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Abstract

We improve existing estimates for the condition number of matrices arising in

radial basis function interpolation. To this end, we refine lower bounds on

the smallest eigenvalue and upper bounds on the largest eigenvalue, where our

upper bounds on the largest eigenvalue are independent of the matrix dimension

(i.e., the number of interpolation points). We show that our theoretical results

comply with recent numerical observations concerning the condition number of

radial basis function interpolation matrices.
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1. Introduction

Radial basis functions (RBF), or, radial kernel functions, are powerful tools

for meshfree interpolation from multivariate scattered data [5, 6, 19]. In order to

explain RBF interpolation only very briefly, assume we are given function values

fX = (f(x1), . . . , f(xN ))T ∈ R
N sampled from a target function f : Rd → R,

for d ≥ 1, at a set X = {x1, . . . , xN} ⊂ R
d of pairwise distinct interpolation

points. According to the RBF reconstruction scheme, an interpolant s : Rd → R

to f is required to be of the form

s(x) =

N∑
j=1

cjΦ(x− xj) + p(x) for x ∈ R
d, (1)
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where Φ is a radially symmetric kernel function, i.e., Φ ≡ φ(‖ · ‖2) for a radial

kernel φ : [0,∞) → R, and where ‖·‖2 is the Euclidean norm on R
d. Moreover, p

in (1) is assumed to be a d-variate real-valued polynomial, whose degree m−1 is

determined by the order m ∈ N0 of the kernel Φ. To be more precise, we require

that Φ is conditionally positive definite of order m on R
d, Φ ∈ CPD(m), i.e.,

for any point set X = {x1, . . . , xN} ⊂ R
d of size N = |X|, the kernel matrix

AΦ,X = (Φ(xj − xk))1≤j,k≤N ∈ R
N×N (2)

is positive definite on the linear subspace

LX =

⎧⎨
⎩c = (c1, . . . , cN )T ∈ R

N :

N∑
j=1

cjp(xj) = 0 for all p ∈ Πd
m−1

⎫⎬
⎭ ⊂ R

N ,

where Πd
m−1 is the space of all d-variate polynomials of degree at mostm−1. For

m = 0 we have LX = R
N , in which case Φ is positive definite on R

d, Φ ∈ PD.

We remark that for Φ ∈ CPD(m) the interpolation problem sX = fX has a

unique solution s of the form (1), under constraints c = (c1, . . . , cN )T ∈ LX and

under the assumption that the interpolation points X are Πd
m−1-unisolvent. In

fact, the interpolation problem sX = fX leads us, for a fixed basis {p1, . . . , pQ}
of Πd

m−1, to the linear system

N∑
j=1

cjΦ(xk − xj) +

Q∑
�=1

b�p�(xk) = f(xk) for k = 1, . . . , N

N∑
j=1

cjp�(xj) = 0 for � = 1, . . . , Q

(3)

with unknown coefficients c = (c1, . . . , cN )T ∈ R
N for the major part of p in (1)

and coefficients b = (b1, . . . , bQ)
T ∈ R

Q for its polynomial part. We can rewrite

the system (3) in matrix form as⎛
⎝AΦ,X PX

PT
X 0

⎞
⎠
⎛
⎝c

b

⎞
⎠ =

⎛
⎝fX

0

⎞
⎠ , (4)

where the polynomial matrix

PX = (p�(xj))1≤j≤N ;1≤�≤Q ∈ R
N×Q
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is injective, due to the assumed Πd
m−1-unisolvence of the interpolation points X.

Now the goal of this paper is to investigate the numerical stability of the

linear system (4). Note that for Φ ∈ CPD(m) there are positive eigenvalues

Λ ≥ λ > 0 of AΦ,X satisfying

λ‖c‖22 ≤ cTAΦ,Xc ≤ Λ‖c‖22 for all c ∈ LX ,

where the spectral condition number κ2(AΦ,X) = Λ/λ accounts for the sensitivity

of the system (4), see [16]. Therefore, to analyze the numerical stability of (4),

we are interested in both good lower bounds for λ and good upper bounds for Λ.

We remark that the analysis concerning spectral properties of RBF matrices

AΦ,X has already a long history, where earlier results concerning lower bounds

on λ are dating back to the 1992 papers of Ball [1, 2]. Somewhat later, more

refined estimates by Narcowich & Ward [11, 12, 13] and by Schaback [15] were

celebrated to be near-optimal due to Schaback [14]. A more recent and very

concise account concerning the stability of RBF interpolation has been provided

by Schaback [16] in 2002, with focus on lower bounds for λ. Although upper

bounds for Λ, relying on Gerschgorin’s theorem, are also provided in [16], these

are rather crude, and, moreover, they essentially dependent on the number

N = |X| of interpolation points.

Very recently, numerical estimates for the condition number of AΦ,X were

obtained by Boyd & Gildersleeve [4]. But there is still a large gap between

the bounds from their numerical experiments and the theoretical bounds in the

RBF literature. For the special case of uniform grids, optimal bounds on λ and

Λ are due to Baxter [3], where there is also a large gap between his bounds in [3]

for gridded data and those bounds from the RBF literature for scattered data.

This paper reduces existing gaps between those bounds quite significantly.

To further explain this, we remark that existing lower bounds on λ are of the

form

λ ≥ G(q), (5)
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where

q ≡ q(X, ‖ · ‖2) = 1

2
min
j �=k

‖xj − xk‖2

is the (Euclidean) separation radius of X, and where G : [0,∞) → [0,∞) is a

monotonically increasing function depending on Φ, but not on X and not on

N = |X|. Due to the monotonicity of G and the norm equivalence in finite

dimensional normed linear spaces, it is clearly possible to express the bound

in (5) also for separation radii in other norms on R
d. In fact, it will be convenient

to express our results w.r.t the separation radius in the ∞-norm,

q∞ ≡ q(X, ‖ · ‖∞) :=
1

2
min
j �=k

‖xj − xk‖∞.

To discuss one of our results only very briefly, we regard the Gaussian kernel

Φ(x) = e−β‖x‖2
2 for β > 0.

In this case, the best bound on λ of the form (5) known so far is given by

G(q) = Cdq
−de−M2

d/(βq
2),

where Cd and M2
d = 40.71d2 are constants depending on d (cf. [19, Table 12.1]).

In this paper, we will reduce this best bound (up to an arbitrarily small ε > 0)

to Md = dπ/4 for the Euclidean separation radius q and to Md =
√
dπ/4 for

the separation radius q∞. We detail our results by Example 2.6.

The outline of this paper is as follows. We improve currently known best

bounds on the spectral condition number κ2(AΦ,X) = Λ/λ by refining existing

lower bounds of the form (5) for the smallest eigenvalue λ (in Section 2), on the

one hand, and by improving existing upper bounds for the largest eigenvalue Λ

(in Section 3), on the other hand. The latter leads us to refined upper bounds

on Λ that are independent of N = |X|. In Section 4 we finally discuss the

theoretical bounds of this paper in comparison with bounds obtained from the

numerical experiments in [4].
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2. Improved lower bounds for the smallest eigenvalue

In our subsequent analysis, we assume that Φ : Rd → R is continuous and of

at most polynomial growth around infinity, so that Φ has a generalized Fourier

transform Φ̂ in the sense of tempered distributions [7, 8]. Moreover, we assume

that Φ̂ is non-vanishing and non-negative on R
d\{0}, with allowing an algebraic

singularity at zero. In this case, it is well-known that the identity

N∑
j,k=1

cjckΦ(xj − xk) =
1

(2π)d

∫
Rd

Φ̂(ω)

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

dω (6)

holds for all (c1, . . . , cN )T ∈ LX (see e.g. [19, Corollary 8.13]).

We remark that the above assumptions on Φ and Φ̂ are highly relevant as

they hold for large classes of radial kernel functions (cf. [19, Section 8.2]). Now

the identity (6) plays a central role in the ground-breaking work of Narcowich

and Ward [11, 12, 13], where they construct a suitable minorant Ψ : Rd → R,

whose Fourier transform Ψ̂ : Rd → R satisfies

Φ̂(ω) ≥ Ψ̂(ω) ≥ 0 for all ω ∈ R
d \ {0}, (7)

so that they can conclude the estimate

1

(2π)d

∫
Rd

Φ̂(ω)

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

dω ≥ 1

(2π)d

∫
Rd

Ψ̂(ω)

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

dω

=

N∑
j,k=1

cjckΨ(xj − xk).

Using Gerschgorin’s theorem, the smallest eigenvalue λ of the kernel matrix

AΦ,X in (2) could be bounded from below by

λ ≥ min
1≤k≤N

⎛
⎜⎜⎝Φ(0)−

N∑
j=1
j �=k

|Φ(xj − xk)|

⎞
⎟⎟⎠ . (8)

Note that the estimate for λ in (8) can only be rather crude, unless AΦ,X is

diagonally dominant. But Narcowich & Ward were able to construct a minorant
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Ψ satisfying (7), such that the matrix

BΨ,X = (Ψ(xj − xk))1≤j,k≤N ∈ R
N×N

is diagonally dominant.

The following result of Komornik & Loreti [9, Theorem 8.1] leads us to

improved lower bounds on λ by dropping the restriction Ψ̂ ≥ 0 in (7), in which

case it is possible to construct Ψ such that BΨ,X is diagonal. To this end, we

let

Bp
r :=

{
x ∈ R

d : ‖x‖p ≤ r
} ⊂ R

d for r > 0 and 1 ≤ p ≤ ∞
denote the closed ball around zero with radius r with respect to the p-norm.

Moreover, it will be convenient to let Br := B2
r = {x ∈ R

d : ‖x‖2 ≤ r} for r > 0.

Theorem 2.1 (Komornik & Loreti). For q > 0 and 1 ≤ p ≤ ∞ let μp > 0

be the smallest eigenvalue of −Δ in the Sobolev space H1
0 (B

p
q ). Moreover, let

X = {x1, . . . , xN} ⊂ R
d be a finite point set with separation radius qp ≥ q.

Then, the inequality

∫
BR

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

dω ≥ kp(q,R)‖c‖22 ∀c ∈ R
N

holds for every R >
√
μp, where kp(q,R) is a positive constant depending only

on p, q, d and R, but not on X or N = |X|. �

To obtain improved lower bounds on λ, the key idea is the construction of

a minorant Ψ whose support supp(Ψ) is contained in the (Euclidean) ball B2q,

i.e., supp(Ψ) ⊂ B2q, and whose Fourier transform Ψ̂ satisfies

χBR
(ω) ≥ Ψ̂(ω) for all ω ∈ R

d, (9)

where χBR
is the indicator function of BR. In this case, we have, for any c ∈ R

N ,

∫
BR

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

dω ≥
∫
BR

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

Ψ̂(ω) dω

= (2π)d
N∑

j,k=1

cjckΨ(xj − xk)

= (2π)dΨ(0)‖c‖22. (10)
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Now we use the result of Theorem 2.1 to improve existing lower bounds on λ.

Theorem 2.2. Let X ⊂ R
d be a finite point set with separation radius qp ≥ q.

Then, the bound

λ ≥ (2π)−dkp(q,R)ϕ0(R/2) (11)

holds for every R >
√
μp, where ϕ0 is the monotonically decreasing function

ϕ0(r) := inf
‖ω‖2≤2r

Φ̂(ω).

Proof: For the kernel matrix AΦ,X in (2), where X = {x1, . . . , xN}, by using

the representation (6) and the assumption Φ̂ ≥ 0, we obtain the inequality

(2π)dcTAΦ,Xc =

∫
Rd

Φ̂(ω)

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

dω ≥ ϕ0(R/2)

∫
BR

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

dω

for all c ∈ LX , so that the stated bound in (11) follows from Theorem 2.1. �
We remark that for p = 2 the values for μ2 and k2(q,R) are rather difficult

to compute. For μ2, we find the identity μ2
2 = ρd/q, where ρd is the first positive

root of the Bessel function Jd/2−1 (cf. the second remark after [9, Theorem 8.1]),

whereas kp(q,R) has (to the best of our knowledge) not been calculated so far.

But the case p = ∞ is much easier, where we obtain the following results.

Corollary 2.3. Let X = {x1, . . . , xN} ⊂ R
d be a finite point set with separation

radius q∞. Then, for any R >
√
dπ/(2q∞) we have the estimate

∫
BR

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

dω ≥
(
1− dπ2

4q2∞R2

)
q−d
∞ (2π)d

π2d

42d
‖c‖22 ∀c ∈ R

N .

Proof: The eigenfunction of −Δ in H1
0 (B

∞
q∞) corresponding to the smallest

eigenvalue μ∞ = dπ2/(4q2∞) > 0 is given by

H(x) =
d∏

j=1

cos

(
πxj

2q∞

)
for x ∈ B∞

q∞ .

We extend H to a function on R
d by letting H(x) = 0 for x ∈ R

d \B∞
q∞ . Then,

the function G = (R2+Δ)(H ∗H) has compact support with supp(G) ⊂ B∞
2q∞ .

We denote the Fourier transform of G by g, so that

g(ω) = (R2 − ‖ω‖22)Ĥ2(ω) for all ω ∈ R
d.

7



This is exactly the construction of Komornik and Loreti. Note that g(ω) ≤ g(0)

for all ω ∈ R
d, since Ĥ2 > 0. We define Ψ̂ as required in (9) by

Ψ̂(ω) := g(ω)/g(0) ≤ χBR
(ω) for ω ∈ R

d.

By rather elementary calculations, we obtain

g(0) = R2

(∫
Rd

H(x) dx

)2

= R2q2d∞
42d

π2d

G(0) = (R2 − μ∞)

∫
Rd

H2(x) dx =

(
R2 − dπ2

4q2∞

)
qd∞

and, finally, by using (10),

k∞(q,R) = (2π)dΨ(0) =

(
1− dπ2

4q2∞R2

)
q−d
∞ (2π)d

π2d

42d
.

�
We can now give explicit constants in the lower bound (11) for λ.

Corollary 2.4. Under the assumptions of Theorem 2.2 we have the estimate

λ ≥ 2dd/2

d+ 2

π2d

42d
ϕ0

(
(d+ 1)π

4q

)
q−d = C(d)ϕ0

(
(d+ 1)π

4q

)
q−d. (12)

Proof: Note that q∞ ≥ q/
√
d, i.e., X is separated by q/

√
d in the ∞-norm.

Applying Corollary 2.3 with R =
√
d(d+ 2)π/(2q) and by using the same idea

as in the proof of Theorem 2.2 we obtain the stated estimate (12), where we

used the inequality d+ 1 >
√
d(d+ 2) and the monotonicity of ϕ0. �

Remark 2.5. If we choose R = (dπ+ε)/(2q) in the application of Corollary 2.3

(rather than R =
√
d(d+ 2)π/(2q)), then the lower bound for λ in (12) becomes

λ ≥ C(ε, d)ϕ0

(
dπ + ε

4q

)
q−d

for some constant C(ε, d) > 0 satisfying C(ε, d) = O(ε), for ε → 0.

If the separation radius q∞ in the ∞-norm is of interest, then this simplifies

our calculations. In this case, a direct application of Corollary 2.4 gives the

bound

λ ≥ 1

d+ 1

π2d

42d
ϕ0

(√
d+ 1π

4q∞

)
q−d
∞ .
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With letting R = (
√
dπ+ε)/(2q∞) (in the application of Corollary 2.3), we find

λ ≥ C(ε, d)ϕ0

(√
dπ + ε

4q∞

)
q−d
∞

for some constant C(ε, d) > 0 satisfying C(ε, d) = O(ε), for ε → 0. �

Let us finally consider relevant examples. For the situation of radial ker-

nels Φ whose (generalized) Fourier transforms Φ̂ have algebraic decay around

infinity, e.g. for polyharmonic splines and for compactly supported RBFs, the

optimal asymptotic order for the estimate (5) is already known (see the discus-

sion around [19, Corollary 12.8]), where the optimal orders, as stated in [19,

Table 12.1] comply with our results. But for the Gaussians and for the multi-

quadrics, our result in Corollary 2.4 improves the currently known best lower

bounds on λ. Details are given in the following two examples.

Example 2.6. The Fourier transform of the Gaussian Φ(x) = e−β‖x‖2
2 , β > 0,

is given as Φ̂(w) = (π/β)d/2e−‖w‖2
2/(4β). Therefore, we have

ϕ0(R) = (π/β)d/2e−R2/β .

Using Corollary 2.4, we obtain the estimate

λ ≥ C(d)q−d

(
π

β

)d/2

e
− (d+1)2π2

16q2β .

Following along the lines of Remark 2.5 concerning the choice of R, we get

λ ≥ C(ε, d)q−d

(
π

β

)d/2

e
− (dπ+ε)2

16q2β for ε > 0 (13)

for some constant C(ε, d) > 0 satisfying C(ε, d) = O(ε), for ε → 0. �

Example 2.7. For the (inverse) multiquadrics Φ(x) = (γ2 + ‖x‖22)β/2, where
β ∈ R \ 2N and γ 
= 0, we have

ϕ0(R) ≥ C̃(d, β)γ(β+d−1)/2e−2γRR−(β+d+1)/2,

with an explicitly known constant C̃(d, γ, β) (see [19, Corollary 12.5]).

From Corollary 2.4, we obtain

λ ≥ C(d, β)γ(β+d−1)/2q−(d−β−1)/2e−2γ(d+1)π/4q

for some constant C(d, β) > 0. �
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3. Improved upper bounds for the largest eigenvalue

Now let us turn to upper bounds for the largest eigenvalue Λ of the kernel

matrix AΦ,X in (2). To this end, we restrict ourselves to Φ ∈ PD. It has been

common practice to estimate Λ by using the Gerschgorin theorem,

Λ ≤ max
1≤k≤N

N∑
j=1

|Φ(xk − xj)|, (14)

whose straightforward application immediately yields the estimate Λ ≤ NΦ(0).

But this estimate can only be very crude, as the Gerschgorin theorem gives good

estimates (14) only for diagonally dominant matrices. On the other hand, the

other estimate Λ ≤ NΦ(0) can only be good for Φ(xk − xj) ≈ Φ(0), in which

case AΦ,X is not at all diagonally dominant.

Moreover, note that the estimate Λ ≤ NΦ(0) depends on the size N = |X| of
the point set X, but not on the separation radius q. To combine upper bounds

on Λ with our lower bounds on λ (from the previous section), we want to trade

the dependence on N for a dependence on q. To this end, one can evaluate the

sum of the upper bound in (14) more carefully, as this has been done in [13].

Lemma 3.1. Let ϕ : R≥0 → R≥0 be a monotonically decreasing function, and

let X ⊂ R
d be a finite point set with separation radius q. Then, we have

∑
x∈X

ϕ(‖y − x‖2) ≤ ϕ(0) +
∞∑

n=1

3d(n+ 2)d−1ϕ(nq) for every y ∈ X. (15)

Proof: For ϕ(r) = e−βr2 this is covered by [13, Lemma 2.1]. The general

case works in exactly the same way. �

Remark 3.2. The bound given in (15) is finite if and only if

Φ(x) = ϕ(‖x‖) ∈ L1(Rd).

In this case, Φ̂ is continuous on R
d. As shown in [13] for Φ ∈ PD on R

d for

all d ∈ N, an upper bound for Λ can only be obtained independently of X and

N = |X|, iff Φ ∈ L1(Rd). �
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For the Gaussian kernel, where ϕ(r) = e−βr2 , for β > 0, the infinite sum on

the right hand side in (15) is convergent. More explicitly, in this case we obtain

the bound

Λ ≤ 1 + 3d
∞∑

n=1

(n+ 2)d−1e−βn2q2 . (16)

For the multiquadrics kernel, where ϕ(r) = (γ2 + r2)β/2 for β ∈ R \ 2N and

γ 
= 0, the infinite sum on the right hand side in (15) is convergent for β < −d,

and the resulting upper bound on Λ in (15) is independent of N . But for β ≥ −d

there is no upper bound on Λ independent of N (see Remark 3.2).

Although we can obtain bounds on Λ via (15) that are independent of N ,

they are rather crude. Moreover, the infinite sum in (15) is usually difficult to

evaluate. A more comprehensive analysis concerning the asymptotic behaviour

of the sum in (15) is given in [13].

We now derive upper bounds on Λ by using Fourier techniques that are

similar to those for our lower bounds on λ from the previous section. We start

with the following upper bound for exponential sums.

Lemma 3.3. Let X = {x1, . . . , xN} ⊂ R
d be a finite point set with separation

radius q∞. Then, the estimate

∫
[−R,R]d

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

dω ≤
(
2R+

π

q∞

)d

‖c‖22 ∀c ∈ R
N (17)

holds for every R > 0.

Proof: The special case d = 1 goes back to Selberg [17], see also [18]. Selberg

constructs a function ψ : R → R satisfying

ψ(x) ≥ χ[−R,R], supp(ψ̂) ⊂ [−q∞, q∞], ψ(0) = 2R+ π/q∞.

The cases d > 1, related to [10], are treated as follows. By basic calculations,

we find that the tensor

ψ⊗(x1, . . . , xd) := ψ(x1) · · ·ψ(xd) ≥ χ[−R,R]d(x1, . . . , xd)

11



is localized in the frequency domain in [−q∞, q∞]d and ψ⊗(0) = (2R+ π/q∞)d,

so that we can proceed as in the proof of Theorem 2.1. �
Note that the bound in (17) continues to hold, if we translate [−R,R]d by

an arbitrary vector. This observation leads us to the following key result.

Theorem 3.4. Let Φ̂ : Rd → R be a continuous function with monotonically

decreasing Φ̂(x) = ϕ(‖x‖2). Then, for X = {x1, . . . , xN} ⊂ R
d with separation

radius q∞ the estimate

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

Φ̂(ω) dω ≤ 2d
(
R+

π

q∞

)d ∑
k∈Nd

0

Φ̂(Rk)‖c‖22 ∀c ∈ R
N

(18)

holds for every R > 0.

Proof: We regard the point sets

Qk = {Rk +R(ε1, . . . , εd)
T : εj ∈ [0, 1)} for k = (k1, . . . , kd) ∈ N

d
0.

Note that Rd
≥0 =

⋃
k∈Nd

0
Qk. Therefore, we can cover Rd by the union of

Qk,j = diag(j)Qk for k ∈ N
d
0 and j ∈ {±1}d.

Note that minQk,j
‖x‖2 = R‖k‖2.

Now by using Lemma 3.3, we obtain for any c ∈ R
N the estimate

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

Φ̂(ω) dω =
∑
k∈N

d
0

j∈{±1}d

∫
Qk,j

∣∣∣∣∣∣
N∑
j=1

cje
ixj ·ω

∣∣∣∣∣∣
2

Φ̂(ω) dω

≤ 2d
∑
k∈Nd

0

max
ω∈Qk

Φ̂(ω)

(
R+

π

q∞

)d

= 2d
∑
k∈Nd

0

Φ̂(Rk)

(
R+

π

q∞

)d

.

�
We remark that it is possible to obtain the result of Theorem 3.4 also for

non-decreasing Φ̂. To this end, the right-hand side in (18) should be replaced by

12



a sum over the maxima of Φ̂ on Qk. Another possibility is to find a decreasing

upper bound for Φ̂. Finally, we recall that for smooth Φ we have fast decay for

Φ̂ around infinity, so that in this case the convergence of the sum in the right

hand side of (18) is fast.

Remark 3.5. The result of Theorem 3.4 cannot apply to a conditionally posi-

tive definite radial kernel Φ ∈ CPD(m), since its generalized Fourier transform

Φ̂ = ϕ(‖ · ‖2) has an algebraic singularity at zero, and so in this case the sum in

the right hand side of (18) is divergent. Yet it is possible to obtain an estimate

of the form (18) by a more refined evaluation of the integral over Q0. Indeed,

for c ∈ LX that integral is finite, i.e.,

∫
Q0

∣∣∣∣∣
∑
x∈X

cxe
ix·ω
∣∣∣∣∣
2

Φ̂(ω) dω < ∞.

�

3.1. Optimal upper bound for the Gaussian kernel

We apply our result of Theorem 3.4 to the Gaussian kernel Φ(x) = e−β‖x‖2
2 ,

for β > 0. By using (18), we obtain the estimate

Λ ≤
(
R

π
+

1

q∞

)d ∑
k∈Nd

0

Φ̂(Rk) =

(
R

π
+

1

q∞

)d(
π

β

)d/2 ∑
k∈Nd

0

e−R2‖k‖2
2/(4β),

(19)

where we have used the representation (6).

Without loss of generality we may assume q∞ = 1/2 (which then agrees with

the separation radius for the integer grid). Otherwise we may rescale β by q2∞.

Letting R = 2π in (19), this gives the estimate

Λ ≤ 4d
(
π

β

)d/2 ∑
k∈Nd

0

e−‖πk‖2
2/β . (20)

We compare our estimate in (20) with that of Baxter [3] who proved that

for the special case X ⊂ Z
d the optimal bound is given by

Λ ≤
(
π

β

)d/2 ∑
k∈Zd

e−‖πk‖2
2/β .

13



Therefore, we can conclude that our estimate in (20) is optimal up to a

constant depending only on d.

One possibility to further estimate the sum on the right hand side of (20) is

∑
k∈Nd

0

e−‖πk‖2
2/β =

( ∞∑
k=0

e−π2k2/β

)d

≤
(
1 +

√
β

2
√
π

)d

,

which gives the estimate

Λ ≤
(
π

β

)d/2

2d
(
2 +

√
β√
π

)d

. (21)

We finally remark that for large q∞ (i.e., for large β) the estimate in (21) is

worse than that in (16), as the upper bound in (21) does, unlike that in (16), not

tend to one for β → ∞. However, we are usually interested in small separation

radii q∞ (i.e., in small β).

3.2. Upper bounds for inverse multiquadrics

Now we turn to the inverse multiquadric Φ(x) = (γ2 + ‖x‖22)β/2, for β < −d

and γ 
= 0, whose Fourier transform is given by

Φ̂(w) = C(β)

(‖w‖2
γ

)−(β+d)/2

K(d+β)/2(γ‖w‖2).

Here C(β) is a constant, depending only on β, and Kα is the modified Bessel

function. From the estimates

K(d+β)/2(γ‖w‖2) ≤ C(β, d)(γ‖w‖2)(d+β)/2

K(d+β)/2(γ‖w‖2) ≤
√

2π

γ‖w‖2 e
−γ‖w‖2e(β+d)2/(8γ‖w‖2),

to be found in [19, Lemma 5.13-5.14]. we obtain

max
w∈Q0

Φ̂(w) ≤ C(β, d)γβ+d

max
w∈Qk

Φ̂(w) ≤ C(β)(‖Rk‖2 +R
√
d)−(β+d)/2‖Rk‖−1/2

2 γ(β+d−1)/2

× e−γ‖Rk‖2e(β+d)2/(8γ‖Rk‖2)

14



If we let R = γ−1 in the second inequality, this yields

max
w∈Qk

Φ̂(w) ≤ C(β)γβ+d(‖k‖2 +
√
d)−(β+d)/2‖k‖−1/2

2 e−‖k‖2e(β+d)2/(8‖k‖2)

= C(β)γβ+dη(‖k‖2, β, d).

Note that η(‖k‖2, β, d) is summable for all β, d. Altogether, we obtain

Λ ≤
(
π−1 +

γ

q∞

)d

γβ

⎛
⎜⎜⎝C(β, d) + C(β)

∑
k∈N

d
0

k �=0

η(‖k‖2, β, d)

⎞
⎟⎟⎠ ,

where γβ = Φ(0).

4. Comparison with numerical estimates

We finally compare our theoretical estimates on spectral condition numbers

κ2(AΦ,X) =
Λ

λ

with those from the numerical experiments in [4]. We remark that the numerical

results in [4] are restricted gridded data in dimensions d = 1, 2. Moreover, the

condition numbers in [4] are measured in the ∞-norm,

κ∞(AΦ,X) = ‖AΦ,X‖∞ · ‖A−1
Φ,X‖∞.

On the basis of their numerical observations, several conjectures concerning

the analytic expression of condition numbers κ∞(AΦ,X) are given in [4]. We

compare with their conjectures for the Gaussian and for the multiquadric kernel.

4.1. Estimates on condition number for the Gaussian kernel

According to the numerical observation in [4] concerning the univariate case,

d = 1, the condition number κ∞(AΦ,X) is independent of N , where they con-

jecture the representation

κ∞(AΦ,X) =
1

2
eπ

2/(4β)

for equispaced interpolation points X with separation radius q∞ = 1/2.
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This compares with our theoretical estimates for q∞ = 1/2 as follows.

• By using (13), we obtain for any ε > 0 the estimate

κ2(AΦ,X) ≤ C(ε)e(π+ε)2/(4β),

where the constant C(ε) is independent of β for β small enough.

• By using (21) we obtain the estimate

κ2(AΦ,X) ≤ eπ
2/(2β)

(
10 +

5
√
β√
π

)
.

For the bivariate case, d = 2, the numerical observations in [4] on regular

grids lead them to conjecture

κ∞(AΦ,X) ∼ (1/4)eπ
2/(2β),

whereas, by using (13) and (21), we obtain for q∞ = 1/2 the estimates

κ2(AΦ,X) ≤ (d+ 1)2d
(
2 +

√
β√
π

)d

e(d+1)π2/(4β)

κ2(AΦ,X) = O
(
e(

√
dπ+ε)2/(4β)

)
for β → 0.

4.2. Estimates on condition numbers for inverse multiquadrics

For the case of inverse multiquadrics Φ(x) = (γ2+‖x‖22)β/2, for β < −d and

γ 
= 0, we obtain for any ε > 0 the estimate

κ2(AΦ,X) ≤ C(β, d, ε)

(
γ

q∞

)(β−d+1)/2(
π−1 +

γ

q∞

)d

e2γ(
√
dπ+ε)/(4q∞).

For d = 1 and uniformly distributed points X with q∞ = 1/2, the numerical

results in [4] lead them to conjecture

κ∞(AΦ,X) ∼ (1/2)eγπ

for β = −2, whereas we obtain in that case the estimate

κ2(AΦ,X) = O(eγ(π+ε)) for γ → ∞.

This matches (up to constant ε) the order of the asymptotic growth for γ → ∞.

Altogether, we can conclude that for all cases discussed in this section, our

theoretical estimates (concerning spectral condition numbers κ2) are remarkably

close to those in the conjectures of [4] (for κ∞).
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