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Abstract The present work is concerned with the simulation and optimal control of
two-phase flows. We provide stable time discretization schemes for the simulation
based on both, smooth and non-smooth free energy densities, which we combine
with a practical, reliable and efficient adaptive mesh refinement concept for the spa-
tial variables. Furthermore, we consider optimal control problems for two-phase
flows and, among other things, derive first order optimality conditions. In the pres-
ence of smooth free energies we encounter classical Karush-Kuhn-Tucker (KKT)
conditions, while in the case of non-smooth free energies we can prove C(larke)-
stationarity. Moreover, we propose a dual weighted residual concept for spatial mesh
adaptivity which is based on the newly derived stationarity conditions. We also ad-
dress future research directions, including closed-loop control concepts and model
order reduction techniques for simulation and control of variable density multiphase
flows.

1 Introduction

In the present work we

a) develop and analyze numerical discretization concepts for the simulation of
two-phase flow problems with variable fluid densities that guarantee a locally
refined resolution of the local processes at the interface and preserve the ther-
modynamically consistency of the underlying models;
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b) formulate and analyze optimal control problems for two-phase flows and de-
velop robust and reliable solution strategies for optimal control of two-phase
flows governed by diffuse interface models.

Concerning a) we extend the work [61] to the thermodynamically consistent
model for two-phase flow with different densities proposed in [5]. This allows to
accurately resolve the transition region between the fluid phases, thus yielding quan-
tifiable simulation of the physical processes located in the interfacial region. Special
care is taken to preserve the thermodynamical consistency on the time discrete and
fully (i.e., space and time) discrete level. In addition, residual–based a posteriori
error estimation of the flow is incorporated into our approach. The benchmark for
rising bubble dynamics from [79] is used as a validation.

In many applications, one is interested in steering the underlying multiphase flow
towards a desired phase pattern, e.g., at a specific (final) time and/or to a desired
flow profile, e.g., yielding rotation-free flows. Particular applications can be found
in polymer science, where membrane formation or blending are of importance. In
the former case, the porosity pattern of the membrane determines the membrane’s
use and quality, whereas in the latter context particular material properties of the
new blends can be obtained. Moreover, for instance, in the case of immiscible poly-
mer blends, on a macroscopic scale pure phases are present, but close to the interface
certain diffusion processes take place. The latter are modeled by diffusive interfaces
with certain partial differential equations (PDEs) posed within the narrow band of
the diffuse interface. In this context, it appears that the double-obstacle potential is
well suited for modeling the interface (indeed, the double-well potential allows un-
physical violations of the constraints for the concentration, whereas a logarithmic
potential would not allow to reach a pure phase). We also mention that further ap-
plications of surface active agents obeying PDEs on an (diffuse) interface include
drug delivery, industrial emulsification, or liquid/liquid extraction and hydrodesul-
furization of crude oil. These topics are anayzed within objective b).

Mathematically, the underlying state system, i.e. the multi-phase flow model, is
given by a coupled Cahn-Hilliard-Navier-Stokes (CHNS) system, where the Cahn-
Hilliard part models the phase separation and the Navier-Stokes system captures
the dynamics of the fluid. Task (b), which is mentioned above, hence requires to
establish existence of solutions to the underlying control problems, stability and
sensitivity of the CHNS system subject to perturbations, and the derivation of first-
order optimality or stationarity conditions. In this context, the semi-discretization
(in time) of the forward model (CHNS) has to additionally guarantee consistency
properties of the resulting adjoint system in order to enable the derivation of certain
energy-type estimates which yield existence of a solution of the semi-discrete for-
ward problem and the associated adjoint. Such a discretization technique is proposed
in [45, 67], where the regularization approach presented in the first reference yields
the desired stationarity conditions of ε-almost C-stationary type and facilitates the
implementation of a solution algorithm. Concerning the control action in the con-
text of optimal control problems, we use Dirichlet boundary control as in [72] and
control of the amplitudes of given distributed control actions [58].
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Objective b) is further concerned with the design and analysis of numerical
solvers for the underlying control problems. Due to the extreme computational cost
caused by solving the Navier-Stokes system coupled to a non-linear and non-smooth
parabolic system for the phase separation for each time step, this especially requires
an efficient mesh refinement technique for the underlying finite elements method.
Therefore it is our goal to incorporate suitable error estimates which take the special
structure of the optimal control problem into account by estimating the discretiza-
tion error with respect to the objective functional, i.e. the quantity of interest.

1.1 Related Work

We commence with an overview of the state-of-the-art for the numerical treatment
and analysis for optimal control problems for variable density two-phase flows.

We consider the diffuse interface approach for the simulation of two-phase flows.
In contrast to so called sharp interface approaches, the interface between immiscible
fluids in this approach is assumed to have a positive but small thickness. In sharp
interface approaches this interface is assumed to be a lower dimensional manifold
that is represented during numerical simulation, either explicitly or implicitly. Here
we only refer to [48], [79] and [104] and the references therein. We further stress
that several projects inside Special Priority Programme (SPP) 1506 of the German
Research Foundation (DFG) worked on numerical realizations for sharp interface
models and we refer to the corresponding proceedings for further readings.

In the following we restrict ourselves to diffuse-interface approaches.

1.1.1 Work related to the simulation of two-phase flows using the diffuse
interface approach

Since the pioneering work [31] and the famous model ‘H’ in [78] many authors
have dealt with the investigation of two-phase flows using diffuse interface models
with equal density fluids. In parallel, several attempts where made to generalize the
model ‘H’ to the case of different densities.

For stable discretization schemes for the Cahn–Hilliard equation we refer to [54,
55] and for the Cahn–Hilliard Navier–Stokes system to [84]. Multigrid solvers for
the Cahn–Hilliard equation are proposed e.g. in [85, 87], and residual based error
estimation is proposed in [60,61]. For a fully coupled solver for model ‘H’ we refer
to [41].

Focusing now on models with different densities, one notes that one of the main
limitations of model ‘H’ is that it is only thermodynamically consistent in situations
where both fluids (roughly) have the same density. Indeed, in [38, 105] it is shown
that the model is also consistent in the situation of different densities if the kinetic
energy of the fluid is defined by using

√
ρ|v|2 instead of ρ|v|2, where ρ is the dis-

tributed density of the fluid and v is the velocity field. The notion of a distributed
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density is based on ϕ and by using the densities of the individual fluid components,
a global density field is defined by attaching to every point of the computational
domain the density of the fluid.

In [10], solutions to the model in [38] using a discretization that sequentially
couples the Cahn–Hilliard and the Navier–Stokes equations are compared to results
for a rising bubble benchmark proposed in [79] using sharp interface numerics. The
authors obtained good agreement of the numerical results. A critical point in nu-
merical treatment of these equations is the discretization of interfacial forces that
appear from surface tension. In [9], different stabilization schemes are proposed for
the discretization of this terms and a CFL-like condition for admissible time step
sizes is derived. In [86] a completely new model for this forces is proposed.

A first thermodynamically consistent model for two-phase flow with different
densities is considered in [92]. Here the velocity is not solenoidal so that analytical
and numerical investigations of this scheme explicitly have to consider the pres-
sure. Further the pressure enters the equation for the two-phase structure leading to
a strong coupling of the resulting equations. In [57], a time discretization scheme is
proposed that preserves the consistence with thermodynamics and numerical exam-
ples are provided.

Another diffuse interface model for fluids of different densities is proposed in
[26]. Here the velocity is solenoidal, but the model is not consistent with thermo-
dynamics. In [10], results for an implementation of this model are compared with
results for sharp interface models for a benchmark of rising bubble simulations as
proposed in [79].

In [5], a thermodynamically consistent model for two-phase flows is proposed.
It contains a solenoidal velocity field and can be regarded as an extension of model
‘H’, as it resembles its structure and only differs from it by using variable densities
and by an additional term in the convective term in the Navier–Stokes equation. The
latter term vanishes in the case of equal densities. In [5], three variants of this model
are proposed that can also handle, e.g., non-Newtonian fluids or additional particles
that are transported across the interface but do not interact with it. The existence of
a weak solution for the case of constant mobility is shown in [3] for the logarithmic
free energy that guarantees a-priori bounds on the range of the phase field. In [4],
the existence of weak solutions is established for general smooth free energies to-
gether with a degenerate mobility that also guarantees these bounds. The existence
of a weak solution for non-Newtonian fluids is discussed in [2] for a polynomially
bounded free energy and constant mobility. In the latter work, also an extension
of the model of [5] is proposed that allows to use nonlinear but smooth relations
between the phase field ϕ and the density field ρ(ϕ) for the case where |ϕ| is not
bounded by one, which appears due to a smooth free energy. We note here that by
convention ϕ ≡−1 if a pure fluid phase is reached and ϕ ≡ 1 if the respective other
pure fluid phase is present.

In [49], the existence of generalized solutions is shown for the case of a polyno-
mially bounded free energy and constant free energy. Depending on the densities of
the individual fluids, expressed using the Atwood number, these generalized solu-
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tions are weak solutions for some time horizon. The analysis is based on proceeding
to the limit in a numerical scheme.

In [10], a discretization of this model is used to simulate the rising bubble bench-
mark from [79]. These authors obtained good agreements with results from sharp in-
terface numeric. The free energy density is chosen as the smooth polynomially free
energy and is linearized using Taylor expansion. The Navier–Stokes equation and
the Cahn–Hilliard equation are used sequentially coupled by using the velocity field
from the old time instance in the Cahn–Hilliard equation and solving the Navier–
Stokes equation afterwards using the phase field and chemical potential obtained
from the Cahn–Hilliard equation. We note that the important property of thermody-
namically consistency is not preserved in the numerical realization by this approach.

Throughout the following publications, thermodynamically consistent time dis-
cretization schemes for the model from [5] are proposed.

A first thermodynamically consistent scheme is proposed in [51] that strongly
couples the Chan–Hilliard and the Navier–Stokes equation. It is implemented in a
splitting scheme, where the Navier–Stokes and the Cahn–Hilliard system as solved
on each time instance subsequently until convergence. This allows the treatment of
the (typically dominant) convection in the Cahn–Hilliard equation using a higher
order finite volume scheme.

In [53] and [50], a thermodynamically consistent splitting scheme is proposed.
Here the time discretization is used to sequentially couple the Cahn–Hilliard and
Navier–Stokes equation, such that the two systems can be solved one after the other.
In [50], additional various discretization methods for the polynomially bounded free
energy are proposed and convergence of the scheme for vanishing discretization
parameter to the model of [5] is shown.

In [67], for the purpose of optimal control of two-phase flow a stable time dis-
cretization is proposed. A scheme that also preserves the thermodynamical consis-
tency in the fully discrete setting is proposed in [45]. The scheme is linear except for
the usual non-linearity resulting from the free energy that is polynomially bounded.
The mobility is not degenerate. The authors provide rigorous residual based error
estimation to formulate an adaptive scheme. The consistency in the fully discrete
setting is obtained by a suitable post processing step after the marking of cells for
refinement and coarsening.

Based on the model of [5] in [46], a thermodynamically consistent model for
two-phase flow with different densities is proposed that can also handle additional
surface active agents, so called surfactants. These particles adhere to the interface,
following some advection-diffusion equation and some sorption laws. On the inter-
face they lower locally the surface tension of the interface. Thus, this model espe-
cially contains a locally varying surface tension and a partial differential equation
on a diffuse interface. This work also contains numerical results, where especially
the results of [40] on the simulation of partial differential equations on evolving
interfaces that are given by a diffuse interface approach are used.

For a model that allows phase transition we refer to [8].
In the situation of multi phase flows with more then two fluid components a

vector-valued phase field equation is used. Here we only refer to [24, 27].
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Finally we stress that results concerning the simulation of one-phase flows stay
valid or are a good starting point for two-phase flow and we only refer to the book
[48] for the former.

For further reading on diffuse interface models, we refer to the scientific conti-
butions of H. Abels (Universität Regensburg), S. Aland (TU Dresden), and G. Grün
(Universität Erlangen-Nürnberg) and H. Garcke (Universität Regensburg).

1.1.2 Work related to adaptive concepts for two-phase flows using the diffuse
interface approach

The special structure of the phase field that models the spatial distribution makes it
necessary to use an appropriately adapted spatial discretization. This is commonly
achieved by heuristic mesh refinement. As the interfacial region is known to be
characterized by |ϕ| < 1 typically local refinement based on the modulus of ϕ is
used, see e.g. [10,23,84]. On the other hand, as at the center of the interfacial region
we have |∇ϕ| ≈ 1

πε
, the value |∇ϕ| is used as an indicator for the interface in [51].

The first variant leads to a homogeneously refined mesh across the interface, while
in the second case most refinement takes place around the zero level line of ϕ where
|∇ϕ| takes its maximum. We refer to [60], for a comparison of different refinement
and marking strategies.

In [61], reliable and efficient residual based error estimation is proposed for the
Cahn–Hilliard system with a relaxed non-smooth double-obstacle free energy. In
[60], the former work is extended to the simulation of two-phase flow based on
model ‘H’ and it is further extended to the simulation of variable density two-phase
flow based on the model of [5] in [45], where additionally arbitrary polynomially
bounded free energies are used. We note that based on results of [32] in [43] for
a Cahn–Hilliard type model it is argued that an estimator based on the jumps of
normal derivatives in general will result in well adapted meshes.

A-posteriori error estimation for the Cahn–Hilliard systems with non-smooth
double obstacle free energy is proposed in [15, 16]. There, also residual based error
estimation is proposed and reliability of the derived estimator is shown.

1.1.3 Work related to MPECs

The presence of a non-smooth homogeneous free energy density associated with
the underlying Ginzburg-Landau energy in the Cahn-Hilliard system gives rise to
an optimal control problem governed by a variational inequality. Hence the problem
falls into the realm of so-called mathematical programs with equilibrium constraints
(MPECs) in function spaces, cf. [67,72]. The main difficulty in dealing with MPECs
is that the feasible set which can be characterized by the solution operator of a vari-
ational inequality is usually non smooth and non convex and therefore violates the
typical constraint qualifications known in classical optimization theory. As a result,
stationarity conditions for this problem class are no longer unique. In finite dimen-
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sions, MPECs and the associated difficulties are already fairly well understood, see,
e.g., the monographs [93, 98, 101] and the references therein.

In contrast, the literature on infinite dimensional MPECs is comparatively scarce.
In [21, 94, 95], the authors use the conical derivative of the solution operator of the
variational inequality to derive a stationarity system for the control problem, which
one would classify now as strong stationarity. A different approach is introduced
in [13], where the variational inequalities are approximated by variational equa-
tions and optimality conditions are derived by a passage to the limit in the approx-
imation process. This technique typically yields a weaker stationarity system only.
Further contributions to the topic include [14, 22, 42, 80, 106] most of which use
regularization-penalization methods.

A first step towards the systematization and completion of stationarity con-
cepts in function space was undertaken in [68], where the concept of ε-almost C-
stationarity is introduced, paving the way for various contributions in the recent past.
Here, we mention [69] where an abstract first-order optimality system is derived by
means of variational analysis. In [109], the MPEC is approximated by a sequence
of non smooth problems similar to the virtual control approach from [88].

1.1.4 Work related to adaptive concepts for optimal control problems

In Subsection 1.1.2, we already discussed the importance of an adequate mesh re-
finement technique for solving the Cahn–Hilliard Navier–Stokes system numeri-
cally. In this subsection, we briefly comment on the available literature on adaptive
finite element methods (AFEMs) for optimal control problems. Whereas AFEMs for
partial differential equations have been studied in great detail over the last decades,
see, e.g., [12, 99] and the references therein, the research on AFEMs for variational
inequalities and optimal control problems is comparatively recent. It started in the
beginning of the century with the works by [17,18] which pioneered a new approach
to error control and mesh adaptivity in the numerical solution of unconstrained op-
timal control problems governed by elliptic differential equations. Here the mesh
adaptation is driven by weighted residual-based a posteriori error estimates which
are derived by global duality arguments and include the error in the state, the adjoint
state and the control. This general approach facilitated the control of the error with
respect to any quantity of physical interest such as, e.g., the given objective func-
tional. In the following years the approach was successfully transferred to optimal
control problems with control constraints, see, e.g., [62, 63, 108], as well as state
constraints, see, e.g., [19] and [64] where additional error terms coming from data
oscillations have been considered.

Here we also mention the works by [37, 56, 59] where reliable a-posteriori error
bounds for optimal control problems governed by point wise gradient constraints on
the state were derived and an adaptive solution algorithm was presented.

In [90, 91] and [100], some other approaches are depicted which directly utilize
the residuals of the associated first order optimality systems of the optimal con-
trol problems. The first paper presents a-posteriori error estimates for finite element
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approximation of distributed optimal control problems with convex constraint sets,
whereas the second one provides a reliable a-posteriori error estimator for optimal
control problems with state and control constraints containing the L∞-error of the
state, the H−2-residual of the adjoint equation as well as the L2-residual of the vari-
ational inequality if the Slater condition is satisfied. Very recently, [103] presented
a-posteriori error estimates for control-constrained, linear-quadratic optimal control
problems using an altered norm motivated by the objective functional in order to
measure the error.

In contrast to PDE-constrained optimal control problems, the literature on goal-
oriented mesh adaptivity methods appears rather scarce with respect to MPECs in
function spaces. However, in [30, 65] the method was successfully applied to the
optimal control of elliptic variational inequalities.

2 An energy conserving adaptive discretization scheme for
variable density two-phase flows

The subsequent investigations are based on the following diffuse interface model
for two-phase flows as proposed in [5]:

ρ∂tv+((ρv+ J) ·∇)v−div(2ηDv)+∇p =µ∇ϕ +ρg ∀x ∈Ω , ∀t ∈ I, (1)
−div(v) =0 ∀x ∈Ω , ∀t ∈ I, (2)

∂tϕ + v ·∇ϕ−div(m∇µ) =0 ∀x ∈Ω , ∀t ∈ I, (3)
−σε∆ϕ +Ψ

′(ϕ)−µ =0 ∀x ∈Ω , ∀t ∈ I, (4)
v(0,x) =v0(x) ∀x ∈Ω , (5)
ϕ(0,x) =ϕ0(x) ∀x ∈Ω , (6)
v(t,x) =0 ∀x ∈ ∂Ω , ∀t ∈ I, (7)

∇µ(t,x) ·−→ν Ω = ∇ϕ(t,x) ·−→ν Ω =0 ∀x ∈ ∂Ω , ∀t ∈ I, (8)

where J = − dρ

dϕ
m∇µ . Here Ω ⊂ Rn, n ∈ {2,3}, denotes an open and bounded do-

main with outer normal−→ν Ω , I =(0,T ] with 0< T <∞ a time interval, ϕ denotes the
phase field, µ the chemical potential, v the volume averaged velocity, p the pressure,
and ρ = ρ(ϕ) = 1

2 ((ρ2−ρ1)ϕ +(ρ1 +ρ2)) the mean density, where 0 < ρ1 ≤ ρ2
denote the densities of the involved fluids. The viscosity is denoted by η and can
be chosen arbitrarily, fulfilling η(−1) = η̃1 and η(1) = η̃2, with individual fluid
viscosity η̃1, η̃2. Here we restrict to Newtonian fluids, but non-Newtonian fluids are
covered by the model as well. The mobility is denoted by m = m(ϕ). The gravita-
tional force is denoted by g. By Dv = 1

2 (∇v+(∇v)t) we denote the symmetrized
gradient. The scaled surface tension is denoted by σ and the interfacial width is
proportional to ε . The scaling of the physical surface tension is required due to the
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diffuse interface approach, see [5, Sec. 4.3.4]. The free energy density is denoted by
Ψ and fulfills argmin(Ψ) =±1. The initial data is given by (ϕ0,v0) = (ϕa,va).

The above model couples the Navier–Stokes equations (1)–(2) to the Cahn–
Hilliard model (3)–(5) in a thermodynamically consistent way, i.e. the energy in-
equality from Theorem 1 holds for the total energy of the system, which is the sum
of a Ginzburg–Landau energy for the interface between the two fluids and the kinetic
energy of the fluids.

Theorem 1. Let v,ϕ,µ be a sufficiently smooth solution to (1)–(8). Then it holds
that

d
dt

(∫
Ω

ρ

2
|v|2 + σε

2
|∇ϕ|2 + σ

ε
Ψ(ϕ)dx

)
=−

∫
Ω

2η |Dv|2 +m|∇µ|2 dx+
∫

Ω

ρgvdx.

Furthermore, the existence of weak solutions to system (1)–(8) for specific
choices of data, i.e. Ψ , m, η , is shown in [2–4, 49].

As mentioned above, it is our goal to extend the existing theory by a more appli-
cation driven perspective focusing on the development of efficient numerical solvers
for the problem. For this purpose, we subsequently present some advanced numeri-
cal solution techniques for the simulation of the problem itself, as well as for generic
optimal control problems which contain the system (1) – (8) as constraints. This will
be accompanied by a rigorous analysis of the underlying problems concerning, e.g.,
the thermodynamical consistency of the discretization scheme, mesh stability, ex-
istence of solutions, characterization of stationarity conditions, and a-priori error
estimation.

The rest of this section is organized as follows. In Section 2.1 we propose a dis-
cretization scheme for the numerical treatment of (1) – (8) that preserves the consis-
tency with thermodynamics in the fully discrete setting and that is nearly linear. This
scheme is proposed and analytically investigated for polynomially bounded free en-
ergies. Residual based error estimation is proposed for the spatial discretization.
Further optimal control and instantaneous control of two-phase fluids are proposed.

In Section 3, we analyse a general optimal control problem associated to a semi-
discrete version of (1) – (8) where the Ginzburg-Landau energy is characterized
by the double-obstacle potential. This includes the existence of feasible points, as
well as global optimal solutions, and culminates in the derivation of ε-almost C-
stationarity conditions via a Yosida regularization technique with a subsequent pas-
sage to the limit with the Yosida parameter.

Section 4 provides a rigorous derivation of a goal-oriented dual-weighted er-
ror estimator for the problem considered in Section 3 and presents some numerical
results along with the details of the numerical implementation of the solution algo-
rithm for the optimal control problem.
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Notation

Let Ω ⊂Rn, n∈ {2,3} denote a bounded domain with sufficiently smooth boundary
∂Ω and outer normal −→ν Ω . Let I = (0,T ] denote a time interval.

We use the conventional notation for Sobolev and Hilbert Spaces, see e.g. [6]. By
Lp(Ω), 1≤ p≤∞, we denote the space of measurable functions on Ω , whose mod-
ulus to the power p is Lebesgue-integrable. L∞(Ω) denotes the space of measurable
functions on Ω , which are essentially bounded. For p = 2 we denote by L2(Ω) the
Hilbert space of square integrable functions on Ω with inner product (·, ·) and norm
‖ ·‖. For a subset D⊂Ω and functions f ,g ∈ L2(Ω) we denote by ( f ,g)D the inner
product of f and g restricted to D, and by ‖ f‖D the respective norm. By W k,p(Ω),
k ≥ 1,1≤ p≤ ∞, we denote the Sobolev space of functions admitting weak deriva-
tives up to order k in Lp(Ω). If p= 2 we write Hk(Ω) to acknowledge the Hilbertian
structure of the space. The subset H1

0 (Ω) denotes H1(Ω) functions with vanishing
boundary trace. For k ∈ N, we further set

Hk
0,σ (Ω ;Rn) :=

{
f ∈ Hk(Ω ;Rn)∩H1

0 (Ω ;Rn) : div f = 0, a.e. on Ω

}
;

Hk
(Ω) := Hk

(0)(Ω) :=
{

f ∈ Hk(Ω) :
∫

Ω

f dx = 0
}

;

Hk
∂n(Ω) :=

{
f ∈ Hk

(Ω) : ∂n f|∂Ω = 0 on ∂Ω

}
, k ≥ 2;

where ’a.e.’ stands for ’almost everywhere’ and the boundary condition is supposed
to hold true in the trace sense. We stress that the subscript σ used here is not related
to the surface tension, but using σ here is common notation.
Unless otherwise noted, 〈·, ·〉 := 〈·, ·〉

H−1
,H1 represents the duality pairing between

H1
(Ω) and H−1

(Ω). For u ∈ Lq(Ω)n, q > n, and v,w ∈ H1(Ω)n we introduce the
trilinear form

a(u,v,w) =
1
2

∫
Ω

((u ·∇)v)wdx− 1
2

∫
Ω

((u ·∇)w)vdx. (9)

Note that it holds that a(u,v,w) =−a(u,w,v), and especially a(u,v,v) = 0.

2.1 A stable time discretization for smooth free energies

In this section we summarize the fully practical scheme for the numerical treatment
of (1)–(8) as proposed in [45]. Here we assume that the free energy density Ψ is
smooth, see Assumption A2. To emphasize this, in the following we denote the
free energy density by W , and we introduce the splitting W =W++W−, where W+

denotes the convex part of W and W− denotes the concave part.
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Assumption 1 Concerning the data of our problem we invoke the following as-
sumptions:

A1 There exist constants ρ ≥ ρ > 0, η ≥ η > 0, and m ≥ m > 0 such that the
following relations are satisfied:

• ρ ≥ ρ(ϕ)≥ ρ > 0,
• η ≥ η(ϕ)≥ η > 0,
• m≥ m(ϕ)≥ m > 0.

Especially we assume that the mobility is non degenerate. In addition, we as-
sume that ρ , η , and m are continuous.

A2 W : R→ R is continuously differentiable.
A3 W and the derivatives W ′+ and W ′− are polynomially bounded, i.e. there exists

C > 0 such that |W (x)| ≤C(1+ |x|q), |W ′+(x)| ≤C(1+ |x|q−1) and |W ′−(x)| ≤
C(1+ |x|q−1) holds for some q ∈ [1,4] if n = 3 and q ∈ [1,∞) if n = 2,

A4 W ′+ is Newton (sometimes called slantly) differentiable (see e.g. [66]) regarded
as nonlinear operator W ′+ : H1(Ω)→

(
H1(Ω)

)∗ with Newton derivative G sat-
isfying

(G(ϕ)δϕ,δϕ)≥ 0

for each ϕ ∈ H1(Ω) and δϕ ∈ H1(Ω).

To ensure Assumption A1 we introduce a cut-off mechanism to guarantee the
bounds on ρ defined in Assumption A1 independently of ϕ . Note that η(ϕ) and
m(ϕ) can be chosen arbitrarily fulfilling the stated bounds. We define the mass den-
sity as a smooth, monotone and strictly positive function ρ(ϕ) fulfilling

ρ(ϕ) =


ρ2−ρ1

2 ϕ + ρ1+ρ2
2 if −1− ρ1

ρ2−ρ1
< ϕ < 1+ ρ1

ρ2−ρ1
,

const if ϕ > 1+ 2ρ1
ρ2−ρ1

,

const if ϕ <−1− 2ρ1
ρ2−ρ1

.

For a discussion we refer to [49, Remark 2.1].

Remark 1. We stress that in the following we require the affine linearity of ρ(ϕ) :=
1
2 ((ρ2−ρ1)ϕ +(ρ1 +ρ2)) to derive our numerical scheme. Also, we note that it is
sufficient to have the affine-linearity of ρ for all values of ϕ that appear in a simu-
lation. This is the case in all of our numerical examples. Concerning the necessity
of the cut-off procedure we also note Remark 5. For the case of a nonlinear depen-
dence between ϕ and ρ we also refer to [2], where an extension of model (1)–(8) to
non-linear functions ρ(ϕ) is proposed. Extending our results to this case is subject
to future work.

Remark 2. Assumptions A2–A4 are for example fulfilled by the polynomial free
energy
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W poly(ϕ) =
1
4
(
1−ϕ

2)2
.

Another free energy fulfilling these assumptions is the relaxed double-obstacle free
energy given by

W rel(ϕ) =
1
2
(
1−ϕ

2 + sλ
2(ϕ)

)
,

with

λ (ϕ) := max(0,ϕ−1)+min(0,ϕ +1),

where s� 0 denotes the relaxation parameter. W rel is introduced in [61] as Moreau–
Yosida relaxation of the double-obstacle free energy

W obst(ϕ) =

{
1
2

(
1−ϕ2

)
if |ϕ| ≤ 1,

0 else,

which is proposed in [96] to model phase separation and is first analytically investi-
gated in [25].

In the numerical examples of this section we use the free energy W ≡W rel . For
this choice the splitting into convex and concave part reads

W+(ϕ) = s
1
2

λ
2(ϕ), W−(ϕ) =

1
2
(1−ϕ

2).

We note that the minima of W rel are at± s
s−1 6= 1. One might rescale the argument of

W rel to obtain argmin(W ) =±1. As s is typically large and thus s
s−1 ≈ 1 we refrain

from this rescaling.

With the above assumptions we introduce a weak formulation of (1)–(8) that
we use to derive our discrete scheme. For this purpose, we restrict ourselves to
solenoidal velocity fields in what follows, i.e., we neglect the pressure p.

For a sufficiently smooth solution (ϕ,µ,v) of (1)–(8) and using the linearity of
ρ it holds that

∂tρ +div (ρv+ J) = 0,

see [5, p. 14]. Using this mass balance we can rewrite (1) as

∂t(ρv)+div(ρv⊗ v)+div(v⊗ J)−div(2ηDv)+∇p = µ∇ϕ +ρg. (10)

We also observe that the term ρv+J in (1) is not solenoidal (which might lead to
difficulties both in the analytical and the numerical treatment) and that the trilinear
form (((ρv+ J) ·∇)u,w) thus is not anti-symmetric. To obtain a weak formulation
yielding an anti-symmetric convection term we use a convex combination of (1) and
(10) to define a weak formulation.
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This leads to the following weak formulation.

Definition 1. We call v, p, ϕ , µ a weak solution to (1)–(8) if v(0) = v0, ϕ(0) = ϕ0,
and

1
2

∫
Ω

(∂t(ρv)+ρ∂tv)wdx+
∫

Ω

2ηDv : Dwdx

+a(ρv+ J,v,w)− (p,divw) =
∫

Ω

µ∇ϕw+ρgwdx ∀w ∈ H1
0 (Ω)n, (11)

−(divv,q) = 0 ∀q ∈ L2
(0)(Ω) (12)∫

Ω

(∂tϕ + v ·∇ϕ)Φ dx+
∫

Ω

m(ϕ)∇µ ·∇Φ dx = 0 ∀Φ ∈ H1(Ω), (13)

σε

∫
Ω

∇ϕ ·∇Ψ dx+
σ

ε

∫
Ω

W ′(ϕ)Ψ dx−
∫

Ω

µΨ dx = 0 ∀Ψ ∈ H1(Ω), (14)

is satisfied for almost all t ∈ I.

Using this weak formulation, the energy equality in Theorem 1 can be derived by
using w≡ v, q≡ p, Φ ≡ µ , and Ψ ≡ ϕ and summation over the resulting equations.

2.1.1 The energy stable scheme

For a numerical treatment we next discretize the weak formulation (11)–(14) in time
and space. We aim at an adaptive discretization of the domain Ω , and thus obtain a
different spatial discretization in every time step.

For the discretization in time, let 0 = t0 < t1 < .. . < tk−2 < tk−1 < tk < .. . < tK =
T denote an equidistant subdivision of the interval I = [0,T ] with τk+1− τk ≡ τ .
From here onwards the superscript k denotes the corresponding variables at time
instance tk, and we abbreviate ρk := ρ(ϕk), ηk := η(ϕk), and mk := m(ϕk).

For the discretizaton in space let T k :=
⋃NT

i=1 Ti denote a conforming trian-
gulation of Ω with closed simplices Ti, i = 1, . . . ,NT and edges Ei, i = 1, . . . ,NE ,
E k :=

⋃NE
i=1 Ei. Here, k refers to the time instance tk. On T k we define the following

finite element spaces:

V k
1 ={v ∈C(T k) |v|T ∈ P1(T )∀T ∈T k},

V k
2 ={v ∈C(T k)n |v|T ∈ (P2(T ))n∀T ∈T k,v|∂Ω = 0},

where Pl(S) denotes the space of polynomials up to order l defined on S.
We further introduce an H1-stable projection operator Pk : H1(Ω)→ V k

1 satis-
fying

‖Pkv‖Lp(Ω) ≤ ‖v‖Lp(Ω) and ‖∇Pkv‖Lr(Ω) ≤ ‖∇v‖Lr(Ω)

for v∈H1(Ω) with r ∈ [1,2] and p∈ [1,6) if n = 3, and p∈ [1,∞) if n = 2. Possible
choices are the H1-projection, the Clément operator or, by restricting the preimage
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to C(Ω)∩H1(Ω), the Lagrangian interpolation operator, see e.g. [29]. For trian-
gulations with specific properties, also the L2-projection fulfills these assumption,
see [28].

Using these spaces we state the fully discrete counterpart of (11)–(14): Let k≥ 2,
given ϕk−2 ∈V k−2

1 , ϕk−1 ∈V k−1
1 , µk−1 ∈V k−1

1 , vk−1 ∈V k
2 , find vk

h ∈V k
1 , pk

h ∈V 1
k ∩

L2
(0)(Ω), ϕk

h ∈ V k
1 , µk

h ∈ V k
1 such that for all w ∈ V k

2 , q ∈ V k
1 ∩ L2

(0)(Ω), Φ ∈ V k
1 ,

Ψ ∈V k
1 it holds that:

1
2τ

(ρk−1vk
h−ρ

k−2vk−1 +ρ
k−2(vk

h− vk−1),w)+a(ρk−1vk−1 + Jk−1,vk
h,w)

+(2η
k−1Dvk

h,Dw)− (pk
h,divw)− (µk

h∇ϕ
k−1 +ρ

k−1g,w) = 0,
(15)

−(divvk
h,q) = 0,

(16)
1
τ
(ϕk

h −Pk
ϕ

k−1,Φ)+(mk−1
∇µ

k
h ,∇Φ)+(vk

h∇ϕ
k−1,Φ) = 0,

(17)

σε(∇ϕ
k
h ,∇Ψ)+

σ

ε
(W ′+(ϕ

k
h)+W ′−(P

k
ϕ

k−1),Ψ)− (µk
h ,Ψ) = 0,

(18)

where Jk−1 := − dρ

dϕ
mk−1∇µk−1, ϕ0 = Pϕ0 denotes the L2 projection of ϕ0 onto

V 0
1 , v0 = PLv0 denotes the Leray projection of v0 onto H0

σ , see [35]. The functions
ϕ1

h ∈V 1
1 , µ1

h ∈V 1
1 and v1

h ∈V 1
2 are obtained by a one-step-scheme for equation (1)–

(8), see [45].

Remark 3. Due to the appearance of ρk−2 in (15) the scheme (15)–(18) is a two-step
scheme and thus needs additional initialization. By using ρk−2 we obtain a scheme
that is only nonlinear in the discretization of the convex part of the free energy
density. However we can replace (15) by

1
2τ

∫
Ω

(
ρ

k
hvk

h−ρ
k−1vk−1

)
w+ρ

k−1(vk
h− vk−1)wdx

+a(ρk−1vk−1 + Jk−1,vk
h,w)+

∫
Ω

2η
k−1Dvk

h : Dwdx

−(pk
h,divw)−

∫
Ω

µ
k
h∇ϕ

k−1w+ρ
k−1gwdx = 0 ∀w ∈ Hk

σ ,

(19)

which leads to a one-step-scheme that then also is nonlinear in the Navier–Stokes
equation. For the scheme including (15) the unique solution can be found by New-
ton’s method, while - up to now - this has not been proven for the scheme including
(19).

We further argue that if we have initial data ϕ−1 at some virtual time instance
t−1 := −τ together with v0, we can solve (17)–(18) to obtain ϕ0

h and µ0
h and then

proceed with the scheme (15)–(18).
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To guarantee mass conservation for ϕk
h we implement the term (vk

h∇ϕk−1,Φ) in
(17) by using integration by parts as −(vk

hϕk−1,∇Φ).

The following is proven in [45].

Theorem 2. There exist unique vk
h ∈V k

2 , pk
h ∈V k

1 ∩L2
(0)(Ω), ϕk

h ∈V k
1 , µk

h ∈V k
1 solv-

ing (15)–(18).

Remark 4. As (15)–(18) is linear in all terms but the free energy density W+ which
is Newton differentiable and convex by Assumption A4 using the same arguments
as for Theorem 2 one can show that Newton’s method can be used to find the unique
solution from Theorem 2.

The time discretization is chosen such that the following fully discrete correspon-
dence to the energy equality in Theorem 1 holds.

Theorem 3. Let (ϕk
h , µk

h , vk
h, pk

h) be a solution to (15)–(18). Then for k ≥ 2:

1
2

∫
Ω

ρ
k−1
∣∣∣vk

h

∣∣∣2 dx+
σε

2

∫
Ω

|∇ϕ
k
h |2 dx+

σ

ε

∫
Ω

W (ϕk
h)dx

+
1
2

∫
Ω

ρ
k−2|vk

h− vk−1|2 dx+
σε

2

∫
Ω

|∇ϕ
k
h −∇Pk

ϕ
k−1|2 dx

+τ

∫
Ω

2η
k−1|Dvk

h|2 dx+ τ

∫
Ω

mk−1|∇µ
k
h |2 dx

≤ 1
2

∫
Ω

ρ
k−2
∣∣∣vk−1

∣∣∣2 dx+
σε

2

∫
Ω

|∇Pk
ϕ

k−1|2 dx+
σ

ε

∫
Ω

W (Pk
ϕ

k−1)dx

+τ

∫
Ω

ρ
k−1gvk

h.

(20)

So we observe that the energy

E(ϕk
h ,v

k
h) :=

1
2

∫
Ω

ρ
k−1|vk

h|2 dx+σ

∫
Ω

ε

2
|∇ϕ

k|2 + 1
ε

W (ϕk)dx

decays as in the continuous case due to diffusion and increases due to outer forces,
like the gravitational force. We further have some addition loss of energy due to
numerical dissipation. We further observe that E(ϕk

h ,v
k
h) is in fact bounded by

E(Pkϕ
k−1
h ,vk−1

h ) which is not necessarily bounded by the energy at time tk−1, i.e.
E(ϕk−1

h ,vk−1
h ). This will be dealt with during our adaptive scheme to obtain a guar-

anteed decrease of the total energy. We formulate this in the following assumption.

Assumption 2 For every solution vk−1
h , pk−1

h ,ϕk−1
h ,µk−1

h to (15)–(18) at time tk−1,
we assume that the following inequality is satisfied

E(Pk
ϕ

k−1
h ,vk−1

h )≤ E(ϕk−1
h ,vk−1

h ),

which is equivalent to

σ

∫
Ω

ε

2
|∇Pk

ϕ
k−1|2 + 1

ε
W (Pk

ϕ
k−1)dx≤ σ

∫
Ω

ε

2
|∇ϕ

k−1|2 + 1
ε

W (ϕk−1)dx.
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We can use the unique solution from Theorem 2 in a Galerkin approach to in-
vestigate the limit h→ 0 in the scheme (15)–(18). This leads to the following time
discrete scheme:
Given ϕk−2 ∈ H1(Ω)∩L∞(Ω), ϕk−1 ∈ H1(Ω)∩L∞(Ω), µk−1 ∈W 1,q(Ω), q > n,
vk−1 ∈ H1

0 (Ω)n,
find vk ∈ H1

0 (Ω)n, pk ∈ L2
(0)(Ω), ϕk ∈ H1(Ω), µk ∈ H1(Ω) satisfying

1
2τ

∫
Ω

(
ρ

k−1vk−ρ
k−2vk−1

)
w+ρ

k−2(vk− vk−1)wdx

+a(ρk−1vk−1 + Jk−1,vk,w)+
∫

Ω

2η
k−1Dvk : Dwdx

−(pk,divw)−
∫

Ω

µ
k
∇ϕ

k−1w−ρ
k−1gwdx = 0 ∀w ∈ H1

0 (Ω)n, (21)

−(divvk,q) =0 ∀q ∈ L2
(0)(Ω), (22)

1
τ

∫
Ω

(ϕk−ϕ
k−1)Φ dx+

∫
Ω

(vk ·∇ϕ
k−1)Φ dx

+
∫

Ω

mk−1
∇µ

k ·∇Φ dx = 0 ∀Φ ∈ H1(Ω), (23)

σε

∫
Ω

∇ϕ
k ·∇Ψ dx−

∫
Ω

µ
k
Ψ dx

+
σ

ε

∫
Ω

((W+)
′(ϕk)+(W−)′(ϕk−1))Ψ dx = 0 ∀Ψ ∈ H1(Ω), (24)

where Jk−1 :=− dρ

dϕ
mk−1∇µk−1.

Theorem 4. Let ϕk−2 ∈H1(Ω)∩L∞(Ω), ϕk−1 ∈H1(Ω)∩L∞(Ω), µk−1 ∈W 1,q(Ω),
q> n, vk−1 ∈H1

0 (Ω)n, be given. Then there exists a unique solution (vk, pk,ϕk,µk)∈
H1

0 (Ω)n×L2
(0)(Ω)×H1(Ω)×H1(Ω) to (21)–(24). In fact it holds ϕk ∈ H2(Ω)⊂

H1(Ω)∩L∞(Ω) and µk ∈W 1,q(Ω),q > n.

Also the energy inequality stays valid in the time discrete setting.

Theorem 5. Let (ϕk, µk, vk, pk) be a solution to (21)–(24). Then for k ≥ 2:

1
2

∫
Ω

ρ
k−1
∣∣∣vk
∣∣∣2 dx+

σε

2

∫
Ω

|∇ϕ
k|2 dx+

σ

ε

∫
Ω

W (ϕk)dx

+
1
2

∫
Ω

ρ
k−2|vk− vk−1|2 dx+

σε

2

∫
Ω

|∇ϕ
k−∇ϕ

k−1|2 dx

+τ

∫
Ω

2η
k−1|Dvk|2 dx+ τ

∫
Ω

mk−1|∇µ
k|2 dx

≤ 1
2

∫
Ω

ρ
k−2
∣∣∣vk−1

∣∣∣2 dx+
σε

2

∫
Ω

|∇ϕ
k−1|2 dx+

σ

ε

∫
Ω

W (ϕk−1)dx

+τ

∫
Ω

ρ
k−1gvk.

(25)
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Remark 5. Let W denote the relaxed double-obstacle free energy W rel introduced in
Remark 2 with relaxation parameter s. Let (vs, ps,ϕs,µs)s∈R denote the sequence
of solutions of (21)–(24) for a sequence (sl)l∈N with sl → ∞. From the linearity of
(21) and [61, Prop. 4.2] it follows that there exists a subsequence, still denoted by
(vs, ps,ϕs,µs)s∈R, such that

(vs, ps,ϕs,µs)s∈R→ (v?, p?,ϕ?,µ?) in H1(Ω),

where (v?, p?,ϕ?,µ?) denotes the solution of (21)–(24), where W obst , denoted in
Remark 2, is chosen as free energy. Especially |ϕ∗| ≤ 1 holds true.

In the following argumentation we concentrate on the phase field only. From
the regularity ϕs ∈ H2(Ω) together with a-priori estimates on the solution of the
Poisson problem and the energy inequality of Theorem 5, we obtain the existence of
a strongly convergent subsequence ϕs′→ ϕ∗ in C0,α(Ω), where we use the compact
embedding H2(Ω) ↪→C0,α(Ω) for 2α < 4−n.

Thus, for s large enough we have |ϕs| ≤ 1+ θ with θ arbitrarily small. In fact,
using arguments from [70] in [82] a rate

‖max(|ϕs|−1,0)‖L∞(Ω) ≤Cs−1

is argued for the pure Cahn–Hilliard system. This is also observed in the numerical
tests of these works.

2.2 A-posteriori error estimation

For an efficient solution of (15)–(18) we next describe an a-posteriori error estima-
tor based mesh refinement scheme that is reliable and efficient up to terms of higher
order and errors introduced by the projection. We propose an all-in-one adapta-
tion concept for the fully coupled Cahn–Hilliard Navier–Stokes system, where we
exploit the energy inequality of Theorem 3. Further we describe how we can guar-
antee that the total energy can not increase in absence of outer forces, i.e. how we
can guarantee the validity of Assumption 2.

We define the following error terms:

ev :=vk
h− vk, ep :=pk

h− pk, (26)

eϕ :=ϕ
k
h −ϕ

k, eµ :=µ
k
h −µ

k, (27)

as well as the discrete element residuals
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r(1)h :=
ρk−1 +ρk−2

2
vk

h−ρ
k−2vk−1 + τ(bk−1

∇)vk
h +

1
2

τdiv(bk−1)vk
h

−2τdiv
(

η
k−1Dvk

h

)
+ τ∇pk

h− τµ
k
h∇ϕ

k−1−ρ
k−1g,

r(2)h :=ϕ
k
h −Pk

ϕ
k−1 + τvk

h∇ϕ
k−1− τdiv(mk−1

∇µ
k
h),

r(3)h :=
σ

ε

(
W ′+(ϕ

k
h)+W ′−(P

k
ϕ

k−1)
)
−µ

k
h ,

where bk−1 := ρk−1vk−1 + Jk−1. Furthermore we define the error indicators

η
(1)
T :=hT‖r(1)h ‖T , η

(1)
E :=h1/2

E ‖2η
k−1
[
Dvk

h

]
−→
ν E
‖E ,

η
(2)
T :=hT‖r(2)h ‖T , η

(2)
E :=h1/2

E ‖m
k−1
[
∇µ

k
h

]
−→
ν E
‖E ,

η
(3)
T :=hT‖r(3)h ‖T , η

(3)
E :=h1/2

E ‖
[
∇ϕ

k
h

]
−→
ν E
‖E .

(28)

Here [·]−→
ν E

denotes the jump of a discontinuous function across an edge E of T k

in normal direction −→ν E pointing from the triangle with lower global number to the
triangle with higher global number. Thus η

( j)
E , j = 1,2,3, measures the jump of

the corresponding variable across the edge E, while η
( j)
T , j = 1,2,3, measures the

triangle-wise residuals.

Theorem 6. There exists a constant C > 0 only depending on the domain Ω and the
regularity of the mesh T k such that

ρ‖ev‖2 + τη‖∇ev‖2 + τm‖∇eµ‖2 +σε‖∇eϕ‖2 +
σ

ε
(W ′+(ϕ

k
h)−W ′+(ϕ

k),eϕ)

≤C
(
η

2
Ω +ηh.o.t +ηC

)
,

holds with

η
2
Ω =

1
τη

∑
T∈T k

(
η
(1)
T

)2
+

τ

η
∑

E∈E k

(
η
(1)
E

)2

1
τm ∑

T∈T k

(
η
(2)
T

)2
+

τ

m ∑
E∈E k

(
η
(2)
E

)2

1
σε

∑
T∈T k

(
η
(3)
T

)2
+σε ∑

E∈E k

(
η
(3)
E

)2
,

ηh.o.t. =τ(div(ev),ep),

and ηC =(Pk
ϕ

k−1−ϕ
k−1,eµ)−

σ

ε
(W ′−(P

k
ϕ

k−1)−W ′−(ϕ
k−1),eϕ).

Remark 6.



Numerical methods for multiphase flows governed by diffuse interface models 19

• The term ηh.o.t. is of higher order. By approximation results it can be estimated
in terms of hT to a higher order then the orders included in η

(i)
T , η

(i)
E , i = 1,2,3.

Thus it is neglected in the numerics.
• The term ηC arises due to the transfer of ϕk−1 from the old grid T k−1 to the

new grid T k through the projection Pk. In our numerics we use Lagrangian
interpolation I k as projection operator. We note that I kϕk−1 and ϕk−1 do
only differ in regions of the domain where coarsening in the last time step took
place, if bisection is used as refinement strategy. Since it seems unlikely that
elements being coarsened in the last time step are refined again in the present
time step, this term is neglected in the numerics. We note that this term might
be further estimated to obtain powers of hT by approximation results for the
Lagrange interpolation, see e.g. [29].
• Due to these two terms involved the estimator is not fully reliable.
• Neglecting these two terms the estimator can be shown to be efficient by the

standard bubble technique, see e.g. [7, 61].
• An adaptation of the time step size is not considered in the present work, since

it would conflict with the time discretization over three time instances. In our
numerics we have to choose time steps small enough to sufficiently well resolve
the interfacial force µk

h∇ϕk−1.

In the numerical part, this error estimator is used together with the mesh adapta-
tion cycle described in [61]. The overall adaptation cycle

SOLVE→ ESTIMATE→MARK→ ADAPT

is performed once per time step. For convenience of the reader we state the marking
strategy here.

Algorithm 1 (Marking strategy)

• Fix amin > 0 and amax > 0, and set A = {T ∈T k+1 |amin ≤ |T | ≤ amax}.
• Define indicators:

1. ηT = 1
τη

(
η
(1)
T

)2
+ 1

τm

(
η
(2)
T

)2
+ 1

σε

(
η
(3)
T

)2
,

2. ηT E = ∑E⊂T

[
τ

η

(
η
(1)
T E

)2
+ τ

m

(
η
(2)
T E

)2
+σε

(
η
(3)
T E

)2
]

.

• Refinement: Choose θ r ∈ (0,1),

1. Find a set RT ⊂T k+1 with θ r
∑T∈T k+1 ηT ≤ ∑T∈RT ηT ,

2. Find a set RT E ⊂T k+1 with θ r
∑T∈T k+1 ηT E ≤ ∑T∈RT E ηT E .

• Coarsening: Choose θ c ∈ (0,1),

1. Find the set CT ⊂T k+1 with ηT ≤ θ c

N ∑T∈T k+1 ηT ∀T ∈CT ,
2. Find the set CT E ⊂T k+1 with ηT E ≤ θ c

N ∑T∈T k+1 ηT E ∀T ∈CT E .

• Mark all triangles of A ∩ (RT ∪RT E) for refining.
• Mark all triangles of A ∩ (CT ∪CT E) for coarsening.
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Ensuring the validity of the energy estimate

To ensure the validity of the energy estimate during the numerical computations
we ensure that the total energy does not increase triangle-wise. For the following
considerations we restrict to bisection as refinement strategy combined with a hier-
archically organised mesh, such that coarsening inverses prior refinement steps, see
e.g. [102]. Note that in such a situation local coarsening, e.g. substituting four trian-
gles by two triangles, only appears if all four triangles are marked for coarsening. We
call such a set of four (resp. two cells at ∂Ω ), triangles a nodeStar, following [33].

By using this strategy, we do not harm the Assumption 2 on triangles that are
refined. We note that this assumption can only be violated on patches of triangles
where coarsening appears.

After marking triangles for refinement and coarsening and before applying re-
finement and coarsening to T k we make a post-processing of all triangles that are
marked for coarsening.

Let MC denote the set of triangles marked for coarsening obtained by the marking
strategy described in Algorithm 1. To ensure the validity of the energy estimate (20)
we perform the following post processing steps:

Algorithm 2 (Post processing)

1. For each triangle T ∈MC:
if T is not part of a nodeStar
then set MC := MC \T .

2. For each nodeStar S ∈MC:
if Assumption 2 is not fulfilled on S
then set MC := MC \S.

The resulting set MC only contains triangles yielding nodeStars on which As-
sumption 2 is fulfilled.

2.2.1 A numerical example

The proposed scheme is implemented in C++ using a mesh based on [33] and using
the package [36]. We note that the linear systems that are solved during Newton’s
method have a saddle point structure, where the diagonal blocks again have sad-
dle point structure. For saddle point problems efficient preconditioning techniques
are available, we refer to [20, 83] for details and [45] for the actual reailzation in
the present setting. In the following we use Pk ≡ I k, where I k denotes the La-
grangian interpolation, associated with the space V k

1 . This leads to a small deviation
in the total mass, see [45].

To test the validity of the energy inequality in the fully discrete setting, we use
the classic example of spinodal decomposition [31] as test case. The parameters are
chosen as: ρ1 = ρ2 = η1 = η2 = 1, g≡ 0, and m≡ 10−3ε , ε = 0.01, σ = 0.01 and
τ = 10−5.
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In Figure 1 we show the time evolution of the monotonically decreasing Ginzburg–
Landau energy (left plot). We obtain the expected rate of E ∼ t−1/3 and also observe
a time span where E ∼ t−1 holds, as predicted in [97].

Next we investigate the validity of the energy inequality; see Figure 1 (right plot).
The plot depicts the time evolution of the term
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The post processing of Algorithm 2 guarantees that this term is always negative as
we observe in the plot.
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Fig. 1 Time evolution of the Ginzburg–Landau energy (left), and validity of the energy inequality
(right).

We also simulated the benchmark for rising bubble dynamics from [79]: Here we
observed results that are closer to sharp interface numeric when we use the relaxed
double obstacle free energy W rel then when using the polynomially free energy
W poly, see Remark 2, which clearly shows the benefits of using the relaxed double-
obstacle free energy.
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3 Optimal control of variable density two-phase flow

In this section, we focus on a double-obstacle potential type free energy density
which yields an optimal control problem for a family of coupled systems in each
time instant of a variational inequality of fourth order and the Navier–Stokes equa-
tion. By proposing a suitable time discretization, we establish the existence of solu-
tions to the primal system and of optimal controls for the original problem as well
as for a family of regularized problems which is introduced to handle the constraint
degeneracy. The latter correspond to Moreau–Yosida type approximations of the
double-obstacle potential. We further show the consistency of these approximations
and derive first-order optimality conditions for the regularized problems. Through
a limit process with respect to the regularization parameter, we obtain a stationarity
system for the original problem which corresponds to a function space version of
C-stationarity. The following results have been derived in [67].

3.1 The semi-discrete CHNS-system and the optimal control
problem

The presence of a non smooth free energy density gives rise to a degenerate con-
straint system with the overall problem falling into the realm of mathematical pro-
grams with equilibrium constraints (MPECs). This evokes a variety of new chal-
lenges when it comes to the analytical treatment of the problem, cf. Section 1.1.3,
and demands for a slightly different set of assumptions and definitions as used in
previous section which is provided in the following.

First note that, assuming integrability in time, from (2), (3), (7), and (8), it follows
that ∫

Ω

∂tϕdx =−
∫

Ω

v∇ϕdx+
∫

Ω

div(m(ϕ)∇µ)dx = 0.

Hence, utilizing (6) the integral mean of ϕ satisfies

1
|Ω |

∫
Ω

ϕdx≡ 1
|Ω |

∫
Ω

ϕadx =: ϕa,

i.e., it is constant in time. By assuming ϕa ∈ (−1,1), we exclude the uninteresting
case |ϕa| = 1. This can be achieved by considering the shifted system (1) – (8),
where ϕ is replaced by its projection onto L2

(Ω). Consequently, we need to work
with shifted variables such as, e.g. m(y+ϕa), which we again denote by m(y) in a
slight misuse of notation.

As in the previous section, we assume throughout that the mobility and viscosity
coefficients are strictly positive as specified in Assumption 3 below. Furthermore,
we extend the connection between ϕ and ρ to all of R, as our studies include cer-
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tain double-well type potentials which allow for values of ϕ outside the physically
relevant interval [−1,1].

Assumption 3 1. The coefficient functions m,η ∈ C2(R) in (1) and (3) as well
as their derivatives up to second order are bounded, i.e. there exist constants
0 < b1 ≤ b2 such that for every x ∈ R, it holds that b1 ≤min{m(x),η(x)} and

max{m(x),η(x), |m′(x)|, |η ′(x)|, |m′′(x)|, |η ′′(x)|} ≤ b2.

2. The initial state satisfies (va,ϕa) ∈ H2
0,σ (Ω ;Rn)×

(
H2

∂n(Ω)∩K
)

where

K :=
{

v ∈ H1
(Ω) : ψ1 ≤ v≤ ψ2 a.e. in Ω

}
,

with −1−ϕa =: ψ1 < 0 < ψ2 := 1−ϕa.
3. The density ρ depends on the order parameter ϕ via

ρ(ϕ) = max
{

ρ1 +ρ2

2
+

ρ2−ρ1

2
(ϕ +ϕa),0

}
≥ 0.

We note that the pure phases are attained at x when ϕ(x) = ψ1 or ϕ(x) = ψ2.
The max-operator in Assumption 3.3 ensures that the density remains always non-
negative and maintains the affine connection of ρ and ϕ if ϕ is contained in the
interval [ψ1,ψ2]. This is necessary to derive appropriate energy estimates.

With these assumptions we now state the semi-discrete Cahn–Hilliard Navier–
Stokes system. For the sake of generality, we additionally introduce a distributed
force on the right-hand side of the Navier-Stokes equation, which will later serve
the purpose of a distributed control. As before, τ > 0 denotes the time step-size and
K ∈ N the total number of time instants in the semi-discrete setting. We further set
σ := 1

ε
and κ := κ̃

ε2 in order to keep the notation as short as possible.

Definition 2 (Semi-discrete CHNS-system). Let Ψ0 : H1
(Ω) → R be a convex

functional with subdifferential ∂Ψ0. Fixing (ϕ−1,v0) = (ϕa,va) we say that a triple

(ϕ,µ,v) = ((ϕi)
K−1
i=0 ,(µi)

K−1
i=0 ,(vi)

K−1
i=1 )

in H2
∂n(Ω)K ×H2

∂n(Ω)K ×H1
0,σ (Ω ;Rn)K−1 solves the semi-discrete CHNS system

with respect to a given control u = (ui)
K−1
i=1 ∈ L2(Ω ;Rn)K−1, denoted as (ϕ,µ,v) ∈

SΨ (u), if it holds for all φ ∈ H1
(Ω) and ψ ∈ H1

0,σ (Ω ;Rn) that
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ϕi+1−ϕi

τ
,φ

〉
+ 〈vi+1∇ϕi,φ〉+(m(ϕi)∇µi+1,∇φ) = 0, (29)

(∇ϕi+1,∇φ)+ 〈∂Ψ0(ϕi+1),φ〉−〈µi+1,φ〉−〈κϕi,φ〉= 0, (30)〈
ρ(ϕi)vi+1−ρ(ϕi−1)vi

τ
,ψ

〉
H−1

0,σ ,H
1
0,σ

−(vi+1⊗ρ(ϕi−1)vi,∇ψ)

+

(
vi+1⊗

ρ2−ρ1

2
m(ϕi−1)∇µi,∇ψ

)
+(2η(ϕi)ε(vi+1),ε(ψ))

−〈µi+1∇ϕi,ψ〉H−1
0,σ ,H

1
0,σ

= 〈ui+1,ψ〉H−1
0,σ ,H

1
0,σ

. (31)

The first two equations are supposed to hold for every 0≤ i+1≤ K−1 and the last
equation holds for every 1≤ i+1≤ K−1.

Remark 7. In general, the subdifferential of a convex function Ψ0 can be a multi-
valued, see, e.g., [39]. In this case, by equation (30) there exists β ∈ ∂Ψ0(ϕi+1)
such that

(∇ϕi+1,∇φ)+ 〈β ,φ〉−〈µi+1,φ〉−〈κϕi,φ〉= 0, ∀φ ∈ H1
(Ω).

Remark 8. We note that in the above system the boundary conditions specified in (7)
and (8) are incorporated in the respective function spaces. Furthermore, the defini-
tion already includes the inherent regularity properties of ϕ and µ which anticipates
the results obtained in Lemma 2 below.

We point out that, as also noted in Remark 3, this semi-discretization of (1) – (8)
in time involves three time instants (i−1, i, i+1) and (ϕ0,µ0) is characterized in an
initialization step by the (decoupled) Cahn-Hilliard system only. At the subsequent
time instants, however, the strong coupling of the Cahn-Hilliard and Navier-Stokes
system which, in the case of non-matched densities, is additionally enforced through
the presence of the relative flux J is preserved. As a result, well-posedness of the
time discrete scheme can be guaranteed and energy estimates mirroring the physical
fact of decreasing energies can be argued as seen below.

Finally, we present the optimal control problem for the semi-discrete CHNS sys-
tem. For its formulation, let Uad ⊂ L2(Ω ;Rn)K−1 and J : X → R be a Fréchet
differentiable function, with

X := H1
(Ω)K×H1

(Ω)K×H1
0,σ (Ω ;Rn)K−1×L2(Ω ;Rn)K−1.

Further requirements on Uad and J are made explicit in connection with the exis-
tence result, Theorem 4.1, below.

Definition 3. The optimal control problem is given by

min J (ϕ,µ,v,u) over (ϕ,µ,v,u) ∈X

s.t. u ∈Uad , (ϕ,µ,v) ∈ SΨ (u).
(PΨ )
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In many applications, J is given by a tracking-type functional and Uad by uni-
lateral or bilateral box constraints.

3.2 Existence of feasible points

In this subsection, we investigate the existence of feasible points for the optimiza-
tion problem (PΨ ). For this purpose, we first study the solvability of the semi-
discrete Cahn–Hilliard Navier–Stokes system. Since we will later on approximate
the double-obstacle potential by a sequence of smooth potentials of double-well
type, we consider here the following two types of free energy densities.

Assumption 4 The functional Ψ0 : H1
(Ω)→ R is convex, proper and lower-semi-

continuous. It has one of the two subsequent properties:

1. Either it is given by Ψ0(ϕ) :=
∫

Ω
ψ0(ϕ(x))dx where ψ0 : R→ R := R∪{+∞}

represents the double-obstacle potential,

ψ0(z) := i[ψ1;ψ2] :=

+∞ if z < ψ1,
0 if ψ1 ≤ z≤ ψ2,
+∞ if z > ψ2.

2. Or it satisfies:

a. Ψ0 is Fréchet differentiable with
{

Ψ ′0(ϕ)
}
= ∂Ψ0(ϕ) ⊂ L2(Ω) for every

ϕ ∈ H1
(Ω);

b. There exists Bu ∈ R such that Ψ0(ϕ)≤ Bu for every ϕ ∈K.

Note that these conditions are satisfied for double-well type potential.

Additionally, we assume that the functional Ψ(ϕ) :=Ψ0(ϕ)−
∫

Ω
κ

2 ϕ(x)2dx,κ >
0, is bounded from below by a constant Bl ∈ R.

As a first observation, we state that the chosen time discretization does not
break the thermodynamical consistency of the system. In the subsequent lemma,
(ϕi,ϕi−1,µi,vi) characterizes the state of the system at a given time step i. Then the
total energy of the next time step is non-increasing if the external force ui+1 is set to
zero.

Lemma 1 (Energy estimate for a single time step). Let ϕi,ϕi−1,µi ∈ H1
(Ω), vi ∈

H1
0,σ (Ω ;Rn), ui+1 ∈ (H1

0,σ (Ω ;Rn))∗ be given such that

ρ(ϕi),ρ(ϕi−1)> 0. (32)

In case of the double-obstacle potential suppose additionally that ϕi,ϕi−1 ∈K.
Then, if (ϕi+1,µi+1,vi+1) ∈ H1

(Ω)×H1
(Ω)×H1

0,σ (Ω ;Rn) solves the system
(29)–(31) for one time step, the following energy estimate holds true:
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Ω

ρ(ϕi) |vi+1|2

2
dx+

∫
Ω

|∇ϕi+1|2

2
dx+Ψ(ϕi+1)

+
∫

Ω

ρ(ϕi−1)
|vi+1− vi|2

2
dx+

∫
Ω

|∇ϕi+1−∇ϕi|2

2
dx

+ τ

∫
Ω

2η(ϕi) |ε(vi+1)|2 dx+ τ

∫
Ω

m(ϕi) |∇µi+1|2 dx+
∫

Ω

κ
(ϕi+1−ϕi)

2

2

≤
∫

Ω

ρ(ϕi−1) |vi|2

2
dx+

∫
Ω

|∇ϕi|2

2
dx+Ψ(ϕi)+ 〈ui+1,vi+1〉H−1

0,σ ,H
1
0,σ

,

(33)

Remark 9. Note that in case of the double-obstacle potential the positivity of the
density in (32) is always satisfied , since ρ(ϕi) ≥ ρ(ψ1) > 0. For double-well type
potentials, however, the assumption is necessary, since ϕ may attain arbitrary values
in R. Nevertheless, it can be argued that the order parameter attains values in a
neighborhood of the interval [ψ1,ψ2], if the double-well type potential approximates
the double-obstacle potential in a certain sense, cf. Lemma 9.

Besides reflecting an important physical property of the Cahn-Hilliard-Navier-
Stokes system, the energy estimate also constitutes a valuable ingredient in the proof
of existence of solutions to the system (29)–(31). As it serves to verify the bound-
edness constraint of Schaefer’s fixed point theorem, also called the Leray-Schauder
principle, which, in combination with arguments from monotone operator theory,
yields the following result concerning the solvability of the semi-discrete system
(29)–(31) for single time steps, cf. [67].

Theorem 7 (Existence of solutions to the CHNS system for a single time step).
Let the assumptions of Lemma 1 be satisfied. Then the system (29)–(31) admits a
solution (ϕi+1,µi+1,vi+1) ∈ H1

(Ω)×H1
(Ω)×H1

0,σ (Ω ;Rn) for one time step.

In our setting, the control force ui+1 is contained in L2(Ω ;Rn). As a result the
corresponding solution possesses higher regularity properties which can be shown
via a bootstrap argument and well-known regularity results for the stationary Stokes
equation.

Lemma 2 (Regularity of solutions). Let the assumptions of Lemma 1 be satisfied,
and suppose additionally that ϕi ∈ H2(Ω).

Then it holds that ϕi+1,µi+1 ∈ H2
∂n(Ω) and vi+1 ∈ H2(Ω ;Rn), provided that

(ϕi+1,µi+1,vi+1) ∈ H1
(Ω)×H1

(Ω)×H1
0,σ (Ω ;Rn) satisfies the system (29)–(31).

Moreover, there exists a constant C =C(N,Ω ,b1,b2,τ,κ)> 0 such that

‖ϕi+1‖H2 +‖µi+1‖H2 +‖vi+1‖H2

≤C(‖ϕi+1‖+‖µi+1‖+‖ϕi‖+‖vi+1‖H1 ‖ϕi‖H2 +
∥∥Ψ ′0(ϕi+1)

∥∥). (34)

In case of the double-obstacle potential, it also holds that ϕi+1 ∈ K and the term∥∥Ψ ′0(ϕ)∥∥ in the above inequality is dropped.
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Repeated applications of these statements for each time step i = 0, ..,K−2 directly
verifies the existence of feasible points in the case of a double-obstacle potential.

Theorem 8 (Existence of feasible points). Let u ∈ L2(Ω ;Rn)K−1. Let Ψ 0 be the
double-obstacle potential defined in Assumption 4.1.

Then the system (29)-(31) admits a solution (ϕ,µ,v) ∈ H2
∂n(Ω)K ×H2

∂n(Ω)K ×
H1

0,σ (Ω ;Rn)K−1.

In order to approach the case of the double-well type potentials, we need to
ensure the positivity of the density as explained in Remark 9. Using a technique
from [70], the subsequent lemma guarantees that the order parameter of a solution
to the system (29)–(31) for the double-well type potentials under consideration is
always greater than ψ1− ε for some small ε > 0.

Theorem 9. Let u∈ L2(Ω ;Rn)K−1 be given and
{

Ψ
(k)

0

}
k∈N

a sequence of functions

which satisfies the following two conditions:

1. For every k ∈ NΨ
(k)

0 fulfills Assumption 4.

2. If
{

ϕ̂(k)
}

k∈N
is a sequence in H1

(Ω) such that there exists a constant C > 0

with Ψ
(k)

0

(
ϕ̂(k)

)
≤C for k ∈ N, then∥∥∥max(−ϕ̂

(k)+ψ1,0)
∥∥∥

L1
→ 0, as k→ ∞.

Furthermore, let
{
(ϕ(k),µ(k),v(k))

}
k∈N

be a sequence of solutions to the systems

(29)–(31) with Ψ0 =Ψ
(k)

0 . Then∥∥∥max(−ϕ
(k)+ψ1,0)

∥∥∥
L∞
→ 0, as k→ ∞.

Employing the previous theorem, we can verify that the semi-discrete CHNS
system (29)-(31) has a solution if the double-well type potential under consideration
is close enough to the double-obstacle potential.

Theorem 10 (Existence of feasible points). Let u ∈ L2(Ω ;Rn)K−1. Let
{

Ψ
(k)

0

}
k∈N

be a sequence which satisfies the conditions of Theorem 9.
Then there exists k∗ ∈N such that the system (29)-(31) admits a solution (ϕ,µ,v)

for every Ψ0 ∈
{

Ψ
(k)

0

}
k≥k∗

.

For more details on the proof of the above theorem, we refer to [67]. In Defini-
tion 4 below, we propose a specific regularization which satisfies the conditions of
Theorem 9 and Theorem 10, respectively.
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3.3 Existence of globally optimal points and convergence of
minimizers

In the previous section, the existence of feasible points for the optimal control prob-
lem (PΨ ) is verified. Our next goal is to investigate the existence of an optimal solu-
tion to (PΨ ). We commence by presenting the following lemma which states some
important properties of the corresponding control-to-state operator.

Lemma 3 (Regularity and boundedness of the state). There exists a positive con-
stant C = C(N,Ω ,b1,b2,τ,κ,va,ϕa,u) > 0 such that for every solution (ϕ,µ,v) ∈
H2

∂n(Ω)K×H2
∂n(Ω)K×H1

0,σ (Ω ;Rn)K−1 of Theorem 8 and Theorem 10 it holds that

‖v‖2
(H2)K +‖µ‖2

(H2)K +‖ϕ‖2
(H2)K+1 ≤C. (35)

Furthermore, the operator L2(Ω ,Rn)K−1 3 u 7−→C(N,Ω ,b1,b2,τ,κ,va,ϕa,u)∈R
is bounded.

With the help of Lemma 3 it is possible to verify the existence of globally optimal
points via standard arguments from optimization theory if some classical assump-
tions on the objective functional and the constraint set Uad are imposed.

Theorem 11 (Existence of global solutions). Suppose that the objective func-
tional J : H2

∂n(Ω)K ×H2
∂n(Ω)K ×H1

0,σ (Ω ;Rn)K−1× L2(Ω ;Rn)K−1 → R is con-
vex and weakly lower-semi-continuous and Uad is non-empty, closed and con-
vex. Assume that either Uad is bounded or J is partially coercive, i.e. for ev-

ery sequence
{
(ϕ(k),µ(k),v(k),u(k))

}
k∈N

with limk→∞

∥∥∥u(k)
∥∥∥ = +∞ it holds that

limk→∞ J (ϕ(k),µ(k),v(k),u(k)) = +∞.
Then the optimization problem (PΨ ) admits a global solution.

Next, we turn our focus to the consistency of the regularization, i.e. the conver-
gence of a sequence of solutions to (P

Ψ (k)) with Ψ (k) a double-well potential ap-
proaching the double-obstacle potential in the limit as k→ ∞, to a solution of (PΨ )
with Ψ the double-obstacle potential. For this purpose, we consider a sequence of
functionals

{
Ψ (k)

}
k∈N

satisfying Assumption 4.2 and a corresponding limit func-

tional Ψ .
The following theorem provides conditions under which a sequence of globally

optimal solutions to (P
Ψ (k)) converge to a global solution of (P

Ψ
), as k→ ∞.

Theorem 12 (Consistency of the regularization). Let the assumptions of Theo-
rem 11 be fulfilled. The objective J : H1

(Ω)K ×H1
(Ω)K ×H1

0,σ (Ω ;Rn)K−1 ×
L2(Ω ;Rn)K−1 → R is supposed to be upper-semicontinuous, and let

{
Ψ (k)

}
k∈N

be a sequence of potentials satisfying Assumption 4.2. Assume further that Ψ is
given such that for every sequence

{
(x(k),y(k))

}
k∈N
⊂ H1

(Ω)× H−1
(Ω) with
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y(k) =Ψ (k)′(x(k)) and (x(k),y(k))→ (x(∞),y(∞)) strongly in H1
(Ω)×H−1

(Ω) it holds
that y(∞) ∈ ∂Ψ(x(∞)).

Then a sequence
{
(ϕ(k),µ(k),v(k),u(k))

}
k∈N

of global solutions to (P
Ψ (k)) in

H2
(Ω)K×H2

(Ω)K×H1
0,σ (Ω ;Rn)K−1×Uad converges to a global solution of (P

Ψ
),

provided that
{
J (ϕ(k),µ(k),v(k),u(k))

}
k∈N

is assumed bounded, whenever Uad is

unbounded.

In summary, the optimal control problems under consideration are well-posed
and admit globally optimal solutions. Furthermore, the chosen regularization ap-
proach is consistent in the sense of Theorem 12.

3.4 Stationarity conditions

At this point, we turn our attention to the derivation of stationarity conditions for the
optimal control problem. In this case of smooth potential functions which satisfy As-
sumption 4.2, stationarity or first-order optimality conditions for the problem (PΨ )
can be derived by applying classical results from Zowe and Kurcyusz concerning the
existence of Lagrange multipliers. The latter approach is employed in the following
theorem.

Theorem 13 (First-order optimality conditions for smooth potentials). Let J :
H1

(Ω)K ×H1
(Ω)K ×H1

0,σ (Ω ;Rn)K−1× L2(Ω ;Rn)K−1 → R be Fréchet differen-

tiable and let Ψ0 satisfy Assumption 4.2 such that Ψ ′0 maps H2
∂n(Ω) continuously

Frèchet-differentiably into L2(Ω). Further, let z := (ϕ̄, µ̄, v̄, ū) be a minimizer of
(PΨ ).

Then there exist (p,r,q) ∈ H1
(Ω)K ×H1

(Ω)K−1×H1
0,σ (Ω ;Rn)

K−1, with p =
(p−1, ...pK−2), r = (r−1, ...rK−2), q = (q0, ...qK−2), such that
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−1
τ
(pi− pi−1)+m′(ϕi)∇µi+1 ·∇pi−div(pivi+1)−∆ri−1

+Ψ
′′

0 (ϕi)
∗ri−1−κri+1−

1
τ

ρ
′(ϕi)vi+1 · (qi+1−qi)

−(ρ ′(ϕi)vi+1−
ρ2−ρ1

2
m′(ϕi)∇µi+1)(Dqi+1)

>vi+2

+2η
′(ϕi)ε(vi+1) : Dqi +div(µi+1qi) =

∂J

∂ϕi
(z), (36)

−ri−1−div(m(ϕi−1)∇pi−1)−div(
ρ2−ρ1

2
m(ϕi−1)(Dqi)

>vi+1)

−qi−1 ·∇ϕi−1 =
∂J

∂ µi
(z), (37)

−1
τ

ρ(ϕ j−1)(q j−q j−1)−ρ(ϕ j−1)(Dq j)
>v j+1

−(Dq j−1)(ρ(ϕ j−2)v j−1−
ρ2−ρ1

2
m(ϕ j−2)∇µ j−1)

−div(2η(ϕ j−1)ε(q j−1))+ p j−1∇ϕ j−1 =
∂J

∂v j
(z), (38)(

∂J

∂uk
(z)−qk−1

)K−1

k=1
∈
[
R+(Uad− ū)

]+
,

(39)

for all i = 0, ...,K−1 and j = 1, ...,K−1. Here,
[
R+(Uad− ū)

]+ denotes the polar
cone of the set {r(w−u)|w ∈Uad ∧ r ∈ R+}. Furthermore, we use the convention
that pi,ri,qi are equal to 0 for i≥ K−1 along with q−1 and ϕi,µi,vi for i≥ K.

In [67], it was further shown that the adjoint state (p,r,q) is bounded inde-
pendently of the regularization parameter. This enables the derivation of a slightly
weaker form of stationarity for certain non-smooth potentials via a limiting process
which is given in the following theorem.

Theorem 14 (Stationarity conditions). Suppose that the following assumptions
are satisfied.

1. J ′ is a bounded mapping from H1
(Ω)K ×H1

(Ω)K ×H1
0,σ (Ω ;Rn)K−1×Uad

into the space (H1
(Ω)

K
×H1

(Ω)
K
×H1

0,σ (Ω ;Rn)
K−1× L2(Ω ;Rn)K−1)∗ and

∂J
∂u satisfies the following weak lower-semicontinuity property〈

∂J

∂u
(ẑ), û

〉
≤ liminf

n→∞

〈
∂J

∂u
(ẑ(n)), û(n)

〉
,

for ẑ(n) = (ϕ̂(n), µ̂(n), v̂(n), û(n)) converging weakly in H2
∂n(Ω)K ×H2

∂n(Ω)K ×
H1

0,σ (Ω ;Rn)K−1×Uad to ẑ = (ϕ̂, µ̂, v̂, û).

2. For every n ∈N let Ψ
(n)

0 : H2
∂n(Ω)→R be a convex, lower-semicontinuous and

proper functional satisfying the assumptions of Theorem 13.
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3. Let (ϕ(n),µ(n),v(n),u(n)) ∈ H2
∂n(Ω)K×H2

∂n(Ω)K×H1
0,σ (Ω ;Rn)K−1×Uad be a

minimizer for (P
Ψ (n)) and let further (p(n),r(n),q(n)) ∈ H1

(Ω)
K
×H1

(Ω)
K
×

H1
0,σ (Ω ;Rn)

K−1 be given as in Theorem 13.

Then there exists an element (ϕ,µ,v,u, p,r,q) and a subsequence denoted by{
(ϕ(m),µ(m),v(m),u(m), p(m),r(m),q(m))

}
m∈N

with

ϕ
(m)→ϕ weakly in H2

∂n(Ω)K , µ
(m)→µ weakly in H2

∂n(Ω)K−1,

v(m)→v weakly in H2(Ω ;Rn)K−1, u(m)→u weakly in L2(Ω ;Rn)K−1,

p(m)→p weakly in H1
(Ω)K , r(m)→r weakly in H1

(Ω)K−1,

q(m)→q weakly in H1
0,σ (Ω ;Rn)K−1,Ψ

(m)
0
′′
(ϕ

(m)
i+1)

∗r(n)i →λi weakly in H1
(Ω)∗,

for all i =−1, ...,K−2 such that for z = (ϕ,µ,v,u) and q̃k := qk−1 it holds that

−1
τ
(pi− pi−1)+m′(ϕi)∇µi+1 · pi−div(pivi+1)−∆ri−1

+λi−1−κri+1−
1
τ

ρ
′(ϕi)vi+1 · (qi+1−qi)

−(ρ ′(ϕi)vi+1−
ρ2−ρ1

2
m′(ϕi)∇µi+1)(Dqi+1)

>vi+2

+2η
′(ϕi)ε(vi+1) : Dqi +div(µi+1qi) =

∂J

∂ϕi
(z), (40)

−ri−1−div(m(ϕi−1)∇pi−1)−div(
ρ2−ρ1

2
m(ϕi−1)(Dqi)

>vi+1)

−qi−1 ·∇ϕi−1 =
∂J

∂ µi
(z), (41)

−1
τ

ρ(ϕ j−1)(q j−q j−1)−ρ(ϕ j−1)(Dq j)
>v j+1

−(Dq j−1)(ρ(ϕ j−2)v j−1−
ρ2−ρ1

2
m(ϕ j−2)∇µ j−1)

−div(2η(ϕ j−1)ε(q j−1))+ p j−1∇ϕ j−1 =
∂J

∂v j
(z), (42)

∂J

∂u
(z)− q̃ ∈

[
R+(Uad−u)

]+
.

(43)

We point out that a tracking-type functional, like, e.g.,

J (ϕ,µ,v,u) :=
K−1

∑
i=0

1
2

∥∥ϕi−ϕ
i
d

∥∥2
+

ξ

2
‖u‖2

(L2)(K−1) , ξ > 0, (44)

with desired states ϕ i
d ∈ L2(Ω), satisfies the assumptions of Theorem 14.
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If the set Uad is bounded, Theorem 14 holds also true for a sequence of station-
ary points for (P

Ψ (n)). If it is unbounded, then the result can still be transferred to

sequences of stationary points by assuming that the sequence
{

u(n)
}

n∈N
is bounded

in L2(Ω ;Rn)K−1.
In order to apply the developed theory, in particular Theorem 14, to the initially

stated optimal control problem associated to the double-obstacle potential, we pro-
vide the following definition which characterizes the sequence of approximating
double-well type potentials. For this purpose, let ψ0 be defined as in Assumption
4.1 and set γ := ∂ψ0 ⊂ R×R.

Definition 4. Let a mollifier ζ ∈ C1(R) with suppζ ⊂ [−1,1],
∫
R ζ = 1 and 0 ≤

ζ ≤ 1 a.e. on R, and a function θ : R+ → R+, with θ(α) > 0 and θ(α)
α
→ 0 as

α→ 0, be given. For the Yosida approximation γα with parameter α > 0 of γ define

ζα(s) := 1
α

ζ

(
s
α

)
, γ̃α := γα ∗ζθ(α), ψ0α(s) :=

∫ s
0 γ̃α(t)dt,

Ψ0α(c) :=
∫

Ω
(ψ0α ◦ c)(t)dt.

Moreover, we set αn := n−1, Ψ
(n)

0 :=Ψ0αn .

Utilizing Theorem 14 with respect to the approximating sequence from Defi-
nition 4 yields a stationarity system for the optimal control problem of the semi-
discrete CHNS system with the double-obstacle potential. Through a careful limit-
ing analysis the system can be extended by additional complementarity conditions
which are presented in the subsequent theorem which can be found in [67].

Theorem 15 (Limiting ε-almost C-stationarity). Let Ψ
(n)

0 , n ∈ N be the func-
tionals of Definition 4, and let the tuples (ϕ(m),µ(m),v(m),u(m), p(m),r(m),q(m)),
(ϕ,µ,v,u, p,r,q) and J be as in Theorem 14. Moreover, let Λ : R→ R be a Lips-
chitz function with Λ(ψ1) = Λ(ψ2) = 0. For

a(m)
i :=Ψ

(m)
0
′
(ϕ

(m)
i ), λ

(m)
i :=Ψ

(m)
0
′′
(ϕ

(m)
i )∗r(m)

i−1

for i = 0, ...,K, and for ai denoting the limit of a(m)
i , it holds that

(ai,Λ(ϕi))L2 = 0, 〈λi,Λ(ϕi)〉= 0, (45)

(ai,ri−1 )L2 = 0, liminf(λ
(m)
i ,r(m)

i−1 )L2 ≥ 0. (46)

Moreover, for every ε > 0 there exist a measurable subset Mε
i of Mi := {x ∈ Ω :

ψ1 < ϕi(x)< ψ2} with |Mi \Mε
i |< ε and

〈λi,v〉= 0 ∀v ∈ H1
(Ω), v|Ω\Mε

i
= 0.

In combination with the results from Theorem 14, the last theorem states sta-
tionarity conditions corresponding to a function space version of C-stationarity for
MPECs, cf. [68, 69]. More precisely, the resulting stationarity system is of limiting
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ε-almost C-stationarity type. For the underlying problem class, this is currently the
most (and, to the best of our knowledge, only) selective stationarity system avail-
able.

4 Goal oriented adaptivity for optimal control of two-phase flow

The specific semi-discretization in time for the coupled CHNS system with non-
matched fluid densities of the previous section represents a first step towards a nu-
merical investigation/realization of the problem. Furthermore, the constructive na-
ture of our derivation of the stationarity conditions facilitates the implementation of
a solution algorithm for the problem which solves each approximating problem by a
Newton method applied to a suitable finite element discretization in space. For this
purpose, it is necessary to solve a sequence of large-scale nonlinear optimization
problems. As already mentioned in Subsection 2.2 for the primal system, this might
cause an immense numerical expense. Hence, we aim to reduce the computational
effort by developing a beneficial adaptation process for the underlying space mesh
which incorporates the fact that, for optimal control problems, one is usually inter-
ested in an accurate estimation of the target quantity, i.e., the objective functional.

For this purpose, we present an adaptive finite elements solver for the optimal
control problem of the Cahn–Hilliard Navier–Stokes-system. This includes an ad-
equate error estimator which consists of dual-weighted primal residuals, primal-
weighted dual residuals and complementarity errors. It is based on the notion of
a modified Lagrangian associated with the MPEC and uses the associated saddle-
point condition for optimal points to characterize the error in the objective function
between the continuous solution and a fully discretized problem.

The next subsection is devoted to the derivation of the error estimator, whereas
Subsection 4.2 deals with the numerical details and showcases some of the obtained
results.

4.1 Goal-oriented error estimator

In order to treat the problem numerically and to derive the aforementioned error esti-
mates, it is necessary to establish a fully discretized version of the problem. Hereby,
we follow the so called first optimize, then discretize approach in that we directly
discretize the optimality conditions given in Section 3.4. The spacial discretization
uses Taylor-Hood finite elements which are known to be LBB-stable in case of the
Navier-Stokes equation, cf., e.g., [47, 107]. More precisely, the phase field and the
chemical potential are discretized via piecewise linear and continuous finite ele-
ments, whereas the discretization of the velocity field utilizes piecewise quadratic
and continuous finite elements. For more details on the chosen discretization ap-
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proach we refer the reader to [58]. Furthermore, we consider the concrete objective
functional given in (44).

The subsequent definition characterizes the MPCC-Lagrangian of the optimal
control problem (PΨ ), which is defined on the product function space

Y :=H1
(Ω)K×H1

(Ω)K×H1
0,σ (Ω ;Rn)K−1×L2

(Ω)K×L2(Ω ;Rn)K−1×H1
(Ω)K

×H1
(Ω)K×H1

0,σ (Ω ;Rn)K−1×H1
(Ω)K×

(
H1

(Ω)∗
)K
×
(

H1
(Ω)∗

)K
.

In contrast to the classical Lagrange function, the MPCC-Lagrangian does not in-
clude a multiplier for the complementarity condition. It rather corresponds to the
Lagrange function of certain tightend nonlinear problems associated to the MPEC,
cf. ,e.g., [93, 101].

Definition 5. The MPCC-Lagrangian L : Y →R corresponding to (PΨ ) (see Defin-
tion 3) is given by

L(ϕ,µ,v,a,u, p,r,q,π,λ+,λ−) := J (ϕ,µ,v,u)

+
K−2

∑
i=−1

[〈
ϕ i+1−ϕ i

τ
, pi+1

〉
+
〈
vi+1

∇ϕ
i, pi+1〉−〈div(m(ϕ i)∇µ

i+1), pi+1〉]

+
K−2

∑
i=−1

[〈
−∆ϕ

i+1,ri+1〉+〈ai+1,ri+1〉−〈µ i+1,ri+1〉−〈κϕ
i,ri+1〉]

+
K−2

∑
i=0

[〈
ρ(ϕ i)vi+1−ρ(ϕ i+1)vi

τ
,qi+1

〉
H−1,H1

0

+
〈
div(vi+1⊗ρ(ϕ i+1)vi),qi+1〉

H−1,H1
0

−
〈

div(vi+1⊗ ρ2−ρ1

2
m(ϕ i+1)∇µ

i),qi+1
〉

H−1,H1
0

+(2η(ϕ i)ε(vi+1),ε(qi+1))

−
〈
µ

i+1
∇ϕ

i,qi+1〉
H−1,H1

0
−
〈
ui+1,qi+1〉

H−1,H1
0

]
−

K−1

∑
i=0

〈
ai,π i〉−K−1

∑
i=0

〈
(λ i)+,ϕ i−ψ2

〉
−

K−1

∑
i=0

〈
(λ i)−,ϕ i−ψ1

〉
.

For the sake of readability, we subsequently collect the primal variables in y :=
(ϕ,µ,a,v) which describes the state of the optimal control problem and the adjoint
variables in Φ := (p,r,q). Furthermore, Yh denotes the discrete equivalent to Y .

Remark 10. Note that if (y,u) is an ε-almost C-stationary point of (PΨ ) with adjoints
(Φ ,π,λ+,λ−) then

L(y,u,Φ ,π,λ+,λ−) = J (ϕ,µ,v,u). (47)

Based on the MPCC-Lagrangian we provide a first characterization of the differ-
ence of the objective values at stationary points of the semi-discrete and the fully
discretized problem. Subsequently, the index δ denotes the difference of the discrete
and the continuous variables, e.g. (yδ ,uδ ,Φδ ) := (yh,uh,Φh)− (y,u,Φ).
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Theorem 16. Let (y,u,Φ ,π,λ+,λ−) be a stationary point of the optimal control
problem (PΨ ) and assume that (yh,uh,Φh,πh,λ

+
h ,λ−h ) ∈ Yh satisfy the discretized

stationarity system. Then it holds that

J (ϕh,µh,vh,uh)−J (ϕ,µ,v,u) =
1
2

(
K−1

∑
i=0

〈
ai

h,π
i〉−K−1

∑
i=0

〈
ai,π i

h
〉)

+
1
2

(
K−1

∑
i=0

〈
(λ i)+,ϕ i

h−ψ2
〉
−

K−1

∑
i=0

〈
(λ i

h)
+,ϕ i−ψ2

〉)

+
1
2

(
K−1

∑
i=0

〈
(λ i)−,ϕ i

h−ψ1
〉
−

K−1

∑
i=0

〈
(λ i

h)
−,ϕ i−ψ1

〉)

+
1
2

∇xL(yh,uh,Φh,πh,λ
+
h ,λ−h )((yh,uh,Φh)− (y,u,Φ)). (48)

The last term on the right-hand side of equation (48) assembles the weighted
dual and primal residuals. Whereas the other terms display the mismatch in the
complementarity between the discretized solution and the original one.

For each time step i ∈ {0, ..,K−1}, the latter can be split into the following four
parts

ηCM1,i :=
1
2
〈
ai

h,π
i−π

i
h
〉
, ηCM2,i :=

1
2
〈
(λ i

h),ϕ
i−ϕ

i
h
〉
,

ηCM3,i :=
1
2
〈
ai,π i

h−π
i〉, ηCM4,i :=

1
2
〈
(λ i)+,ϕ i

h−ψ2
〉
+
〈
(λ i)−,ϕ i

h−ψ1
〉
.

The so-called dual-weighted primal residual ηCHNS,i := ηCH1,i + ηCH2,i + ηNS,i
consists of the three parts coming from the respective primal equations (for i =
−1, ..,K−2)

ηCH1,i+1 :=

〈
ϕ

i+1
h −ϕ i

h
τ

, pi+1
δ

〉
+
〈
vi+1

h ∇ϕ
i
h, pi+1

δ

〉
−
〈
div(m(ϕ i

h)∇µ
i+1
h ), pi+1

δ

〉
,

ηCH2,i+1 :=
〈
−∆ϕ

i+1
h ,ri+1

δ

〉
+
〈
ai+1

h ,ri+1
δ

〉
−
〈
µ

i+1
h ,ri+1

δ

〉
−
〈
κϕ

i
h,r

i+1
δ

〉
,

ηNS,i+1 :=

〈
ρ(ϕ i

h)v
i+1
h −ρ(ϕ i−1

h )vi
h

τ
,qi+1

δ

〉
H−1,H1

0

+
〈
div(vi+1

h ⊗ρ(ϕ i−1
h )vi

h),q
i+1
δ

〉
H−1,H1

0

−
〈

div(vi+1
h ⊗ ρ2−ρ1

2
m(ϕ i−1

h )∇µ
i
h),q

i+1
δ

〉
H−1,H1

0

+(2η(ϕ i
h)ε(v

i+1
h ),ε(qi+1

δ
))

−
〈
µ

i+1
h ∇ϕ

i
h,q

i+1
δ

〉
H−1,H1

0
−
〈
ui+1

h ,qi+1
δ

〉
H−1,H1

0
.
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Finally, the primal-weighted dual residuals can be defined for each i ∈ {0, ..,K−
1} (with ηADv,0 := 0) in three steps by

ηADϕ,i :=
[

ϕ
i
h−ϕ

i
d−

1
τ
(pi+1

h − pi
h)+m′(ϕ i

h)∇µ
i+1
h ·∇pi+1

h −div(pi+1
h vi+1

h )−∆ri
h

+λ
i
h−κri+1

h − 1
τ

ρ
′(ϕ i

h)v
i+1
h · (qi+2

h −qi+1
h )

−(ρ ′(ϕ i
h)v

i+1
h − ρ2−ρ1

2
m′(ϕ i

h)∇µ
i+1
h )(Dqi+2

h )>vi+2
h

+2η
′(ϕ i

h)ε(v
i+1
h ) : Dqi+1

h +div(µ i+1
h qi+1

h )

]
(ϕ i

δ
),

ηADµ,i :=
[
− ri

h−div(m(ϕ i−1
h )∇pi

h)−div(
ρ2−ρ1

2
m(ϕ i−1

h )(Dqi+1
h )>vi+1

h )

−qi
h ·∇ϕ

i−1
h

]
(µ i

δ
),

ηADv,i :=
[
− 1

τ
ρ(ϕ i−1

h )(qi+1
h −qi

h)−ρ(ϕ i−1
h )(Dqi+1

h )>vi+1
h

−(Dqi
h)(ρ(ϕ

i−2
h )vi−1

h − ρ2−ρ1

2
m(ϕ i−2

h )∇µ
i−1
h )

−div(2η(ϕ i−1
h )ε(qi

h))+ pi
h∇ϕ

i−1
h

]
(vi

δ
).

By these definitions and Theorem 16, the discretization error with respect to the
objective function is then given by

J (ϕh,µh,vh,uh)−J (ϕ,µ,v,u)

=
K−1

∑
i=0

(ηCM1,i +ηCM2,i +ηCM3,i +ηCM4,i +ηCH1,i

+ηCH2,i +ηNS,i +ηADϕ,i +ηADµ,i +ηADv,i).

(49)

We point out that the integral structure of these error terms allows a patchwise eval-
uation on the underlying mesh. Apart from the weights ϕ i

δ
, µ i

δ
and vi

δ
and pi

δ
, qi

δ
, ri

δ
,

respectively, the primal-dual-weighted error estimators only contain discrete quan-
tities. In order to obtain a fully a-posteriori error estimator the weights are approxi-
mated involving a local higher-order approximation based on the respective discrete
variables.

4.2 The numerical realization

For a numerical realization we discretize problem (PΨ ) in space using a sequence
of meshes (T i)K

i=1 and introduce fully discrete sequences of functions using linear
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finite elements for ϕ , µ , and p and quadratic finite elements for v, yielding fully
discretized variables ϕh, µh, ph, and vh. Note that we introduce the pressure p as a
primal variable.

We further introduce the following approximation of Ψ0

Ψ
s

0 (ϕ) :=
s
2
(
max(0,ϕ−1)2 +min(ϕ +1)2) , s > 0.

The resulting fully discrete optimization problem is then solved using the steepest
descent method for a sequence sn→ ∞, mimicking the approach from Theorem 14.
Especially we define the multipliers arising in Theorem 14 using Ψ0 as given in
Theorem 15.

The overall procedure is given in the subsequent Algorithm 1.

Data: Initial data: ϕ−1,ϕ0,v0,Nmax
1 repeat
2 for l = 1, . . . do
3 solve (PΨ ) using steepest descent method;
4 if complementarity conditions (45), (46) are satisfied up to a tolerance tolc then
5 break;
6 else
7 increase sn;
8 end
9 end

10 calculate the error indicators and find the set Mr of cells to refine and the set Mc of
cells to coarsen;

11 Adapt (T i)K
i=1 using Mr and Mc;

12 until ∑
K
i=1 |T i|< Nmax;

Algorithm 1: The overall solution procedure

Here, the outer loop describes the refinement of the grids (T i)K
i=1 using the er-

ror estimator given in (49). When the for-loop breaks, then we have found an ap-
proximate optimal control on the current sequence of grids that solves the system
(40)–(46) sufficiently well in the sense that the complementarity conditions (45),
(46) are satisfied up to a given tolerance tolc. Then, in line 10, we evaluate the error
indicators η i

T := ηCM1,i|T +ηCM2,i|T +ηCM3,i|T +ηCM4,i|T +ηCH1,i|T +ηCH2,i|T +
ηNS,i|T +ηADϕ,i|T +ηADµ,i|T +ηADv,i|T for all time steps i and for all cells T ∈ T i

and choose Mr as the set with smallest cardinality, such that

∑
T∈Mr

ηT ≥ θ
r

K

∑
i=1

∑
T∈T i

ηT

with a parameter 0 < θ r < 1 using a greedy marking algorithm. We mark all cells
in Mr for refinement. As in [61] we further choose θ c ∈ (0,1) and define

Mc :=

{
T ∈ (T i)K

i=1 |ηT ≥
θ c

N

K

∑
i=1

∑
T∈T i

ηT

}
,
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where N := ∑
K
i=1 |T i|. Thus, we use the well-known Dörfler marking procedure,

where we refine a given proportion of the estimated error. We stress that we do not
perform Dörfler marking on each time instance separately, but, as the representation
(49) suggests, we perform a marking over all cells in the space-time cylinder. We
point out that we have to use a locally refined initial grid in order to get a meaningful
initial resolution of the interface. This prevents us from using a very coarse grid
initially. As a consequence, we also need to introduce a coarsening strategy, where
we mark cells for coarsening, if they contain an error that is smaller than θ c times
the mean error. We repeat this outer adaptation unless a given total amount of cells
Nmax is reached, summed over all cells, see line 12.

The inner loop, i.e. lines 2–9, solves (PΨ ) using the steepest descent method
from the GNU scientific library [1]. Thereafter we check whether the complemen-
tarity conditions are sufficiently well approximated by the current Moreau–Yosida
relaxed system. For this we evaluate the terms (45)–(46) for all time instances. If the
absolute value of all these terms is smaller then a given tolerance tolc, we accept the
solution and proceed with the adaptation step. If any of these terms has an absolute
value larger than tolc we increase parameter sn and solve the optimality problem
again.

Finally, we shortly illustrate the performance of our algorithm in an example
where we aim to prevent a bubble from rising and split it into two bubbles. For more
details we refer to [58].

We show the evolution of the total number of cells over the optimization pro-
cedure in Figure 2 (left). On the right we show the distribution of the cells over
the simulation horizon. These plots clearly show the benefits of using the proposed
adaptive concept for the optimization of two-phase fluids.
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Adaptation step number

Total number of cells
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0

2

4
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Fig. 2 The evolution of the total number of cells, i.e. ∑
K
i=1 NC(T i), where NC(T i) denotes the

number of cells of the triangulation T i over the adaptation steps (left). We note, that we can
not start with an arbitrary coarse mesh, as the interface as least has to be roughly resolved at the
initialization of the optimization procedure. On the right we depict the distribution of the number
of cells over the time horizon. We observe, that the mesh is refined most close to the final time
instance, where our optimization aim is located.
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5 Further aspects and future research directions

In the present section we briefly discuss further aspects and future research direc-
tions in simulation and control of variable density multiphase flows.

Optimal control of multiphase flows based on (15)-(18)

Based on the results in Section 2.1 we have a stable time discretization scheme
at hand, for which we next state a time discrete optimal control problem. Here we
restrict to control by volume forces that act on the fluid. In [44] additionally Dirichlet
boundary control and control using the initial value ϕ0, which can be seen as an
inverse problem, are also investigated. Let us first state additional assumptions on
the data.

Assumption 5 Additionally to Assumption 1 we assume the following for the data:

A5 W is twice continuous differentiable and there exist C > 0 such that |W ′′+(ϕ)| ≤
C(1+ |ϕ|2) and |W ′′−(ϕ)| ≤C(1+ |ϕ|2).

A6 For ease of presentation in the following we assume, that ρ and η are affine
linear with respect to ϕ , and that m is constant.

In the following in (1) we add an additional volume force Bu on the right hand
side of the equation and understand this a control action, that can be chosen to
influence the two-phase fluid. Let U = L2(0,T ;RS) and fi ∈ L2(Ω)n, i = 1, . . . ,S be
given volume forces. We define B : U → L2(Ω)n by

(Bu)(t,x) =
S

∑
i=1

ui(t) fi(x),

i.e. our control acts as amplitudes of given volume forces. Especially u is indepen-
dent of the actual spatial discretization.

To state the time discrete optimization problem, we define uk := τ−1 ∫ tk
tk−1

u(t)dt.
This can be regarded as an ansatz using piecewise constant ansatz functions and
we stress, that this can be obtained by variational discretization [74] of the first
order optimality system stated below. Additionally, for the ease of presentation, we
assume, that sufficient initial data is available for the two-step scheme, i.e. ϕ−1, ϕ0,
µ0, and v0 are given functions, see Remark 3.

Now we can formulate the optimal control problem under consideration.

min
u∈L2(0,T,RS)

J (ϕh,u) :=
1
2
‖ϕh−ϕd‖2

L2(Ω)+
ξ

2
‖u‖2

U

s.t.
accordingly modified equations (15)−−(18)

(Ph)



40 Michael Hintermüller, Michael Hinze, Christian Kahle, Tobias Keil

Here and in the following we use the abbreviation ϕh := (ϕk
h)

K
k=1 and equivalently

for the other variables.

Remark 11. Note that we apply a time continuous control u ∈ L2(0,T,RS) to the
fully discrete system (15)– (18). Note that a simulation of two-phase flow has to
obey certain CFL conditions, and thus the time step size τ has to b chosen depending
on the actual a-priori unknown velocity field v. By not discretizing the control, we
can base our numerical approach on a descent method with respect to the control
and adjust the time step size τ during the optimization process without changing the
actual control space U .

Based on the energy inequality from Theorem 3 one can show the following
result by standard techniques.

Theorem 17. There exists at least one solution to (Ph), i.e. at least one optimal
control.

By classical KKT-theory one can show the following first order optimality con-
ditions.

Theorem 18. Let u?,v?h, p?h,ϕ
?
h ,µ

?
h be an optimal solution to (Ph). Then there exist

adjoint variables p?v,h ∈H1
0 (Ω)n, p?p,h ∈ L2

(0)(Ω), p?
ϕ,h ∈H1(Ω), p?

µ,h ∈H1(Ω) such
that (15)–(18) and the following system is fulfilled for all k = 1, . . . ,K and all w ∈
H1

0 (Ω)n, q ∈ L2
(0)(Ω), Ψ ∈ H1(Ω), Φ ∈ H1(Ω), ũ ∈U.

−1
τ

(
(

ρk−1 +ρk−2

2
w, pk

v,h)− (ρk−1w, pk+1
v )

)
−a(ρkw,vk+1, pk+1

v )−a(ρk−1vk−1
h + Jk−1,w, pk

v,h)

−(2η
k−1Dw,Dpk

v,h)− (div(w), pk
h)− (w∇ϕ

k−1, pk
ϕ,h) = 0,

−(divpk
v,q) = 0,

−a(Jk
µk

h
Ψ ,vk+1

h , pk+1
v,h )+(Ψ∇ϕ

k−1, pk
v,h)− (m∇Ψ ,∇pk

ϕ,h)+(Ψ , pk
µ,h) = 0,

∇pk
ϕ,h ·
−→
ν Ω = 0,

δkK(ϕ
k
h −ϕd ,Φ)− 1

τ

(
ρ
′ v

k+1 pk+1
v + vk+2 pk+2

v

2
,Φ

)
+

1
τ

(
ρ
′vk+1 pk+2

v ,Φ
)

−a(ρ ′Φvk
h,v

k+1, pk+1
v )− (η ′ΦDvk+1,Dpk+1

v )

+(µk+1
∇Φ , pk+1

v )+(ρ ′Φg, pk+1
v )

−1
τ

(
(Φ , pk

ϕ,h)− (Pk+1
Φ , pk+1

ϕ )
)
− (vk+1

∇Φ , pk+1
ϕ )

−σε(∇Φ ,∇pk
µ,h)−

σ

ε
(W ′′+(ϕ

k
h)Φ , pk

µ,h)−
σ

ε
(W ′′−(P

k+1
ϕ

k
h)P

k+1
Φ , pk+1

µ ) = 0,

ξ τuk +B∗pk
v,h = 0 ∈ RS.
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Here by Jk
µk

h
Ψ we abbreviate − dρ

dϕ
m∇Ψ , i.e. the derivative og Jk with respect to

µk
h in direction Ψ . From integration by parts we obtain the boundary data

∇pk
µ,h ·
−→
ν Ω = 0.

Here B?pk
v is defined as

B?pk
v,h := (( fl , pk

v,h)L2(Ω)n)S
l=1.

Here for notational convenience we introduce artificial variables vK+1
h , vK+2

h ,
pK+1

v,h , and pK+2
v,h , and set them as zero.

Remark 12. We note that the prolongation operator Pk enters the adjoint equation
acting on the test function Φ .

Concerning a numerical example we refer to [44].

Model predictive control

The optimization problem (Ph) describes so called open-loop control, which relies
on the assumption, that the controlled system is not subject to external disturbances.
In many practical applications however, such disturbances are present, which require
the design of appropriate regulators. From the mathematical point of view this leads
to concepts of closed-loop control. Here we propose the use of so called model
predictive control (MPC) [52] and especially of the variant called instantaneous
control (IC) [34, 73]. For a further discussion and for the application of IC to two-
phase flows we refer to [75] closed-loop control of single-density two-phase flows,
and to [76] for the case variable density two-phase flows.

Optimal control with non-smooth free energy density

In Section 3, we established a function space version of C-stationarity for the op-
timal control problem in the case of non-smooth free energy densities. While this
is already a beneficial form of stationarity, since most numerical solvers target this
type of stationarity, recent results by [81] for parabolic variational inequalities sug-
gest that it might be possible to obtain even stronger stationarity conditions such
as strong stationarity or B-stationarity conditions. Their method does not require
the differentiability of the constraint mapping but rather uses the Lipschitz continu-
ity of the control-to-state operator, which can be established for the Cahn-Hilliard-
Navier-Stokes system, in order to bound certain difference quotients. This enables
the extraction of weakly convergent subsequences whose limit points prove to be
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auspicious candidates for the directional derivative of the control-to-state operator.
One of the main advantages of strong stationarity is that it also permits the appli-
cation of novel numerical concepts such as the bundle-free implicit programming
technique, cf. [71], which can be used to the design efficient solution algorithms for
the optimal control problem.

Model order reduction

It turned out and was expected that the numerical effort for optimal control of two-
phase fluids due to the involved Navier–Stokes equation is enormous. Here model
order reduction techniques are a promising tool to dramatically decrease the overall
cost of the optimization process. We aim at so called proper orthogonal decomposi-
tion (POD) [77, 89]. It is well known, that POD is well applicable for the solution
of the Navier–Stokes equation. Based on a high resolution simulation, a small sub-
space of the finite element space is constructed during the optimization process. This
drastically reduces the overall number of unknowns, thus speeding up the compu-
tations. First numerical experiments indicate that POD is also well applicable for
the Cahn–Hilliard equation with smooth free energy. In the case of non-smooth free
energy densities, adapted schemes as proposed in [11] are required to obtain the
desired reduction of unknowns. Combining these building blocks and adding prop-
erly adapted dual weighted residual error estimation will provide a highly efficient
solver for optimal control problems of two-phase fluids.
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