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zur Angewandten Mathematik

Hierarchical Matrix Approximation For
Kernel-Based Scattered Data Interpolation

Armin Iske, Sabine Le Borne, Michael Wende

Nr. 2016-27
October 2016





HIERARCHICAL MATRIX APPROXIMATION FOR
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Abstract. Scattered data interpolation by radial kernel functions leads to linear equation
systems with large, fully populated, ill-conditioned interpolation matrices. A successful iterative
solution of such a system requires an efficient matrix-vector multiplication as well as an efficient
preconditioner. While multipole approaches provide a fast matrix-vector multiplication, they avoid
the explicit set-up of the system matrix which hinders the construction of preconditioners, such as
approximate inverses or factorizations which typically require the explicit system matrix for their
construction. In this paper, we propose an approach that allows both an efficient matrix-vector
multiplication as well as an explicit matrix representation which can then be used to construct
a preconditioner. In particular, the interpolation matrix will be represented in hierarchical matrix
format, and several approaches for the blockwise low-rank approximation are proposed and compared,
of both analytical nature (separable expansions) and algebraic nature (adaptive cross approximation).
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1. Introduction. Radial basis functions (RBF), or, radial kernel functions, are
powerful tools for meshfree interpolation from multivariate scattered data [5, 8, 9, 10,
14, 15]. In order to explain RBF interpolation only very briefly, assume we are given
function values fX = (f(x1), . . . , f(xN ))T ∈ RN sampled from a target function
f : Rd → R, for d ≥ 1, at a set X = {x1, . . . ,xN} ⊂ Rd of pairwise distinct
interpolation points. According to the RBF reconstruction scheme, an interpolant
s : Rd → R to f is required to be of the form

(1) s(x) =

N∑
j=1

cjΦ(x,xj) + p(x) for x ∈ Rd,

where Φ is a radially symmetric kernel function, i.e., Φ(x,y) = φ(|x−y|2) for a radial
kernel φ : [0,∞) → R, and where | · |2 is the Euclidean norm on Rd. Moreover, p
in (1) is assumed to be a d-variate real-valued polynomial, whose degree m − 1 is
determined by the order m ∈ N0 of the kernel Φ. To be more precise, we require that
Φ is conditionally positive definite of order m on Rd, Φ ∈ CPD(m), i.e., for any point
set X = {x1, . . . ,xN} ⊂ Rd of size N = #X, the kernel matrix

(2) BΦ,X = (Φ(xi,xj))1≤i,j≤N ∈ RN,N

is positive definite on the linear subspace

(3) LX =

c = (c1, . . . , cN )T ∈ RN :

N∑
j=1

cjp(xj) = 0 for all p ∈ πdm−1

 ⊂ RN ,
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where

πdm−1 :=

p(x) =
∑
|n|1<m

cnx
n

∣∣∣∣n ∈ Nd0, cn ∈ R


is the space of all d-variate polynomials of degree at most m− 1. For m = 0 we have
LX = RN , in which case Φ is positive definite on Rd, Φ ∈ PD.

We remark that for Φ ∈ CPD(m) the interpolation problem sX = fX has a
unique solution s of the form (1), under constraints c = (c1, . . . , cN )T ∈ LX and under
the (rather weak) assumption that the interpolation points X are πdm−1-unisolvent,
i.e., any polynomial in πdm−1 can uniquely be reconstructed from its values on X. In
fact, the interpolation problem sX = fX leads us, for a fixed basis {p1, . . . , pQ} of
πdm−1, to the linear system

N∑
j=1

cjΦ(xi,xj) +

Q∑
`=1

b`p`(xi) = f(xi) for i = 1, . . . , N,

N∑
j=1

cjpi(xj) = 0 for i = 1, . . . , Q,

(4)

with unknown coefficients c = (c1, . . . , cN )T ∈ RN for the major part of s in (1)
and coefficients b = (b1, . . . , bQ)T ∈ RQ for its polynomial part. We can rewrite the
system (4) in matrix form as(

BΦ,X PX
PTX 0

)(
c
b

)
=

(
fX
0

)
,(5)

where the polynomial matrix

PX = (p`(xi))1≤i≤N ;1≤`≤Q ∈ RN,Q

is injective, due to the assumed πdm−1-unisolvence of the interpolation points X.
To goal of this paper is the approximation of the interpolation matrix BΦ,X in (5)

in a way that requires almost optimal storage, allows a matrix-vector multiplication
of almost optimal complexity, and can be used for subsequent (approximate) matrix
factorization to construct a preconditioner. But we will neither discuss the condition
number of the interpolation matrix (cf. [7] for a very recent account on this problem),
the actual construction of a preconditioner nor the system’s iterative solution.

The remainder of this paper is organized as follows: In Section 2, we introduce
the interpolation problem using radial kernels, the key ideas of hierarchical matrices,
and the connection between these two topics. In Section 3, we describe (geometric
and algebraic) hierarchical clustering algorithms for meshless methods which yield the
hierarchical block structure of an H-matrix. In Section 5, we show various approaches
to fill the matrix blocks with low rank approximations in factored form. Approaches
include analytical methods based on separable expansions of the kernel function, either
tailored to a particular kernel function or kernel-independent such as interpolation or
Taylor expansion, as well as an algebraic approach by the name of adaptive cross
approximation. Section 6 provides a numerical illustration and comparison of the
discussed methods, and finally Section 7 concludes the paper with a summary and
outlook to future work.
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Fig. 1. Generating functions φGAU,α, φIMQ,α, φMQ,α, φTPS,α.

2. Preliminaries.

2.1. Scattered data interpolation using radial kernels. According to the
formulation of the interpolation problem in (4) and the resulting matrix form in (5),
we consider working with radially symmetric (multivariate) kernel functions

Φ : Rd × Rd → R, (x,y) 7→ Φ(x,y) := φ(|x− y|2)

being generated by a (univariate) function φ : R+ → R. We will focus on four radial
kernels φ = φZ,α with scaling parameter α ∈ R+ and Z ∈ {GAU, IMQ,MQ,TPS},

φGAU,α(r) = exp
(
−
(
r
α

)2)
(Gaussian, GAU),

φIMQ,α(r) =
(

1 +
(
r
α

)2)− 1
2

(Inverse Multiquadric, IMQ),

φMQ,α(r) =
(

1 +
(
r
α

)2) 1
2

(Multiquadric, MQ),

φTPS,α(r) =
(
r
α

)2
log
(
r
α

)
(Thin Plate Spline, TPS).

as shown in Figure 1. The positive definite φGAU,α ∈ PD and φIMQ,α ∈ PD generate
symmetric positive definite interpolation matrices B ≡ BΦ,X in (2), regardless of
the choice of (pairwise distinct) data sites xi. The kernels φMQ,α ∈ CPD(1) and
φTPS,α ∈ CPD(2), however, are conditionally positive definite of order m = 1 (for
MQ) and m = 2 (for TPS), so that the symmetric kernel matrix B ≡ BΦ,X is positive
definite on the linear subspace LX in (3) for πdm−1-unisolvent interpolation points X.

A common feature of the four resulting interpolation matrices B is that they are
dense and, moreover, their condition numbers depend on the shape parameter α > 0,
deteriorating with increasing α which “flattens” the generating functions φZ,α, see
Figure 1.
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In the following section, we will introduce the technique of hierarchical (H-) ma-
trices which will offer a (highly accurate) approximation BH ≈ B to the interpolation
matrix B which features an (almost) linear complexity for storage and matrix-vector
multiplication and can be used for subsequent matrix factorization.

2.2. H-matrices. An H-matrix is, in short, a matrix whose block index set
has been hierarchically partitioned and whose resulting matrix blocks are given in
factored form whenever the rank of such a matrix block is (significantly) smaller than
its size (i.e., the minimum of its numbers of rows and columns). We will now provide
brief formal definitions of these concepts, for more detailed discussions we refer to the
textbooks [2, 12] and the survey [13].

Let I, J ⊂ N be (finite) row/column index sets, and let B = (bij)i∈I,j∈J ∈ RI×J ∼=
R#I,#J . Here, #I denotes number of elements (indices) of the set I. In the following
definition, a partition of I is a set of nonempty, disjoint subsets whose union is the
entire set I, whereas a hierarchical partitioning will be defined as a certain set of
several nested partitions and finally, an H-block partition is a partition consisting of
subsets of a hierarchical partitioning. An actual construction of an H-block partition
as defined here will follow in Section 3.

Definition 1 (hierarchical partitioning, H-block partition). The sequence P `I =
{I`1, . . . , I`p`}, ` = 0, ..., L, of partitions of an index set I is called a hierarchical parti-
tioning of I of depth L if it holds that

• P 0
I = {I}, (root)

• I`k =
⋃

j∈Isub
I`+1
j for a subset Isub ⊂ {1, . . . , p`+1}, (hierarchical nestedness,

i.e., an index set on level ` is the union of index sets on the finer level `+ 1).
Given hierarchical partitionings P `I , P `J , ` = 1, . . . ,min{LI , LJ} of index sets I, J with
respective depths LI , LJ , the sequence P `I×J = {b`1, . . . , b`q`}, ` = 0, ..., L, with blocks

b`k ⊂ I×J is called a hierarchical block partitioning of I×J of depth L := min{LI , LJ}
based on hierarchical (index) partitionings P `I , P `J if it holds that

• P `I×J is a hierarchical partitioning of I × J ,

• for every b`k there exist σ ∈ P `I , τ ∈ P `J such that b`k = σ × τ .
Finally, a partition PHI×J = {b1, . . . , bn} of I × J is called an H-block partition if

bi ∈
⋃

`∈{1,...,L}
P `I×J for all i = 1, . . . , n.

In an H-matrix, some of its matrix blocks are represented in factored form, others
as a full matrix. The distinction is based on an admissibility condition defined next.

Definition 2 (admissibility condition). Let I, J be two index sets, and let PI×J
be a partition of I × J . An admissibility condition is a function

Adm : PI×J → {true, false}.

We call b ∈ PI×J admissible if Adm(b) =true and inadmissible otherwise.

Definition 3 (H-matrix). Let PHI×J be an H-block partition of I × J , let Adm
be an admissibility condition and let k ∈ N. Then, the set of H-matrices (with respect
to PHI×J , Adm and k) is defined as

H(PHI×J , k, Adm) := {B ∈ RI×J | rank(B|b) ≤ k for all admissible blocks b ∈ PHI×J}.

We call matrix blocks B|b admissible if b ∈ PHI×J is admissible. Admissible matrix
blocks can be represented in factored form, i.e., B|b = UV T for b = σ × τ , U ∈
R#σ,k′ , V ∈ R#τ,k′ for some k′ ≤ k.
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The savings in storage and cost for matrix-vector multiplication of an H-matrix
BH compared to a full matrix B originate in the factored low-rank representations of
admissible matrix blocks. The actual amount of savings, i.e., the hopefully reduced,
almost linear complexity estimate O(kN logN) depends on the particular H-block
partition and admissibility condition used in the H-matrix construction. It is fairly
straightforward to see that large, admissible matrix blocks are favorable when it comes
to storage and computational complexity.

The following subsection will motivate why scattered data interpolation matrices
of Subsection 2.1 fit into the framework of hierarchical matrices introduced in this
subsection.

2.3. Basic connection: low rank approximation of matrix blocks. The
explicit construction of an interpolation matrix in H-matrix format is simply an ex-
tension of the well-known multipole approach used for the fast matrix-vector multi-
plication with (scattered data) interpolation matrices B (see [1] and reference therein
for a more comprehensive account on this subject). If the underlying kernel function
Φ(x,y) allows for a separable expansion

(6) Φ(x,y) =

k∑
n=1

un(x) · vn(y) for k ∈ N

on a subset Qx ×Qy ⊂ Rd × Rd, then the matrix block

(bij)xi∈Qx
xj∈Qy

= (Φ(xi,xj))xi∈Qx
xj∈Qy

= (φ(|xi − xj |2))xi∈Qx
xj∈Qy

of the interpolation matrix B has at most rank k, independent of its number of
rows (number of data sites xi in Qx) and columns (number of data sites xj in Qy).
Typically, Φ(x,y) is not separable but can be approximated by a separable expansion

Φ(x,y) ≈ Φk(x,y) :=

k∑
n=1

un(x) · vn(y)

which yields a low rank approximation

(bij)xi∈Qx
xj∈Qy

≈ (Φk(xi,xj))xi∈Qx
xj∈Qy

,

once again with its rank bounded by k independently of the size of the block. The
(entrywise) error between the exact matrix block and its low rank approximation is
bounded by the approximation error |Φ− Φk|∞,Qx×Qy .

If it is known that Φ(x,y) allows for a separable expansion, or rather, if error
bounds of an expansion are known, this yields an upper bound for the rank of the
respective matrix block. If the expansion is explicitly available, it can be used for the
construction of the low rank factors of the matrix blocks, i.e.,

(7) (Φk(xi,xj))xi∈Qx
xj∈Qy

= UV T

with

U = (uij) xi∈Qx
j∈{1,...,k}

, uij = uj(xi), V = (vij) xi∈Qy
j∈{1,...,k}

, vij = vj(xi).
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The kernel functions Φ(x,y) = φ(|x−y|2) which we introduced in Subsection 2.1
have in common that they (unfortunately) are not separable but allow for exponen-
tially convergent separable approximations as long as x and y are well separated, i.e.,
their distance r = |x−y|2 is “large enough” as formalized in the following definition.

Definition 4 (standard admissibility condition). Let {xi = (xi,1, . . . , xi,d) ∈
Rd | i ∈ I} be a set of data sites for an index set I := {1, . . . , N} (N ∈ N). For a subset
σ ⊂ I, we define the bounding box Qσ as the smallest axis-parallel box containing all
data sites {xi | i ∈ σ}, i.e.,

Qσ := [a1, b1]× . . .× [ad, bd] with(8)

aj := min
i∈σ
{xi,j}, bj := max

i∈σ
{xi,j}, (j ∈ {1, . . . , d}).

Then, given a partition PI×I and an η ∈ R+, the standard admissibility condition is
defined by

Adm : PI×I → {true, false},

σ × τ 7→
{

true : min{diam(Qσ),diam(Qτ )} ≤ η dist(Qσ, Qτ ),
false : else

(9)

where the diameter and distance of bounding boxes are computed with respect to the
Euklidean norm.

The following Section 3 introduces a (hierarchical clustering) algorithm to con-
struct an H-block partition suitable for an H-matrix approximation of the interpola-
tion matrix B. Details on the construction and convergence of separable expansions
on admissible matrix blocks of this H-block partition will follow in Section 4.

3. Construction of an H-block partitions for scattered point sets. The
hierarchical partitioning of the index set I (see Definition 1) associated with data
sites {xi} may be constructed through recursive (geometric) bisection. Beginning
with the root I0

0 := I, an index set I`k (containing more than nmin ∈ N indices, i.e.,
#I`k > nmin) is partitioned into sets I`+1

2k , I`+1
2k+1 as follows:

1. Determine the spatial direction along which the index set I`k will be divided:
r := argmax

j∈{1,...,d}
{bj − aj} where aj , bj define the boundig box QI`k of I`k in (8).

2. Set midr := (ar + br)/2.
3. Set I`+1

2k := {i ∈ I`k | xi,r < midr}, I`+1
2k+1 := I`k \ I

`+1
2k .

The index sets I`k are commonly associated with the nodes of a tree:

I0
0 = I

I1
0 I1

1

I2
0 I2

1 I2
2 I2

3

The resulting hierarchical partitioning of I and the (standard) admissibility condition
(see Definition 4) are used in the following construction of a hierarchical block parti-
tioning. Beginning with the root I0

0 × I0
0 , only blocks I`k × I`k′ that are inadmissible

and not smaller than nmin are recursively partitioned, i.e.,

if (Adm(I`k × I`k′) = false ∧ min{#I`k,#I`k′} > nmin)

then partition I`k × I`k′ into

{I`+1
2k × I

`+1
2k′ , I

`+1
2k+1 × I

`+1
2k′ , I

`+1
2k × I

`+1
2k′+1, I

`+1
2k+1 × I

`+1
2k′+1}.
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Finally, an H-block partition PI×I is obtained as the set of all blocks I`k×I`k′ that have
not been further partitioned. By construction, these blocks must either be admissible
or small (with respect to nmin).

In order to be able to associate the index blocks in theH-block partition PI×I with
a matrix block of consecutive rows and columns, we define a permutation ind2dof :
I → I (index-to-dof) that satisfies ind2dof(i) < ind2dof(j) for any two indices i, j
that have been assigned to disjoint index sets i ∈ I`+1

2k and j ∈ I`+1
2k+1 in step 3. of the

index partitioning described above. Such a permutation yields a relabeling of data
sites and a resulting row and column permutation of the interpolation matrix.

4. Low rank approximation through separable expansions. In this part
we will discuss three analytical methods to construct separable expansions Φk of Φ:
(1) Polynomial interpolation (Section 4.1), (2) Taylor expansion (Section 4.2) and (3)
a special expansion designed for multiquadric basis functions (Section 4.5). In all
cases, Φ(x,y) will be considered as a function of x ∈ Qx for a fixed y ∈ Qy. The
length k of the expansions is determined by a parameter m ∈ N0 such that k = 0
when m = 0. In d > 1 dimensions the rank k increases rapidly with m.

4.1. Polynomial interpolation. Given a multiindex n = (n1, . . . , nd) ∈ Nd0
and x ∈ Rd, we define

|n|1 = n1 + · · ·+ nd, |n|∞ = max{|n1|, . . . , |nd|}, n! = n1! · · ·nd!,
xn = xn1

1 . . . xndd , ∂nΦ(x) = ∂n1
x1
. . . ∂ndxd Φ(x).

The space of polynomials of degree less than m ∈ N0 per spatial dimension,

Πd
m−1 := {p(x) =

∑
|n|∞<m

cnx
n | n ∈ Nd0, cn ∈ R}

has dimension dim(Πd
m−1) = md.

We will use a Lagrange basis of Πd
m−1 consisting of polynomials Ln for |n|∞ <

m constructed as follows: Let x̂n = (x̂n1,1, . . . , x̂nd,d) ∈ Rd, n = (n1, . . . , nd) ∈
{1, . . . ,m}d, be md points on a tensor grid that is obtained through transformation
of the zeros of the Chebyshev polynomials Tm of degree m to the intervals [ai, bi] of
the bounding box Qσ = [a1, b1]× . . .× [ad, bd] (8), i.e.,

x̂i,j =
ai + bi

2
+
bi − ai

2
cos

(
2j − 1

2m
π

)
, i ∈ {1, . . . , d}, j ∈ {1, . . . ,m}.

The univariate Lagrange polynomials in [ai, bi] are given by

Li,j(x) =
∏

`∈{1,...,m}\{j}

x− x̂i,`
x̂i,j − x̂i,`

, i ∈ {1, . . . , d}, j ∈ {1, . . . ,m},

and their multivariate counterparts are obtained by multiplication

Ln(x) = L1,n1(x1) · . . . · Ld,nd(xd)

and satisfy Ln(x̂`) = δn,` for all |`|∞ < m.
A separable approximation Φk(x,y) of Φ(x,y) is given by the polynomial in x

which interpolates Φ(x,y) at the tensor grid points x̂n, i. e. Φk(x̂n,y) = Φ(x̂n,y)
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for all |n|∞ < m. The interpolating polynomial Φk(x,y) can be represented using
the Lagrange basis,

(10) Φk(x,y) =
∑

|n|∞<m

Ln(x)︸ ︷︷ ︸
un(x)

Φ(x̂n,y)︸ ︷︷ ︸
vn(y)

,

the representation rank is k = md.

4.2. Taylor expansion. A Taylor expansion of Φ(x,y) with respect to x about
a point x0 ∈ Qσ yields the separable expansion

(11) Φk(x,y) =
∑
|n|1<m

(x− x0)n

n!︸ ︷︷ ︸
un(x)

∂nx Φ(x0,y)︸ ︷︷ ︸
vn(y)

.

We choose the center of the expansion x0 to be the midpoint of the cuboid Qσ. The
rank of such an expansion is k = #{n ∈ Nd0 | |n|1 < m} =

(
m+d−1

d

)
.

In order to facilitate the implementation of a separable approximation through
Taylor expansion, we now derive recursion formulas for the multivariate derivatives
∂nx Φ(x,y), n ∈ Nd0. In order to simplify notation, we define z := x − y as well as
Φ(z) := φ(|z|2) and write ∂nΦ(z) instead of ∂nx Φ(x,y) in view of y being constant
and

∂nx Φ(x,y) = ∂nx φ(|x− y|2) = ∂nz φ(|z|2)|z:=x−y.

The C∞(0,∞)-functions

ψGAU,α(r) = e−
r
α2 , ψIMQ,α(r) =

(
1 +

r

α2

)− 1
2

,

ψMQ,α(r) =
(

1 +
r

α2

) 1
2

, ψTPS,α(r) =
r

2α2
log

r

α2
(12)

all satisfy ψZ,α(r2) = φZ,α(r) for Z ∈ {GAU, IMQ,MQ,TPS}. In fact, according
to Schoenberg (see [15, Theorem 7.13]) there exists for every positive definite radial
function φ ∈ PD an associated completely monotone function ψ ∈ C∞(0,∞), ψ 6≡ 0,
satisfying ψ(r2) = φ(r). We remark that Schoenberg’s characterization has been
extended to conditionally positive definite radial functions φ ∈ CPD(m) by Micchelli
(see [15, Theorem 8.19]). Based on ψ, we now define

Ψn(z) := ψ(n)(|z|22), n ∈ N0,

where ψ(n) = ∂nψ denotes the n-th derivative of ψ : R+ → R.

Theorem 5. Let n ∈ Nd0 be decomposed into n = 2` + m with ` = bn/2c ∈ Nd0
and m ∈ {0, 1}d. Then the multivariate derivative ∂nΦ has a representation in the
form

(13) ∂nΦ(z) = ∂n1
z1 . . . ∂

nd
zd

Φ(z) =
∑
j≤`

a
(n1)
j1

. . . a
(nd)
jd

z2j+mΨ|`|1+|j|1+|m|1(z)

with coefficients {a(n)
j | n ∈ N0, j ∈ {0, . . . , bn/2c}}. These can be arranged in rows

n = 0, 1, . . . and computed recursively, starting from a
(0)
0 = 1. Row 2` + 1 can be

computed from row 2` through

a
(2`+1)
j = 2a

(2`)
j + 2(j + 1)a

(2`)
j+1, j = 0, . . . , `− 1 ,

a
(2`+1)
` = 2a

(2`)
`

(14)
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and row 2` can be computed from row 2`− 1 through

a
(2`)
` = 2a

(2`−1)
`−1 ,

a
(2`)
j = 2a

(2`−1)
j−1 + (2j + 1)a

(2`−1)
j , j = `− 1, . . . , 1 ,

a
(2`)
0 = a

(2`−1)
0 .

(15)

Proof. We prove the representation (13) beginning with the observation that Φ =
Ψ0 and the relationship

(16) ∂ziΨn(z) = 2ziΨn+1(z).

Repeated application of (16) will eventually result in (13). In order to derive explicit
recursion formulas, we will begin with the one-dimensional case where z = z ∈ R is a
scalar. In this case, the first few derivatives are computed to be

(17)

∂0Φ(z) = Ψ0(z),
∂1Φ(z) = 2 zΨ1(z),
∂2Φ(z) = 2 Ψ1(z) + 4 z2 Ψ2(z),
∂3Φ(z) = 12 z Ψ2(z) + 8 z3 Ψ3(z),
∂4Φ(z) = 12 Ψ2(z) + 48 z2 Ψ3(z) + 16 z4 Ψ4(z).

In order to derive a general formula for all ∂nΦ(z), we distinguish between even and
odd n and write n as n = 2`+m with ` ∈ N0 and m ∈ {0, 1}. Denoting the coefficients

in the right hand side of ∂nΦ(z) in (17) by a
(n)
0 , . . . , a

(n)
` suggests that there holds

∂2` Φ(z) =
∑̀
j=0

a
(2`)
j z2j Ψ`+j (z) for n = 2`,(18a)

and ∂2`+1Φ(z) =
∑̀
j=0

a
(2`+1)
j z2j+1Ψ`+j+1(z) for n = 2`+ 1.(18b)

The difference between (18a) and (18b) is minor and merely consists of adding an
m ∈ {0, 1} in appropriate places, i.e., using n = 2` + m with m ∈ {0, 1}, (18a) and
(18b) are combined into

(19) ∂nΦ(z) =
∑̀
j=0

a
(n)
j z2j+mΨ`+j+m(z) for n ∈ N0.

We have provided the even and odd cases separately because this allows one to
confirm (18) by checking that differentiating (18a) once produces (18b) and vice versa
(with ` replaced by ` + 1). In this way we also see how the coefficients appearing in
(17) can be computed one row at time as stated in (14), (15). For the multivariate
form of (13), i.e., for z ∈ Rd, we use (19) for every coordinate and obtain

∂nΦ(z) = ∂n1
z1 · · · ∂

nd
zd

Φ(z)

=

`1∑
j1=0

· · ·
`d∑
jd=0

a
(n1)
j1
· · · a(nd)

jd
z2j1+m1

1 · · · z2jd+md
d Ψ`1+j1+m1+···+`d+jd+md(z)

=
∑
j≤`

a
(n1)
j1
· · · a(nd)

jd
z2j+mΨ|`|1+|j|1+|m|1(z).
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Remark 6. The monomial factors appearing in (19) have the following connec-
tion to the Hermite polynomials

Hn(z) = (−1)nez
2

∂ne−z
2

which satisfy the recursion formulas

H−1(z) := 0, H0(z) = 1, Hn+1(z) = 2zHn(z)− 2nHn−1(z),

H ′n(z) = 2nHn−1(z).

For the Gaussian Φ(z) = e−z
2

, there holds Ψ`+j+m(z) = (−1)`+j+me−z
2

so that (19)

turns into ∂nΦ(z) =
∑`
j=0 a

(n)
j z2j+m(−1)`+j+me−z

2

. Multiplication of both sides with

(−1)nez
2

leads to

Hn(z) = (−1)n
∑̀
j=0

a
(n)
j z2j+m(−1)`+j+m =

∑̀
j=0

(−1)`+ja
(n)
j z2j+m.

Hence, besides the sign, the coefficients a
(n)
j coincide with the coefficients of the Her-

mite polynomials Hn which can be computed through the above recursion formulas.

4.3. Asymptotic smoothness. A convergence result for the separable approx-
imations based on polynomial interpolation and Taylor expansion (Subsection 4.4)
follows if the kernel Φ is asymptotically smooth. In [4], a similar is obtained for the
ACA approach that will be introduced in Section 5.

Definition 7. The kernel Φ : Rd → R is called asymptotically smooth if there
exist constants c, β, γ, s ∈ R such that for all n ∈ Nd0

|∂nΦ(z)| ≤ c|n|β1γ|n|1n!|z|−|n|1−s2 .

According to [12, Theorem E.8], the kernel Φ(z) = φ(|z|2) is asymptotically
smooth if the corresponding radial kernel function φ is asymptotically smooth. In
principle, this provides a way to check the asymptotic smoothness of Φ by computing
derivatives of φ analytically. This leads to quite lengthy expressions, however. In the
following, we will show that φ(r) = ψ(r2) is asymptotically smooth if ψ is asymptoti-
cally smooth. This will enable us to confirm for Z ∈ {GAU, IMQ,MQ,TPS} that φZ
is asymptotically smooth by computing derivatives of ψZ , which is rather easy.

Theorem 8. The asymptotic smoothness of ψ : R+ → R implies the asymptotic
smoothness of φ(r) = ψ(r2). If c2, β2, γ2, s2 ∈ R are the constants in the asymptotic
smoothness inequality for ψ, then φ satisfies the asymptotic smoothness inequality with
constants c = c2, β = β2, γ = 4γ2, s = 2s2.

Proof. We begin by scaling the coefficients a
(n)
j in (13) to produce a transformed

set of coefficients

â
(n)
j = (`+m+ j)! 2−(`+m+j) a

(n)
j , (n = 2`+m, m ∈ {0, 1}).

The scaling factors were chosen such that these new â
(n)
j can still be computed recur-

sively. Instead of (14) we now have

(20)
â

(2`+1)
j =(`+ 1 + j)â

(2`)
j +2(j + 1)â

(2`)
j+1, j = 0, . . . , `− 1,

â
(2`+1)
` = (2`+ 1)â

(2`)
`
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and (15) translates into

(21)

â
(2`)
` = (2`)â

(2`−1)
`−1 ,

â
(2`)
j =(`+ j)â

(2`−1)
j−1 +(2j + 1)â

(2`−1)
j , j = `− 1, . . . , 1,

â
(2`)
0 = â

(2`−1)
0 .

According to (20) and (21), the transformed coefficients are still integers. Based on
these formulas we are now going to derive an upper bound for

(22)
∑̀
j=0

a
(n)
j (`+m+ j)! =

∑̀
j=0

2`+m+j â
(n)
j ≤ 2n

∑̀
j=0

â
(n)
j .

In the sum to the far right of (22) each â
(n)
j is the sum of one or two â

(n−1)
j weighted

by a factor ≤ n. Since in this way each â
(n−1)
j is used at most twice, we can replace

the sum over row n with the sum over row n − 1 multiplied with 2n. Starting from

(22) we apply this step n times until we arrive at row 0 where a
(0)
0 = 1:

`=bn2 c∑
j=0

a
(n)
j (`+m+ j)! ≤ 2n2n

bn−1
2 c∑
j=0

â
(n−1)
j

≤ 2n(2n)(2(n− 1))

bn−2
2 c∑
j=0

â
(n−2)
j ≤ · · · ≤ 22nn!(23)

Using the derivative from (13) and the inequality (23), we calculate

|φ(n)(r)| ≤
∑̀
j=0

a
(n)
j |r|

2j+m|ψ(`+m+j)(r2)|

≤
∑̀
j=0

a
(n)
j |r|

2j+mc2(`+m+ j)β2γ`+m+j
2 (`+m+ j)!|r|−2(`+m+j)−2s2

≤ c2nβ2γn2
∑̀
j=0

a
(n)
j (`+m+ j)!|r|−2`−m−2s2

≤ c2nβ2γn2 22nn!|r|−n−2s2

≤ cnβγnn!|r|−n−s,

implying that φ is asymptotically smooth with the stated constants.
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The derivatives of the functions ψZ := ψZ,α=1 in (12) are given by

ψ
(k)
GAU(r) = (−1)k exp(−r),

ψ
(k)
IMQ(r) =

k−1∏
j=0

(−0.5− j)

 (1 + r)−0.5−k,

ψ
(1)
TPS(r) = 0.5 log(r) + 0.5, ψ

(k)
TPS(r) =

0.5

k−2∏
j=1

(−j)

 r−(k−1), k ≥ 2,

ψ
(k)
MQ(r) =

k−1∏
j=0

(0.5− j)

 (1 + r)0.5−k.

All of these functions are asymptotically smooth with constants listed in Table 1. For
α > 0 we can choose β2, γ2 and s2 in the same way when c2 is replaced with αsc2.
This is because

ψ(n)
α (r) =

1

αn
ψ(n)(r/α) ≤ 1

αn
c2 n

β2 γn2 (r/α)−n−s2 ≤ (αsc2) nβ2 γn2 r−n−s2 .

Table 1
Constants of asymptotic smoothness.

c2 β2 γ2 s2

ψG 1 0 1 0
ψI 1 0 1 0.5
ψT 0.5 0 1 -1
ψM 1 0 1 -0.5

4.4. Convergence of polynomial interpolation and Taylor expansion.
Error estimates for polynomial interpolation and Taylor expansion can be expressed
involving derivatives of Φ. Convergence Φk(x,y) → Φ(x,y) can be proved if Φ is
asymptotically smooth and if the standard admissibility condition (Definition 4) is
satisfied with η chosen sufficiently small. In this case, the speed of convergence will
be exponential.

Definition 9 (Exponential convergence [12, Definiton 4.5]). The separable ex-
pansion (6) is called exponentially convergent if there are constants c0 ≥ 0, c1 > 0
and β > 0 such that

|Φ(x,y)− Φk(x,y)| ≤ c0 exp(−c1kβ)

for all x ∈ Qσ, y ∈ Qτ .

Remark 10. The constant β will often be β = 1/d in Rd.

According to [12, Theorems 4.17,4.22] polynomial interpolation and Taylor ex-
pansion require η < 1/γ where γ comes from Definition 7.
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4.5. Specialized expansions. Polynomial interpolation and Taylor expansion
appear in the literature of H-matrices as methods which can be used whenever the
kernel is asymptotically smooth. Besides these generic methods, there exist separable
expansions tailored to particular kernels. One example for a radial kernel function
admitting such an expansion are the thin plate splines, as described in [15, Proposition
15.2]. These expansions are often used in conjunction with fast multipole methods
but can also be used for H-matrices.

We will compare the generic aproximation methods to one of these specialized
expansions developed for generalized multiquadrics (GMQ) in [6]. The radial kernel
functions considered in this paper are

φGMQ,α(r) =

(
1 +

( r
α

)2
)p/2

for α > 0

for odd p ∈ Z. Note that for p = ±1 this yields the kernels φMQ,α and φIMQ,α.
The separable approximation detailed in [6] is of the form

(24) Φ(x,y) ≈ Φk(x,y) =

m−1∑
`=0

∑
|n|1=`

u(`)
n (x) · v(`)

n (y),

where m ∈ N0 controls the length of the expansion. The part depending on x is

u(`)
n (x) =

xn

αp |x|2`−p2

.

For the part depending on y there holds a recurrence which uses coefficients

a` =
2`− p− 2

`
, b` =

p− `+ 2

`
.

Denoting by ei the i-th unit vector in Rd the computation of v
(`)
n (y) then proceeds as

v
(0)
0 (y) = 1, v(1)

ei (y) = −p yi,

v(`)
n (y) = a`

d∑
i=1

yiv
(`−1)
n−ei (y) + b`(|y|22 + α2)

d∑
i=1

v
(`−2)
n−2ei

, ` ≥ 2.
(25)

In the notation v
(`)
n from [6] it is always the case that ` = |n|1. The superscript is not

really necessary, but it is helpful in understanding the definition since it emphasizes
the level-wise computation in (25). The number of terms in (24) depends on m in the
same way as for Taylor expansion, i.e. the representation rank is k =

(
m+d−1

d

)
.

According to [6, Lemma 3.1] the convergence of Φk(x,y) to Φ(x,y) now requires

(26) |x|2 >
√
|y|22 + α2

which is also termed as x lying in the farfield of y. It is important to note that we can
use a shifted version of (26) where x and y are replaced by x− z and y− z for some
z ∈ Rd. Convergence will then be guaranteed if the same shift is applied to (24) as
well. This is possible since we have the translation invariance Φ(x,y) = Φ(x−z,y−z).

In the context of H-matrices we have to derive separable expansions not for indi-
vidual pairs x and y but for all points from cuboids Qσ and Qτ . Therefore, we need
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to formulate the admissibility condition in terms of Qσ and Qτ . The admissibility of
Qσ and Qτ should imply that all x ∈ Qσ are in the farfield of all y ∈ Qτ . This is the
case if we use

(27)

√(
diam(Qτ )

2

)2

+ α2 < η dist(Qσ,y0)

as an admissibility condition where the shift y0 is taken as the centre of Qτ and η ≤ 1
is used to sharpen the condition to obtain faster convergence. In the right hand side
of (27) we can also replace dist(Qσ,y0) by the smaller value of dist(Qσ, Qτ ).

Referring again to [6, Lemma 3.1] the error of the expansion (24) satisfies

(28) |Φ(x,y)− Φk(x,y)| ≤

{
C ηm for p > 0,

C mp+1 ηm for p < 0,

where C is a constant depending η, α, diam(Qτ ) ≤ diam(X) and p but not on m.
The error bound (28) corresponds to an exponential speed of convergence.

5. Low rank approximation through cross approximation. Let A ∈ Rm,n.
The cross approximation algorithm may be viewed as a prematurely aborted Gaussian
elimination and computes a factored approximation A ≈ UV T using “thin” rectan-
gular matrices U, V . In particular, the entire matrix A is not required as input but
only access to individual entries aij (typically O(k) rows and columns of A where k
is the number of columns in U, V ). The computation of aij typically consists of the
evaluation of the kernel function itself and does not require any separable expansions
as was the case in the construction of low rank approximations described in Section 4.

Algorithm 1 Cross approximation

Input: method to access individual matrix entries aij of A ∈ Rm,n
Output: factors U = (u1 . . . uk) ∈ Rm,k, V = (v1 . . . vk) ∈ Rn,k that yield A ≈ UV T

1: ` = 1.
2: while stopping criterion not satisfied do
3: Choose an (arbitrary) pivot element ai`j` 6= 0.
4: Compute the i`’th row ai`,: and the j`’th column a:,j` of A.
5: Set u` := a:,j` and v` = (ai`j`)

−1aTi`,:.

6: Compute A← A− u`vT` .
7: ` = `+ 1.
8: end while

The generic version of this procedure is provided as Algorithm 1. Line 6 might be
considered as its most important one: it can be shown that subtraction of the outer
product u`v

T
` reduces the rank of A by one. In a practical implementation, however,

this update is not computed for the entire matrix A (which would imply complexity
O(nm)). Instead, all updates are only computed for the row and column selected in
line 4, i.e.,

ai`,: ← ai,: − ui,1vT1 − . . .− ui,`vT` = ai`,: − ui,1:` · (v1 . . . v`)
T ,

a:,j` ← a:,j − u1vj,1 − . . .− u`vj,` = a:,j` − (u1 . . . u`) · (vj,1:`)
T .

This reduces the algorithm’s complexity to O(k2(n+m)).
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The computed factorisation A ≈ UV T will depend on the selection of the pivot
element (line 3) as well as the stopping criterion (line 2). These two topics will be
discussed in the following two subsections.

5.1. Pivot selection. The pivot element in line 3 must be nonzero and prefer-
ably not even close to zero. In our implementation we select the first column index
j1 ∈ {1, . . . ,m} at random which enables us to compute u1. All the remaining row
and column indices are determined by

i` = arg max
i=1,...,n

(u`)i, ` = 1 . . . , k, and j` = arg max
j=1,...,m

(v`−1)j , ` = 2 . . . , k.

This strategy from [12] always uses the newest available vector u` or v` to compute
the next pivot. Since in this paper we consider interpolation matrices where each
matrix row and column is associated with a particular data site, one could use this
information to select pivots apriori and without the need to determine maximum row
or column entries. In particular, one might interpret the selected pivots as a coarser
set of data sites, and in order to sustain as much information as possible, the data
sites corresponding to the pivot rows and columns should be selected along the lines
of typical coarsening algorithms. Such a strategy is also supported by the following
representation of the factorization computed in Algorithm 1: If Ir = {i1, . . . , ik} and
Ic = {j1, . . . , jk} collect the respective row and column indices of rows and columns
selected as pivots in line 3 of Algorithm 1, then the computed matrix factors U, V
satisfy

UV T = A|{1,...,m}×Ic︸ ︷︷ ︸
Rm,k

(A|Ir×Ic)−1︸ ︷︷ ︸
Rk,k

A|Ir×{1,...,n}︸ ︷︷ ︸
Rk,n

.(29)

Hence, pivots should be selected attempting to obtain a well-conditioned AIr×Ic . The
following theorem ensures that there exists a quasioptimal rank-k-approximant in the
form of (29).

Theorem 11 ([11]). Let A ∈ Rm,n and k ∈ N with k ≤ rank(A). Let subsets
Ir ⊂ {1, . . . ,m}, Ic ⊂ {1, . . . , n} with #Ir = #Ic = k be chosen such that

|detA|Ir×Ic | = max{|detA|Ir′×Ic′ | |
Ir′ ⊂ {1, . . . ,m}, Ic′ ⊂ {1, . . . , n}, #Ir′ = #Ic′ = k}.

Using the “maximum matrix entry” norm ‖A‖C := max{|aij | | 1 ≤ i ≤ m, 1 ≤ j ≤
n}, it holds that (29) is quasioptimal, in particular

‖A−A|{1,...,m}×Ic(A|Ir×Ic)
−1A|Ir×{1,...,n}‖C ≤ (k + 1) ‖M −Rbest‖2

where Rbest is the best rank-k-approximation to A (with respect to ‖ · ‖2.)

5.2. Stopping criterion. In line 2 of Algorithm 1 the number of steps k to
perform is determined by a stopping criterion. The simplest choice would be to
decide on the rank k in advance, which can be useful if we know that this is sufficient
to achieve a desired accuracy or if we want to limit the amount of storage. Cross
approximation with a fixed k will be referred to as CA from here on.

Strict error estimates for A−UV T with ACA-computed U, V require assumptions
on the underlying kernel function generating the matrix data of A. Here we review
(and later use in the numerical tests) a heuristic stopping criterion from the literature
(e.g., [12], §9.4.3). It is based on the following assumptions.
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Assumption 12. Let R` := U`V
T
` denote the ACA-approximation of a matrix A

after ` steps of Algorithm 1. We assume that
1. ‖A‖2 ≈ ‖R1‖2,
2. ‖A−R`‖2 ≤ ‖A−R`−1‖2,
3. ‖A−R`−1‖2 ≈ ‖R` −R`−1‖2.

If the conditions of Assumption 12 are satisfied, we conclude that (again using the
notation R` := U`V

T
` )

‖A−R`‖2 ≤ ‖A−R`−1‖2 ≈ ‖R` −R`−1‖2 = ‖u`vT` ‖2 = ‖u`‖2‖v`‖2.

Given a tolerance ε, this yields the heuristic stopping criteria

‖u`‖2‖v`‖2 ≤ ε (absolute),
‖u`‖2‖v`‖2
‖u1‖2‖v1‖2

≤ ε (relative).(30)

We refer to Algorithm 1 implemented with a stopping criterion as in (30) as adaptive
cross approximation (ACA).

5.3. H-matrix approximation with constraints. If the generic ACA Algo-
rithm 1 (or, as a matter of fact, a separable approximation of Section 4) is applied to
obtain factorizations of all admissible blocks of an H-matrix, symmetry might be lost,
i.e., a symmetric interpolation matrix B will be approximated by a non-symmetric
H-matrix BH. However, this “problem” is easily removed by computing only the
upper triangular part of an H-matrix BH and using its transpose for the respective
blocks in the lower triangular part.

While preservation of symmetry poses no problem, the situation is different for
positive (semi-) definiteness. If B is positive definite, then BH will eventually be

positive definite since BH
ε→0−→ B when BH is constructed using an error tolerance

ε for low rank approximations in its admissible blocks. However, a small enough ε
might be impractical for the application at hand, especially if B’s smallest eigenvalue
is close to zero. If eigenvectors v of small eigenvalues of B are known, those could be
used to construct an H-matrix BH with blockwise constraints, enforcing BHv = Bv
[3]. Alternatively, along the lines of regularization, one could simply add a small
constant to the diagonal of BH, albeit sacrificing approximation accuracy for the sake
of positive definiteness. In the end, it needs to be decided whether it is worth to pursue
positive definiteness when it comes at the expense of accuracy and/or computational
efficiency.

6. Numerical results. We implemented and compared the construction of H-
matrices with low rank approximations based on
• polynomial interpolation (INT), see §4.1, (10),
• Taylor expansion (TAY), see §4.2, (11),
• cross approximation with fixed rank k (CA) or stopping criterion (30) (ACA), see
§5, Algorithm 1,
• and the expansion for generalized multiquadrics (GMQ), see §4.5, (24),
where we measure the accuracy of BH as an approximation for B in terms of the
relative error in the Frobenius norm, i.e. ‖B −BH‖F /‖B‖F . Since we want to include
the GMQ expansion (§4.5) in our comparison, several of the tests involve the inverse
multiquadric φIMQ as a radial basis function. We illustrate the convergence speed in
§6.1.1 and the memory and computational time in §6.1.2. In §6.2 we demonstrate that
the generic approximation methods INT, TAY and CA can be applied successfully to
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the radial kernels introduced in §6. The approximation accuracy of CA can be seen
to be close to optimal regardless of φ and d. The scaling behaviour of ACA for
increasing values of N is treated in §6.3. We again measure storage requirements
and computational time and find that the claim of an almost linear computational
complexity is supported by our results.

In principle, our programs work for any spatial dimension. Due to the excessive
growth of the representation rank, however, it was not feasible to use any other value
except d = 1, 2, 3. Even in this range our available resources did not allow us to obtain
approximations with an accuracy in the order of machine precision in all cases.

6.1. Inverse multiquadric. In our tests for φIMQ, we use N = 10, 000 points
and a shape factor α = N1/d. We choose different values of η in the admissibility
conditions (9) and (27) in order to study its effect on the speed of convergence. These
values were η = 1.0, 0.5, 0.25 for CA, INT and TAY and η = 0.5, 0.25, 0.125 for the
GMQ expansion.
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Fig. 2. N = 10, 000, inverse multiquadric φIMQ, α = N−1/d, Left: GMQ expansion (§4.5).
Right: cross approximation at fixed rank (CA).
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Fig. 3. N = 10, 000, inverse multiquadric φIMQ, α = N−1/d, Left: interpolation (INT), Right:
Taylor expansion (TAY).
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6.1.1. Accuracy. The accuracy depending on the transformed rank k1/d is
shown in Figures 2 (GMQ, CA), and 3 (INT, TAY). All the approximation methods
show exponential convergence in the sense of Definition 9 where smaller values of η
accelerate the error decay. Best results are obtained for ACA, followed by INT, TAY
and the specialized GMQ expansion in this order.
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Fig. 4. Amount of memory required to store BH for N = 10, 000, φ = φIMQ,α, α = N−1/d,
d = 1, d = 2, d = 3. Gray vertical line shows storage of full matrix (800 MB).

6.1.2. Storage and computational time. Storage requirements and compu-
tational time depend not only on the rank but also on the H-block partition which
is the same for the approaches ACA, INT and TAY but differs for the specialized
GMQ-expansion in view of the different admissibility condition. The required storage
for different spatial dimensions d = 1, 2, 3 is shown in Figure 4. GMQ and CA require
the smallest amount of storage whereas INT and TAY consume much more memory.
The full matrix B requires about 800 MB of memory in this case - this is included
in the plots for d = 2, 3 as a vertical gray line. When using INT or TAY and a high
accuracy is desired, an advantage in using an H-approximation BH is only given for
d = 1. For d = 2, 3, these methods require an unacceptable amount of memory. This
conclusion, however, depends on the size N of the matrix. As N increases, storage of
the full matrix is N2 whereas the storage on the H-matrix BH is of order O(N logN),
also for INT and TAY. Regarding the choice of η, the results are mixed. For CA, the
smallest amount of memory is obtained with the largest value of η = 1. For GMQ, a
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larger value of η is advantageous in d = 1 but the situation is reversed for d = 2, 3.
This is in contrast to what was seen in §6.1.1 and reflects the fact that the amount of
storage required does not only depend on the speed of convergence of the separable
expansion but also on the admissibility condition.
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Fig. 5. Time required to compute BH for N = 10, 000, φ = φIMQ,α, α = N−1/d, for d = 1, 2, 3.

The computational time required to set up BH depending on the approximation
accuracy is shown Figure 5. For the computational time similar observations as for
the memory consumption can be made. The CA and GMQ approaches are in general
faster than INT and TAY.

6.2. Radial kernel functions and dimensions. In order to show that the
generic approximation methods are applicable to all radial kernels and dimensions, we
measure the relative error for every combination of d = 1, 2, 3 and the four example
functions φGAU, φIMQ, φTPS, φMQ. The remaining parameters were chosen as N =
4900, η = 1, α = 1. Besides cross approximation, interpolation and Taylor expansion,
we also included the best approximation through low-rank blocks based on singular
value decomposition. In this approach, titled SVD in the diagrams, the approximation
of admissible blocks of BH is such that the columns of U and V from (7) are the left
and right singular vectors belonging to the largest singular values of this block. This
procedure minimizes the error and serves as a reference for the other methods. The
results for d = 1, 2, 3 dimensions are presented in Figures 6 to 8. CA with a fixed
rank shows almost optimal performance across all φ and d that we considered.
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Fig. 6. Comparsion of basis functions and approximation methods for N = 4900 and d = 1.
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Fig. 7. Comparsion of basis functions and approximation methods for d = 2.
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Fig. 8. Comparsion of basis functions and approximation methods for d = 3.

6.3. Dependence on matrix size N . We next investigate the influence of the
number of points N on storage and computational time requirements to set up BH.
The construction of BH is based on ACA using a relative stopping criterion with
ε = 10−1, . . . , 10−12 (see §5.2). The tests were carried out for d = 2, the Gaussian
φGAU , a fixed shape factor α = 1 and up to N = 160, 000 points.

The amount of memory required to store BH as well as the full matrix B is shown
in Figure 9. The results for the size of BH are compatible with our assumption of an
almost linear scaling in terms of N . For a fixed value of N the amount of memory
is proportional to log(ε) corresponding to an exponential speed of convergence of the
separable expansion. To give an impression of how the amount of storage relates to
a sparse matrix, we note that BH set up with ε = 10−3 consumes about as much
memory as a sparse matrix with an average of about 700 non-zero entries per row
would. The time required to compute BH is shown in Figure 10. Again, we observe
an almost linear dependence on N .

7. Conclusion. Scattered data interpolation using radial kernels requires the
solution of a set of linear equations with a system matrix (5) which is large, dense
and often highly ill-conditioned.

In this article, we described and compared various efficient ways to approximate
the matrix block B in (5) by an H-matrix BH with almost linear O(N logN) com-
plexity. The H-matrix BH allows a fast matrix-vector multiplication suitable for
iterative solution algorithms. In addition, H-arithmetic is available to compute ap-
proximate matrix factorizations which may then serve as preconditioners. The number
of columns Q = dim(πdm−1) of the block PX in (5) corresponding to the polynomial
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Fig. 9. Storage requirement of BH for d = 2, α = 1, φ = φGAU depending on N . The memory
required for the full matrix B is included for reference.
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Fig. 10. Computational time required to build BH for d = 2, α = 1, φ = φGAU depending on N .

part is considered to be fixed and small compared to the number of points N . Setting
up this block as a full matrix therefore only contributes a linear complexity O(N).

We compared generic approximation methods suitable for general (sufficiently
smooth) radial kernels and a separable expansion tailored to multiquadric basis func-
tions [6]. While a Taylor expansion can be expressed generically in the form (11),
its implementation would require significant effort since the multivariate derivatives
have to be computed for each radial kernel. We produced an implementation which
is easily adapted to a wide range of radial kernels φ since it only requires a formula
for the univariate derivatives ψ(n) of ψ(r) = φ(

√
r) which we provided for the four

radial kernels considered in this paper.
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Our numerical tests show that all the considered approximation methods exhibit
an exponential convergence with respect to the separation rank. The cross approxi-
mation algorithm outperformed the analytical expansions considered here whose rank
k increased rapidly (in jumps) when the parameter m in the expansion is incremented.
In view of large constants involved in the complexity estimates, the H-matrix approx-
imation BH of B becomes advantagous only if a certain number N of data sites is
exceeded. While we restricted this paper to the construction of an approximation BH
of B, the (iterative) solution of (5), including the construction of H-preconditioners,
will be subject of future work.
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Mathematik, University of Hamburg, 2016.

[8] G. Fasshauer: Meshfree Approximation Methods with Matlab. World Scientific, Singapore,
2007.

[9] G. Fasshauer and M. McCourt: Kernel-based Approximation Methods using MATLAB. Inter-
disciplinary Mathematical Sciences, vol. 19, World Scientific, 2016.

[10] B. Fornberg and N. Flyer: A Primer on Radial Basis Functions with Applications to the Geo-
sciences. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 87, SIAM,
2015.

[11] S. Goreinov and E. Tyrtyshnikov: The maximal-volume concept in approximation by low-rank
matrices. Contemporary Mathematics 280 (2001), 47–51.

[12] W. Hackbusch: Hierarchical Matrices: Algorithms and Analysis. Springer Series in Computa-
tional Mathematics, vol. 49, Springer, 2015.

[13] W. Hackbusch: Survey on the technique of hierarchical matrices. Vietnam Journal of Mathe-
matics 44 (2016), 71–101.

[14] A. Iske: Multiresolution Methods in Scattered Data Modelling. Lecture Notes in Computational
Science and Engineering, vol. 37, Springer, 2004.

[15] H. Wendland: Scattered Data Approximation. Cambridge Monographs on Applied and Com-
putational Mathematics, vol. 17, Cambridge University Press, Cambridge, UK, 2005.


	hbam_deckblatt
	rbfhmat_hbam
	Introduction
	Preliminaries
	Scattered data interpolation using radial kernels
	H-matrices
	Basic connection: low rank approximation of matrix blocks

	Construction of an H-block partitions for scattered point sets
	Low rank approximation through separable expansions
	Polynomial interpolation
	Taylor expansion
	Asymptotic smoothness
	Convergence of polynomial interpolation and Taylor expansion
	Specialized expansions

	Low rank approximation through cross approximation
	Pivot selection
	Stopping criterion
	H-matrix approximation with constraints

	Numerical results
	Inverse multiquadric
	Accuracy
	Storage and computational time

	Radial kernel functions and dimensions
	Dependence on matrix size N

	Conclusion
	References


