Funnel control via funnel observer for minimum phase systems with relative degree two

Thomas Berger, Timo Reis
Funnel control via funnel observer for minimum phase systems with relative degree two

Thomas Berger and Timo Reis

Abstract—We consider tracking control for the class of linear minimum phase single-input single-output systems with relative degree two. For a given sufficiently smooth reference signal we introduce a dynamic controller which achieves that the tracking error evolves within a prespecified performance funnel. This controller is based on the combination of the recently developed funnel observer with a proportional-derivative funnel controller. Altogether, this yields a dynamic controller which satisfies the control objective and uses only the output of the system and NOT the derivative of the output. The system parameters do not have to be known for the controller design.

Index Terms—Linear systems, funnel control, funnel observer, relative degree, minimum phase.

I. INTRODUCTION

In the present paper we consider output tracking for linear minimum phase systems with relative degree two by funnel control. The concept of funnel control has been developed in [1] for ordinary differential equations, see also the survey [2] and the references therein. In particular, the funnel controller proved to be the appropriate tool for tracking problems in various applications, such as chemical reactor models [3], industrial servo-systems [4], [5] and rigid, revolute joint robotic manipulators [6].

An obstacle for high-gain adaptive controllers are systems of relative degree higher than one [7]. In [8], [9], Ilchmann et al. introduce a funnel controller for higher relative degree systems by implementing a “backstepping” procedure in conjunction with a filter/precompensator. The controller achieves tracking with prescribed transient behavior for a large class of systems governed by nonlinear (functional) differential equations, however the backstepping procedure is quite complicated and impractical since it involves high powers of a gain function which typically takes large values. Backstepping is also used for an adaptive λ-tracker in an earlier work by Ye [10].

In the case of relative degree two systems, an alternative funnel controller has been proposed in [4] (see also the modification in [11]), where the backstepping procedure is avoided by using a linear combination of the output and its derivative instead. However, the incorporation of the output derivative means in practice that measurements have to be differentiated. The latter is an ill-posed problem in particular in the presence of noise, see e.g. [12, Sec. 1.4.4].

In [13], Bullinger and Allgöwer introduce an adaptive λ-tracker by composing a high-gain observer, a high-gain observer-state feedback and a common adaptation scheme for both high-gain parameters. The controller achieves tracking with prescribed asymptotic accuracy \(\hat{\lambda} > 0 \) for a class of systems which are affine in the control, of known relative degree, and with affine linearly bounded drift term. The advantage of this controller is that no derivatives of the output are required due to the high-gain observer, however the transient behavior of the tracking error cannot be influenced.

In the present paper we improve the results of [4] by incorporating a funnel observer so that derivatives of the output are not required anymore. The combination of the funnel observer with the funnel controller from [4] results in a dynamic controller achieving prescribed transient behavior of the tracking error.

A. Nomenclature

\[
\begin{align*}
\mathbb{R}_{\geq 0} & = [0, \infty) \\
\mathbb{C} & = \{ \lambda \in \mathbb{C} \mid \text{Re} \lambda < 0 \} \\
\text{GL}_n(\mathbb{R}) & = \text{the group of invertible matrices in } \mathbb{R}^{n \times n} \\
\sigma(A) & = \text{the spectrum of } A \in \mathbb{R}^{n \times n} \\
\mathcal{L}_{\text{loc}}^2(I \rightarrow \mathbb{R}^m) & = \text{the set of locally essentially bounded functions } f : I \rightarrow \mathbb{R}^m, I \subseteq \mathbb{R} \text{ an interval} \\
\mathcal{L}_\infty^m(I \rightarrow \mathbb{R}^m) & = \text{the set of essentially bounded functions } f : I \rightarrow \mathbb{R}^m \text{ with norm} \\
\|f\|_\infty & = \text{ess sup}_{t \in I} \|f(t)\| \\
\mathcal{W}^k(\mathbb{R}^n) & = \text{the set of } k\text{-times weakly differentiable functions } f : \mathbb{R}^n \rightarrow \mathbb{R}^n \text{ such that } f, \ldots, f^{(k)} \in \mathcal{L}_\infty^m(I \rightarrow \mathbb{R}^m) \\
\mathcal{C}(V \rightarrow \mathbb{R}^n) & = \text{the set of continuous functions } f : V \rightarrow \mathbb{R}^n, V \subseteq \mathbb{R}^m \\
f|_W & = \text{restriction of the function } f : V \rightarrow \mathbb{R}^n \text{ to } W \subseteq V
\end{align*}
\]

B. System class

In the present paper we consider linear single-input single-output systems given by

\[
\begin{align*}
\dot{x}(t) & = Ax(t) + bu(t), \quad x(0) = x^0 \\
y(t) & = cx(t)
\end{align*}
\]

where \(A \in \mathbb{R}^{n \times n} \) and \(b, c^T, x^0 \in \mathbb{R}^n \). The functions \(u, y : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R} \) are called input and output of the system (1), resp. We assume that (1) has relative degree 2, positive high-frequency gain and is minimum phase (equivalently, the zero dynamics are asymptotically stable, cf. [14]), that is

(A1) \(cb = 0 \) and \(cAb > 0 \);

(A2) \(\det \begin{bmatrix} I_n - A & b \\ c & 0 \end{bmatrix} \neq 0 \) for all \(\lambda \in \mathbb{C} \) with \(\text{Re} \lambda \geq 0 \).
Adaptive control of minimum phase linear systems (1) is well-studied, see e.g. [15]–[18]. We formulate our control objective in the following.

C. Control objective

The objective is to design a dynamic output feedback
\[
\begin{align*}
\dot{z}(t) &= F(t,z(t),y(t),y_{ref}(t)), \\
u(t) &= G(t,z(t),y(t),y_{ref}(t)),
\end{align*}
\]
where \(y_{ref}\) is a sufficiently smooth reference signal, such that in the closed-loop system the tracking error \(e(t) = y(t) - y_{ref}(t)\) evolves within a prescribed performance funnel
\[
\mathcal{F}_{\phi} := \{ (t,e) \in \mathbb{R}_{\geq 0} \times \mathbb{R} \mid |\phi(t)|e < 1 \},
\]
which is determined by a function \(\phi\) belonging to
\[
\Phi := \{ \phi \in \mathcal{W}^{1,\infty}(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}) \mid \phi(\tau) > 0 \text{ for all } \tau > 0 \text{ and } \phi(0) = 0 \}.
\]
Furthermore, all signals involved should remain bounded.

The funnel boundary is given by the reciprocal of \(\phi\), see Fig. 1. The case \(\phi(0) = 0\) is explicitly allowed and puts no restriction on the initial value since \(\phi(0)|e(0)| < 1\); in this case the funnel boundary \(1/\phi\) has a pole at \(t = 0\).

![Fig. 1: Error evolution in a funnel \(\mathcal{F}_{\phi}\) with boundary \(\phi(t)^{-1}\).](image)

An important property is that each performance funnel \(\mathcal{F}_{\phi}\) with \(\phi \in \Phi\) is bounded away from zero, i.e., due to boundedness of \(\phi\) there exists \(\lambda > 0\) such that \(1/\phi(t) \geq \lambda\) for all \(t > 0\). The funnel boundary is not necessarily monotonically decreasing, while in most situations it is convenient to choose a monotone funnel. However, there are situations where widening the funnel over some later time interval might be beneficial, e.g., when the reference trajectory changes strongly or the system is perturbed by some calibration so that a large tracking error would enforce a large input action.

In the present paper we show that the control objective can be achieved by the combination of a funnel observer (see Sec. II) with a proportional-derivative funnel controller for relative degree two systems (see Sec. I-D).

D. Funnel control without observer

For relative degree two systems of the form (1) a funnel controller has been developed in [4]. However, it is not of type (2), since it uses derivative feedback of the form
\[
\begin{align*}
u(t) &= -k_0(t)^2 e(t) - k_1(t) e(t) + u_d(t), \\
k_i(t) &= \frac{\phi_i(t)}{1 - \phi(t)|e(0)|(t)^{i}}, \quad i = 0, 1,
\end{align*}
\]
where \(u_d \in \mathcal{L}^\infty(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R})\) is an input disturbance and \((\phi_0, \phi_1) \in \Phi_2\); the latter class is defined by
\[
\Phi_2 := \{ (\phi_0, \phi_1) \in \Phi \times \Phi \mid \exists \delta > 0 \forall \tau > 0 : \| \phi_1(\tau) \|_1 + \frac{1}{\phi_0(\tau)} \geq \delta \}.
\]

The motivation for the definition of \(\Phi_2\) is that the derivative funnel \(\mathcal{F}_{\phi_1}\) must be large enough to allow the error to follow the funnel boundaries; for more details see [4].

The controller (4) even works for a large class of nonlinear systems governed by functional differential equations of the form
\[
y(t) = f(d(t), T(y,y)(t)) + g(d(t), T(y,y)(t))u(t),
\]
where \(h > 0\) is the “memory” of the system, and
- \(d \in \mathcal{L}^\infty(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^p)\), \(p \in \mathbb{N}\), is a disturbance;
- \(f \in \mathcal{C}(\mathbb{R}^p \times \mathbb{R}^q \rightarrow \mathbb{R})\), \(g \in \mathcal{C}(\mathbb{R}^p \times \mathbb{R}^q \rightarrow \mathbb{R})\), \(q \in \mathbb{N}\), and \(g(v,w) > 0\) for all \((v,w) \in \mathbb{R}^p \times \mathbb{R}^q\);
- \(T : \mathcal{C}([-h,\infty) \rightarrow \mathbb{R}) \rightarrow \mathcal{L}^\infty_{\text{loc}}(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^q)\) is an operator with the following properties:
 a) there exists \(\psi \in \mathcal{C}(\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R})\) such that for all bounded \((\zeta_1, \zeta_2) \in \mathcal{C}(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R})^2\) we have that \(T(\zeta_1, \zeta_2)\) is bounded with \(\|T(\zeta_1, \zeta_2)\|_\infty \leq \psi(\|\zeta_1\|_\infty, \|\zeta_2\|_\infty)\);
 b) \(T\) is causal, i.e., for all \(t \geq 0\) and all \(\zeta, \xi \in \mathcal{C}(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^q)^2\):
 \[\zeta|_{[-h,t]} = \xi|_{[-h,t]} \implies \|T(\zeta)|_{|0,t]} \leq \|\xi|_{|0,t]}\];
 c) \(T\) is “locally Lipschitz” continuous in the following sense: for all \(t \geq 0\) there exist \(\sigma, \delta > 0\) such that for all \(\zeta, \Delta \zeta \in \mathcal{C}(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R})^2\) with \(\Delta \zeta|_{[-h,t]} = 0\) and \(\|\Delta \zeta|_{|t+t+\tau]} \leq \delta\) we have
 \[\|T(\zeta + \Delta \zeta) - T(\zeta)\|_{|0,t+\tau]} \leq c \|\Delta \zeta|_{|t+t+\tau]} \leq \delta\].

In [4], the existence of global solutions of the closed-loop system (5), (4) is investigated. To this end, \(y : [-h,\omega) \rightarrow \mathbb{R}\) is called a solution of (5), (4) on \([-h,\omega), \omega \in [0,\infty]\), if it is twice weakly differentiable, \(y|_{[-h,\omega]} = y_0\), and satisfies (5), (4) for almost all \(t \in [0,\omega]\); \(\omega\) is called maximal, if it has no right extension that is also a solution.

The following result is [4, Thm. 3.1].

Theorem 1.1. Consider a system (5) with initial trajectory \(y_0 \in \mathcal{W}^{1,\infty}([-h,0) \rightarrow \mathbb{R})\), a reference signal \(y_{ref} \in \mathcal{W}^{2,\infty}(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R})\), an input disturbance \(u_d \in \mathcal{L}^\infty(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R})\) and a pair of funnels \((\phi_0, \phi_1) \in \Phi_2\) such that
\[
\begin{align*}
\phi_0(0)|y_0(0)| - y_{ref}(0)| \leq 1 \quad \text{and} \quad \phi_1(0)|y_0(0)| - y_{ref}(0)| \leq 1.
\end{align*}
\]
Then the controller (4) applied to (5) yields a closed-loop system which has a solution, and every maximal solution \(y : [0,\omega) \rightarrow \mathbb{R}\) has the properties:

...
(i) $\omega = \infty$;
(ii) all involved signals $y(t), \dot{y}(t), k_0(t)$ and $k_1(t)$ are bounded;
(iii) the tracking error and its derivative evolve uniformly within the respective performance funnels in the sense
\[\forall i \in \{0, 1\} \, \exists \varepsilon_i > 0 \, \forall t > 0 : \, |e^{(i)}| \leq \varphi_i(t)^{-1} - \varepsilon_i. \]

E. Contribution of the present paper

The drawback of the funnel controller (4) is that it involves derivative feedback and thus it does not satisfy the control objective. The derivative of the output is usually not available or very hard to compute [12, Sec. 1.4.4]. Therefore, a dynamic error feedback of the form (2) is sought.

In the present paper we resolve this drawback by first applying the funnel observer developed in [19] to system (1) to obtain estimates of the output and its derivatives. These estimates are then used in a funnel control design to achieve the control objective. To this end, the funnel observer and its error dynamics are used to define a replacement system to which the controller (4) is applied. For the precise controller structure see Sec. III.

II. THE FUNNEL OBSERVER

An integral part of the controller that we propose in the present paper is the funnel observer developed in [19]. The funnel observer is a simple adaptive observer of “high-gain type” and has the form
\[\begin{align*}
\dot{z}_1(t) &= z_2(t) + (q_1 + p_1 k_2(t))(y(t) - z_1(t)), \\
\dot{z}_2(t) &= \tilde{y} u(t) + (q_2 + p_2 k_2(t))(y(t) - z_1(t)), \\
k_2(t) &= 1 - \frac{\varphi_2(t)^2}{1 + \varphi_2(t)^2} (y(t) - z_1(t))^2, \\
\end{align*} \tag{6} \]
with initial conditions
\[z_i(0) = z_i^0 \in \mathbb{R}, \quad i = 1, 2, \tag{7} \]
where $\varphi_2 \in \Phi$, $\tilde{y} \in \mathbb{R}$ and $q_i > 0$, $p_i > 0$ for all $i = 1, 2$. The functions $z_i : \mathbb{R}_{\geq 0} \to \mathbb{R}$, $i = 1, 2$, are the observer states and $k_2 : \mathbb{R}_{\geq 0} \to [1, \infty)$ is the observer gain. Note that the matrix
\[Q = \begin{bmatrix} -q_1 & 1 \\ -q_2 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2} \]
is Hurwitz, i.e., $\sigma(Q) \subseteq \mathbb{R}$. The constants p_i depend on the choice of the q_i in the following way: Let $R = R^T > 0$ and
\[P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}, \quad P_{11}, P_{12}, P_{22} \in \mathbb{R} \]
be such that
\[Q^T P + PQ + R = 0, \quad P > 0. \]
The matrix P depends only on the choice of the constants q_i and the matrix R. The constants p_i must then satisfy
\[p_1 = 1, \quad p_2 = -\frac{P_{12}}{P_{22}}, \tag{8} \]
This condition guarantees that P defines a quadratic Lyapunov function for the observer error dynamics.

The observer (6) is a nonlinear and time-varying system, nevertheless it is simple in its structure and only two-dimensional. The funnel observer (6) only requires the input signal $u(t)$ and the output signal $y(t)$, see Fig. 2, and no further knowledge of system parameters.

![Fig. 2: Interconnection of system (1) with the funnel observer (6).](image)

Note that by the design of the observer (6), the gain $k_2(t)$ increases if the norm of the error $|y(t) - z_1(t)|$ approaches the funnel boundary $1/\varphi_2(t)$, and decreases if a high gain is not necessary. This guarantees prescribed transient behavior of the observation error $e_1(t) = y(t) - z_1(t)$ as shown in [19, Thm. 4.1].

III. CONTROLLER STRUCTURE

We propose a novel and simple funnel controller for trajectory tracking with prescribed transient behavior for relative degree two systems such that a derivative of the output is not required. The first part of the controller is a funnel observer (6) with positive \tilde{y}. Considering the interconnection of system (1) with the funnel observer (6) we treat the observer state z_1 as an output of this system and apply the controller (4) to it. We stress that the controller (4) requires the derivative of this artificial output, which however is available since $z_1 = z_2 + (q_1 + p_1 k_2) (y - z_1)$ and k_2 only depends on the available variables y, z_1 and the funnel function $\varphi_2 \in \Phi$. Therefore, we arrive at a controller of the form (2), namely
\[\begin{align*}
\dot{z}_1(t) &= z_2(t) + (q_1 + p_1 k_2(t))(y(t) - z_1(t)), \\
\dot{z}_2(t) &= \tilde{y} u(t) + (q_2 + p_2 k_2(t))(y(t) - z_1(t)), \\
u(t) &= -k_0(t)^2(z_1(t) - y_{ref}(t)) \\
& \quad + k_1(t)(z_1(t) - y_{ref}(t)) + u_d(t), \\
k_0(t) &= \frac{\varphi_0(t)}{1 - \varphi_0(t) (z_1(t) - y_{ref}(t))}, \\
k_1(t) &= \frac{\varphi_1(t)}{1 - \varphi_1(t) (z_1(t) - y_{ref}(t))}, \\
k_2(t) &= \frac{\varphi_2(t)^2 (y(t) - z_1(t)^2)}, \tag{9} \]
where $\tilde{y} > 0$, $y_{ref} \in \mathbb{R}_{\geq 0} \to \mathbb{R}$ is the reference trajectory, $u_d \in \mathcal{L}_\infty (\mathbb{R}_{\geq 0} \to \mathbb{R})$ is an input disturbance, $(\varphi_0, \varphi_1) \in \Phi_2$ and $\varphi_2 \in \Phi$ define the funnel boundaries, and $q_1, q_2, p_1, p_2 > 0$ are such that (8) is satisfied for corresponding matrices P, Q, R. The controller structure is depicted in Fig. 3.

IV. MAIN RESULT

The intuition for the funnel controller (9) to work for system (1) is that the error dynamics of the funnel observer act as internal dynamics of the interconnection of system (1) with the funnel observer (6) when the observer state z_1 is
Theorem IV.1. Consider a linear system (1) which satisfies (A1) and (A2) with initial value \(x^0 \in \mathbb{R}^n \), a reference signal \(y_{\text{ref}} \in \mathcal{W}^2,\omega(\mathbb{R}_\geq 0 \to \mathbb{R}) \), an input disturbance \(u_d \in \mathcal{W}^2(\mathbb{R}_\geq 0 \to \mathbb{R}) \) and a pair of funnels \((\varphi_0, \varphi_1) \in \Phi_2 \) such that
\[
\varphi_0(0)|cx^0 - y_{\text{ref}}(0)| < 1 \quad \text{and} \quad \varphi_1(0)|cAx^0 - \dot{y}_{\text{ref}}(0)| < 1.
\]
Further choose initial values (7) and \(\varphi_2 \in \Phi \) such that
\[
\varphi_2(0)|cx^0 - z^0| < 1,
\]
\(\varphi > 0 \) and \(q_1, q_2, p_1, p_2 > 0 \) such that (8) is satisfied for corresponding matrices \(P, Q, R \).

Then the controller (9) applied to (1) yields a closed-loop system which has a unique maximal solution \(y : [0, \omega) \to \mathbb{R} \) with the properties:

(i) \(\omega = \infty \);
(ii) all involved signals \(y(\cdot), \dot{y}(\cdot), z_1(\cdot), z_2(\cdot), k_0(\cdot), k_1(\cdot), k_2(\cdot) \) are bounded;
(iii) the tracking error, its derivative and the observation error evolve uniformly within the respective performance funnels in the sense
\[
\forall \ell \in \{0, 1, 2\} \ \exists \epsilon_\ell > 0 \ \forall t > 0 : \\
\|z_{\ell}(t) - y_{\text{ref}}(t)\| \leq \varphi_0(t)^{-1} - \epsilon_0, \\
\|z_{\ell}(t) - \dot{y}_{\text{ref}}(t)\| \leq \varphi_1(t)^{-1} - \epsilon_1, \\
\|y(t) - z_1(t)\| \leq \varphi_2(t)^{-1} - \epsilon_2.
\]

Proof. Since system (1) has relative degree two by (A1), we may without loss of generality assume that it is in Byrnes-Isidori form:
\[
\begin{align*}
\dot{\mu}_1(t) &= \mu_2(t), \\
\dot{\mu}_2(t) &= r_1 \mu_1(t) + r_2 \mu_2(t) + s \eta(t) + \gamma u(t), \\
\eta(t) &= wy(t) + V \eta(t), \\
y(t) &= \mu_1(t),
\end{align*}
\]
where \(r_1, r_2 \in \mathbb{R} \), \(w, s^\top \in \mathbb{R}^{n-2} \), \(V \in \mathbb{R}^{(n-2)\times(n-2)} \) and \(\gamma = c Ab > 0 \). See [20] and [9, Lem. 3.5] for an explicit derivation of the transformation which leads to (11). By the minimum phase assumption (A2) we further obtain that \(\sigma(V) \subseteq \mathbb{C}_- \). We proceed in several steps.

Step 1: We show existence of a local solution of the closed-loop system consisting of the controller (9) applied to (11). Define
and $F : \mathcal{D} \to \mathbb{R}^{n+2}$ by

$$F(t, \mu_1, \mu_2, \eta, z_1, z_2) =$$

$$\begin{pmatrix}
 r_1 \mu_1 + r_2 \mu_2 + s \eta - \gamma \left(\frac{z_1 - \gamma(t)}{1 - \Phi_0(t) z_1 - \gamma(t)} \right) + \frac{\mu_2}{1 - \Phi_0(t)^2} \left(\frac{z_1 + \gamma(t)}{1 - \Phi_0(t)^2} \right) (\mu_1 - z_1) - u_d(t) \\
 \frac{\gamma}{1 - \Phi_0(t)} \frac{z_2 + \gamma(t)}{1 - \Phi_0(t)^2} (\mu_1 - z_1) - u_d(t) \\
 \left(\frac{\gamma}{1 - \Phi_0(t)} \frac{z_2 + \gamma(t)}{1 - \Phi_0(t)^2} (\mu_1 - z_1) - u_d(t) \right)
\end{pmatrix}.$$

Then the closed-loop system (11), (9) is equivalent to

$$\dot{\alpha}(t) = F(t, \alpha(t))$$

with initial values

$$\alpha(0) = \begin{pmatrix}
 y(0) \\
 \dot{y}(0) \\
 \eta(0) \\
 z_1(0) \\
 z_2(0)
\end{pmatrix} = \begin{pmatrix}
 c x_0^0 \\
 c A x_0 \\
 \eta_0 \\
 z_0^1 \\
 z_0^2
\end{pmatrix},$$

where $\eta_0 \in \mathbb{R}^{n+2}$ is chosen in terms of x_0 and the transformation to the form (11). Thus, $(0, \alpha(0)) \in \mathcal{D}$ and F is measurable in t and locally Lipschitz in $(\mu_1, \mu_2, \eta, z_1, z_2)$. Hence, by the theory of ordinary differential equations (see e.g. [21, § 10, Thm. VI]) there exists a unique maximal absolutely continuous solution $(\mu_1, \mu_2, \eta, z_1, z_2) : [0, \omega) \to \mathbb{R}^{n+2}$, $\omega \in (0, \infty)$, of (12) satisfying the initial conditions. Further, the closure of the graph of this solution is not a compact subset of \mathcal{D}.

Step 2: We transform the closed-loop (11), (9) in order to apply Thm. 1.1. Define the auxiliary output $\tilde{y}(t) := z_1(t)$ and

$$v_1(t) := \mu_1(t) - z_1(t),$$
$$v_2(t) := \mu_2(t) - \frac{\gamma}{\gamma - 2} z_2(t) - r_2 (\mu_1(t) - z_1(t)).$$

Then we obtain

$$\dot{v}_1(t) = -\gamma \left(q_1 - \frac{\gamma}{\gamma - 2} p_0 \right) v_1(t) + v_2(t) + \frac{\gamma}{\gamma - 2} z_1(t),$$
$$\dot{v}_2(t) = -\gamma \left(q_2 - \frac{\gamma}{\gamma - 2} r_1 + r_2 \right) v_1(t) + s \eta(t) + r_1 z_1(t) + r_2 z_2(t) + \frac{1}{1 - \Phi_0(t)^2} v_1(t),$$
$$\dot{\eta}(t) = w v_1(t) + V \eta(t) + w z_1(t),$$
$$k_2(t) = \frac{1}{1 - \Phi_0(t)^2} v_1(t).$$

To put the system (11), (9) into an equation of the form (5) with $y = \tilde{y} = z_1$ we define the operator $T : \mathcal{C}([-h, \infty) \to \mathbb{R}) \to \mathcal{L}_{\infty}^{\text{loc}}(\mathbb{R}^n \to \mathbb{R}^{n+1})$ (essentially) as the solution operator of (13), i.e., for $\xi_1, \xi_2 \in \mathcal{C}([-h, \infty) \to \mathbb{R}$ let $(v_1, v_2, \eta) : [0, \beta) \to \mathbb{R}^n$, $\beta \in (0, \infty)$, be the unique maximal solution of (13) for $z_1 = \xi_1$, $z_2 = \xi_2$ corresponding to the initial values $v_1(0) = c x_0^0 - z_0^1$, $v_2(0) = c A x_0 - \frac{\gamma}{\gamma - 2} z_0^2 - r_2 v_1(0)$, $\eta(0) = \eta_0$, and define

$$T(\xi_1, \xi_2)(t) := (v_1(t), v_2(t), \eta(t)^T, k_2(t))^T, \quad t \in [0, \beta).$$

We now show that T is well-defined, i.e., $\beta = \infty$, and has the properties a)–c) as defined in Sec. I-D. Note that $(\xi_1, \xi_2) : [0, \beta) \to \mathcal{D}$ for all $t \in [0, \beta)$, where

$$\mathcal{D} := \{ (v_1, v_2, \eta) \in \mathbb{R} \times \mathbb{R}^n \mid \Phi_2(t) v_1 < 1 \}$$

and the closure of the graph of the solution (v_1, v_2, η) is not a compact subset of \mathcal{D}.

Step 2a: First assume that ξ_1 and ξ_2 are bounded on $[0, \beta]$. We show that v_1, v_2, η and k_2 are bounded as well. As $\Phi_2(t) v_1(0) < 1$ for all $t \in [0, \beta]$ it is clear that v_1 is bounded and thus, as $\sigma(V) \subseteq C_\infty$, η is bounded as well. Let $v(t) := (v_1(t), v_2(t))^T$ and observe that

$$\dot{v}(t) = Q v(t) - k_2(t) \frac{\gamma}{\gamma - 2} \begin{pmatrix} p_0 \\
 p_2 \end{pmatrix} v_1(t)$$

$$+ \begin{pmatrix} \frac{\gamma}{\gamma - 2} \xi_2(t) - q_1 v_1(t) \end{pmatrix} + r_2 v_1(t)$$

$$+ \begin{pmatrix} \frac{\gamma}{\gamma - 2} \xi_2(t) - q_2 \xi_1(t) + q_1 v_1(t) \end{pmatrix}$$

$$+ \begin{pmatrix} \frac{\gamma}{\gamma - 2} \xi_2(t) + s \eta(t) + r_1 \xi_1(t) + r_2 \xi_2(t) + r_1 v_1(t) \end{pmatrix}$$

for almost all $t \in [0, \beta]$. Boundedness of v_1, ξ_1, ξ_2 and η gives that, for all $t \in [0, \beta]$,

$$\left\| \begin{pmatrix} \frac{\gamma}{\gamma - 2} \xi_2(t) - q_1 v_1(t) \end{pmatrix} + r_2 v_1(t) + \begin{pmatrix} \frac{\gamma}{\gamma - 2} \xi_2(t) - q_2 \xi_1(t) + q_1 v_1(t) \end{pmatrix} + \begin{pmatrix} \frac{\gamma}{\gamma - 2} \xi_2(t) + s \eta(t) + r_1 \xi_1(t) + r_2 \xi_2(t) + r_1 v_1(t) \end{pmatrix} \right\| \leq M_1$$

for some $M_1 > 0$. We now find that, for almost all $t \in [0, \beta]$,

$$\frac{4}{3} v(t)^T P v(t)$$

$$= \langle v(t)^T (Q P + PQ) v(t) - 2 k_2(t) \frac{\gamma}{\gamma - 2} v_1(t) \rangle$$

$$+ 2 v(t)^T P \left(\begin{pmatrix} \frac{\gamma}{\gamma - 2} \xi_2(t) - q_1 v_1(t) \end{pmatrix} + r_2 v_1(t) + \begin{pmatrix} \frac{\gamma}{\gamma - 2} \xi_2(t) - q_2 \xi_1(t) + q_1 v_1(t) \end{pmatrix} + \begin{pmatrix} \frac{\gamma}{\gamma - 2} \xi_2(t) + s \eta(t) + r_1 \xi_1(t) + r_2 \xi_2(t) + r_1 v_1(t) \end{pmatrix} \right)^2$$

$$+ 2M_1 ||v(t)||.$$

A simple calculation reveals that $P_1 - P_2^2 / P_2^2 > 0$ and hence,
with $M_2 := 2M_1 \|P\| > 0$ and $\mu := \lambda_{\text{min}}(R)/\lambda_{\text{max}}(P)$1 we have
\[
\frac{d}{dt} v(t)^T P v(t) \leq -\mu v(t)^T P v(t) + M_2 v(t) \|v(t)\|.
\]
Let $\delta \in (0, m \lambda_{\text{min}}(P))$ be arbitrary and $\rho = M_2/\delta$. If $\|v(t)\| \leq \rho$,
\[
M_2 \|v(t)\| - \delta \|v(t)\|^2 \leq (M_2 - \delta \rho) \|v(t)\| = 0,
\]
and hence (14) is also true in this case. Therefore,
\[
\frac{d}{dt} v(t)^T P v(t) \leq \left(-\mu + \frac{\delta}{\lambda_{\text{max}}(P)}\right) v(t)^T P v(t) + M_2 \rho
\]
for almost all $t \in (0, \beta)$. Gronwall’s lemma now implies that, with $v := \mu - \frac{\delta}{\lambda_{\text{max}}(P)} > 0$,
\[
v(t)^T P v(t) \leq v(0)^T P v(0)e^{-vt} + M_2 \rho/t,
\]
and hence
\[
\forall t \in [0, \beta]: \quad \|v(t)\|^2 \leq \frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)} e^{-vt} \|v(0)\|^2 + \frac{M_2 \rho}{vt}.
\]
In particular, we obtain $v \in L^\infty(0, \beta) \to \mathbb{R}^2$.

Step 2b: We show that $k_2 \in L^\infty((0, \beta) \to \mathbb{R})$, still provided that ζ_1 and ζ_2 are bounded on $[0, \beta]$. Let $\kappa \in (0, \beta)$ be arbitrary but fixed and let $\lambda := \inf_{t \in [0, \beta]} \Phi_2(t)^{-1} > 0$. Since Φ_2 is bounded and $\liminf_{t \to \infty} \Phi_2(t) > 0$ we find that $\frac{d}{dt} \Phi_2(t)^{-1}$ is bounded and hence there exists a Lipschitz bound $L > 0$ of $\Phi_2(t)^{-1}$. By Step 2a, v_2 is bounded and we may choose $\varepsilon > 0$ small enough so that
\[
\varepsilon \leq \min \left\{ \frac{\lambda}{2}, \inf_{t \in [0, \kappa]} \left(\Phi_2(t)^{-1} - |v_1(t)| \right) \right\}
\]
and
\[
L \leq -S + \frac{\gamma}{T} \left(\frac{\beta}{2} + \frac{\lambda^2}{4} \right),
\]
where
\[
S = \sup_{t \in [0, \beta]} |v_2(t)| + \frac{\beta - \beta_1}{T} \sup_{t \in [0, \beta]} |\zeta_2(t)|,
\]
and $\beta_1 = q_1 - \frac{\gamma}{T} r_2$.

We show that
\[
\forall t \in (0, \beta): \quad \Phi_2(t)^{-1} - |v_1(t)| \geq \varepsilon.
\]
By definition of ε this holds on $(0, \kappa]$. Seeking a contradiction suppose that
\[
\exists t_1 \in [\kappa, \beta]: \quad \Phi_2(t_1)^{-1} - |v_1(t_1)| < \varepsilon.
\]
Then for $t_0 := \max \{ t \in [\kappa, t_1] : \Phi_2(t)^{-1} - |v_1(t)| = \varepsilon \}$, we have for all $t \in [t_0, t_1]$ that
\[
\Phi_2(t)^{-1} - |v_1(t)| \leq \varepsilon,
\]
\[
|v_1(t)| \geq \Phi_2(t)^{-1} - \varepsilon \geq \lambda - \varepsilon \geq \frac{\lambda}{2},
\]
\[
k_2(t) = \frac{1}{1 - \Phi_2(t)^{-1}|v_1(t)|} \geq \frac{1}{2} \lambda^2 \Phi_2(t) \geq \frac{1}{2} \lambda^2.
\]

Now we calculate, for all $t \in [t_0, t_1]$,
\[
\frac{1}{2} \Phi_2(t)^{-1} |v_1(t)|^2 = v_1(t) \left(v_2(t) - \frac{v_2(t)}{2} q_1 + k_2(t) + \frac{v_2(t)}{2} \zeta_2(t) \right) \leq -\frac{\gamma}{4} q_1 + k_2(t) \|v_1(t)\|^2 + S |v_1(t)| \leq -\frac{\gamma}{4} \left(\frac{\beta}{2} + \frac{\lambda^2}{4} \right) |v_1(t)| + S |v_1(t)| \leq -L |v_1(t)|.
\]
Therefore, using $\frac{d}{dt} |v_1(t)|^2 = 2 |v_1(t)| \frac{d}{dt} |v_1(t)|$, and that $|v_1(t)| > 0$ for all $t \in [t_0, t_1]$, we find that
\[
|v_1(t_1)| - |v_1(t_0)| = \int_{t_0}^{t_1} 2 |v_1(t)| \frac{d}{dt} |v_1(t)|^2 dt \leq -L(t_1 - t_0) \leq -\Phi_2(t_1)^{-1} - \Phi_2(t_0)^{-1} \leq \Phi_2(t_1)^{-1} - \Phi_2(t_0)^{-1},
\]
and hence
\[
\varepsilon = \Phi_2(t_0)^{-1} - |v_1(t_0)| \leq \Phi_2(t_1)^{-1} - |v_1(t_1)| < \varepsilon,
\]
a contradiction. As a consequence, (16) holds and this implies boundedness of k_2.

Step 2c: We show $\beta = \infty$ (not assuming boundedness of ζ_1, ζ_2). Assume that $\beta < \infty$. Then ζ_1 and ζ_2 are bounded on $[0, \beta]$ and hence v_1, v_2, η and k_2 are bounded by Steps 2a and 2b. Therefore, it follows that the closure of the graph of the solution (v_1, v_2, η) is a compact subset of \mathcal{D}, a contradiction, thus $\beta = \infty$.

Step 2d: It remains to show that T has the properties a)–c). Properties b) and c) are clear and property a) is an immediate consequence of Step 2a.

Step 3: By Step 2 we may write the closed-loop system (11), (9) in the form
\[
\dot{z}_1(t) = \tilde{u}(t) + \Phi_2(t) v_1(t) + 2 p_1 k_2(t)^2 \Phi_2(t) \Phi_2(t) v_2(t)^3 + (2 p_1 k_2(t)^2 \Phi_2(t)^2 v_1(t)^2 + q_1 + p_1 k_2(t)^2) v_1(t),(\dot{z}_1(t) = \Phi_2(t) \Phi_2(t)^3 + (2 p_1 k_2(t)^2 \Phi_2(t)^2 v_1(t)^2 + q_1 + p_1 k_2(t)^2) v_1(t),
\]
\[
\dot{v}_1(t) = -\frac{\gamma}{T} \left(q_1 - \frac{\gamma}{T} r_2 + p_1 k_2(t)^2 \right) v_1(t) + v_2(t) + \frac{\gamma}{T} \varepsilon(z_1(t),
\]
and hence
\[
\tilde{z}_1(t) = f (d(t), z_1(t), T(z_1, z_1(t))) + \tilde{u}(t)
\]
for some appropriate function $f \in C(\mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R})$ and
\[
d := \frac{\Phi_2}{\Phi_2} \in L^\infty(\mathbb{R}_\geq 0 \to \mathbb{R}^2).
\]
We stress again that $\tilde{z} = z_1$ is the artificial output of system (17). Therefore, we may now apply Thm. I.1 and conclude that the application of the control
\[
u(t) = -k_0(t)^2 (z_1(t) - y_{ref}(t)) - k_1(t) (\dot{z}_1(t) - y_{ref}(t)) + u_0(t),
\]
\[
k_0(t) = \frac{\Phi_2(t)^{-1}}{1 - \Phi_2(t)^{-1} z_1(t) - y_{ref}(t)},
\]
\[
k_1(t) = \frac{\Phi_2(t)^{-1}}{1 - \Phi_2(t)^{-1} z_1(t) - y_{ref}(t)}.
\]

to the system (17) yields a closed-loop system where every solution z_1 can be extended to a global solution, the signals z_1, \dot{z}_1, k_0 and k_1 are bounded and the first two conditions in (10) are satisfied.

In particular, the unique maximal solution $(\mu_1, \nu_2, \eta, z_1, z_2)$ of (12) obtained in Step 1 constitutes a maximal solution

1Here $\lambda_{\text{max}}(P)$ denotes the largest eigenvalue of the positive definite matrix P, and $\lambda_{\text{min}}(P)$ denotes its smallest eigenvalue.
of (17) by observing that
\[v_1 = \mu_1 - z_1, \quad v_2 = \mu_2 - r_2 v_1 - z_2. \]
Therefore, \(\omega = \infty \) and \(z_1, z_2, k_0 \) and \(k_1 \) are bounded, and by invoking Step 2 it follows that \(v_1, v_2 \) and \(k_2 \) are bounded. This implies boundedness of \(z_2 \) and hence of \(\dot{y} \). We have thus shown (i) and (ii), and (iii) follows from the boundedness of \(k_0, k_1 \) and \(k_2 \) which completes the proof of the theorem.

Remark IV.2. We stress that the original control objective as stated in Sec. I-C was prescribed transient behavior of the tracking error \(e(t) = y(t) - y_{ref}(t) \). The funnel controller (9) is indeed able to achieve this: Given \(\varphi \in \Phi \) with the aim that \((t, e(t)) \in \mathcal{F}_\varphi \) for all \(t \geq 0 \), we may set \(\varphi_0 = \varphi_2 = 2 \varphi \) and choose \(\varphi_1 \in \Phi \) such that \((\varphi_0, \varphi_1) \in \Phi_2 \). By Thm. IV.1 an application of the funnel controller (9) yields the error evolution (10) and we calculate
\[
|e(t)| \leq |y(t) - z_1(t)| + |z_1(t) - y_{ref}(t)| \\
\leq \varphi_0(t)^{-1} - e_0 + \varphi_2(t)^{-1} - e_2 = \varphi(t)^{-1} - e_0 - e_2,
\]
thus \(e(t) \) evolves uniformly within the funnel \(\mathcal{F}_\varphi \).

Remark IV.3. We discuss some extensions of Theorem IV.1.

(i) It is a straightforward modification of the proof of Theorem IV.1 to show that its statement remains valid when a nonlinear perturbation affects system (1). More precisely, we may consider the nonlinearly perturbed system
\[
\dot{x}(t) = Ax(t) + bu(t) + \Delta(t, x(t)), \quad x(0) = x^0
\]
where, additionally to (A1) and (A2), we assume that the perturbation \(\Delta \) satisfies
\[
(A3) \quad \Delta \in \mathcal{C}(\mathbb{R} \to \mathbb{R}^n) \text{ is locally Lipschitz continuous w.r.t } x \text{ and there exists } \vartheta \in \mathcal{C}(\mathbb{R} \to \mathbb{R}^+) \text{ such that}
\]
\[
\forall (t, x) \in \mathbb{R} \times \mathbb{R}^n : \| \Delta(t, x) \| \leq \vartheta(cx).
\]
Tracking in the presence of perturbations has been studied in [22] for relative degree one systems and in [8], [10], [23] for systems of arbitrary relative degree. As discussed before, in the latter case the control law requires derivatives of the output and/or a complicated backstepping procedure.

(ii) As shown in [11], [12] the equation for \(u(t) \) in the controller (4) can be modified such that
\[
u(t) = -k_0(t)^2 e(t) - k_0(t) k_1(t) \dot{e}(t) + u_d(t)
\]
and Thm. I.1 is still true. As a consequence, a careful inspection of the proof of Thm. IV.1 reveals that it is still true when we modify \(u(t) \) in (9) to
\[
u(t) = -k_0(t)^2 (z_1(t) - y_{ref}(t)) \\
- k_0(t) k_1(t) (\dot{z}_1(t) - \dot{y}_{ref}(t)) + u_d(t).
\]

The motivation for this modification is that the original controller (4) yields a badly damped closed-loop system response and may lead to admissibility problems in applications since speed measurement is usually very noisy; for more details see [11], [12].

V. SIMULATIONS

We illustrate Theorem IV.1 and compare our controller to the funnel controller proposed in [8]. To this end, we consider the same situation as in [8]: The controller is applied to a controlled pendulum modelled by the nonlinearly perturbed relative degree two system
\[
j(t) + a \sin y(t) = bu(t),
\]
with parameters \(a, b \in \mathbb{R}, b \neq 0 \). For the simulation, the parameters are chosen as \(a = 1/2, b = 1 \), the initial values as \(y(0) = 0, \dot{y}(0) = 0 \) and the reference trajectory is \(y_{ref}(t) = (1/2) \cos t \). Obviously, the system can be reformulated in the form (18), cf. also [8], and satisfies the assumptions (A1)–(A3). We use the controller (9) with the modification (19) as discussed in Remark IV.3, and choose the funnel functions
\[
\varphi_0(t) = \varphi_2(t) = \begin{cases} 20(1 - (0.1t - 1)^2), & 0 \leq t < 10, \\
20, & t \geq 10, \\
\end{cases}
\]
Thus guarantees that the tracking error remains in the same funnel as suggested in [8]; in particular, a tracking accuracy of \(|e(t)| < 0.1 \) is guaranteed for \(t \geq 10 \). Furthermore, we choose \(\beta = 2.1 + q_1 = q_2 = p_1 = 1, \ p_2 = 1/3 \) which satisfy (8) with \(R = I_2 \). Remark IV.3 together with Theorem IV.1 yields that the application of the controller (9) with the modification (19) to the system (20) is feasible. We compare the simulation to that of the controller in [8].

The simulation of the controller (9) with the modification (19) applied to (20) over the time interval \([0, 20]\) has been performed in MATLAB (solver: ode45, rel. tol.: \(10^{-14} \), abs. tol.: \(10^{-10} \)) and is depicted in Fig. 4. Fig. 4a shows the tracking error, while Fig. 4b shows the input function generated by the controller. The corresponding gain functions are depicted in Fig. 4c. It can be seen that our proposed funnel controller requires much less input action than the controller in [8] when compared to [8, Fig. 3 & 4] and provides an excellent performance.

VI. CONCLUSION

In the present paper we have proposed a new dynamic funnel controller for tracking of linear minimum phase single-input single-output systems (1) with relative degree two. Our controller is based on the combination of the funnel observer from [19] with a proportional-derivative funnel controller from [4] or [11]. This yields a dynamic controller (9) which achieves, for a given sufficiently smooth reference signal, that the tracking error evolves within a prespecified performance funnel. Furthermore, it uses only the output of the system and does not need its derivative. Moreover, no knowledge of the system parameters is required for the controller design.
We have shown that feasibility of our funnel controller (9) is not limited to linear systems; a straightforward extension to certain non-linearly perturbed systems is possible. The extension of our proposed controller methodology to more general classes of nonlinear systems and systems with higher relative degree is the topic of future research.

REFERENCES