
Hamburger Beiträge
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Funnel control via funnel observer for
minimum phase systems with relative degree two

Thomas Berger and Timo Reis

Abstract—We consider tracking control for the class of linear
minimum phase single-input single-output systems with relative
degree two. For a given sufficiently smooth reference signal we
introduce a dynamic controller which achieves that the tracking
error evolves within a prespecified performance funnel. This
controller is based on the combination of the recently developed
funnel observer with a proportional-derivative funnel controller.
Altogether, this yields a dynamic controller which satisfies the
control objective and uses only the output of the system and
NOT the derivative of the output. The system parameters do not
have to be known for the controller design.

Index Terms—Linear systems, funnel control, funnel observer,
relative degree, minimum phase.

I. INTRODUCTION

IN the present paper we consider output tracking for
linear minimum phase systems with relative degree two

by funnel control. The concept of funnel control has been
developed in [1] for ordinary differential equations, see also
the survey [2] and the references therein. In particular, the
funnel controller proved to be the appropriate tool for tracking
problems in various applications, such as chemical reactor
models [3], industrial servo-systems [4], [5] and rigid, revolute
joint robotic manipulators [6].

An obstacle for high-gain adaptive controllers are systems of
relative degree higher than one [7]. In [8], [9], Ilchmann et al.
introduce a funnel controller for higher relative degree systems
by implementing a “backstepping” procedure in conjunction
with a filter/precompensator. The controller achieves tracking
with prescribed transient behavior for a large class of sys-
tems governed by nonlinear (functional) differential equations,
however the backstepping procedure is quite complicated and
impractical since it involves high powers of a gain function
which typically takes large values. Backstepping is also used
for an adaptive λ -tracker in an earlier work by Ye [10].

In the case of relative degree two systems, an alternative
funnel controller has been proposed in [4] (see also the
modification in [11]), where the backstepping procedure is
avoided by using a linear combination of the output and its
derivative instead. However, the incorporation of the output
derivative means in practice that measurements have to be
differentiated. The latter is an ill-posed problem in particular
in the presence of noise, see e.g. [12, Sec. 1.4.4].

In [13], Bullinger and Allgöwer introduce an adaptive
λ -tracker by composing a high-gain observer, a high-gain
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observer-state feedback and a common adaptation scheme for
both high-gain parameters. The controller achieves tracking
with prescribed asymptotic accuracy λ > 0 for a class of sys-
tems which are affine in the control, of known relative degree,
and with affine linearly bounded drift term. The advantage of
this controller is that no derivatives of the output are required
due to the high-gain observer, however the transient behavior
of the tracking error cannot be influenced.

In the present paper we improve the results of [4] by
incorporating a funnel observer so that derivatives of the
output are not required anymore. The combination of the
funnel observer with the funnel controller from [4] results in
a dynamic controller achieving prescribed transient behavior
of the tracking error.

A. Nomenclature
R≥0 = [0,∞)
C− = { λ ∈ C | Reλ < 0 }
Gln(R) the group of invertible matrices in Rn×n

σ(A) the spectrum of A ∈ Rn×n

L ∞
loc(I→Rn) the set of locally essentially bounded func-

tions f : I→Rn, I ⊆ R an interval
L ∞(I→Rn) the set of essentially bounded functions f :

I→Rn with norm
∥ f∥∞ = ess supt∈I∥ f (t)∥
W k,∞(I →
Rn)

the set of k-times weakly differentiable
functions f : I→Rn such that f , . . . , f (k) ∈
L ∞(I→Rn)

C (V →Rn) the set of continuous functions f : V →Rn,
V ⊆ Rm

f |W restriction of the function f : V →Rn to
W ⊆V

B. System class

In the present paper we consider linear single-input single-
output systems given by

ẋ(t) = Ax(t)+bu(t), x(0) = x0

y(t) = cx(t)
(1)

where A ∈Rn×n and b,c⊤,x0 ∈Rn. The functions u,y : R≥0 →
R are called input and output of the system (1), resp. We
assume that (1) has relative degree 2, positive high-frequency
gain and is minimum phase (equivalently, the zero dynamics
are asymptotically stable, cf. [14]), that is
(A1) cb = 0 and cAb > 0;

(A2) det
[

λ In −A b
c 0

]
̸= 0 for all λ ∈ C with Reλ ≥ 0.
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Adaptive control of minimum phase linear systems (1) is well-
studied, see e.g. [15]–[18]. We formulate our control objective
in the following.

C. Control objective

The objective is to design a dynamic output feedback

ż(t) = F
(
t,z(t),y(t),yref(t)

)
,

u(t) = G
(
t,z(t),y(t),yref(t)

)
,

(2)

where yref is a sufficiently smooth reference signal, such that
in the closed-loop system the tracking error e(t)= y(t)−yref(t)
evolves within a prescribed performance funnel

Fφ := { (t,e) ∈ R≥0 ×R | φ(t)|e|< 1 } , (3)

which is determined by a function φ belonging to

Φ :=

φ ∈W 1,∞(R≥0→R)

∣∣∣∣∣∣
φ(τ)> 0 for all τ > 0 and
for all ε > 0:
φ−1

∣∣
[ε,∞)

∈W 1,∞([ε,∞)→R)

 .

Furthermore, all signals involved should remain bounded.
The funnel boundary is given by the reciprocal of φ , see

Fig. 1. The case φ(0) = 0 is explicitly allowed and puts no
restriction on the initial value since φ(0)|e(0)|< 1; in this case
the funnel boundary 1/φ has a pole at t = 0.

λ

b
(0,e(0))

φ(t)−1

t

Fig. 1: Error evolution in a funnel Fφ with boundary φ(t)−1.

An important property is that each performance funnel
Fφ with φ ∈ Φ is bounded away from zero, i.e., due to
boundedness of φ there exists λ > 0 such that 1/φ(t) ≥ λ
for all t > 0. The funnel boundary is not necessarily monoton-
ically decreasing, while in most situations it is convenient to
choose a monotone funnel. However, there are situations where
widening the funnel over some later time interval might be
beneficial, e.g., when the reference trajectory changes strongly
or the system is perturbed by some calibration so that a large
tracking error would enforce a large input action.

In the present paper we show that the control objective can
be achieved by the combination of a funnel observer (see
Sec. II) with a proportional-derivative funnel controller for
relative degree two systems (see Sec. I-D).

D. Funnel control without observer

For relative degree two systems of the form (1) a funnel
controller has been developed in [4]. However, it is not of

type (2), since it uses derivative feedback of the form

u(t)=−k0(t)2e(t)−k1(t)ė(t)+ud(t), e(t)=y(t)− yref(t),

ki(t)=
φi(t)

1−φi(t)|e(i)(t)|
, i=0,1,

(4)
where ud ∈ L ∞(R≥0 → R) is an input disturbance and
(φ0,φ1) ∈ Φ2; the latter class is defined by

Φ2 :=
{
(φ0,φ1) ∈ Φ×Φ

∣∣∣∣ ∃δ > 0 ∀ t > 0 :
(1/φ1)(t)+ d

dt (1/φ0)(t)≥ δ

}
.

The motivation for the definition of Φ2 is that the derivative
funnel Fφ1 must be large enough to allow the error to follow
the funnel boundaries; for more details see [4].

The controller (4) even works for a large class of nonlinear
systems governed by functional differential equations of the
form

ÿ(t) = f
(
d(t),T (y, ẏ)(t)

)
+g
(
d(t),T (y, ẏ)(t)

)
u(t),

y|[−h,0] = y0 ∈ W 1,∞([−h,0]→ R),
(5)

where h > 0 is the “memory” of the system, and
• d ∈ L ∞(R≥0 → Rp), p ∈ N, is a disturbance;
• f ∈ C (Rp ×Rq → R),g ∈ C (Rp ×Rq → R), q ∈ N, and

g(v,w)> 0 for all (v,w) ∈ Rp ×Rq;
• T : C ([−h,∞)→ R)2 → L ∞

loc(R≥0 → Rq) is an operator
with the following properties:
a) there exists ψ ∈ C (R≥0 × R≥0 → R≥0) such that

for all bounded (ζ1,ζ2) ∈ C ([−h,∞) → R)2 we
have that T (ζ1,ζ2) is bounded with ∥T (ζ1,ζ2)∥∞ ≤
ψ (∥ζ1∥∞,∥ζ2∥∞);

b) T is causal, i.e., for all t ≥ 0 and all ζ ,ξ ∈
C ([−h,∞)→ R)2:

ζ |[−h,t) = ξ |[−h,t) =⇒ T (ζ )|[0,t]
a.e.
= T (ξ )|[0,t] ;

c) T is “locally Lipschitz” continuous in the following
sense: for all t ≥ 0 there exist τ,δ ,c > 0 such that for
all ζ ,∆ζ ∈ C ([−h,∞)→ R)2 with ∆ζ |[−h,t] = 0 and
∥ ∆ζ |[t,t+τ] ∥∞ < δ we have∥∥∥(T (ζ +∆ζ )−T (ζ )

)∣∣
[t,t+τ]

∥∥∥
∞
≤ c∥ ∆ζ |[t,t+τ] ∥∞.

In [4], the existence of global solutions of the closed-loop
system (5), (4) is investigated. To this end, y : [−h,ω) → R
is called a solution of (5), (4) on [−h,ω), ω ∈ (0,∞], if it is
twice weakly differentiable, y|[−h,0] = y0, and satisfies (5), (4)
for almost all t ∈ [0,ω); y is called maximal, if it has no right
extension that is also a solution.

The following result is [4, Thm. 3.1].

Theorem I.1. Consider a system (5) with initial trajec-
tory y0 ∈ W 1,∞([−h,0] → R), a reference signal yref ∈
W 2,∞(R≥0 → R), an input disturbance ud ∈ L ∞(R≥0 → R)
and a pair of funnels (φ0,φ1) ∈ Φ2 such that

φ0(0)|y0(0)− yref(0)|< 1 and φ1(0)|ẏ0(0)− ẏref(0)|< 1.

Then the controller (4) applied to (5) yields a closed-loop
system which has a solution, and every maximal solution y :
[0,ω)→ R has the properties:
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(i) ω = ∞;
(ii) all involved signals y(·), ẏ(·),k0(·) and k1(·) are bounded;

(iii) the tracking error and its derivative evolve uniformly
within the respective performance funnels in the sense

∀ i ∈ {0,1} ∃εi > 0 ∀ t > 0 : |e(i)| ≤ φi(t)−1 − εi.

E. Contribution of the present paper

The drawback of the funnel controller (4) is that it involves
derivative feedback and thus it does not satisfy the control
objective. The derivative of the output is usually not available
or very hard to compute [12, Sec. 1.4.4]. Therefore, a dynamic
error feedback of the form (2) is sought.

In the present paper we resolve this drawback by first
applying the funnel observer developed in [19] to system (1)
to obtain estimates of the output and its derivatives. These
estimates are then used in a funnel control design to achieve
the control objective. To this end, the funnel observer and its
error dynamics are used to define a replacement system to
which the controller (4) is applied. For the precise controller
structure see Sec. III.

II. THE FUNNEL OBSERVER

An integral part of the controller that we propose in the
present paper is the funnel observer developed in [19]. The
funnel observer is a simple adaptive observer of “high-gain
type” and has the form

ż1(t) = z2(t)+
(
q1 + p1k2(t)

)
(y(t)− z1(t)),

ż2(t) = γ̃ u(t)+
(
q2 + p2k2(t)

)
(y(t)− z1(t)),

k2(t) =
1

1−φ2(t)2|y(t)− z1(t)|2
,

(6)

with initial conditions

zi(0) = z0
i ∈ R, i = 1,2, (7)

where φ2 ∈ Φ, γ̃ ∈ R and qi > 0, pi > 0 for all i = 1,2. The
functions zi : R≥0 → R, i = 1,2, are the observer states and
k2 : R≥0 → [1,∞) is the observer gain. Note that the matrix

Q =

[
−q1 1
−q2 0

]
∈ R2×2

is Hurwitz, i.e., σ(Q)⊆ C−. The constants pi depend on the
choice of the qi in the following way: Let R = R⊤ > 0 and

P =

[
P11 P12
P12 P22

]
, P11,P12,P22 ∈ R

be such that

Q⊤P+PQ+R = 0, P > 0.

The matrix P depends only on the choice of the constants qi
and the matrix R. The constants pi must then satisfy

p1 = 1, p2 =−P12
P22

. (8)

This condition guarantees that P defines a quadratic Lyapunov
function for the observer error dynamics.

The observer (6) is a nonlinear and time-varying sys-
tem, nevertheless it is simple in its structure and only two-
dimensional. The funnel observer (6) only requires the input
signal u(t) and the output signal y(t), see Fig. 2, and no further
knowledge of system parameters.

ẋ(t) = Ax(t)+bu(t)

y(t) = cx(t)

Funnel Observer

u(t) y(t)

z(t)

Fig. 2: Interconnection of system (1) with the funnel ob-
server (6).

Note that by the design of the observer (6), the gain k2(t)
increases if the norm of the error |y(t)− z1(t)| approaches
the funnel boundary 1/φ2(t), and decreases if a high gain is
not necessary. This guarantees prescribed transient behavior
of the observation error e1(t) = y(t)− z1(t) as shown in [19,
Thm. 4.1].

III. CONTROLLER STRUCTURE

We propose a novel and simple funnel controller for tra-
jectory tracking with prescribed transient behavior for relative
degree two systems such that a derivative of the output is
not required. The first part of the controller is a funnel
observer (6) with positive γ̃ . Considering the interconnection
of system (1) with the funnel observer (6) we treat the
observer state z1 as an output of this system and apply the
controller (4) to it. We stress that the controller (4) requires the
derivative of this artificial output, which however is available
since ż1 = z2 +

(
q1 + p1k2

)
(y− z1) and k2 only depends on

the available variables y,z1 and the funnel function φ2 ∈ Φ.
Therefore, we arrive at a controller of the form (2), namely

ż1(t) = z2(t)+
(
q1 + p1k2(t)

)
(y(t)− z1(t)),

ż2(t) = γ̃ u(t)+
(
q2 + p2k2(t)

)
(y(t)− z1(t)),

u(t) =−k0(t)2(z1(t)− yref(t)
)

− k1(t)
(
ż1(t)− ẏref(t)

)
+ud(t),

k0(t) =
φ0(t)

1−φ0(t)|z1(t)−yref(t)|
,

k1(t) =
φ1(t)

1−φ1(t)|ż1(t)−ẏref(t)|
,

k2(t) = 1
1−φ2(t)2|y(t)−z1(t)|2

,

(9)

where γ̃ > 0, yref ∈W 2,∞(R≥0 →R) is the reference trajectory,
ud ∈L ∞(R≥0 →R) is an input disturbance, (φ0,φ1)∈Φ2 and
φ2 ∈ Φ define the funnel boundaries, and q1,q2, p1, p2 > 0 are
such that (8) is satisfied for corresponding matrices P,Q,R.
The controller structure is depicted in Fig. 3.

IV. MAIN RESULT

The intuition for the funnel controller (9) to work for
system (1) is that the error dynamics of the funnel observer
act as internal dynamics of the interconnection of system (1)
with the funnel observer (6) when the observer state z1 is
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ẋ(t) = Ax(t)+bu(t)

y(t) = cx(t)

ż1(t) = z2(t)+
(
q1 + p1k2(t)

)
(y(t)− z1(t))

ż2(t) = γ̃ u(t)+
(
q2 + p2k2(t)

)
(y(t)− z1(t))

u(t) =−k0(t)2(z1(t)−yref(t))

− k1(t)
(
z2(t)+

(
q1 + p1k2(t)

)
(y(t)−z1(t))−ẏref(t)

)

u(t) y(t)

z2(t)

z1(t)

yref(t) ẏref(t)

Fig. 3: The funnel controller (9) applied to system (1) consisting, indicated by the grey box, of a funnel observer (6) and a
controller (4).

taken as output. These internal dynamics are stable since, as
we will show, the signals involved in this interconnection are
all bounded and can hence be modeled by an operator which
maps bounded signals to bounded signals, thus allowing the
application of Thm. I.1.

Theorem IV.1. Consider a linear system (1) which satis-
fies (A1) and (A2) with initial value x0 ∈Rn, a reference signal
yref ∈W 2,∞(R≥0 →R), an input disturbance ud ∈L ∞(R≥0 →
R) and a pair of funnels (φ0,φ1) ∈ Φ2 such that

φ0(0)|cx0 − yref(0)|< 1 and φ1(0)|cAx0 − ẏref(0)|< 1.

Further choose initial values (7) and φ2 ∈ Φ such that

φ2(0)|cx0 − z0
1|< 1,

γ̃ > 0 and q1,q2, p1, p2 > 0 such that (8) is satisfied for
corresponding matrices P,Q,R.
Then the controller (9) applied to (1) yields a closed-loop
system which has a unique maximal solution y : [0,ω) → R
with the properties:

(i) ω = ∞;
(ii) all involved signals y(·), ẏ(·),z1(·),z2(·),k0(·),k1(·),k2(·)

are bounded;
(iii) the tracking error, its derivative and the observation

error evolve uniformly within the respective performance
funnels in the sense

∀ i ∈ {0,1,2} ∃εi > 0 ∀ t > 0 :

|z1(t)− yref(t)| ≤ φ0(t)−1 − ε0,

|ż1(t)− ẏref(t)| ≤ φ1(t)−1 − ε1,

|y(t)− z1(t)| ≤ φ2(t)−1 − ε2.

(10)

Proof. Since system (1) has relative degree two by (A1), we
may without loss of generality assume that it is in Byrnes-
Isidori form:

µ̇1(t) = µ2(t),

µ̇2(t) = r1µ1(t)+ r2µ2(t)+ sη(t)+ γu(t),

η̇(t) = wy(t)+V η(t),

y(t) = µ1(t),

(11)

where r1,r2 ∈ R, w,s⊤ ∈ Rn−2, V ∈ R(n−2)×(n−2) and γ =
cAb > 0. See [20] and [9, Lem. 3.5] for an explicit derivation
of the transformation which leads to (11). By the minimum
phase assumption (A2) we further obtain that σ(V )⊆C−. We
proceed in several steps.

Step 1: We show existence of a local
solution of the closed-loop system consisting
of the controller (9) applied to (11). Define

D :=

 (t,µ1,µ2,η ,z1,z2) ∈ R≥0 ×Rn+2

∣∣∣∣∣∣∣
φ0(t)|z1 − yref(t)|< 1

φ1(t)
∣∣∣z2 +

(
q1 +

p1
1−φ2(t)2|µ1−z1|2

)
(µ1 − z1)− ẏref(t)

∣∣∣< 1
φ2(t)|µ1 − z1|< 1


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and F : D → Rn+2 by

F(t,µ1,µ2,η ,z1,z2) =

µ2

r1µ1 + r2µ2 + sη − γ

 z1−yref(t)
1−φ0(t)2|z1−yref(t)|2

+
z2+

(
q1+

p1
1−φ2(t)2|µ1−z1|2

)
(µ1−z1)−ẏref(t)

1−φ1(t)2
∣∣∣∣z2+

(
q1+

p1
1−φ2(t)2|µ1−z1|2

)
(µ1−z1)−ẏref(t)

∣∣∣∣2 −ud(t)


wµ1 +V η

z2 +
(

q1 +
p1

1−φ2(t)2|µ1−z1|2

)
(µ1 − z1)

−γ̃

 z1−yref(t)
1−φ0(t)2|z1−yref(t)|2

+
z2+

(
q1+

p1
1−φ2(t)2|µ1−z1|2

)
(µ1−z1)−ẏref(t)

1−φ1(t)2
∣∣∣∣z2+

(
q1+

p1
1−φ2(t)2|µ1−z1|2

)
(µ1−z1)−ẏref(t)

∣∣∣∣2 −ud(t)

+
(

q2 +
p2

1−φ2(t)2|µ1−z1|2

)
(µ1 − z1)


.

Then the closed-loop system (11), (9) is equivalent to

α̇(t) = F
(
t,α(t)

)
(12)

with initial values

α(0) =


y(0)
ẏ(0)
η(0)
z1(0)
z2(0)

=


cx0

cAx0

η0

z0
1

z0
2

 ,

where η0 ∈Rn−2 is chosen in terms of x0 and the transforma-
tion to the form (11). Thus, (0,α(0))∈D and F is measurable
in t and locally Lipschitz in (µ1,µ2,η ,z1,z2). Hence, by the
theory of ordinary differential equations (see e.g. [21, § 10,
Thm. VI]) there exists a unique maximal absolutely continuous
solution (µ1,µ2,η ,z1,z2) : [0,ω)→ Rn+2, ω ∈ (0,∞], of (12)
satisfying the initial conditions. Further, the closure of the
graph of this solution is not a compact subset of D .

Step 2: We transform the closed-loop (11), (9) in order to
apply Thm. I.1. Define the auxiliary output ȳ(t) := z1(t) and

v1(t) :=µ1(t)− z1(t),

v2(t) :=µ2(t)− γ
γ̃ z2(t)− r2

(
µ1(t)− z1(t)

)
.

Then we obtain

v̇1(t) =− γ
γ̃

(
q1 − γ̃

γ r2 + p1k2(t)
)

v1(t)+ v2(t)+
γ−γ̃

γ̃ ż1(t),

v̇2(t) =− γ
γ̃

(
q2 − γ̃

γ r1 + p2k2(t)
)

v1(t)+ sη(t)+ r1z1(t)

+ r2ż1(t),

η̇(t) = wv1(t)+V η(t)+wz1(t),

k2(t) = 1
1−φ2(t)2|v1(t)|2

.

(13)
To put the system (11), (9) into an equation of the form (5)
with y = ȳ = z1 we define the operator T : C ([−h,∞) →
R)2 → L ∞

loc(R≥0 → Rn+1) (essentially) as the solution oper-
ator of (13), i.e., for ζ1,ζ2 ∈ C ([−h,∞)→ R) let (v1,v2,η) :
[0,β ) → Rn, β ∈ (0,∞], be the unique maximal solution
of (13) for z1 = ζ1, ż1 = ζ2 corresponding to the initial values
v1(0) = cx0−z0

1, v2(0) = cAx0− γ
γ̃ z0

2−r2v1(0), η(0) = η0, and

define

T (ζ1,ζ2)(t) :=
(
v1(t),v2(t),η(t)⊤,k2(t)

)⊤
, t ∈ [0,β ).

We now show that T is well-defined, i.e., β = ∞, and
has the properties a)–c) as defined in Sec. I-D. Note that
(t,v1(t),v2(t),η(t)) ∈ D̃ for all t ∈ [0,β ), where

D̃ := { (t,v1,v2,η) ∈ R≥0 ×Rn | φ2(t)|v1|< 1 }

and the closure of the graph of the solution (v1,v2,η) is not
a compact subset of D̃ .

Step 2a: First assume that ζ1 and ζ2 are bounded on
[0,β ). We show that v1,v2,η and k2 are bounded as well.
As φ2(t)|v1(t)| < 1 for all t ∈ [0,β ) it is clear that v1 is
bounded and thus, as σ(V )⊆ C−, η is bounded as well. Let
v(t) := (v1(t),v2(t))⊤ and observe that

v̇(t) = Qv(t)− k2(t)
γ
γ̃

(
p1
p2

)
v1(t)

+

( γ−γ̃
γ̃ (ζ2(t)−q1v1(t))+ r2v1(t)

q2
γ̃−γ

γ̃ v1(t)+ sη(t)+ r1ζ1(t)+ r2ζ2(t)+ r1v1(t)

)
for almost all t ∈ [0,β ). Boundedness of v1,ζ1,ζ2 and η gives
that, for all t ∈ [0,β ),∥∥∥∥∥
( γ−γ̃

γ̃ (ζ2(t)−q1v1(t))+ r2v1(t)
q2

γ̃−γ
γ̃ v1(t)+ sη(t)+ r1ζ1(t)+ r2ζ2(t)+ r1v1(t)

)∥∥∥∥∥≤ M1

for some M1 > 0. We now find that, for almost all t ∈ [0,β ),
d
dt v(t)⊤Pv(t)

= v(t)⊤
(

Q⊤P+PQ
)

v(t)−2k2(t)
γ
γ̃ v(t)⊤P

(
p1
p2

)
v1(t)

+2v(t)⊤P

( γ−γ̃
γ̃ (ζ2(t)−q1v1(t))+ r2v1(t)

q2
γ̃−γ

γ̃ v1(t)+ sη(t)+ r1ζ1(t)+ r2ζ2(t)+ r1v1(t)

)
≤−v(t)⊤Rv(t)−2k2(t)

γ
γ̃ (P11 −P2

12/P22)|v1(t)|2

+2M1∥P∥∥v(t)∥.

A simple calculation reveals that P11−P2
12/P22 > 0 and hence,
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with M2 := 2M1∥P∥> 0 and µ := λmin(R)/λmax(P)1 we have
d
dt v(t)⊤Pv(t)≤−µv(t)⊤Pv(t)+M2∥v(t)∥.

Let δ ∈
(
0,µλmin(P)

)
be arbitrary and ρ = M2

δ . If ∥v(t)∥ ≤ ρ ,

M2∥v(t)∥ ≤ δ∥v(t)∥2 +M2ρ (14)

On the other hand, if ∥v(t)∥> ρ , then

M2∥v(t)∥−δ∥v(t)∥2 ≤ (M2 −δρ)∥v(t)∥= 0,

and hence (14) is also true in this case. Therefore,

d
dt v(t)⊤Pv(t)≤

(
−µ̃ + δ

λmin(P)

)
v(t)⊤Pv(t)+M2ρ

for almost all t ∈ [0,β ). Gronwall’s lemma now implies that,
with ν := µ − δ

λmin(P)
> 0,

v(t)⊤Pv(t)≤ v(0)⊤Pv(0)e−νt + M2ρ
ν ,

and hence

∀ t ∈ [0,β ) : ∥v(t)∥2 ≤ λmax(P)
λmin(P)

e−νt∥v(0)∥2 + M2ρ
νλmin(P)

.

In particular, we obtain v ∈ L ∞ ([0,β )→ R2
)
.

Step 2b: We show that k2 ∈L ∞ ([0,β )→ R), still provided
that ζ1 and ζ2 are bounded on [0,β ). Let κ ∈ (0,β ) be
arbitrary but fixed and λ := inft∈(0,β ) φ2(t)−1 > 0. Since φ̇2 is
bounded and liminft→∞ φ2(t)> 0 we find that d

dt φ2|[κ,∞) (·)−1

is bounded and hence there exists a Lipschitz bound L > 0 of
φ2|[κ,∞) (·)−1. By Step 2a, v2 is bounded and we may choose
ε > 0 small enough so that

ε ≤ min
{

λ
2
, inf
t∈(0,κ]

(φ2(t)−1 −|v1(t)|)
}

and

L ≤−S+
γ
γ̃

(
q̃1λ

2
+

λ 2

4ε

)
, (15)

where

S = sup
t∈[0,β )

|v2(t)|+ |γ−γ̃|
γ̃ sup

t∈[0,β )
|ζ2(t)|, q̃1 = q1 − γ̃

γ r2.

We show that

∀ t ∈ (0,β ) : φ2(t)−1 −|v1(t)| ≥ ε. (16)

By definition of ε this holds on (0,κ]. Seeking a contradiction
suppose that

∃ t1 ∈ [κ,β ) : φ2(t1)−1 −|v1(t1)|< ε.

Then for t0 := max
{

t ∈ [κ, t1)
∣∣ φ2(t)−1 −|v1(t)|= ε

}
, we

have for all t ∈ [t0, t1] that

φ2(t)−1 −|v1(t)| ≤ ε,
|v1(t)| ≥ φ2(t)−1 − ε ≥ λ − ε ≥ λ

2 ,

k2(t) = 1
1−φ2(t)2|v1(t)|2

≥ 1
2εφ2(t)

≥ λ
2ε .

1Here λmax(P) denotes the largest eigenvalue of the positive definite
matrix P, and λmin(P) denotes its smallest eigenvalue.

Now we calculate, for all t ∈ [t0, t1],

1
2

d
dt |v1(t)|2 = v1(t)

(
v2(t)− γ

γ̃ (q̃1 + k2(t))v1(t)+
γ−γ̃

γ̃ ζ2(t)
)

≤ − γ
γ̃ (q̃1 + k2(t)) |v1(t)|2 +S|v1(t)|

≤ − γ
γ̃

(
q̃1λ

2 + λ 2

4ε

)
|v1(t)|+S|v1(t)|

(15)
≤ −L|v1(t)|.

Therefore, using 1
2

d
dt |v1(t)|2 = |v1(t)| d

dt |v1(t)|, and that
|v1(t)|> 0 for all t ∈ [t0, t1], we find that

|v1(t1)|− |v1(t0)|=
∫ t1

t0

1
2 |v1(t)|−1 d

dt |v1(t)|2 dt

≤−L(t1 − t0)≤−|φ2(t1)−1 −φ2(t0)−1|
≤ φ2(t1)−1 −φ2(t0)−1,

and hence

ε = φ2(t0)−1 −|v1(t0)| ≤ φ2(t1)−1 −|v1(t1)|< ε,

a contradiction. As a consequence, (16) holds and this implies
boundedness of k2.

Step 2c: We show β = ∞ (not assuming boundedness of
ζ1,ζ2). Assume that β < ∞. Then ζ1 and ζ2 are bounded on
[0,β ) and hence v1, v2, η and k2 are bounded by Steps 2a
and 2b. Therefore, it follows that the closure of the graph of the
solution (v1,v2,η) is a compact subset of D̃ , a contradiction,
thus β = ∞.

Step 2d: It remains to show that T has the properties a)–c).
Properties b) and c) are clear and property a) is an immediate
consequence of Step 2a.

Step 3: By Step 2 we may write the closed-loop sys-
tem (11), (9) in the form

z̈1(t)= γ̃u(t)+
(
q2 + p2k2(t)

)
v1(t)+2p1k2(t)2φ2(t)φ̇2(t)v1(t)3

+
(
2p1k2(t)2φ2(t)2v1(t)2 +q1 + p1k2(t)

)
v̇1(t),

v̇1(t)=− γ
γ̃

(
q1 − γ̃

γ r2 + p1k2(t)
)

v1(t)+ v2(t)+
γ−γ̃

γ̃ ż1(t),

and hence

z̈1(t) = f
(
d(t), ż1(t),T (z1, ż1)(t)

)
+ γ̃u(t) (17)

for some appropriate function f ∈C (R2×R×Rn+1 →R) and

d :=
(

φ2
φ̇2

)
∈ L ∞ (R≥0 → R2) .

We stress again that ȳ = z1 is the artificial output of sys-
tem (17). Therefore, we may now apply Thm. I.1 and conclude
that the application of the control

u(t)=−k0(t)2(z1(t)− yref(t)
)
− k1(t)

(
ż1(t)− ẏref(t)

)
+ud(t),

k0(t)=
φ0(t)

1−φ0(t)|z1(t)−yref(t)|
,

k1(t)=
φ1(t)

1−φ1(t)|ż1(t)−ẏref(t)|

to the system (17) yields a closed-loop system where every
solution z1 can be extended to a global solution, the signals
z1, ż1,k0 and k1 are bounded and the first two conditions in (10)
are satisfied.

In particular, the unique maximal solution (µ1,µ2,η ,z1,z2)
of (12) obtained in Step 1 constitutes a maximal solution
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of (17) by observing that

v1 = µ1 − z1, v2 = µ2 − r2v1 − z2.

Therefore, ω = ∞ and z1, ż1,k0 and k1 are bounded, and by
invoking Step 2 it follows that v1,v2 and k2 are bounded.
This implies boundedness of z2 and hence of ẏ. We have thus
shown (i) and (ii), and (iii) follows from the boundedness of
k0,k1 and k2 which completes the proof of the theorem.

Remark IV.2. We stress that the original control objective
as stated in Sec. I-C was prescribed transient behavior of the
tracking error e(t) = y(t)− yref(t). The funnel controller (9)
is indeed able to achieve this: Given φ ∈ Φ with the aim
that (t,e(t)) ∈ Fφ for all t ≥ 0, we may set φ0 = φ2 = 2φ
and choose φ1 ∈ Φ such that (φ0,φ1) ∈ Φ2. By Thm. IV.1
an application of the funnel controller (9) yields the error
evolution (10) and we calculate

|e(t)| ≤ |y(t)− z1(t)|+ |z1(t)− yref(t)|
≤ φ0(t)−1 − ε0 +φ2(t)−1 − ε2 = φ(t)−1 − ε0 − ε2,

thus e(t) evolves uniformly within the funnel Fφ .

Remark IV.3. We discuss some extensions of Theorem IV.1.

(i) It is a straightforward modification of the proof of Theo-
rem IV.1 to show that its statement remains valid when a
nonlinear perturbation affects system (1). More precise,
we may consider the nonlinearly perturbed system

ẋ(t) = Ax(t)+bu(t)+∆
(
t,x(t)

)
, x(0) = x0

y(t) = cx(t)
(18)

where, additionally to (A1) and (A2), we assume that the
perturbation ∆ satisfies

(A3) ∆ ∈ C (R≥0 ×Rn → Rn) is locally Lipschitz con-
tinuous w.r.t x and there exists ϑ ∈ C (R→ R≥0)
such that

∀(t,x) ∈ R≥0 ×Rn : ∥∆(t,x)∥ ≤ ϑ(cx).

Tracking in the presence of perturbations has been studied
in [22] for relative degree one systems and in [8], [10],
[23] for systems of arbitrary relative degree. As discussed
before, in the latter works the control law requires deriva-
tives of the output and/or a complicated backstepping
procedure.

(ii) As shown in [11], [12] the equation for u(t) in the
controller (4) can be modified such that

u(t) =−k0(t)2e(t)− k0(t)k1(t)ė(t)+ud(t)

and Thm. I.1 is still true2. As a consequence, a careful
inspection of the proof of Thm. IV.1 reveals that it is still
true when we modify u(t) in (9) to

u(t) =−k0(t)2(z1(t)− yref(t)
)

− k0(t)k1(t)
(
ż1(t)− ẏref(t)

)
+ud(t). (19)

2In [11], [12] this is shown for a certain class of linear systems, but the
extension to nonlinear systems (5) is straightforward.

The motivation for this modification is that the original
controller (4) yields a badly damped closed-loop system
response and may lead to admissibility problems in
applications since speed measurement is usually very
noisy; for more details see [11], [12].

V. SIMULATIONS

We illustrate Theorem IV.1 and compare our controller to
the funnel controller proposed in [8]. To this end, we consider
the same situation as in [8]: The controller is applied to a
controlled pendulum modelled by the nonlinearly perturbed
relative degree two system

ÿ(t)+asiny(t) = bu(t), (20)

with parameters a,b ∈ R, b ̸= 0. For the simulation, the
parameters are chosen as a = 1/2, b = 1, the initial values
as y(0) = 0, ẏ(0) = 0 and the reference trajectory is yref(t) =
(1/2)cos t. Obviously, the system can be reformulated in the
form (18), cf. also [8], and satisfies the assumptions (A1)–
(A3). We use the controller (9) with the modification (19) as
discussed in Remark IV.3, and choose the funnel functions

φ0(t) = φ2(t) =
{

20(1− (0.1t −1)2), 0 ≤ t < 10,
20, t ≥ 10,

φ1(t) =
(
e−t +1

)−1
.

This guarantees that the tracking error remains in the same
funnel as suggested in [8]; in particular, a tracking accuracy of
|e(t)|< 0.1 is guaranteed for t ≥ 10. Furthermore, we choose
γ̃ = 2 and q1 = q2 = p1 = 1, p2 = 1/3 which satisfy (8) with
R = I2. Remark IV.3 together with Theorem IV.1 yields that
the application of the controller (9) with the modification (19)
to the system (20) is feasible. We compare the simulation to
that of the controller in [8].

The simulation of the controller (9) with the modifica-
tion (19) applied to (20) over the time interval [0,20] has
been performed in MATLAB (solver: ode45, rel. tol.: 10−14,
abs. tol.: 10−10) and is depicted in Fig. 4. Fig. 4a shows
the tracking error, while Fig. 4b shows the input function
generated by the controller. The corresponding gain functions
are depicted in Fig. 4c. It can be seen that our proposed funnel
controller requires much less input action than the controller
in [8] when compared to [8, Fig. 3 & 4] and provides an
excellent performance.

VI. CONCLUSION

In the present paper we have proposed a new dynamic
funnel controller for tracking of linear minimum phase single-
input single-output systems (1) with relative degree two. Our
controller is based on the combination of the funnel observer
from [19] with a proportional-derivative funnel controller
from [4] or [11]. This yields a dynamic controller (9) which
achieves, for a given sufficiently smooth reference signal, that
the tracking error evolves within a prespecified performance
funnel. Furthermore, it uses only the output of the system and
does not need its derivative. Moreover, no knowledge of the
system parameters is required for the controller design.
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Fig. 4a: Funnel and tracking errors
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Fig. 4: Simulation of the controller (9) with the modifica-
tion (19) for the system (20).

We have shown that feasibility of our funnel controller (9)
is not limited to linear systems; a straightforward extension
to certain nonlinearly perturbed systems is possible. The

extension of our proposed controller methodology to more
general classes of nonlinear systems and systems with higher
relative degree is the topic of future research.
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