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Abstract The McMillan degree of an implicit network transfer function de-
fines the minimum number of dynamic elements which are necessary to fully
describe the network. It is therefore a measure for the complexity of a network.
Using modified nodal analysis models, which are linked directly to the natural
network topology, we show that the McMillan degree equals the sum of the
number of capacitors and inductors minus the number of fundamental loops of
capacitors and fundamental cutsets of inductors. Exploiting this representa-
tion we derive a minimal realization of a RLC network, that is one where the
number of involved (independent) differential equations equals the McMillan
degree.
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1 Introduction

In the present paper we consider the McMillan degree as a complexity measure
for RLC networks. We investigate models of RLC networks (without sources)
which arise from modified nodal analysis (MNA), see [10] and the survey [17],
and can thus be described by a linear differential-algebraic equation of the
form

Eẋ(t) = Ax(t), (1)

where

sE −A =

[
sACCA>C +ARGA>R AL

−A>L sL

]
∈ R[s]n×n, (2)
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x =

(
η
iL

)
, (3)

and

C ∈ RnC×nC ,G ∈ RnG×nG ,L ∈ RnL×nL ,

AC ∈ Rne×nC , AR ∈ Rne×nG , AL ∈ Rne×nL ,

n = ne + nL.

 (4)

Here R[s] denotes the ring of polynomials with coefficients in the set of real
numbers R. C, G and L are the matrices expressing the constitutive relations of
capacitances, resistances and inductances, η(t) is the vector of node potentials1

and iL(t) is the vector of currents through inductances. By nC , nG , nL we
denote the number of capacitances, resistances and inductances in the network,
resp., and ne+1 is the number of nodes in the network graph. The matrix pencil
sE −A is regular, i.e., det(sE −A) ∈ R[s] \ {0}, provided that the network is
connected and passive, cf. [4,14]. Then the implicit transfer function associated
with (1) exists and is given by G(s) = (sE −A)−1.

The complexity analysis of RLC networks is related to the problem of net-
work redesign, see [11,12], i.e., the desire to change the natural dynamics of the
network by modification of its elements and/or topology. In order to identify
appropriate changes it is necessary to have a measure for the complexity of the
network. Such a measure is provided by the McMillan degree of the implicit
transfer function G(s). Roughly speaking, the McMillan degree defines the
minimum number of dynamic elements which are necessary to fully describe
the network. A result which is intuitively known but not rigorously proven in
the circuit literature [8,19,20] is that the McMillan degree equals the number
of independent capacitors and inductors in the network. In order to rigorously
define what “independent” means, we use the concepts of fundamental loops
and cutsets and show that the McMillan degree equals the sum of the number
of capacitors and inductors minus the number of fundamental loops of capac-
itors and fundamental cutsets of inductors. This significantly improves earlier
results obtained in [16].

Network redesign problems are often considered in the context of impedance
and admittance models (see [21]) as discussed in [2,13,14,16]. In the present
paper we consider models arising from modified nodal analysis, which are
linked directly to the natural network topology. This allows to derive the rep-
resentation of the McMillan degree in terms of the network topology.

As a second main result, we exploit the representation of the McMillan
degree to derive a minimal realization of a given RLC network, that is one
where the number of involved (independent) differential equations equals the
McMillan degree. We illustrate our results by means of two examples.

1 The node potential ηi expresses the voltage between the ith node in the network graph
and the ground node.
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2 Graph theoretical preliminaries

In this section we introduce the graph theoretical concepts (cf. for instance [6])
on which the modified nodal analysis is based. We further introduce the notions
of fundamental loops and cutsets and characterize their number in terms of
the incidence matrix of the network graph.

Definition 1 A graph is a triple G = (V,E, ϕ) consisting of a node set V and
a branch set E together with an incidence map

ϕ : E → V × V, e 7→ ϕ(e) = (ϕ1(e), ϕ2(e)) ,

where ϕ1(e) 6= ϕ2(e) for all e ∈ E, i.e., the graph does not contain self-loops.
If ϕ(e) = (v1, v2), we call e to be directed from v1 to v2; v1 is called the initial
node and v2 the terminal node of e.

Let V ′ ⊆ V and let E′ be a set of branches satisfying

E′ ⊆ E|V ′ := { e ∈ E | ϕ1(e) ∈ V ′ and ϕ2(e) ∈ V ′ } .

Further let ϕ|E′ be the restriction of ϕ to E′. Then the tripleK := (V ′, E′, ϕ|E′)
is called a subgraph of G. If V ′ = V , then K is called a spanning subgraph.
A proper subgraph is one with E 6= E′.

For each branch e, define an additional branch −e being directed from the
terminal to the initial node of e, that is ϕ(−e) = (ϕ2(e), ϕ1(e)) for e ∈ E. Now
define the set Ẽ = { e | e ∈ E or − e ∈ E }. A tuple w = (w1, . . . , wr) ∈ Ẽr,
where for i = 1, . . . , r − 1,

v0 := ϕ1(v1), vi := ϕ2(wi) = ϕ1(wi+1)

is called path from v0 to vr; w is called elementary path, if v1, . . . , vr are
distinct. A loop is an elementary path with v0 = vr. Two nodes v, v′ are
called connected, if there exists a path from v to v′. The graph itself is called
connected, if any two nodes are connected. A subgraph K = (V ′, E′, ϕ|E′) is
called a component of connectivity, if it is connected and Kc := (V \ V ′, E \
E′, ϕ|E\E′) is a subgraph.

A tree is a minimally connected graph, i.e., it is connected without having
any connected proper spanning subgraph. A spanning subgraph of a connected
graph G, which is a tree, is called a tree in G. If G is not connected, with k
components of connectivity, and Ti is a tree in any such component for i =
1, . . . , k, then T = T1 ∪ . . . ∪ Tk is called a forest in G.

A spanning subgraph K = (V,E′, ϕ|E′) is called a cutset of G = (V,E, ϕ),
if its branch set is non-empty, G − K := (V,E \ E′, ϕ|E\E′) is a disconnected

subgraph and G−K′ is a connected subgraph for any proper spanning subgraph
K′ of K.

In this work we consider only finite graphs, i.e., graphs with finite node set
and finite branch set.
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Definition 2 Let G be a graph, K,L be spanning subgraphs of G, and ` be a
path of G.

(i) L is called a K-cutset, if L is a subgraph of K and a cutset of G.
(ii) ` is called a K-loop, if ` is a loop of K.

A graph can have many K-loops and K-cutsets, resp., but not all of them
are independent. In the following we introduce the crucial notions of funda-
mental K-loops and K-cutsets, which generalize the notions of fundamental
loops and cutsets given e.g. in [1].

Definition 3 Let G be a graph and K be a spanning subgraph of G. Further
let T1 be a forest in K and T2 be a forest in G − K. Then

(i) every branch in K − T1 closes a unique loop in K that consists of that
branch and branches from T1 only. These loops are called fundamental
K-loops of G.

(ii) T2 can be completed to a tree T3 in G by adding branches from K (if
necessary). Every branch in T3 − T2 defines a unique cutset of G that
consists of that branch and branches which are common to G − T3 and K
only. These cutsets are called fundamental K-cutsets of G.

Similar to [1] we may show that any K-loop/K-cutset can be expressed
in terms of fundamental K-loops/K-cutsets, for any fix choice of trees/forests
T1, T2 and T3 as in Definition 3. Therefore, in particular, the number of fun-
damental K-loops/K-cutsets in a graph G is independent of the choice of the
trees/forests and we may define, using the notation from Definition 3,

FLK := | { ` | ` is a fundamental K-loop of G corresponding to T1 } |
= | { e | e is a branch of K − T1 } |,

FCK := | { c | c is a fundamental K-cutset of G corresponding to T2 and T3 } |
= | { e | e is a branch of T3 − T2 } |.

In the following we introduce the notion of an incidence matrix, which is
helpful in describing the topology of RLC networks. In particular, we derive
formulas for FLK and FCK using incidence matrices.

Definition 4 Let a graph G = (V,E, ϕ) with l branches E = {e1, . . . , el}
and k nodes V = {v1, . . . , vk} be given. Then the all-node incidence matrix of
G is given by A0 = (aij) ∈ Rk×l, where

aij =


1, if ϕ1(ej) = vi,

−1, if ϕ2(ej) = vi,

0, otherwise.

Since the rows of A0 sum up to the zero row vector, one may delete an arbitrary
row of A0 to obtain a matrix A having the same rank as A0. We call A an
incidence matrix of G. Usually, the chosen row corresponds to the ground node
from V .
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A spanning subgraph K of the graph G has an incidence matrix AK which is
constructed by deleting columns of the incidence matrix A of G corresponding
to the branches of the complementary spanning subgraph G−K. By a suitable
reordering of the branches, the incidence matrix reads

A =
[
AK AG−K

]
. (5)

In the following result we derive the number of fundamental K-loops/K-
cutsets in terms of the incidence matrices AK, AG−K; this improves the result
in [18, Lem. 2.1 & Lem. 2.3].

Theorem 1 Let G be a connected graph with incidence matrix A ∈ R(k−1)×l.
Further, let K be a spanning subgraph and assume that the branches of G are
sorted in a way that (5) is satisfied. Then the following holds true:

(i) FLK = dim kerAK,

(ii) FCK = dim kerA>G−K.

Proof Let T1, T2 and T3 be trees/forests as in Definition 3.
We show (i): Let m denote the number of branches of K, n the number of
its node and p the number of its components of connectivity. Note that AK ∈
R(k−1)×m. Since T1 is a forest in K, it has n− p branches, hence

FLK = m− (n− p).

By [17, Thm. 4.3] we have that rkAK = n− p, and hence

FLK = m− rkAK = dim kerAK.

We show (ii): Since T3 is a tree in G, it has k− 1 branches. Therefore, we have

FCK = k − 1− r,

where r is the number of branches in T2. Since T2 is a forest in G − K, it has
k− q branches, where q is the number of components of connectivity of G−K,
thus

FCK = q − 1.

By [17, Thm. 4.3] we have that rkAG−K = k−q, where AG−K ∈ R(k−1)×(l−m),
and hence

q = k − rkA>G−K = k −
(
k − 1− dim kerA>G−K

)
= dim kerA>G−K + 1,

which completes the proof of the theorem. ut
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3 Network equations

It is well-known [5,10] that the graph underlying an electrical network can be
described by an incidence matrix A ∈ R(k−1)×l, which can be decomposed
into submatrices

A =
[
AC AR AL

]
for the quantities in (4), where ne = k− 1 and l = nC +nG +nL. Each subma-
trix is the incidence matrix of a specific subgraph of the network graph. AC is
the incidence matrix of the subgraph consisting of all network nodes and all
branches corresponding to capacitors. Similarly, AR and AL are the incidence
matrices corresponding to the resistor and inductor subgraphs, resp. Then, us-
ing the standard MNA modeling procedure [10], see also the survey [17], which
is just a clever arrangement of Kirchhoff’s laws together with the character-
istic equations of the devices, results in a differential-algebraic equation (1)
with (2)–(4). C, G and L are the matrices expressing the constitutive rela-
tions of capacitances, resistances and inductances, η(t) is the vector of node
potentials and iL(t) is the vector of currents through inductances.

Definition 5 For a given RLC network, any differential-algebraic equation (1)
satisfying (2)–(4), which arises from the MNA modeling procedure [10], is said
to be an MNA model of the network.

It is a reasonable assumption that an electrical network is connected (see
also [14]); otherwise, since the components of connectivity do not physically
interact, one might consider them separately. Furthermore, in the present pa-
per we consider networks with passive devices. These assumptions lead to the
following assumptions on an MNA model (2)–(4) of the network (cf. [17]).

(A1) rk
[
AC AR AL

]
= ne,

(A2) C = C> > 0,L = L> > 0,G + G> > 0.

It is shown in [4, Cor. 4.5] that under the conditions (A1) and (A2), the
pencil sE −A in (2) is regular.

4 The McMillan degree

In this section we investigate the McMillan degree of implicit network transfer
functions and derive a formula as well as a topological interpretation.

The McMillan degree of a rational matrix G(s) ∈ R(s)n×n, where R(s) is
the quotient field of R[s], is the total number of its poles, and can be defined
via its Smith-McMillan form

U−1(s)G(s)V −1(s) = diag

(
ε1(s)

ψ1(s)
, . . . ,

εr(s)

ψr(s)
, 0, . . . , 0

)
∈ R(s)n×n , (6)

where U(s), V (s) ∈ R[s]n×n are unimodular (i.e. invertible over R[s]n×n),
rkG(s) = r, εi(s), ψi(s) ∈ R[s] are monic, coprime and satisfy εi(s) | εi+1(s),
ψi+1(s) | ψi(s) for all i = 1, . . . , r − 1.
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Definition 6 Consider G(s) ∈ R(s)n×n with Smith-McMillan form (6). Then
we call

δMG(s) := deg

r∏
i=1

ψi(s)

the McMillan degree of G(s).

For the implicit transfer function G(s) = (sE −A)−1 of a system (1) with
regular matrix pencil sE −A, it is a consequence of the Weierstraß canonical
form (see [7]) that

δMG(s) = deg det(sE −A). (7)

We are now in a position to derive the first main result of the present
paper.

Theorem 2 Consider a MNA model (1) with (2)–(4) of a RLC network.
Then, for G(s) = (sE −A)−1, we have

δMG(s) = nL + rkAC − dim ker [AR, AC ]
>.

Proof Choose matrices V,W with full column rank such that

imV = im[AR, AC ], imW = ker [AR, AC ]
> =

(
imV

)⊥
,

and let m := rkW . With

T :=

[
V W 0
0 0 InL

]
∈ GLne+nL ,

where GLn denotes the set of invertible matrices from Rn×n, we obtain

T>(sE −A)T =

V >(sACCA>C +ARGA>R
)
V 0 V >AL

0 0 W>AL
−A>LV −A>LW sL

 . (8)

Then, the Schur complement formula (see e.g. [9, Lem. A.1.17]), yields

det(sE −A) = det
(
V >
(
sACCA>C +ARGA>R

)
V
)

· det

[
0 W>AL

−A>LW sL+A>LV
(
V >
(
sACCA>C +ARGA>R

)
V
)−1

V >AL

]
.

Let

P (s) := sL+A>LV
(
V >
(
sACCA>C +ARGA>R

)
V
)−1

V >AL,

then, again using the Schur complement formula,

det(sE −A)

= det
(
V >
(
sACCA>C +ARGA>R

)
V
)

detP (s) detW>ALP (s)−1A>LW.
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We show that A>LW has full column rank: Let x ∈ Rm be such that A>LWx = 0,
then

Wx ∈ kerA>L ∩ imW = kerA>L ∩ ker [AR, AC ]
> = ker [AR, AC , AL]>

(A1)
= {0},

and the full column rank of W implies x = 0. Write P (s) = sL+Gp(s), where
Gp(s) is proper. Then

P (s)−1 = (sL)−1
(
I + (sL)−1Gp(s)

)−1
=

∞∑
k=0

(−1)ks−k−1L−k−1Gp(s)k,

and
W>ALP (s)−1A>LW = s−1W>ALL−1A>LW + s−1Gsp(s),

where Gsp(s) is strictly proper. Since W>ALL−1A>LW ∈ GLm, the highest
power of s appearing in detW>ALP (s)−1A>LW is s−m. Furthermore, the high-
est power of s appearing in detP (s) is snL . By (7) and the above observations
we obtain

δMG(s) = deg det
(
V >
(
sACCA>C +ARGA>R

)
V
)

+ nL −m.

We consider the matrix pencil sẼ−Ã := V >
(
sACCA>C +ARGA>R

)
V . We show

that ker Ẽ ∩ ker (Ã+ Ã>) = {0}: Let x ∈ ker Ẽ ∩ ker (Ã+ Ã>), then

x>V >ACCA>C V x = 0 and x>V >AR(G + G>)A>RV x = 0,

which implies, using (A2), that A>C V x = 0 and A>RV x = 0. Therefore,

V x ∈ ker [AR, AC ]
> ∩ imV = ker [AR, AC ]

> ∩ im[AR, AC ] = {0},

and full column rank of V implies x = 0. Invoking that ker Ã ⊆ ker (Ã+ Ã>)
by (A2), it now follows from [4, Cor 2.6 & Lem. 2.6] that sẼ − Ã is regular.
We show that its index (see e.g. [15, Def. 2.9] for a definition) is at most one.
Seeking a contradiction, assume that it is larger than one. Then [3, Prop. 2.10]
implies that there exist x, y ∈ Rq \ {0}, where q = rkV , such that Ẽy = Ãx
and Ẽx = 0. Therefore,

x>(Ã+ Ã>)x = x>Ẽy + y>Ẽx = 0,

hence (Ã + Ã>)x = 0 which gives x ∈ ker Ẽ ∩ ker (Ã + Ã>) = {0}, a contra-
diction. Since the index of sẼ − Ã is at most one we find that (see e.g. [15])

deg det(sẼ − Ã) = rk Ẽ.

Furthermore,

rk Ẽ = rkV >AC = rk

[
V >AC

0

]
= rk

[
V >AC
W>AC

]
= rk

[
V >

W>

]
AC = rkAC ,

and so we finally obtain

δMG(s) = rkAC + nL −m = rkAC + nL − dim ker [AR, AC ]
>.

ut
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In the following we will use expressions like C-loop for a loop in the circuit
graph whose branch set consists only of branches corresponding to capacitors.
Likewise, a L-cutset is a cutset in the circuit graph whose branch set consists
only of branches corresponding to inductors. We present an interpretation of
Theorem 2 in terms of the network topology. By Theorem 1, dim kerAC equals
the number of fundamental C-loops and dim ker [AR, AC ]

> equals the number
of fundamental L-cutsets in the network, thus the following is an immediate
consequence of Theorems 1 and 2.

Corollary 1 Using the notation from Theorem 2 we have that

δMG(s) = nC + nL − FLC − FCL.

5 Minimal realization

In this section we derive a minimal realization of a given RLC network in the
following sense.

Definition 7 A system of the form (1) is called a minimal realization of a
RLC network, if its number of (independent) differential equations equals the
McMillan degree of the implicit transfer function G(s) of the network, i.e.,
rkE = δMG(s), and there is a one-to-one correspondence to the solutions of
an MNA model of the network.

In order to obtain a minimal realization we start with an MNA model (1)
satisfying (2)–(4) of the RLC network and its transformation in (8), using the
notation from the proof of Theorem 2. Now let Y be a matrix with full column
rank such that

imY = kerW>AL =
(

imA>LW
)⊥
,

and, recalling that A>LW has full column rank,

S :=

[
Ine

0 0
0 A>LW Y

]
∈ GLne+nL .

Then

S>T>(sE −A)TS

=


V >
(
sACCA>C +ARGA>R

)
V 0 V >ALA

>
LW V >ALY

0 0 W>ALA
>
LW 0

−W>ALA>LV −W>ALA>LW sW>ALLA>LW sW>ALLY
−Y >A>LV 0 sY >LA>LW sY >LY

.
Obviously, W>ALA

>
LW ∈ GLm and hence there is a one-to-one correspon-

dence between the solutions of the MNA model (1) and the solutions of the
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system

V >ACCA>C V ẋ1(t) = −V >ARGA>RV x1(t)− V >ALY x4(t),

W>ALLY ẋ4(t) = W>ALA
>
LV x1(t) +W>ALA

>
LW x2(t),

Y >LY ẋ4(t) = Y >A>LV x1(t).

Again using that W>ALA
>
LW ∈ GLm, the second equation can be solved for

x2 and we obtain a one-to-one correspondence to the solutions of the system

Ẽ ˙̃x(t) = Ãx̃(t), x̃(t) =

(
x1(t)
x4(t)

)
, (9)

with

sẼ − Ã =

[
V >
(
sACCA>C +ARGA>R

)
V V >ALY

−Y >A>LV sY >LY

]
.

The variables x1 in (9) may be interpreted as those corresponding to indepen-
dent capacitors in the network and x4 as those corresponding to independent
inductors.

Theorem 3 Consider a MNA model (1) with (2)–(4) of a RLC network. Then
the system (9) is a minimal realization of that network. In particular, for the
matrices in (9) we find

rkA>C V = nC − FLC and rkY = nL − FCL.

Proof It is obvious that there is a one-to-one correspondence between the
solutions of (1) and (9). Furthermore,

rk Ẽ = rkV >AC + rkY >LY = rkAC + rkY,

where we have used that rkV >AC = rkAC as shown in proof of Theorem 2.
We may further calculate that

rkY = dim kerW>AL = nL − rkW>AL = nL − rkA>LW = nL −m,

since A>LW has full column rank m = rkW . Therefore,

rkY = nL − rkW = nL − dim ker [AR, AC ]
>

and hence

rk Ẽ = rkAC + nL − dim ker [AR, AC ]
> = δMG(s)

for G(s) = (sE −A)−1 by Theorem 2. The last statement is a consequence of
Corollary 1. ut

6 Examples

We illustrate our obtained results by means of two examples.
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L1 L2

R1R2

R3

C1

R4

1 2 3

4

Fig. 1: RLC network

6.1 Example 1

Consider the RLC network depicted in Figure 1.

According to the numbering of the nodes, the element-related incidence
matrices are as follows:

AR =


1 0 1 1
0 0 0 0
0 1 −1 −1
−1 −1 0 0

 , AC =


0
1
0
−1

 , AL =


1 0
−1 1
0 −1
0 0


and

G = diag (R−11 , R−12 , R−13 , R−14 ), C = [C1], L = diag (L1, L2).

An essential step is now to observe that one of the four node potentials can be
chosen freely. Therefore, we may, for instance, choose the potential at node 4
to be zero, which is equivalent to choosing this node as the ground node as in
Figure 1. As a result, the corresponding node potential is not relevant in the
modified nodal model and we may delete the corresponding row (here it is the
last row) in the incidence matrices, that is

AR =

1 0 1 1
0 0 0 0
0 1 −1 −1

 , AC =

0
1
0

 , AL =

 1 0
−1 1
0 −1

 .
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Therefore, the matrix pencil (2) corresponding to the MNA model is

sE −A =

[
sACCA>C +ARRA>R AL

−A>L sL

]

=


R−11 +R−13 +R−14 0 −R−13 −R

−1
4 1 0

0 sC1 0 −1 1
−R−13 −R

−1
4 0 R−12 +R−13 +R−14 0 −1

−1 1 0 sL1 0
0 −1 1 0 sL2

 .
We calculate

det(sE−A) = s3 C1L1L2(R−11 R−12 +R−11 R−13 +R−11 R−14 +R−12 R−13 +R−12 R−14 )

+ s2(. . .) + s(. . .) +R−11 +R−12 ,

and hence the McMillan degree of G(s) = (sE −A)−1 is δMG(s) = 3. This is
the same value as we obtain from Theorem 2:

nL + rkAC − dim ker [AR, AC ]
> = 2 + 1− 0 = 3,

and we observe that the network neither contains C-loops nor L-cutsets. Since
rkE = 3, the MNA model itself is already a minimal realization.

6.2 Example 2

Consider the RLC network depicted in Figure 2.

C1 C2

L2

L1

1

2

3

Fig. 2: RLC network

After deleting the row corresponding to the ground node the incidence
matrices read

AC =

[
1 1
0 0

]
, AL =

[
1 0
−1 1

]
,
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C = diag (C1, C2), L = diag (L1, L2).

Then

sE −A =


s(C1 + C2) 0 1 0

0 0 −1 1
−1 1 sL1 0
0 −1 0 sL2


and

det(sE −A) = s2(C1 + C2)(L1 + L2) + 1,

hence the McMillan degree of G(s) = (sE − A)−1 is δMG(s) = 2. From
Theorem 2 we obtain the same value:

nL + rkAC − dim ker [AR, AC ]
> = 2 + 1− 1 = 2,

and we observe that the circuit contains one fundamental C-loop and one
fundamental L-cutset. Since rkE = 3 6= 2 = δMG(s), the MNA model is not
a minimal realization. We see that sE − A is already in the form (8), so it
remains to choose

Y =

[
1
1

]
, imY = kerW>AL = ker [−1, 1].

Then, with

S :=


1 0 0 0
0 1 0 0
0 0 −1 1
0 0 1 1

 ∈ GL4

we obtain

S>(sE −A)S =


s(C1 + C2) 0 −1 1

0 0 2 0
−1 2 sL1 + sL2 −sL1 + sL2

1 0 −sL1 + sL2 sL1 + sL2

 ,
and hence a minimal realization is given by (9) with

sẼ − Ã =

[
s(C1 + C2) 1

1 s(L1 + L2)

]
.

7 Conclusion

In the present paper we have shown that the McMillan degree of implicit
network transfer functions equals the sum of the number of capacitors and
inductors minus the number of fundamental loops of capacitors and funda-
mental cutsets of inductors; this defines the number of independent dynamic
elements which are necessary to fully describe the network. A minimal real-
ization of the RLC network is then derived, where the number of involved
(independent) differential equations equals the McMillan degree.
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The starting point for our analysis has been the modified nodal analy-
sis model, which preserves the natural graph topology of the network, but
in general leads to an implicit non-minimal representation. The results pre-
sented here provide an extension to the results derived in [16] based on the
impedance-admittance network description, which provides an appropriate
framework for network re-engineering. The corresponding integral-differential
rational description also leads to a state space description that is in general
non-minimal [14], but that preserves the natural nodal/loop topologies of the
network. Extending the results on the McMillan degree obtained in the present
paper to this alternative description is a topic of future research.
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1. Simone Bächle. Numerical Solution of Differential-Algebraic Systems Arising in Circuit
Simulation. PhD thesis, Fakultät II - Mathematik und Naturwissenschaften, Technische
Universität Berlin, Berlin, Germany, 2007.

2. Thomas Berger, George Halikias, and Nicos Karcanias. Effects of dynamic and non-
dynamic element changes in RC and RL networks. Int. J. Circ. Theor. Appl., 43(1):36–
59, 2015.

3. Thomas Berger, Achim Ilchmann, and Stephan Trenn. The quasi-Weierstraß form for
regular matrix pencils. Linear Algebra Appl., 436(10):4052–4069, 2012.

4. Thomas Berger and Timo Reis. Zero dynamics and funnel control for linear electrical
circuits. J. Franklin Inst., 351(11):5099–5132, 2014.

5. Charles A. Desoer and E. S. Kuh. Basic Circuit Theory. McGraw-Hill, New York, 1969.
6. Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.

Springer-Verlag, Berlin, 2005.
7. Felix R. Gantmacher. The Theory of Matrices (Vol. I & II). Chelsea, New York, 1959.
8. E. A. Guillemin. Synthesis of Passive Networks. John Wiley and Sons Inc., New York,

1957.
9. Diederich Hinrichsen and Anthony J. Pritchard. Mathematical Systems Theory I. Mod-

elling, State Space Analysis, Stability and Robustness, volume 48 of Texts in Applied
Mathematics. Springer-Verlag, Berlin, 2005.

10. Chung-Wen Ho, Albert E. Ruehli, and Pierce A. Brennan. The modified nodal approach
to network analysis. IEEE Trans. Circuits Syst., CAS-22(6):504–509, 1975.

11. Nicos Karcanias. Structure evolving systems and control in integrated design. Annual
Reviews in Control, 32(2):161–182, 2008.

12. Nicos Karcanias. Passive network redesign: System structure evolution. Research report,
City University London, 2010.

13. Nicos Karcanias, John Leventides, and Maria Livada. Matrix pencil representation of
structural transformations of passive electrical networks. In Proc. 2014 Int. Symp. on
Communications, Control and Signal Processing (ISCCSP), pages 416–420, Athens,
Greece, 2014.

14. Nicos Karcanias, Maria Livada, and John Leventides. System properties of implicit pas-
sive electrical networks descriptions. Research report, Submitted to IFAC 2017 World
Congress, City University London, 2016.

15. Peter Kunkel and Volker Mehrmann. Differential-Algebraic Equations. Analysis and
Numerical Solution. EMS Publishing House, Zürich, Switzerland, 2006.
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