the bandwidth of the low-pass filter and the smoothness of the
target function. In §5 and §6 we show that the convergence rate saturates with respect to the
differentiability order of the filter’s window function. Our theoretical results are supported by
numerical simulations.

2. Filtered Back Projection

The inversion of the Radon transform R is well understood and involves the (continuous) Fourier
transform, here taken as

Fg(S, θ) =

∫
R

g(t, θ)e−itS dt for (S, θ) ∈ R× [0, π)

for g ≡ g(t, θ) in polar coordinates satisfying g(·, θ) ∈ L1(R) for all θ ∈ [0, π), as well as the back
projection

Bh(x, y) = 1

π

∫ π

0

h(x cos(θ) + y sin(θ), θ) dθ for (x, y) ∈ R
2

for h ∈ L1(R × [0, π)). Note that the back projection B maps a bivariate function h ≡ h(t, θ) in
polar coordinates onto a bivariate function Bh ≡ Bh(x, y) in Cartesian coordinates.

Later in this work we also use the (continuous) Fourier transform on R
2, defined as

Ff(X,Y ) =

∫
R2

f(x, y)e−i(xX+yY ) dx dy for (X,Y ) ∈ R
2

for f ≡ f(x, y) in Cartesian coordinates, where f ∈ L1(R2).
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Now the inversion of the Radon transform is given by the classical filtered back projection formula
(see e.g. [2, Theorem 6.2.])

(2.1) f(x, y) =
1

2
B(F−1[|S|F(Rf)(S, θ)]

)
(x, y) ∀ (x, y) ∈ R

2,

which holds for any function f ∈ L1(R2) ∩ C(R2).
We remark that the FBP formula is numerically unstable. Indeed, by applying the filter |S| to the

Fourier transform F(Rf) in (2.1), especially the high frequency components of Rf are amplified
by the magnitude of |S|. Therefore, the filtered back projection formula is in particular highly
sensitive with respect to noise. Needless to say that this is critical in many relevant applications,
where a reconstruction by FBP would lead to an undesired corruption of the image.

To reduce the sensitivity of the FBP formula with respect to noise, we follow a standard approach
and replace the filter |S| in (2.1) by a low-pass filter AL of the form

AL(S) = |S|W (S/L)

with finite bandwidth L > 0 and an even window function W : R −→ R with compact support
supp(W ) ⊆ [−1, 1]. Further, we assume W ∈ L∞(R).

Therefore, the scaled window function WL(S) = W (S/L) is even and compactly supported with
supp(WL) ⊆ [−L,L]. In particular, WL ∈ L1(R), and so, unlike |S|, any low-pass filter of the form
AL(S) = |S|WL(S) is in L1(R). When replacing the filter |S| in (2.1) by a low-pass filter AL(S),
the reconstruction of f is no longer exact. However, we can simplify the resulting approximate FBP
formula as

(2.2) fL =
1

2
B(F−1AL ∗ Rf

)
,

where ∗ denotes the usual convolution product. Relying on the standard relation

Bg ∗ f = B(g ∗ Rf
)
,

which holds for f ∈ L1(R2) and g ∈ L1(R × [0, π)), see [9, Theorem II.1.3], we can rewrite the
approximate FBP reconstruction fL in terms of the target function f via

fL =
1

2
B(F−1AL ∗ Rf

)
= f ∗KL,

where we define the convolution kernel KL : R2 −→ R as

KL(x, y) =
1

2
B(F−1AL

)
(x, y) for (x, y) ∈ R

2.

For the sake of brevity, we call any application of the approximate FBP formula (2.2) an FBP
method. Therefore, each FBP method provides one approximation fL to f , fL ≈ f , whose quality
depends on the choice of the low-pass filter AL.

In the following, we analyse the intrinsic error of the FBP method which is incurred by the use
of the low-pass filter AL, i.e., we wish to analyse the reconstruction error

(2.3) eL = f − fL

with respect to the filter’s window function W and bandwidth L.
We remark at this point that pointwise and L∞-error estimates on eL were proven by Munshi

in [5] and by Munshi et al. in [6]. Their theoretical results were further supported by numerical
experiments in [7]. Error bounds on the Lp-norm of eL, in terms of an Lp-modulus of continuity of
f , were proven by Madych in [4].
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In the following sections, we prove L2-error estimates on eL for target functions f from Sobolev
spaces of fractional order. Here, the Sobolev space Hα(R2) of order α ∈ R, defined as

(2.4) Hα(R2) =
{
f ∈ S ′(R2) | ‖f‖α < ∞}

,

is equipped with the norm ‖ · ‖α, where

‖f‖2α =
1

2π

∫
R

∫
R

(
1 + x2 + y2

)α |Ff(x, y)|2 dx dy,

and where S ′ in (2.4) denotes the Schwartz space of tempered distributions.
In relevant applications of (medical) image processing, Sobolev spaces of compactly supported

functions,
Hα

0 (Ω) =
{
f ∈ Hα(R2) | supp(f) ⊆ Ω

}
,

on an open and bounded domain Ω ⊂ R
2, and of fractional order α > 0 play an important role

(cf. [8]). In fact, the density function f of an image in Ω ⊂ R
2 has usually jumps along smooth

curves, but is otherwise smooth off these curve singularities. Such functions belong to the Sobolev
space Hα

0 (R
2) for α < 1

2 . Thus, we can consider the density of an image as a function in a Sobolev
space Hα

0 (Ω) whose order α is close to 1
2 .

We remark that the approach taken in this paper is essentially different from previous approaches,
in particular different from that in [4].

3. Error Analysis

In this section we prove an L2-error estimate for eL = f − fL, where the upper bound on the
L2-norm of eL is split into two error terms, a first term depending on the filter’s window function
W and a second one depending on its bandwidth L > 0. Although the results of this section are
already published in [1], it will be quite instructive for the following analysis in this paper to recall
the details of our previous error estimates in [1].

Theorem 3.1 (L2-error estimate, see [1, Theorem 1]). Let f ∈ L1(R2) ∩Hα(R2), for some α > 0,
W ∈ L∞(R) and KL ∈ L1(R2). Then, the L2-norm of the FBP reconstruction error eL = f − fL is
bounded above by

(3.1) ‖eL‖L2(R2) ≤ ‖1−W‖∞,[−1,1] ‖f‖L2(R2) + L−α ‖f‖α.
Since we will use some parts of the proof for a refined error analysis, we recall the proof of the

theorem for the reader’s convenience.

Proof. For f ∈ L1(R2) ∩ L2(R2), we get, by using the Rayleigh–Plancherel theorem,

‖eL‖2L2(R2) = ‖f − f ∗KL‖2L2(R2) =
1

2π
‖Ff −Ff · FKL‖2L2(R2;C)

=
1

2π
‖Ff −WL · Ff‖2L2(R2;C),

since, by letting WL(x, y) := WL(r(x, y)) for r(x, y) =
√

x2 + y2 and (x, y) ∈ R
2, we have the

identity
WL(x, y) = FKL(x, y) ∀ (x, y) ∈ R

2

for KL ∈ L1(R2) (in consequence of [9, Theorem II.1.4]).
We split the above representation of the L2-error into a sum of two integrals,

(3.2) ‖eL‖2L2(R2) = I1 + I2,
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where we let

I1 :=
1

2π

∫
r(x,y)≤L

|(Ff −WL · Ff)(x, y)|2 d(x, y),(3.3)

I2 :=
1

2π

∫
r(x,y)>L

|Ff(x, y)|2 d(x, y).(3.4)

For W ∈ L∞(R), integral I1 can be bounded above by

I1 ≤ 1

2π
‖1−WL‖2∞,[−L,L] ‖Ff‖2L2(R2;C) = ‖1−W‖2∞,[−1,1] ‖f‖2L2(R2)

and, for f ∈ Hα(R2), with α > 0, integral I2 can be bounded above by

I2 ≤ 1

2π

∫
r(x,y)>L

(
1 + x2 + y2

)α
L−2α |Ff(x, y)|2 d(x, y) ≤ L−2α ‖f‖2α,

which completes the proof. �
The above theorem shows that the choices of both the window function W and the bandwidth L

are of fundamental importance for the L2-error of the FBP method. In fact, for fixed target function
f and bandwidth L, the obtained error estimate is affine-linear with respect to the distance between
the window function W and the constant function 1 in the L∞-norm on the interval [−1, 1]. This
behaviour has also been observed numerically in [1].

Moreover, the error term ‖1 − W‖∞,[−1,1] can be used to evaluate the quality of the window
function W . Note that the window W ≡ χ[−1,1] of the Ram–Lak filter is the unique minimizer of
that quality indicator, so that the Ram–Lak filter is in this sense the optimal low-pass filter.

Finally, the smoothness of the target function f determines the decay rate of the second error
term by

L−α‖f‖α = O(L−α) for L −→ ∞.

However, the right hand side of our L2-error estimate can only tend to zero if we choose the Ram–
Lak filter, W ≡ χ[−1,1], and let the bandwidth L go to ∞.

Nevertheless, the following theorem of Madych [4] shows that we get convergence of the FBP
reconstruction fL in the Lp-norm under weaker assumptions, for target functions f ∈ Lp(R2) with
1 ≤ p < ∞.

Theorem 3.2 (Convergence in the Lp-norm, see [4, Proposition 5]). Let the convolution kernel
K ≡ K1 : R2 −→ R satisfy K ∈ L1(R2) with∫

R

∫
R

K(x, y) dx dy = 1.

Then, for f ∈ Lp(R2), 1 ≤ p < ∞,

‖eL‖Lp(R2) −→ 0 for L −→ ∞.

For the reader’s convenience, we give a proof of the theorem, which relies on Lebegue’s theorem
on dominated convergence.

Proof. For f ∈ Lp(R2), 1 ≤ p < ∞, and (X,Y ) ∈ R
2, we define

Δf (X,Y ) = ‖f(· −X, · − Y )− f‖Lp(R2).

Then, we have
Δf (X,Y ) −→ 0 for (X,Y ) −→ (0, 0),
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since this holds for continuous functions f with compact support, i.e., f ∈ Cc(R2), and Cc(R2) is
dense in Lp(R2) for 1 ≤ p < ∞.

Relying on the scaling property

(3.5) KL(x, y) = L2 K(Lx,Ly) ∀ (x, y) ∈ R
2

we get ∫
R

∫
R

KL(x, y) dx dy =

∫
R

∫
R

K(x, y) dx dy = 1,

and can rewrite the pointwise error

eL(x, y) = (f − fL)(x, y) for (x, y) ∈ R
2

as

eL(x, y) = (f − f ∗KL)(x, y) =

∫
R

∫
R

[f(x, y)− f(x−X, y − Y )]KL(X,Y ) dX dY.

Using Minkowski’s integral inequality we can estimate the Lp-norm of eL by

‖eL‖Lp(R2) =

(∫
R

∫
R

∣∣∣∣
∫
R

∫
R

[f(x−X, y − Y )− f(x, y)]KL(X,Y ) dX dY

∣∣∣∣p dx dy

)1/p

≤
∫
R

∫
R

(∫
R

∫
R

|f(x−X, y − Y )− f(x, y)|p |KL(X,Y )|p dx dy
)1/p

dX dY

=

∫
R

∫
R

(∫
R

∫
R

|f(x−X, y − Y )− f(x, y)|p dx dy

)1/p

|KL(X,Y )| dX dY

=

∫
R

∫
R

Δf (X,Y ) |KL(X,Y )| dX dY.

Again, by using the scaling property (3.5), we get

‖eL‖Lp(R2) ≤
∫
R

∫
R

Δf (X/L, Y/L) |K(X,Y )| dX dY.

Since

|Δf (X/L, Y/L)| |K(X,Y )| ≤ 2 ‖f‖Lp(R2) |K(X,Y )|
and, by assumption, ∫

R

∫
R

|K(X,Y )| dX dY < ∞,

in combination with

Δf (X/L, Y/L) −→ 0 for L −→ ∞,

we finally obtain

‖eL‖Lp(R2) ≤
∫
R

∫
R

Δf (X/L, Y/L) |K(X,Y )| dX dY −→ 0 for L −→ ∞

by Lebesgue’s theorem on dominated convergence. �
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4. Refined Error Analysis

According to Theorem 3.2, the L2-norm of the FBP reconstruction error f − fL tends to zero as
L goes to ∞. On the grounds of our error estimate in (3.1), however, convergence follows only for
the Ram–Lak filter, where W ≡ χ[−1,1]. To obtain convergence under weaker conditions, we need
to refine our error estimate.

As in Theorem 3.1 we assume f ∈ L1(R2) ∩ Hα(R2), for α > 0, W ∈ L∞(R) and KL ∈ L1(R2).
For the sake of brevity, we set r(x, y) =

√
x2 + y2 for (x, y) ∈ R

2. Recall the representation of the
FBP reconstruction error eL = f − fL with respect to the L2-norm in (3.2), by the sum of two
integrals, I1 in (3.3) and I2 in (3.4), where integral I2 can be bounded above by

(4.1) I2 ≤ L−2α ‖f‖2α.
In Theorem 3.1 we derived an upper bound for integral I1 in terms of the L2-norm of the target

function f . To obtain convergence for a larger class of window functions, we bound I1 from above,
now also with respect to the Hα-norm of f . Indeed, for f ∈ Hα(R2), with α > 0, we can estimate
integral I1 in (3.3) by

I1 =
1

2π

∫
r(x,y)≤L

|1−WL(x, y)|2 |Ff(x, y)|2 d(x, y)

=
1

2π

∫
r(x,y)≤L

|1−WL(x, y)|2
(1 + x2 + y2)

α

(
1 + x2 + y2

)α |Ff(x, y)|2 d(x, y)

≤
(

sup
S∈[−L,L]

(1−WL(S))
2

(1 + S2)
α

)
1

2π

∫
R

∫
R

(
1 + x2 + y2

)α |Ff(x, y)|2 dx dy.

Now note that

sup
S∈[−L,L]

(1−WL(S))
2

(1 + S2)
α = sup

S∈[−L,L]

(1−W (S/L))2

(1 + S2)
α = sup

S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α .

Therefore, with letting

Φα,W (L) = sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α for L > 0

we can express the above bound on I1 as

I1 ≤
(

sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α

)
‖f‖2α = Φα,W (L) ‖f‖2α.

Combining our bounds for integrals I1 and I2, this finally leads us to the L2-error estimate

‖eL‖2L2(R2) ≤
(

sup
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α + L−2α

)
‖f‖2α =

(
Φα,W (L) + L−2α

) ‖f‖2α.
In summary, we have just established the following result.

Theorem 4.1 (Refined L2-error estimate). Let f ∈ L1(R2)∩Hα(R2), for α > 0, W ∈ L∞(R), and
KL ∈ L1(R2). Then, the L2-norm of the FBP reconstruction error eL = f −fL is bounded above by

(4.2) ‖eL‖L2(R2) ≤
(
Φ

1/2
α,W (L) + L−α

)
‖f‖α.
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Our next result shows that, under suitable assumptions on the window W , the function Φα,W (L)
tends to zero as L goes to ∞.

Theorem 4.2 (Convergence of Φα,W ). Let the window W be continuous on [−1, 1] and W (0) = 1.
Then, for any α > 0,

Φα,W (L) = max
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α −→ 0 for L −→ ∞.

Proof. For the sake of brevity, we define the function Φα,W,L : [−1, 1] −→ R via

Φα,W,L(S) =
(1−W (S))2

(1 + L2S2)
α for S ∈ [−1, 1].

Because W is continuous on [−1, 1] and even, Φα,W,L attains a maximum on [−1, 1], and we have

Φα,W (L) = sup
S∈[−1,1]

Φα,W,L(S) = max
S∈[−1,1]

Φα,W,L(S) = max
S∈[0,1]

Φα,W,L(S).

In the following, let S∗
α,W,L ∈ [0, 1] be the smallest maximizer of the even function Φα,W,L on [0, 1].

Case 1: S∗
α,W,L is uniformly bounded away from 0, i.e.,

∃ c ≡ c(α,W ) > 0 ∀L > 0 : S∗
α,W,L ≥ c,

in which case we get

0 ≤ Φα,W,L

(
S∗
α,W,L

)
=

(
1−W (S∗

α,W,L)
)2(

1 + L2(S∗
α,W,L)

2
)α ≤

‖1−W‖2∞,[−1,1]

(1 + L2c2)
α

L→∞−−−−→ 0.

Case 2: S∗
α,W,L tends to 0 as L goes to ∞, i.e.,

S∗
α,W,L −→ 0 for L −→ ∞.

Because W is continuous on [−1, 1] and satisfies W (0) = 1, we have

W (S∗
α,W,L) −→ W (0) = 1 for L −→ ∞

and, consequently,

0 ≤ Φα,W,L

(
S∗
α,W,L

)
=

(
1−W (S∗

α,W,L)
)2(

1 + L2(S∗
α,W,L)

2
)α ≤ (

1−W (S∗
α,W,L)

)2 L→∞−−−−→ 0.

Hence, in both cases we have

Φα,W (L) = Φα,W,L

(
S∗
α,W,L

) −→ 0 for L −→ ∞,

which completes our proof. �

By combining Theorems 4.1 and 4.2, we can now conclude convergence of the FBP reconstruction
fL in the L2-norm for a larger class of window functions W .

Corollary 4.3. Let f ∈ L1(R2) ∩ Hα(R2), for some α > 0, let KL ∈ L1(R2), and W ∈ C([−1, 1])
with W (0) = 1. Then, the L2-norm of the FBP reconstruction error eL = f − fL satisfies

‖eL‖2L2(R2) ≤
(
Φα,W (L) + L−2α

) ‖f‖2α −→ 0 for L −→ ∞.

In particular,
‖eL‖L2(R2) = o(1) for L −→ ∞.
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We are now interested in the rate of convergence for the FBP reconstruction error ‖eL‖L2(R2) as
L goes to ∞. Thus, we need to determine the decay rate of Φα,W (L). To this end, let S∗

α,W,L ∈ [0, 1]

again denote the smallest maximizer in [0, 1] of the even function

Φα,W,L(S) =
(1−W (S))2

(1 + L2S2)
α for S ∈ [−1, 1].

In the following analysis, we rely on the following assumption.

Assumption 4.4. S∗
α,W,L is uniformly bounded away from 0, i.e., there exists a constant cα,W > 0,

such that

S∗
α,W,L ≥ cα,W ∀L > 0.

Under this assumption, we can conclude

Φα,W (L) = Φα,W,L

(
S∗
α,W,L

) ≤ ‖1−W‖2∞,[−1,1](
1 + L2 c2α,W

)α ≤ c−2α
α,W ‖1−W‖2∞,[−1,1] L

−2α,

in which case we obtain

‖eL‖2L2(R2) ≤
(
c−2α
α,W ‖1−W‖2∞,[−1,1] + 1

)
L−2α ‖f‖2α,

i.e.,

‖eL‖2L2(R2) = O(L−2α) for L −→ ∞.

In summary, we can, under the above assumption, establish asymptotic L2-error estimates for
the FBP reconstruction with convergence rates as follows.

Theorem 4.5 (Rate of convergence). Let f ∈ L1(R2) ∩ Hα(R2), for some α > 0, KL ∈ L1(R2),
and W ∈ C([−1, 1]) with W (0) = 1. Further, let Assumption 4.4 be satisfied. Then, the L2-norm
of the FBP reconstruction error eL = f − fL is bounded above by

(4.3) ‖eL‖L2(R2) ≤
(
c−α
α,W ‖1−W‖∞,[−1,1] + 1

)
L−α ‖f‖α,

i.e.,

‖eL‖L2(R2) = O(L−α) for L −→ ∞.

Note that the decay rate of the L2-error in (4.3) is determined by the smoothness α of the target f .

We remark that Assumption 4.4 is satisfied for a large class of window functions. For example,
let the window function W ∈ C([−1, 1]) satisfy

W (S) = 1 ∀S ∈ [−ε, ε]

for ε > 0 and

∃R ∈ [0, 1] : W (R) �= 1.

Then, Assumption 4.4 is fulfilled with cα,W = ε.
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Figure 1. Decay rate of Φα,W for the Shepp–Logan filter.

Numerical Observations. We investigate the behaviour of S∗
α,W,L and Φα,W numerically for the

following commonly used choices of the filter function AL(S) = |S|W (S/L):

Name W (S) for |S| ≤ 1 Parameter
Shepp–Logan sinc(πS/2) -
Cosine cos(πS/2) -
Hamming β + (1− β) cos(πS) β ∈ [1/2, 1]

Gaussian exp
(−(πS/β)2

)
β > 1

Note that each of these window functions W is compactly supported with supp(W ) = [−1, 1].
In our numerical experiments, we calculated S∗

α,W,L and Φα,W (L) as a function of the bandwidth
L > 0 for the above mentioned window functions W and for different parameters α > 0, reflecting
the smoothness of the target function f ∈ Hα(R2). Figure 1 shows the behaviour of Φα,W in log-
log scale for the Shepp–Logan filter and for smoothness parameters α ∈ {0.5, 1, 2, 2.5, 3, 4}. For
α ∈ {0.5, 1, 2} we observe that Φα,W (L) behaves exactly as L−2α, see Figure 1(a)–(c), whereas for
α ∈ {2.5, 3, 4} the behaviour of Φα,W (L) corresponds to L−4, see Figure 1(d)–(f). In the latter
case, however, Φα,W (L) decreases at increasing values α > 2. We remark that the same behaviour
was observed in our numerical experiments for the other window functions W mentioned above.

We summarize our numerical experiments (for all windows W listed above) as follows.
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For α < 2, we see that Assumption 4.4, i.e.,

∃ cα,W > 0 ∀L > 0 : S∗
α,W,L ≥ cα,W ,

is fulfilled, where in particular,

Φα,W (L) = O(L−2α) for L −→ ∞.

For α ≥ 2, we have
S∗
α,W,L −→ 0 for L −→ ∞

and the convergence rate of Φα,W stagnates at

Φα,W (L) = O(L−4) for L −→ ∞.

5. Error Analysis for C2-Windows

Note that all window functions W mentioned above are in C2([−1, 1]). Therefore, in the following
analysis we consider even window functions W with compact support in [−1, 1] that additionally
satisfy W ∈ C2([−1, 1]) and W (0) = 1. As a first result, we obtain the following convergence rate.

Theorem 5.1 (Convergence rate of Φα,W for C2-windows). Let the window function W satisfy
W ∈ C2([−1, 1]) with W (0) = 1. Moreover, let α > 0. Then, we have

Φα,W (L) ≤
⎧⎨
⎩
Cα ‖W ′′‖2∞,[−1,1] L

−4 for α > 2 ∧ L ≥
√
2√

α−2

1
4 ‖W ′′‖2∞,[−1,1] L

−2α for α ≤ 2 ∨
(
α > 2 ∧ L <

√
2√

α−2

) ∀L > 0,

i.e.,
Φα,W (L) = O

(
L−min{4,2α}

)
for L −→ ∞,

where the constant

Cα =
(α− 2)α−2

αα

is strictly monotonically decreasing in α > 2.

Proof. Since the window function W is assumed to be continuous on [−1, 1], we have

Φα,W (L) = max
S∈[−1,1]

(1−W (S))2

(1 + L2S2)
α = max

S∈[−1,1]
Φα,W,L(S).

Let S ∈ [−1, 1] be fixed. By assumption, W satisfies W ∈ C2([−1, 1]) with W (0) = 1. Thus, we can
apply Taylor’s theorem and obtain

W (S) = W (0) +W ′(0)S +
1

2
W ′′(ξ)S2 = 1 +

1

2
W ′′(ξ)S2

for some ξ between 0 and S, where we use that the window W is even and, consequently, W ′(0) = 0.
This leads to

Φα,W,L(S) =
(W ′′(ξ))2

4

S4

(1 + L2 S2)
α ≤

‖W ′′‖2∞,[−1,1]

4

S4

(1 + L2 S2)
α .

Hence,

Φα,W (L) ≤
‖W ′′‖2∞,[−1,1]

4
max

S∈[−1,1]

S4

(1 + L2 S2)
α =

‖W ′′‖2∞,[−1,1]

4
max

S∈[−1,1]
φα,L(S).
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We now need to analyse the function

φα,L(S) =
S4

(1 + L2 S2)
α for S ∈ [−1, 1],

which is independent of the window function W . Since φα,L is an even function, we have

max
S∈[−1,1]

φα,L(S) = max
S∈[0,1]

φα,L(S)

and so it suffices to consider S ∈ [0, 1]. A necessary condition for a maximum of φα,L on (0, 1) is

φ′
α,L(S) = 0.

From the first derivative

φ′
α,L(S) =

2S3
(
2 + (2− α)L2 S2

)
(1 + L2 S2)

α+1

it follows that φ′
α,L can vanish only for S = 0 or for (α− 2)L2 S2 = 2.

Now since φα,L(0) = 0 and φα,L(S) > 0, for all S > 0, it follows that S = 0 is the unique global
minimizer of φα,L on [0, 1].

Case 1: For 0 ≤ α ≤ 2 the equation
(α− 2)L2 S2 = 2

has no solution in [0, 1] and, moreover,

φ′
α,L(S) > 0 ∀S ∈ (0, 1].

This means that φα,L is strictly monotonically increasing on (0, 1] and, thus, it is maximal on [0, 1]
for S∗ = 1, i.e.,

max
S∈[0,1]

φα,L(S) = φα,L(1) =
1

(1 + L2)
α ≤ L−2α.

Case 2: For α > 2 the unique positive solution of the equation

(α− 2)L2 S2 = 2

is given by

S∗ =

√
2

L
√
α− 2

,

where

S∗ ∈ [0, 1] ⇐⇒ L ≥
√
2√

α− 2
.

For convenience, we define the function gα,L : R −→ R via

gα,L(S) = 2 + (2− α)L2 S2.

Then, gα,L is a down open parabola with vertex in S = 0 and we obtain

gα,L(S1) > gα,L(S2) ∀ 0 ≤ S1 < S2.

In particular, we have

gα,L(S2) < gα,L(S
∗) = 0 < gα,L(S1) ∀ 0 < S1 < S∗ < S2

and, consequently,

φ′
α,L(S2) < φ′

α,L(S
∗) = 0 < φ′

α,L(S1) ∀ 0 < S1 < S∗ < S2.
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Thus, φα,L is strictly monotonically increasing on (0, S∗) and strictly monotonically decreasing on
(S∗,∞). Therefore, S∗ is the unique maximizer of φα,L and it follows that

argmax
S∈[0,1]

φα,L(S) =

⎧⎨
⎩
1 for L <

√
2√

α−2
√
2

L
√
α−2

for L ≥
√
2√

α−2
.

Since

φα,L(S
∗) =

( √
2

L
√
α−2

)4

(
1 + L2

( √
2

L
√
α−2

)2
)α = 4

(α− 2)2−α

αα
L−4

we finally obtain (for α > 2)

max
S∈[0,1]

φα,L(S) =

⎧⎨
⎩
φα,L(1) for L <

√
2√

α−2

φα,L(S
∗) for L ≥

√
2√

α−2

≤
⎧⎨
⎩
L−2α for L <

√
2√

α−2

4 (α−2)2−α

αα L−4 for L ≥
√
2√

α−2
.

Combining our results yields

Φα,W (L) ≤ 1

4
‖W ′′‖2∞,[−1,1] max

S∈[0,1]
φα,L(S)

≤ 1

4
‖W ′′‖2∞,[−1,1]

⎧⎪⎨
⎪⎩
4 (α−2)2−α

αα L−4 for α > 2 ∧ L ≥
√
2√

α−2

L−2α for α ≤ 2 ∨
(
α > 2 ∧ L <

√
2√

α−2

)

=

⎧⎪⎨
⎪⎩

(α−2)2−α

αα ‖W ′′‖2∞,[−1,1] L
−4 for α > 2 ∧ L ≥

√
2√

α−2

1
4 ‖W ′′‖2∞,[−1,1] L

−2α for α ≤ 2 ∨
(
α > 2 ∧ L <

√
2√

α−2

)
,

as stated.
Let us finally regard the constant

Cα = C(α) =
(α− 2)α−2

αα

as a function of α > 2. Then,

d

dα
C(α) =

(α− 2)α−2

αα
log

(
1− 2

α

)
< 0 ∀α > 2

and, consequently, Cα is strictly monotonically decreasing in α > 2. �

We remark that the results of Theorem 5.1 comply with our numerical observations from the
previous section. We have in particular observed saturation of the convergence rate of Φα,W for
α > 2 at

Φα,W (L) = O(L−4) for L −→ ∞
through our numerical experiments. Therefore, our numerical results show that the proven order
of convergence for Φα,W is optimal for C2-windows.

By combining Theorems 4.1 and 5.1, we finally get the following result for the convergence order
of FBP reconstruction with C2-windows.
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Corollary 5.2 (L2-error estimate for C2-windows). Let f ∈ L1(R2) ∩ Hα(R2), for some α > 0,
KL ∈ L1(R2), and W ∈ C2([−1, 1]) with W (0) = 1. Then, the L2-norm of the FBP reconstruction
error eL = f − fL is bounded above by

‖eL‖L2(R2) ≤
⎧⎨
⎩
( cα,2

2 ‖W ′′‖∞,[−1,1] L
−2 + L−α

)‖f‖α for α > 2 ∧ L ≥ L∗(
1
2 ‖W ′′‖∞,[−1,1] L

−α + L−α
)‖f‖α for α ≤ 2 ∨ (α > 2 ∧ L < L∗)

with the critical bandwidth L∗ =
√
2√

α−2
, for α > 2. Moreover, the constant

cα,2 =
2

α− 2

(
α− 2

α

)α/2

is strictly monotonically decreasing in α > 2. In particular,

‖eL‖L2(R2) ≤
(
c ‖W ′′‖∞,[−1,1] L

−min{2,α} + L−α
)
‖f‖α = O

(
L−min{2,α}

)
.

We close this section by the following two remarks.
Firstly, note that the bound on the inherent FBP reconstruction error in Corollary 5.2 is affine-

linear with respect to ‖W ′′‖∞,[−1,1]. Therefore, the quantity in the upper bound can be used to
evaluate the approximation quality of the chosen C2-window function W .

Secondly, for α ≤ 2 the convergence order of the approximate reconstruction fL is given by the
smoothness of the target function f . But for α > 2 the convergence rate of the error bound saturates
at O(L−2). Nevertheless, the FBP reconstruction error continues to decrease at increasing α > 2,
since the involved constant cα,2 is strictly monotonically decreasing in α > 2. This matches our
perceptions, as the approximation error should be smaller for target functions of higher regularity.

6. Error Analysis for Ck-Windows

In this section, we generalize our results from the previous section to Ck-windows whose first
k − 1 derivatives vanish at the origin. Therefore, we now consider even window functions W with
compact support in [−1, 1] that additionally satisfy W ∈ Ck([−1, 1]) for some k ≥ 2 and

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

According to Theorem 4.2, Φα,W (L) tends to zero for L → ∞. In Theorem 5.1 we obtained
convergence rates for Φα,W with C2-windows W . We can prove convergence rates for Ck-windows
by following along the lines of the presented proofs for k = 2, see Theorem 5.1 and Corollary 5.2.
We formulate our results for k ≥ 2 as follows.

Theorem 6.1 (Convergence rate of Φα,W for Ck-windows). Let the window function W satisfy
W ∈ Ck([−1, 1]), for k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Moreover, let α > 0. Then, Φα,W (L) can be bounded above by

Φα,W (L) ≤
⎧⎨
⎩

c2α,k

(k!)2 ‖W (k)‖2∞,[−1,1] L
−2k for α > k ∧ L ≥ L∗

1
(k!)2 ‖W (k)‖2∞,[−1,1] L

−2α for α ≤ k ∨ (α > k ∧ L < L∗)

with the critical bandwidth L∗ =
√
k√

α−k
, for α > k, and the strictly increasing constant
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cα,k =
( k

α− k

)k/2(α− k

α

)α/2

for α > k.

In particular,
Φα,W (L) = O

(
L−2min{k,α}

)
for L −→ ∞.

Combining Theorems 4.1 and 6.1, we obtain the following result concerning the convergence
order of the FBP reconstruction with Ck-windows.

Corollary 6.2 (L2-error estimate for Ck-windows). Let f ∈ L1(R2) ∩ Hα(R2), for α > 0, and
KL ∈ L1(R2). Moreover, let W ∈ Ck([−1, 1]), for k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, the L2-norm of the inherent FBP reconstruction error eL = f − fL is bounded above by

‖eL‖L2 ≤
⎧⎨
⎩
( cα,k

k! ‖W (k)‖∞,[−1,1] L
−k + L−α

)‖f‖α for α > k ∧ L ≥ L∗(
1
k! ‖W (k)‖∞,[−1,1] L

−α + L−α
)‖f‖α for α ≤ k ∨ (α > k ∧ L < L∗) .

In particular,

‖eL‖L2(R2) ≤
(
c ‖W (k)‖∞,[−1,1] L

−min{k,α} + L−α
)
‖f‖α = O

(
L−min{k,α}

)
.

Note that our concluding remarks after Corollary 5.2 concerning the approximation order of the
FBP reconstruction fL continue to apply in the situation of Ck-windows W . Indeed, the convergence
order in Corollary 6.2, for α ≤ k, is determined by the smoothness of the target function f , whereas
for α > k the convergence rate saturates at O(L−k). But in this case the error bound decreases
at increasing α, since the involved constant cα,k is strictly monotonically decreasing in α > k.
Thus, a smoother target function allows for a better approximation, as expected. Nevertheless, the
attainable convergence rate is limited by the differentiability order k of the filter’s Ck-window W .

Finally, note that the bound on the inherent FBP reconstruction error in Corollary 6.2 is affine-
linear with respect to ‖W (k)‖∞,[−1,1] and this quantity can be used to evaluate the approximation
quality of the chosen Ck-window function W .

Numerical Experiments. We investigate the behaviour of Φα,W numerically for the generalized
Gaussian filter AL(S) = |S|W (S/L) with the window function

W (S) = exp

(
−

(
πS

β

)k
)

for S ∈ [−1, 1]

for k ∈ N≥2 and β > 1. In this case, W ∈ Ck([−1, 1]) is even and compactly supported in [−1, 1].
Moreover,

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1 and W (k)(0) = −k!

(
π

β

)k

�= 0.

In our numerical experiments, we evaluated Φα,W (L) as a function of the bandwidth L > 0 for
the Gaussian’s window W , using various combinations of parameters k ∈ N≥2, β > 1, and α > 0.
Figure 2 shows the behaviour of Φα,W in log-log scale for the generalized Gaussian filter with k = 4
and β = 4, for the smoothness parameters α ∈ {2, 3, 4, 4.5, 5, 6}. For α ∈ {2, 3, 4} we observe that
Φα,W (L) behaves as L−2α, see Figure 2(a)–(c), whereas for α ∈ {4.5, 5, 6} the behaviour of Φα,W (L)
corresponds to L−8, see Figure 2(d)–(f). But Φα,W (L) continues to decrease at increasing α > k.
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Figure 2. Decay rate of Φα,W for the generalized Gaussian filter with k = 4, β = 4.

We can summarize the results of our numerical experiments as follows. For α < k, we observe

Φα,W (L) = O(L−2α) for L −→ ∞.

For α ≥ k, the convergence rate of Φα,W saturates at

Φα,W (L) = O(L−2k) for L −→ ∞.

Note that the results of Theorem 6.1 entirely comply with our numerical observations (for the
generalized Gaussian filters). So have we, in particular, observed the saturation of the convergence
rate of Φα,W for α > k at

Φα,W (L) = O(L−2k) for L −→ ∞.

Our numerical results show that the proven convergence order of Φα,W is optimal for Ck-windows.

Asymptotic Error Estimates. In this subsection, we take a different approach to prove asymp-
totic error estimates for the proposed FBP reconstruction method with window functions which
are k-times differentiable only at the origin. To this end, we now consider an even window function
W ∈ L∞(R), with compact support on [−1, 1]. Moreover, W is required to have k derivatives at
zero, for some k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

As in the previous sections, we consider target functions f ∈ L1(R2) ∩ Hα(R2), for some α > 0,
and assume KL ∈ L1(R2). For the sake of brevity, we again set r(x, y) =

√
x2 + y2 for (x, y) ∈ R

2.
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Recall the representation of the FBP reconstruction error eL = f − fL with respect to the
L2-norm in (3.2), by the sum of two integrals, I1 in (3.3) and I2 in (3.4), where integral I2 can be
bounded above by (4.1).

As regards integral I1, we have

I1 =
1

2π

∫
r(x,y)≤L

|1−WL(r(x, y))|2 |Ff(x, y)|2 d(x, y)

=
1

2π

∫
r(x,y)≤L

∣∣∣∣1−W

(
r(x, y)

L

)∣∣∣∣2 |Ff(x, y)|2 d(x, y).

Because W : R −→ R is k-times differentiable at zero, we can apply Taylor’s theorem and, thus,
there exists a function hk : R −→ R satisfying

W (S) =
k∑

j=0

W (j)(0)

j!
Sj + hk(S)S

k ∀S ∈ R

and
lim
S→0

hk(S) = 0.

By assumption, W satisfies

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Hence, for (x, y) ∈ R
2 and L > 0 follows that

1−W

(
r(x, y)

L

)
= −

(
W (k)(0)

k!

(
r(x, y)

L

)k

+ hk

(
r(x, y)

L

) (
r(x, y)

L

)k
)
,

so that we obtain the representation

I1 =
1

2π

∫
r(x,y)≤L

(
W (k)(0)

k!
+ hk

(
r(x, y)

L

))2 (
r(x, y)

L

)2k

|Ff(x, y)|2 d(x, y).

For convenience, we define

φ∗
α,L,k = max

r(x,y)≤L

(
r(x,y)

L

)2k

(1 + r(x, y)2)
α = max

S∈[0,1]

S2k

(1 + L2 S2)
α .

Then, I1 can be bounded above by

I1 ≤ φ∗
α,L,k

1

2π

∫
r(x,y)≤L

(
W (k)(0)

k!
+ hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 d(x, y).

We now regard the integral∫
R

∫
R

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 dx dy.

For S �= 0, the function hk can be written as

hk(S) = (W (S)− 1)S−2k − W (k)(0)

k!
.
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Since the window W is even and has compact support in [−1, 1], hk is also even and satisfies

hk(S) = −S−2k − W (k)(0)

k!
∀ |S| > 1,

which implies

hk(S) −→ −W (k)(0)

k!
for S −→ ±∞.

From W ∈ L∞(R) and
hk(S) −→ 0 for S −→ 0

it follows that hk is bounded on R, so that there exists some constant M > 0 satisfying∣∣∣∣hk

(
r(x, y)

L

)∣∣∣∣2 ≤ M ∀ (x, y) ∈ R
2, L > 0.

Hence, for all L > 0, the integrand

hk,L(x, y) =

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2

is bounded on R
2 by the function

Φ(x, y) = M
(
1 + r(x, y)2

)α |Ff(x, y)|2,
which is integrable over R

2 due to the assumption f ∈ Hα(R2). Moreover, we have

hk

(
r(x, y)

L

)
−→ 0 for

r(x, y)

L
−→ 0,

which implies that, for any (x, y) ∈ R
2, hk,L(x, y) tends to zero as L goes to ∞. Thus, we can apply

Lebesgue’s theorem on dominated convergence to get

lim
L→∞

∫
R

∫
R

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 dx dy = 0,

i.e., ∫
R

∫
R

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 dx dy = o(1) for L −→ ∞.

This leads us to the estimate

I1 ≤ φ∗
α,L,k

1

2π

∫
r(x,y)≤L

(
W (k)(0)

k!
+ hk

(
r(x, y)

L

))2

︸ ︷︷ ︸
≤2

(
W (k)(0)

k!

)2
+2

(
hk( r(x,y)

L )
)2

(
1 + r(x, y)2

)α |Ff(x, y)|2 d(x, y)

≤ 2φ∗
α,L,k

1

2π

∫
r(x,y)≤L

(
W (k)(0)

k!

)2 (
1 + r(x, y)2

)α |Ff(x, y)|2 d(x, y)

+ φ∗
α,L,k

1

π

∫
r(x,y)≤L

(
hk

(
r(x, y)

L

))2 (
1 + r(x, y)2

)α |Ff(x, y)|2 d(x, y)

≤ 2φ∗
α,L,k

(
W (k)(0)

k!

)2

‖f‖2α + φ∗
α,L,k o(1).
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Using the same technique as in the proof of Theorem 5.1, we can bound φ∗
α,L,k by

φ∗
α,L,k ≤

⎧⎨
⎩
(

k
α−k

)k(α−k
α

)α
L−2k for α > k ∧ L ≥ L∗

L−2α for α ≤ k ∨ (α > k ∧ L < L∗)
= O

(
L−2min{k,α}

)

with the critical bandwidth L∗ =
√
k√

α−k
for α > k. Thus, it follows that

I1 ≤
⎧⎨
⎩

2
(k!)2 c

2
α,k |W (k)(0)|2 L−2k ‖f‖2α + o

(
L−2k

)
for α > k ∧ L ≥ L∗

2
(k!)2 |W (k)(0)|2 L−2α ‖f‖2α + o

(
L−2α

)
for α ≤ k ∨ (α > k ∧ L < L∗) ,

where the constant
cα,k =

( k

α− k

)k/2(α− k

α

)α/2

for α > k

is strictly monotonically decreasing in α > k (cf. Theorem 6.1).
By combining our derived bounds for the integrals I1 and I2, we finally get the L2-error estimate

‖eL‖2L2(R2) ≤
(
2
(
Cα,k |W (k)(0)|

)2

L−2min{k,α} + L−2α

)
‖f‖2α + o

(
L−2min{k,α}

)
.

In conclusion, we have proven the following error theorem for the FBP reconstruction method.

Theorem 6.3 (Asymptotic L2-error estimate). Let f ∈ L1(R2) ∩ Hα(R2), for some α > 0, and
KL ∈ L1(R2). Moreover, let W ∈ L∞(R) be even, with supp(W ) ⊆ [−1, 1], and k-times differen-
tiable at the origin, k ≥ 2, with

W (0) = 1 and W (j)(0) = 0 ∀ 1 ≤ j ≤ k − 1.

Then, for α ≤ k, the L2-norm of the FBP reconstruction error eL = f − fL is bounded above by

‖eL‖L2(R2) ≤
(√

2

k!
|W (k)(0)|L−α + L−α

)
‖f‖α + o(L−α).(6.1)

If α > k, the L2-norm of eL can be bounded above by

‖eL‖L2(R2) ≤

⎧⎪⎨
⎪⎩
(√

2
k! cα,k|W (k)(0)|L−k + L−α

)
‖f‖α + o(L−k) for L ≥ L∗(√

2
k! |W (k)(0)|L−α + L−α

)
‖f‖α + o(L−α) for L < L∗

(6.2)

with the critical bandwidth L∗ =
√
k√

α−k
and the strictly monotonically decreasing constant

cα,k =
( k

α− k

)k/2(α− k

α

)α/2

for α > k.

In particular,

‖eL‖L2(R2) ≤
(
c |W (k)(0)|L−min{k,α} + L−α

)
‖f‖α + o

(
L−min{k,α}

)
.

We wish to draw the following conclusions from Theorem 6.3.
Firstly, the flatness of the filter’s window function W determines the convergence rate of the error

bounds (6.1), (6.2) for the inherent FBP reconstruction error. Indeed, if W is k-times differentiable
at the origin such that the first k − 1 derivatives of W vanish at zero, then the convergence rate
in (6.1) is given by the smoothness α of the target function f as long as α ≤ k. But for α > k the
order of convergence in (6.2) saturates at O(L−k).
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Secondly, the quantity |W (k)(0)|, i.e., the k-th derivative of W at the origin, dominates the error
bound in both (6.1) and (6.2). Therefore, the value |W (k)(0)| can be used as an indicator to predict
the approximation quality of the proposed FBP reconstruction method.

To conclude our discussion, we finally consider the following special case. Let the window function
W fulfil the assumptions of Theorem 6.3 with k ≥ 2 and let the smoothness α of f ∈ Hα(R2) satisfy

α > k.

Then, the asymptotic L2-error estimate of the FBP method reduces to

‖f − fL‖L2(R2) ≤
√
2 cα,k |W (k)(0)|L−k ‖f‖α + o(L−k).

Consequently, the intrinsic FBP reconstruction error is proportional to |W (k)(0)|, if we neglect
the higher order terms. For k = 2, this observation complies with the results of Munshi [5] and
Munshi et al. [5, 6], where they assumed certain moment conditions on the convolution kernel K
and differentiability of the target function f .

7. Conclusion

We have analysed the inherent FBP reconstruction error which is incurred by the use of a low-
pass filter with a compactly supported window W and finite bandwidth L. We refined our L2-error
estimate from [1] to prove, under reasonable assumptions, convergence of the FBP reconstruction
fL to the target function f as the bandwidth L goes to infinity. Moreover, we developed asymptotic
convergence rates in terms of the bandwidth L and the smoothness α of the target function f .

By deriving an asymptotic error estimate, we observed that the flatness of the filter’s window
function is of fundamental importance. Indeed, if the window W is k-times differentiable at the
origin, such that the first k−1 derivatives vanish at zero, then the convergence rate of the obtained
error bound saturates at O(L−k), and the quantity |W (k)(0)| determines the approximation quality
of the chosen low-pass filter.
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