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Abstract. A new large time step semi-implicit multiscale method is presented
for the solution of low Froude-number shallow water flows. While on small
scales which are under-resolved in time the impact of source terms on the
divergence of the flow is essentially balanced, on large resolved scales the
scheme propagates free gravity waves with minimized diffusion. The scheme
features a scale decomposition based on multigrid ideas. Two different time
integrators are blended at each scale depending on the scale-dependent Courant
number for gravity wave propagation. The finite-volume discretization is based
on a Cartesian grid and is second order accurate. The basic properties of
the method are validated by numerical tests. This development is a further
step in the development of asymptotically adaptive numerical methods for the
computation of large scale atmospheric flows.

1. Introduction

Modern high performance computing (HPC) hardware allows for high resolution
atmospheric flow simulations, which resolve scales ranging from small convective-
scale essentially anelastic flows up to large planetary scale dynamics [see e.g.,
31]. Such simulations are not only demanding in terms of problem size. They
also challenge the applied numerical methods, which must correctly resolve the
different characteristic flow regimes arising on the different scales captured by the
discretization.

An example is the influence of sound waves and the associated compressibility.
These waves are usually considered to have little influence in meteorological appli-
cations, because the much slower synoptic and planetary wave patterns associated
with inertia and advection are most relevant for predicting the weather. This led
to so-called approximate “sound-proof” model equations [30, 27, 1, 9], which do
not include the fast acoustic waves and have been quite popular to model small
scale atmospheric dynamics. The situation is different for planetary-scale dynamics,
where long-wave horizontally traveling acoustic modes, i.e., Lamb waves are some-
times considered non-negligible. Furthermore, there are indications that effects of
compressibility affect large-scale, deep internal wave modes of the atmosphere in
a non-trivial fashion [7]. These dynamics are fairly captured by another reduced
model, namely the hydrostatic primitive equations (HPEs), which are widely used
in current operational general circulation models (GCMs). At resolutions of only
a few kilometers, however, the HPEs loose their validity due to the breakdown of
the hydrostatic assumption. Therefore, at least for an accurate representation of
large scale planetary-scale dynamics, the challenge arises of combining large-scale
compressible flow representations with essentially sound-proof modeling of the small
scale dynamics.
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For the mathematical study of interactions across scales, techniques from multiple-
scales asymptotics [15, 22] are increasingly used. These are extensions of the classical
single-scale asymptotic method (also known as regular perturbation analysis). In
the latter one, a small non-dimensional parameter of the problem and a special
(asymptotic) expansion of the dependent variables are employed to obtain simplified
equation sets, which still account for the physical effects characteristic to the specific
scale. Examples are the aforementioned anelastic and hydrostatic approximations.
In multiple-scales asymptotic analysis the asymptotic expansion is generalized in
that the variables artificially depend on more than one space or time scale. This
enables the study of effects arising across scales. Since the asymptotic analysis
directly relates a reduced model to the full compressible flow equations, it is a
natural starting point for the development of numerical methods applicable to the
considered singular regimes [20, 22]. In this context, the notion of “asymptotically
adaptive numerical methods” was suggested in [18, 19, 23]. Such schemes should
be robust, uniformly accurate, and efficient in the vicinity of certain asymptotic
regimes and over a variety of relevant applications. The idea is closely related to
“asymptotic preserving” (AP) schemes [see 5, and references therein].

The aim of this work is to develop such an asymptotically adaptive numerical
method, which is able to correctly simulate large scale compressible flow phenomena
with high resolution. In this initial attempt not the full dynamics of the atmosphere
are considered. Instead, this work deals with the shallow water equations, which
describe the vertically averaged motion of an incompressible fluid with a free surface.
By “shallow” one refers to the small aspect ratio between the vertical depth and
a typical horizontal length scale of the problem, which justifies the hydrostatic
assumption, i.e., the pressure balances the weight of the fluid. However, these
equations are not only a good model for representing river flow or large scale oceanic
motions (such as tsunamis). While ignoring the presence of stratification, the shallow
water equations incorporate the effects of gravity and can account for the earth’s
rotation and for bottom topography by the addition of appropriate source terms.
Therefore, they are prototypical of the hydrostatic primitive equations and are often
used in the development of numerical methods for atmospheric flow problems.

Due to the vertical averaging of the prognostic variables, the shallow water
equations only admit external waves. However, the external gravity waves in shallow
water flows are the equivalent to Lamb waves in the compressible flow equations
[14]. The considered asymptotic regime consists of long-wave acoustic waves (Lamb
waves) interacting with slow advection. This is equivalent to the regime of fast
gravity waves moving over short range topography in the shallow water context.
The additional atmospheric effect of small scale flow divergence induced by local
diabatic sources is modeled here by a time dependent bottom topography. In this
context, the shallow water model represents a challenging part of the development
of numerical methods for the simulation of planetary scale atmospheric flows at
high resolution.

The analysis of the regime of fast gravity waves moving over short range topogra-
phy reveals that it essentially consists of long-wave linearized shallow water flow
interacting with small scale flow balancing the influence of the rough topography
(see section 2 for details and Bresch et al. [4]). Therefore, the new scheme should

• eliminate freely propagating “compressible” short-wave modes that it cannot
represent accurately due to temporal under-resolution,
• represent with second-order accuracy the “slaved” dynamics of short-wave

solution components induced by slow forcing or arising in the form of
high-order corrections to long-wave modes, and
• minimize numerical dispersion for resolved modes.
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The first and the last point address the specific numerical dispersion behavior of
common second-order implicit time discretizations, which usually slow down modes
with high wave numbers. While the decision which modes can be considered to be
resolved is certainly subjective and depends on the application, at some point the
slow down of modes with wave numbers larger than a certain value is unacceptable.
These modes should be eliminated over time in a consistent way. On the other hand,
long-wave modes, whose oscillation is well resolved at a fixed position, should be
well approximated. The second point refers to the balanced flow on the small scale
of the regime, which depends on local source terms and the coupling to the large
scale dynamics.

To achieve these goals, a semi-implicit method for the nonlinear shallow water
equations is combined with a multilevel approach which has successfully been applied
to the linearized equations to model multiscale behavior in Vater et al. [42]. The
latter enables the association of different solution components with certain spatial
scales and is based on geometric multigrid ideas. Furthermore, selective to each scale,
a proper discretization is applied. The approach results in a robust representation
of balanced, slowly forced fast modes on the one hand, and a proper propagation of
long wave gravity waves on the other hand.

The present work extends ideas of multiscale time integration for compressible
flows formulated earlier in [18, 11, 29]. These authors already suggested to separate
the short- and longwave components of a flow field and to propagate these compo-
nents in time by different time integration schemes. However, they only allowed for
two distinct discrete scales: one representing small-scale solution components and
one for long-wave acoustic modes, which are separated from each other by a factor
of 1/Ma, where Ma is the Mach number. In contrast, by introducing multigrid
decompositions of the flow and a smooth blending of time integrators, we obtain a
scheme in this work that allows for much more general data with true multiscale
content. Our work extends that of [42] from linear wave propagation in one space
dimension to the nonlinear shallow water equations.

This article is structured into the following parts. After the presentation of the
governing equations we discuss the asymptotic regime of interest in the next section.
The multiscale scheme is then described by a semi-discretization in time in section 3.
In this course, we first extend a zero Froude number projection method to non-zero
Froude numbers. The multilevel approach is included in the implicit correction step,
which accounts for the correct propagation of gravity waves. Finally, we show the
correct behavior of the method by some one-dimensional test cases in section 4 and
give conclusions in section 5.

2. Governing Equations

The derivation of the shallow water equations can be found in numerous text
books [e.g., 33, 37]. The case of non-stationary bottom topography was dealt with
in Vater [40]. Here, only the resulting equations are presented and the peculiarities
concerning time-dependent bottom topography are pointed out. Furthermore, the
governing equations are analyzed in the limit of a small Froude number. Particularly,
the asymptotic limit regime for long-wave shallow water waves passing over short-
range topography as presented in Bresch et al. [4] is discussed under the additional
assumption of bottom topography changing in time.

2.1. Shallow water flows with time dependent bottom topography. The
assumption of a time-dependent bottom topography, which is slightly unusual, is
considered to model a source term which acts on the local flow divergence as outlined
in the introduction. This generalization does neither change the terms arising in
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the shallow water equations, nor does it introduce additional ones. Therefore, the
governing equations in conservation form are given by

ht +∇ · (hu) = 0

(hu)t +∇ · (hu ◦ u) + 1
2Fr2∇(h2) = − 1

Fr2h∇b
(1)

Here, h(t,x) is the thickness or depth of the fluid and u(t,x) its depth-averaged
horizontal velocity. b(t,x) denotes the time and space-dependent bottom topography.
The gradient operator ∇ is acting in the horizontal x = (x, y) plane. The “◦” denotes
the dyadic product of two vectors. A temporal change in bottom topography either
changes the total height H = h+ b or introduces divergence in the momentum field,
as can be seen from reformulating the continuity equation to

Ht +∇ · (hu) = bt . (2)
Furthermore, a change in the gradient of b directly enters the source term of the
momentum equation, leading to a potential disruption of the hydrostatic equilibrium
of a previously balanced flow. System (1) is given in non-dimensional form introduc-
ing the dimensionless characteristic quantity Fr – vref/

√
ghref, which is known as

Froude number. It defines the ratio between the characteristic flow velocity vref and
the gravity wave speed

√
ghref with g being the acceleration due to gravity and href

a reference fluid depth. Since we are interested in phenomena associated with the
advective time scale of the fluid, we set tref = `ref/vref in the dimensional analysis
and omitted mentioning of the Strouhal number.

The shallow water equations are mathematically equivalent to the Euler equations
of compressible isentropic gas dynamics for an isentropic exponent of γ = 2. In this
respect, the Froude number in the shallow water equations takes the role of the Mach
number in the Euler equations, the latter being a measure of the compressibility of
the fluid. Therefore, effects similar to compressibility can be also modeled by the
shallow water equations, where the importance of the “compressibility” depends
on the associated scales of fluid motion. In large scale atmospheric applications,
a typical flow velocity is 10 m/s and the depth of the atmosphere is given by the
pressure scale height, which is approximately 10 km. This results in a Froude number
Fr ≈ 0.03� 1, and the “compressibility” effects associated with the nonlinear nature
of external gravity waves plays a minor role in this regime. Note, however, that the
shallow water equations intrinsically model an incompressible fluid.

2.2. Long-wave gravity waves passing over short-range topography. The
regime of particular interest can be characterized by long-wave shallow water waves
traveling over rough topography. Consider a multiple-space-scale/single-time scale
analysis for this regime akin to [18, 4, 24]. In addition to the space coordinate
x defined by non-dimensionalization with the reference length `ref, a second large
scale coordinate ξ = Frx is introduced, which resolves the distance a gravity wave
traverses on the considered time scale. For the bottom topography b = b(t,x, ξ) we
allow for variations on both space scales. Then, the fluid depth and velocity are
expressed in the multiple-scales expansion

(h,u)(t,x; Fr) =
N∑
i=0

Fri(h,u)(i)(t,x, ξ) + O(FrN ) . (3)

Note, that by using this ansatz, each spatial derivative of an asymptotic function
ϕ(i) translates into

∇ϕ(i)∣∣
Fr = ∇xϕ(i) + Fr∇ξϕ(i) (4)

for fixed Froude number Fr. As stated above, this regime has been also discussed
in Bresch et al. [4], but without time dependent bottom topography. The leading
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order system is separated into two subsystems representing the long-wave and the
short-wave components of the flow. They are given by the long-wave equations for
rough topography

(hu)(0)
t + h(0)∇ξh(1) = h(2)∇xh(0) ,

h
(1)
t +∇ξ · (hu)(0) = 0

(5)

and the associated balanced small scale flow
˜(hu)(0)

t +∇x · (hu ◦ u)(0) + ˜h(0)∇xh(2) = −h̃(0)∇ξh(1) ,

∇x · (hu)(0) = ∇x · ˜(hu)(0) = b̃t .
(6)

The leading order fluid depth is given by
h(0)(t,x, ξ) = H(0)(t)− b(t,x, ξ) ,

where H(0) is the leading order surface elevation of the fluid and dH(0)

dt = bt. The
next order of the fluid depth h(1) = h1(t, ξ) is independent of x. Here the overbar
denotes the average of the pertinent variable in the fast coordinate, x, and the tilde
indicates the zero-average remainder or fluctuation.

Compared to the linear case [cf. 40] the two systems (5) and (6) are coupled. The
large-scale flow is given by the linearized shallow water equations, which involve
non-balanced free surface waves. It is driven by a source term arising from the
small scale flow in the momentum equation. This source represents the accumulated
pressure force, which results from the small-scale flow across the rough topography.
In the opposite direction, large scale gradients of the fluid depth acting on the rough
topography induce small scale momentum. This modifies the otherwise balanced
small scale flow.

The difference to Bresch et al. [4] when considering non-stationary bottom
topography is that a source term acting on the local divergence of the flow arises.
It is generated by local variations in time of the bottom topography. Furthermore,
the changes of the mean in b over time induce a change in the leading order surface
elevation H(0), and the signal speed of the long-wave gravity waves is changing not
only in space, but also in time.

Similar asymptotic regimes were studied in Klein [18] concerning weakly com-
pressible flows with small-scale entropy and vorticity, in Le Mâıtre et al. [25] for
modeling ocean flows, and in the context of atmospheric circulation near the equator
in Majda and Klein [28].

The asymptotic scaling for the velocity in this regime is given by u ∼ 1 as Fr→ 0.
For the fluid depth we have h− h0(t) ∼ Fr on the large scale and h− h0(t) ∼ Fr2

on the small scale, respectively. This scaling should be reproduced by a numerical
scheme, especially when ∆t � ∆ξ√

H0
= Fr∆x√

H0
, the latter corresponding to large

Courant numbers with respect to gravity waves for the time integration in the
present model problem.

2.3. From zero to low Froude numbers. To be able to extend the numerical
machinery known from projection methods applied to the zero Froude number shallow
water equations (also known as “Lake equations”), the shallow water equations must
be cast into a similar form. To reformulate system (1), let us decompose the fluid
depth into

h(t,x; Fr) = h0(t,x) + Fr2 h′(t,x) (7)
with

h0(t,x) = H0(t)− b(t,x) . (8)
Here, H0 is the mean background total elevation, which can only change due to flow
over the boundary of the domain or to a change in the mean bottom topography.
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Therefore, h0 can only change due to boundary flow or (local) change of bottom
topography. The dynamics of the flow are thus given by the perturbation h′ of the
fluid depth. This ansatz is justified by the asymptotic analysis of the zero Froude
number limit of the governing equations and we expect that h′ = O(1) as Fr→ 0 in
the flow regimes of interest. Inserting this into the governing system, the shallow
water equations can be rewritten as

ht +∇ · (hu) = 0
(hu)t +∇ · (hu ◦ u) + h∇h′ = 0

h = h0 + Fr2 h′ .
(9)

Compared to the zero Froude number equations, h′ takes the role of h(2), but is
no longer a Lagrange multiplier. Therefore, also the velocity no longer satisfies a
strict divergence constraint. However, at low Froude numbers, these fields should
be close to their zero Froude number counterparts. This is due to the mathematical
equivalence of the shallow water and the Euler equations and related convergence
results for the low Mach number limit of the Euler equations [e.g. 16].

3. Numerical Scheme

The numerical scheme to correctly capture the multiscale behavior of the flow is
based on a semi-implicit discretization of the shallow water equations, the latter
being an extension of a zero Froude-number projection method as in Vater and Klein
[41]. This construction ensures that the discretization correctly approximates the
limit behavior of the equations. A second ingredient is a scale-selective multilevel
scheme which was previously derived for the linearized equations [42, 40]. With
this addition we account for the characteristic flow behavior on the different scales
resolved by the discretization.

The semi-implicit method consists of a predictor step, which solves an auxiliary
hyperbolic system. This is followed by a first elliptic correction to adjust the
advective flux components. A second elliptic correction accounts for the accurate
propagation of gravity waves. This is where we incorporate the multilevel scheme for
linearized flows. The multilevel scheme is based on two different time discretizations.
A scale-wise decomposition of the flow information based on geometric multigrid
ideas enables a scale-dependent blending of the two time discretizations. Here, we
employ the trapezoidal rule and the BDF(2) scheme, which are both second-order
accurate and need the solution of only one linear system. The trapezoidal rule,
which is equivalent to the implicit midpoint rule in the linear case, conserves energy
of all wave modes. While this is advantageous for long waves, it is not desirable
for high-wavenumber modes, due to the unfavorable discrete dispersion relation.
Backward differentiation (BDF) schemes, on the other hand, are able to filter these
short wave modes in a consistent way. In the present work, only uniform time steps
are considered. This simplifies the application of multistep methods, since it is not
required to account for the different time step sizes. Often these methods can be
generalized to variable time steps as in the case of BDF(2) [8].

Similar to the formulation of a zero Froude number projection method as in Vater
and Klein [41], the semi-implicit scheme is derived by a semi-discretization in time.
The discretization in space is discussed in a second step. The essential difference to
the zero Froude number case is that the ansatz (7) for the fluid depth involves the
introduction of local time derivatives of this quantity. This leads to the solution of
two Helmholtz problems in the correction steps.
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3.1. Explicit predictor and advective flux correction. The auxiliary system
solved in the predictor step is given by

ht +∇ · (hu) = 0
(hu)t +∇ · (hu ◦ u) = −(h∇h′)old ,

(10)

where the right hand side of the momentum equation is treated as a “source term”
and computed from an old (known) time level. The homogeneous part of (10) is
known as the “pressureless equations” [see 2, 3, 26, and references therein]. The
source term is set to (h∇h′)old(x) – (h∇h′)(tn,x), where h′,n is computed from
hn by using (7), i.e.,

h′,n = 1
Fr2 (hn −Hn

0 + bn) . (11)

Here and in the following h(x, tn) is abbreviated by hn etc.
Integrating the governing equations from time level tn to tn+1 – tn + ∆t and

using the mid-point rule by evaluating the flux terms at the half-time levels tn+1/2 –

tn + ∆t/2 yields
hn+1 = hn −∆t

[
∇ · (hu)n+1/2

]
(12)

and
(hu)n+1 = (hu)n −∆t

[
∇ · (hu ◦ u)n+1/2 + (h∇h′)n+1/2

]
, (13)

which is second-order accurate. To obtain an accurate and stable approximation of
the advective flux terms, the the momentum (hu)∗,n+1/2 computed by the auxiliary
system is modified by a height correction δh′,nfl

(hu)n+1/2 = (hu)∗,n+1/2 − ∆t
2 hn∇δh′,nfl . (14)

Applying the divergence to this equation in combination with the height update
(12) leads to an (uncritical) Helmholtz problem for δh′,nfl :

− Fr2

∆t δh
′,n
fl + ∆t

2 ∇ · (h
n∇δh′,nfl ) = Hn+1

0 −Hn
0

∆t − bn+1 − bn

∆t − h∗,n+1 − hn

∆t . (15)

The last term on the right hand side is obtained by substituting the divergence of
the auxiliary momentum through the height equation of (10). Note that for Fr = 0
this equation becomes identical to the first correction of a projection method as in
Vater and Klein [41]. Using (14), the height at the new time level as given in (12)
and the advective components of the momentum flux can be computed. This leads
to an intermediate momentum update defined by

(hu)∗∗TR – (hu)n −∆t [∇ · (hu ◦ u)n+1/2 + (h∇h′)n] , (16)
and the momentum at the new time level is obtained by

(hu)n+1 = (hu)∗∗TR −
∆t
2

(
δhn∇h′,n + hn+1/2∇δh′,n

)
, (17)

where δhn – hn+1 − hn and hn+1/2 – 1
2 (hn + hn+1). The terms in the brackets

have still to be computed through a second correction.

3.2. Second correction. As discussed above, two different discretizations are
derived for the second correction. One is based on the trapezoidal rule, the other
one has a BDF(2)-type discretization. These two discretizations are the basis for the
subsequently derived multiscale scheme. In addition we will consider the θ-scheme,
which is a blended version between the implicit midpoint/trapezoidal rule and the
implicit Euler method.

The trapezoidal rule applied to the height equation results in
1
2
[
∇ · (hu)n+1 +∇ · (hu)n

]
= −h

n+1 − hn

∆t . (18)
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By substitution of (17) into this equation, we obtain another (uncritical) Helmholtz
equation, but this time for the height update δh′,n = h′,n+1 − h′,n, which is

−2Fr2

∆t δh
′,n + ∆t

2 ∇ · (ĥ
n+1/2∇δh′,n) = 2H

n+1
0 −Hn

0
∆t − 2b

n+1 − bn

∆t +∇ · (hu)n

+∇ · (hu)∗∗TR −
∆t
2 ∇ · (δ̂h

n∇h′,n) .
(19)

Apart from the last term on the right hand side, for Fr = 0 this equation is again
essentially equivalent to the zero Froude number case. In case of the zero Froude
number projection method, this last term (without the hat over δhn) appears in the
intermediate momentum update, since there the height update is given through H0(t)
and b(t,x). In the low Froude number case, however, we have δhn = δHn

0 + Fr2δh′,n,
which means that actually the part Fr2∆t/2∇ · (δh′,n∇h′,n) should be on the left
hand side of the equation, modifying the solution operator. This issue is solved
by using the height update known from the first correction (denoted by the hat)
to compute this term. The same is true for the weight of the Laplacian in the
Helmholtz operator on the left hand side, where we also apply the height obtained
from the first correction. Note, that this does not modify the final momentum
update (17), where the solution δh′,n of (19) must be used to determine δhn in order
to get conservation of momentum in the absence of non-trivial bottom topography.

To obtain a BDF(2)-type discretization of the second correction, the governing
equations (9) are discretized by

hn+1 = 4
3h

n − 1
3h

n−1 − 2∆t
3
[
∇ · (hu)n+1] (20)

and

(hu)n+1 = 4
3(hu)n − 1

3(hu)n−1 − 2∆t
3 [∇ · (hu ◦ u)n+1 + (h∇h′)n+1] . (21)

Note that the advective flux component ∇ · (hu ◦ u) is only available at the half
time level from the predictor and first correction. Since for the BDF discretization
this term is needed at the full time level tn+1, it is linearly extrapolated from older
time levels by

(hu ◦ u)n+1 – (hu ◦ u)n+1/2 + 1
2

(
(hu ◦ u)n+1/2 − (hu ◦ u)n−1/2

)
. (22)

A resulting intermediate momentum update is then given by

(hu)∗∗BDF2 –
4
3(hu)n − 1

3(hu)n−1 − 2∆t
3 [∇ · (hu ◦ u)n+1 + (h∇h′)n] , (23)

and the momentum at the new time level is computed by

(hu)n+1 = (hu)∗∗BDF2 −
2∆t

3
(
δhn∇h′,n + hn+1∇δh′,n

)
. (24)

Similarly to the in case of the trapezoidal rule, the momentum update (24) is then
combined with (20), to obtain an equation for δh′,n. This leads to the (uncritical)
Helmholtz problem

−3Fr2

2∆t δh
′,n + 2∆t

3 ∇ · (ĥ
n+1∇δh′,n) = − Fr2

2∆tδh
′,n−1 + 3hn+1

0 − 4hn0 + hn−1
0

2∆t

+∇ · (hu)∗∗BDF2 −
2∆t

3 ∇ · (δ̂h
n∇h′,n) ,

(25)
where hn0 = Hn

0 − bn. Here again, the values with the hats are approximations
obtained from the height computed in the first correction. To conserve momentum
in the absence of non-trivial bottom topography, also in this case the result of (25)



MULTISCALE SCHEME FOR SHALLOW WATER FLOWS AT LOW FROUDE NUMBER 9

must be used in the final momentum update (24) for the calculation of δhn and
hn+1.

In addition to the two schemes described above, we consider the so-called θ-scheme.
This means that the non-convective flux term (h∇h′)n+θ in (13) is approximated at
tn + θ∆t, and equation (18) is substituted by

θ∇ · (hu)n+1 + (1− θ)∇ · (hu)n = −h
n+1 − hn

∆t , θ ∈ [0, 1] . (26)

For θ = 1, this method becomes the implicit Euler method. While it is of second-
order accuracy only for θ = 0.5 (equivalent to the trapezoidal rule), the scheme
usually stabilizes for θ ∈ (0.5, 1], since more numerical diffusion is introduced.

3.3. Multiscale scheme. With the introduction of the trapezoidal and the BDF(2)-
based time discretizations for the second correction, all ingredients are now at hand
to apply the multilevel scheme from Vater et al. [42] as part of a semi-implicit
method to the fully nonlinear shallow water equations. The idea is to define direct
scale dependent splittings of the fields for fluid depth and momentum, i.e.,

δh′ =
νM∑
ν=0

δh′,(ν) and (hu) =
νM∑
ν=0

(hu)(ν) . (27)

Ideally, this could be a quasi-spectral or wavelet decomposition, splitting the discrete
fields into (local) high wave number and low wave number components. Each scale
component should be treated depending on how well it is resolved by the underlying
implicit time discretization. For each scale ν we introduce a blending parameter µν ,
which depends on the grid-CFL number associated to the scale. It is designed, such
that for well resolved scales the trapezoidal rule is used, while for scales, which are
under-resolved in time, it blends towards the BDF(2) scheme.

Since we do not want to solve for separate corrections on each scale, we carefully
analyze the formal contribution of the two different time discretizations on each scale.
With this information and the application of multigrid prolongation and restriction
operators, we derive a multilevel elliptic problem, which yields the correction for
our semi-implicit discretization.

By the introduction of projection operators Πh
ν and Π(hu)

ν , which project a height
or momentum field to the scale ν, the contribution for each scale shall be given by

δh′,(ν) = (Πh
ν −Πh

ν−1)δh′ and (hu)(ν) = (Π(hu)
ν −Π(hu)

ν−1 )(hu) , (28)

where we set Πh
−1 ≡ 0 and Π(hu)

−1 ≡ 0 for simplicity. The scale-wise contribution,
which results from blending of the schemes, is then defined as follows. With the
application of the two schemes for the semi-implicit solution of the shallow water
equations, two different intermediate momentum updates are available after the
first correction. For the trapezoidal time discretization this is (16), whereas for the
BDF(2)-based discretization the update is given by (23). With these updates, the
right hand sides of the second correction equations (19) and (25) are given by

fδh
′

TR = − 2
∆t

[
2h

n+1
0 − hn0

∆t +∇ · (hu)n +∇ · (hu)∗∗TR −
∆t
2 ∇ · (δ̂h

n∇h′,n)
]

(29)

and

fδh
′

BDF2 = 3Fr2

4∆t2 δh
′,n−1 − 3

2∆t

[
3hn+1

0 − 4hn0 + hn−1
0

2∆t +∇ · (hu)∗∗BDF2

− 2∆t
3 ∇ · (δ̂h

n∇h′,n)
]

.
(30)

Here, both correction equations have been normalized, such that the weighted
Laplacian is essentially the same in the two resulting Helmholtz operators. Note, that
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this choice is somehow arbitrary, and one could have chosen another normalization.
For example in Vater et al. [42] we used a normalization where the terms without
derivatives in the Helmholtz operators have the common weight 1. Further analysis
revealed, however, that this choice can introduce spurious kinks into the solution
for the momentum variable. The Helmholtz operators are then given by

ATR = 4Fr2

∆t2 id−∇ · (ĥn+1/2∇) and ABDF2 = 9Fr2

4∆t2 id−∇ · (ĥn+1/2∇) . (31)

Note that here we also modified the weight in the Laplacian of the operator for the
BDF2 scheme from ĥn+1 to ĥn+1/2. Using the projections from (28), a scale-wise
application and summation over the scales results in a multiscale operator, which is
given by

A –

νM∑
ν=0

(µνATR + (1− µν)ABDF2) (Πh
ν −Πh

ν−1) , (32)

or, in particular for the operators defined in (31)

A –
Fr2

∆t2

[
νM∑
ν=0

(
4µν + 9

4 (1− µν)
)

(Πh
ν −Πh

ν−1)
]
−∇ · (ĥn+1/2∇) . (33)

With this operator the elliptic equation of the second correction for the solution of
δh′,n+1 becomes

Aδh′,n+1 =
νM∑
ν=0

(
µνf

δh′,(ν)
TR + (1− µν)fδh

′,(ν)
BDF2

)
(34)

which also involves a scale dependent right hand side. With the solution of this
Helmholtz problem, the momentum at the new time level is computed according to

(hu)n+1 =
νM∑
ν=0

(
µν(hu)n+1,(ν)

TR + (1− µν)(hu)n+1,(ν)
BDF2

)
, (35)

where the scale dependent contributions are computed by blending the updates
that would be obtained by either the trapezoidal or the BDF(2) time discretization.
They are given by projecting

(hu)n+1
TR = (hu)∗∗TR −

∆t
2

(
δhn∇h′,n + hn+1/2∇δh′,n

)
(36)

and
(hu)n+1

BDF2 = (hu)∗∗BDF2 −
2∆t

3
(
δhn∇h′,n + hn+1∇δh′,n

)
(37)

to each scale using the projections from (28).
It remains to define how the blending weights for each grid level are determined.

As described above, we would like to apply the trapezoidal rule for scale components,
which are well resolved by the discretization. For smaller scales the blending should
be shifted successively to the BDF(2) scheme. Since the numerical dispersion heavily
depends on the CFL-number, in an initial attempt the blending parameter is set
to be a function of the grid-CFL number. For simplicity, the gravity-wave speed
c =

√
h/Fr is estimated by the square root of the mean height divided by the

global Froude number in the conducted numerical simulations. This means that the
grid-CFL number is given by cflν = c∆t/∆xν , where ∆xν is the grid spacing on the
respective grid level ν. The blending parameter is then computed according to

µν =

min
(

1, νM − ν
blog2 cflc

)
if cfl ≥ 2 ,

1 otherwise ,
(38)
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where b·c means rounding towards minus infinity. Thus, µν is chosen such that the
scheme associates the implicit trapezoidal discretization with all gravity wave modes
corresponding to coarse grids with grid-CFL number cflν ≤ 1 (µν = 1), while the
discretization is nudged towards BDF(2) for modes living on grids with cflν > 1
(µν < 1). However, if the fine-grid-CFL number is smaller than 2, the scheme would
consequently end up with using only the trapezoidal rule. This choice of blending
weights has been also used in the linear case [42].

3.4. Space discretization. The space discretization for the semi-implicit method
is essentially the same as in the zero Froude number projection method. The major
differences are that for non-zero Froude numbers two Helmholtz problems must be
solved instead of Poisson-type problems, and that some care needs to be taken in
order to get conservation of momentum for constant bottom topography.

The scheme is solved in one space-dimension with grid cells Vi = [xi−1/2, xi+1/2].
Furthermore, a dual discretization is introduced, where each dual grid cell V̄i+1/2 =
[xi, xi+1] is centered around a node xi+1/2 of the primary grid. The whole method
is discretized as a finite volume method, which has the form

Un+1
i = Un

i −
∆t
|Vi|

(
Fn+1/2
i+1/2 − Fn+1/2

i−1/2

)
+ ∆tNn+1/2

i . (39)

Here, |Vi| is the volume of cell Vi. Un
i represents an approximation to the cell mean

of the unknowns (h, hu)T in the cell Vi at time tn, and Fn+1/2
i+1/2 is the advective part

of the numerical flux across the interface at xi+1/2. The latter approximates the
average of the advective flux contribution (hu, hu2)T over one time step [tn, tn+1].
The additional non-conservative part Nn+1/2

i accounts for the gradient in surface
elevation and is an approximation to (0,−hh′x)T . The equations are discretized to
obtain a scheme which is in conservation form for the height equation. Conservation
of momentum is only valid when no bottom topography is present. In this case,
also momentum should be conserved on the discrete level. Following the above
(semi-discrete) derivation of the scheme, the numerical fluxes are computed in three
steps

Fn+1/2
i+1/2 – F∗i+1/2 + FMAC

i+1/2 + 0 ,

Nn+1/2
i – N∗i + 0 + NP2

i ,
(40)

which represent contributions from the predictor, the first and second correction,
respectively. Note that the first correction only modifies the advective flux compo-
nents, while the second correction only modifies the non-conservative part. The
detailed contributions are given in the appendix. For the discretization of the
bottom topography b, a piecewise linear distribution on each primary grid cell
which is continuous across the interfaces is assumed. The time derivatives bn+1/2

t

are approximated by the midpoint rule using the values at full time levels.
In the predictor step the auxiliary system (10) is solved using a Godunov-type

method for hyperbolic conservation laws [39]. As mentioned above, for Φ = 0
these are the pressureless equations with the “source term” (0,−hnh′,nx )T in the
momentum equation. Note, that this term involves not only the contributions from
the bottom topography, but also the non-convective part of the flux function. For the
integration, a semi-discretization in space with second-order reconstruction in the
primitive variables and Runge-Kutta time stepping is used [32]. In particular, Heun’s
method is applied, which is strong stability preserving (SSP) [34, 12]. The numerical
fluxes are evaluated by solving the exact Riemann problem of the pressureless
equations at the cell interfaces.

In the first correction, the flux divergence of the auxiliary system is corrected,
which is similar to a MAC-type projection [13, 43] in case of the zero Froude-number
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Figure 1. One-dimensional versions of full weighting (left) and
linear interpolation (right) operators known from standard finite
difference geometric multigrid. Arrows indicate mappings between
grid functions associated with grid nodes.

equations. The height correction δh′,nfl is continuous and piecewise linear on the
dual grid, which is the 1D analogue as it was used in the solution of an elliptic
problem in Süli [35], or in the first correction of the method in Vater and Klein [41]
in two space dimensions. The fluid depth hn in the weighted Laplacian of (15) is
interpolated at the nodes of the primary grid by taking the average from the two
neighboring cells [cf. 21].

For the second correction, the divergence on the right hand side of (19) is applied
to each dual control volume. This leads to a 1D divergence defined by

D̄i+1/2(u) –
1

|V̄i+1/2|
(ui+1 − ui) . (41)

Also the computed correction δh′,n is assumed to be continuous and piecewise
linear, but this time on the primary cells. Moreover, it needs to be defined how the
fluid depth which enters as weight in the Laplacian on the left hand side of (19)
is discretized. Here we assume that the fluid depth is piecewise constant on each
cell. This leads to a piecewise constant distribution of h(δh′,n)x, and the weighted
Laplacian resulting from the divergence (41) is well defined.

Concerning conservation of momentum in case of flat bottom topography, it must
be ensured that the term

hh′x = h0h
′
x + Fr2h′h′x (42)

in the momentum equation can be written as a divergence on the discrete level.
Since h0 is constant in this case, this is no problem for the first term on the right
hand side of (42). For the second term, the equality

h′h′x = 1
2((h′)2)x (43)

has to be achieved on the discrete level. We realize this by taking

(h′h′x)i =
(
h′i+1/2 + h′i−1/2

2

)(
h′i+1/2 − h

′
i−1/2

∆x

)
=

(h′i+1/2)2 − (h′i−1/2)2

2∆x , (44)

where the interface values are linearly interpolated from cell mean values.
The spatial discretization of the scale splitting in the second correction of the

multiscale scheme is obtained by eliminating every second grid node or, equivalently,
by merging two adjacent cells. In this setup the restriction and prolongation
operators used in standard multigrid algorithms can be utilized to define the space
decomposition. Here we use full weighting (restriction) and linear interpolation
(prolongation) [36] for the fluid depth, which can be defined by a stencil. The full
weighting is given by

R(ν) = 1
4
[
1 2 1

]
, (45)

which means that a variable on the coarse grid node at grid level (ν) is derived by
averaging over the values at the same node and the two adjacent nodes on the fine
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Figure 2. One-dimensional versions of restriction (left) and pro-
longation (right) operators for the momentum variable. Arrows
indicate mappings between grid functions associated with grid cells
(instead of with grid nodes as in figure 1).

grid at grid level (ν + 1) with the weights given in the stencil above (see also figure
1, left). The linear interpolation from grid level (ν) to grid level (ν + 1) is given by

P (ν) = 1
2
[
1 2 1

]
. (46)

This means that the height at grid nodes living on the fine grid level, which have a
common coarse grid node, obtain the same value as on the coarse grid. The values
at grid nodes in between are computed by the average of the values of the adjacent
grid nodes (figure 1, right). Note, that P (ν) and R(ν) are adjoint up to a scaling
factor.

Since δh′ and (hu) are staggered in space, the splitting in the momentum field
cannot be the same as the one for the height update. Ideally, the splitting should
be chosen such that only the portion of the height update associated with the grid
level (ν) enters the update for the momentum on the same grid level. Revisiting
equations (36) and (37) shows that only first derivatives of δh′ at different time
levels enter the momentum update. Therefore, the splitting in the momentum must
match the splitting in ∂δh′/∂x induced by the h-splitting [42]. This results in a
restriction with stencil

R̂(ν) = 1
8
[
1 3 3 1

]
(47)

for the momentum (Figure 2, left). The obvious choice for the prolongation operator
is a scaled version of the adjoint of the restriction operator R̂(ν), which results in

P̂ (ν) = 1
4
[
1 3 3 1

]
, (48)

which is visualized in figure 2 (right).
A grid function ϕ can then be decomposed into fractions ϕ(ν) associated to

different grid levels using the prolongation and restriction operators P (ν) and R(ν).
The grid function on the coarsest level is obtained by the operation

ϕ(0) =
(
R(0) ◦R(1) ◦ · · · ◦R(νM−1)

)
ϕ , (49)

and the grid functions on finer levels are computed by

ϕ(ν) =
(
I − P (ν−1) ◦R(ν−1)

)
◦
(
R(ν) ◦R(ν+1) ◦ · · · ◦R(νM−1)

)
ϕ . (50)

An application of the multiscale Helmholtz operator is then realized by decomposing
the data into scales, scale-dependent weighting and rebuilding the full variable.
This gives the diagonal component of the operator, which includes the multiscale
information. The Laplacian part can be just computed on the finest grid level, since
it does not include any multiscale information.
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4. Numerical Results

Having derived the multiscale scheme for computing low Froude number shallow
water flows, in this section the performance of the method is evaluated for some
test cases. Besides the goal of numerically verifying the second-order accuracy of
the method, its asymptotic behavior in the low Froude number regime as described
in Section 2.2 is investigated.

The results of the multiscale method are compared to those obtained with the
semi-implicit method using the trapezoidal rule and the BDF(2) discretization in
the second correction. With the exception of the last test case, the computations
for the BDF(2) and the multiscale scheme are always started with an initial first
step by the trapezoidal rule. By this, enough old time step values can be provided
for the BDF(2)-based scheme. As mentioned above, the blending parameter µν in
the multilevel scheme is computed according to (38). However, the precise values
are always given for reference in each test case.

Since the presented scheme is semi-implicit, two Courant numbers [6] are con-
sidered. The Courant number concerning the maximum propagation speed of
information is essentially associated with the propagation of gravity waves in the
low Froude number case and denoted by cflgrav. Furthermore, the Courant number
concerning advective phenomena (which are mainly computed by the explicit pre-
dictor) is given by cfladv – maxi(|ui|)∆t/∆x, where ui is the velocity computed for
each cell.

The linear systems for the solution of δh′,nfl and δh′,n are solved using a matrix-free
implementation of the Bi-CGSTAB algorithm [38]. In each iteration, the Euclidean
norm of the residual vector is calculated, and the algorithm is terminated when
either the absolute value or the value relative to the norm of the initial residuum is
less than a given tolerance. In the presented calculations, this tolerance is set to
10−10.

4.1. Weakly nonlinear gravity wave. The first test case is set up with data,
which consists of an initially smooth right running shallow water simple wave in
one space dimension with flat bottom topography. Due to the nonlinearity of the
governing equations, a shock develops after some time. While this is one of the most
simple setups one can think of, it already reveals some interesting properties of the
considered numerical schemes: by the use of the method of characteristics, the exact
solution is known until the development of a shock, which is useful for a convergence
study. The behavior of the different schemes towards the compressible regime can
be also tested, when the exact solution eventually develops a shock. Furthermore,
the evolution of long-wave gravity waves can be analyzed, which is relevant for the
asymptotic regime described in Section 2.2 and similar to what was investigated for
the linearized equations [cf. 42, 40].

To derive the initial conditions, let us consider the characteristic variables of the
shallow water equations. These are given by [see, e.g., 10]

p1 = u− 2c and p2 = u+ 2c , (51)

where c =
√
h/Fr is the gravity wave speed. The definition of a background state

h0 = 1 leads to c0 = 1/Fr. Then, the initial gravity wave speed is given by

c = c0 + c′ = 1
Fr + c′ . (52)

To obtain a right running simple wave, the left running characteristic is set to
p1 = const. This constant is chosen to obtain a zero background flow, i.e., p1 = −2c0,
which gives the initial velocity field

u = 2(c− c0) = 2c′ . (53)
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Figure 3. Initial conditions for the weakly nonlinear gravity wave
test case with Fr = 0.1 on a grid with 256 grid cells. Left: fluid
depth, right: momentum.

Therefore, initially the local Froude number ranges from 0 to Frmax ≈ umax
c0

=
2 Fr maxx∈Ω(c′(x)). For the performed simulations the perturbation of the gravity
wave speed is set to c′(x) = 1

2 sin(2πx). The computational domain is defined by
the interval Ω = [0, 1] with 256 grid cells and periodic boundary conditions.

In a first setup, the Froude number is set to Fr = 0.1 and the time step is chosen
to be ∆t = 0.003, which is equivalent to initial Courant numbers cfladv ≈ 0.77
concerning advection and cflgrav ≈ 8.83 concerning the propagation of gravity waves.
In Figure 3 the initial conditions for fluid depth and momentum are given. The
solutions of the numerical schemes are given after 40 (t = 0.12) and 100 time steps
(t = 0.3) in Figure 4. At these times the wave has traveled approximately 1.2 and 3
times, respectively, through the domain. Since a shock forms at time tshock = 1/(3π),
this test shows the performance of the schemes towards the compressible regime. The
multiscale scheme is set up with three grid levels and blending factors µν = (1, 1/2, 0).

In addition we present results for the θ-scheme with θ = 0.7 and another variant
of the multiscale scheme where we switch between the trapezoidal rule and the
implicit Euler method (θ-scheme with θ = 1). For the latter we choose six grid
levels with blending factors µν = (1, 1/2, 0, 0, 0, 0). Note, that this choice is different
from what one would obtain using (38).

As one can see in Figure 4, for t = 0.12 the trapezoidal rule and multiscale scheme
develop an artificial overshot in the vicinity of the shock, which continuously grows
until either the time step has to be reduced or the schemes become unstable (which
already happens before the time t = 0.3). Since the initial data only consists of
long-wave information, and the contributions on the smaller scales are only small
corrections, the results for both schemes are almost identical. On the other hand,
the θ-scheme does not show this behavior, and the discontinuity is smeared out
by numerical diffusion. The BDF(2)-based scheme shows a behavior which is in
between these two extrema. To show that the multiscale scheme can also be used to
suppress the spurious overshot, we have implemented the version of the multiscale
scheme where we switch between the trapezoidal rule and the implicit Euler. In this
case, high wave numbers are diffused by the first-order method, while the long-wave
components are preserved.

The described behavior becomes even more evident at the later time t = 0.3, where
we only show the BDF(2), the θ-scheme and the multiscale trapezoidal/implicit
Euler scheme, due to the stability problem of the trapezoidal rule. Additionally, all
schemes introduce a dispersive error in that they slow down the speed of the simple
wave.

To test the evolution of long-wave gravity waves the Froude number is reduced to
Fr = 0.02 in a second setup. This further decreases the nonlinearity of the equations
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Figure 4. Solution of the weakly nonlinear gravity wave test case
with Fr = 0.1 at times t = 0.12 (top) and t = 0.3 (bottom) computed
with cflgrav ≈ 8.83 on a grid with 256 grid cells. Black: exact solu-
tion, blue dashed: trapezoidal rule, green: BDF(2)-type discretiza-
tion, orange: off-centered scheme (θ = 0.7), magenta: multiscale
trapezoidal/BDF2 scheme, cyan: multiscale trapezoidal/implicit
Euler scheme. Note, that the trapezoidal rule and the multiscale
trapezoidal/BDF2 schemes are only shown for t = 0.12.

compared to the case with Fr = 0.1. However, due to the configuration of the
initial data, the shock develops at the same time tshock = 1/(3π) as before. The
initial conditions for this test case are shown in Figure 5 (top). The time step is
again ∆t = 0.003, which is equivalent to initial Courant numbers cfladv ≈ 0.77 and
cflgrav ≈ 39.55. The solution at time t = 0.024 is displayed in Figure 5 (bottom).
At this time, the gravity wave has traveled approximately 1.2 times through the
domain, and its shape has not yet been much distorted compared to the initial
data. For this test, the multiscale scheme is applied with six levels and blending
parameters µν = (1, 4/5, 3/5, 2/5, 1/5, 0).

At the final time the trapezoidal rule and the multiscale scheme show the smallest
error in amplitude and phase compared to the exact solution. Also in this case the
solutions of these schemes are nearly identical. The worst results are produced by
the off-centered scheme, which has the biggest phase and amplitude errors. The
method with BDF(2) in the second correction produces results which are in between
these two extrema.

4.2. Convergence in one space dimension. The same initial conditions of a
right running gravity simple wave and for Fr = 0.1 are used in order to undertake
a convergence analysis. The solution of the numerical schemes is computed on
different grids and compared to the exact solution at time tend = 0.05. At this
time no shock has developed yet, and the true solution can be computed using the
method of characteristics. The numerical solution is computed on grids with 256,
512, 1024 and 2048 cells, and the respective time steps are given by ∆t256 = 1/320,
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Figure 5. Weakly nonlinear gravity wave test case with Fr =
0.02 computed with cflgrav ≈ 39.55 on a grid with 256 grid cells.
Initial conditions (top). Solution at t = 0.024 (bottom). Black:
exact solution, blue dashed: trapezoidal rule, green: BDF(2)-type
discretization, orange: off-centered scheme (θ = 0.7), magenta:
multiscale scheme.

∆t512 = 1/640, ∆t1024 = 1/1280 and ∆t2048 = 1/2560. This corresponds to an
advective Courant number cfladv = 0.8. For the multiscale method, five grid levels
with µν = (1, 1, 2/3, 1/3, 0) are used.

For the computation of errors and the convergence rate the error vectors eN in
fluid depth and momentum are calculated. For the latter it has elements

eNi – (hu)i(tN )− (hu)Ni (54)

where the cell mean values of the exact solution are compared with those of the
simulated data. The global error is measured using discrete versions of the L2 and
the L∞ norms. These are defined by

∥∥eN∥∥2 –

(∑
i

|Vi| |eNi |2
)1/2

and
∥∥eN∥∥∞ – max

i
{eNi } . (55)

The experimental convergence rate γ is calculated by the formula

γ –
log(‖eNc ‖/‖eNf ‖)
log(∆xc/∆xf ) . (56)

In this definition, eNc and eNf are the computed error vectors of the solution on a
coarse and a fine grid and ∆xc and ∆xf are the corresponding grid spacings.

The error of the numerical solutions in the L∞ norm is summarized in Figure 6.
Furthermore, the precise values in the L2 and L∞ norms are given in the Appendix
in Tables 1 and 2, where also the convergence rates γ between the grid levels are
calculated. On fixed grids, the scheme with trapezoidal discretization in the second
correction produces the smallest errors. The method with a BDF(2)-based second
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Figure 6. Convergence for the one-dimensional simple wave test
case. L∞ errors in h and (hu) for the different variants of the
semi-implicit method.

correction produces errors, which are about 1.5 times larger. The multiscale scheme
produces errors, which are comparable with those from the trapezoidal rule. This is
again due to the long-wave nature of the initial conditions. As given by the values
of µν , only the finest scales the BDF(2)-based method is applied, which means
that the calculations are nearly identical up to small deviations. The experimental
convergence rates suggest for all schemes second-order accuracy.

4.3. Balanced modes in presence of time dependent bottom topography.
In a final test case, the schemes are tested for their ability to relax to non-trivial
balanced states in the presence of bottom topography varying in time. In order to
do so, a test case from Vater et al. [42] [see also 40] for the linearized equations is
extended to the fully nonlinear shallow water equations. The test is defined in one
space dimension on the domain Ω = [0, 100]. The bottom topography is given by

b(t, x) = Fr
ω

sin (ωt) q̃(x− x0) , (57)

where

q̃(x) =
[

2σ2 + λ2σ4 − 4x2

λ2σ4 sin(λx) + 4x
λσ2 cos(λx)

]
exp

(
−
(x
σ

)2)
. (58)

This means that the term bt(t, x) = Fr cos (ωt) q̃(x− x0) must be balanced by the
production of local divergence. The parameters are given by ω = 0.2π, x0 = 50,
σ = 10 and λ = 0.32π. Initially the fluid is at rest (u ≡ 0) with fluid depth
h ≡ 1. When the flow is in balance, the findings from Section 2 imply that for
small Froude numbers the perturbations in fluid depth and momentum should be
also small, and the dynamics primarily happen in the linear regime. This means
that the solution is essentially governed by the asymptotic solution obtained for the
linearized shallow water equations. Translated to the given initial value problem
and bottom topography, the asymptotic solutions of the perturbation in fluid depth
and the velocity are

Hasy(t, x)−H0 = −Fr3

H0
ω sin (ωt) h̃(x− x0) (59)

with h̃(x) = λ−2 sin(λx) exp(−(x/σ)2), and

uasy(t, x) = Fr
H0

cos (ωt) ũ(x− x0) , (60)

where ũ(x) = [2x(σλ)−2 sin(λx)− λ−1 cos(λx)] exp(−(x/σ)2).
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In the presented computations, the Froude number is set to Fr = 0.01 and the
total background height is H0 = 1. The computational grid has 256 grid cells, and
the fixed time step is given by ∆t = 0.24, which corresponds to an advective Courant
number cfladv ≈ 0.006 when the flow is essentially balanced. The Courant number
corresponding to the transport of gravity waves is cflgrav ≈ 61.

For this test case the BDF(2)-based computations are not initialized with an
initial step by the trapezoidal rule. Instead, the required state at t−1 = −0.24 is
set to the balanced solution with flat bottom topography. However, compared to
an initialization using the trapezoidal rule the findings are qualitatively the same.
For the multiscale method six grid levels are used with a scale-dependent blending
given by µν = (1, 4/5, 3/5, 2/5, 1/5, 0).

Given the above initial conditions for t = 0, the fluid depth is in balance with the
initial bottom topography. However, the temporal change of the latter introduces
divergence into the velocity field, which, in turn, results in higher-order perturbations
in the fluid depth. In Figure 7, the numerical results are displayed together with the
asymptotic solution for the first six time steps using the trapezoidal rule and BDF(2)-
based discretization. Using the trapezoidal rule, both, the computed perturbations
in the fluid depth and the momentum field oscillate around the balanced state, but
they do not relax to it. Additionally, the amplitude of the numerically calculated
perturbations in the fluid depth are about 8 times larger compared to the asymptotic
solution. The BDF(2)-based discretization results in a completely different behavior.
Here, the initial deviations from the balanced state vanish after only a few time
steps. After the fourth time step the numerical solution is nearly indistinguishable
from the asymptotic solution. This behavior is also reproduced by the multiscale
method, for which the results are given in Figure 8. These results are in good
agreement with the findings for the linearized shallow water equations [42, 40].

In a second run, the simulation is started at t = 0.15, and the bottom topography
is assumed to be flat before this time. At this time, when the bottom topography
switches instantaneously to another state, both, fluid depth and momentum are not
in balance. This leads to much bigger initial deviations from the asymptotic solution,
as can be seen in Figure 9 for the trapezoidal rule and the BDF(2)-type discretization
(note the different scaling in the y-axis for the perturbation in fluid depth for the
first four time steps). To evaluate the long-term behavior, the numerical solution
is additionally plotted for the time steps 35 and 36. Also in this case the solution
of the trapezoidal rule does not relax to the balanced state, but rather oscillates
around it. Only the long-wave perturbations are diminished with time. Here, the
perturbations in fluid depth computed by the numerical scheme are about two
orders of magnitude larger than those predicted by the asymptotic solution. For
the momentum, the amplitude of the numerical solution is also about three times
larger than the predicted balanced state.

The BDF(2)-based method, on the other hand, shows a behavior similar to
the first setup. After initial deviations, which are of the same order as for the
trapezoidal rule, the numerical solutions essentially relax to the balanced state
predicted by the asymptotic solution. Only in the fluid depth, very high-wave-
number small-amplitude deviations persist. Additional tests (not shown) suggest
that these artifacts are due to the fact that the explicit predictor cannot cope with
too high-wave-number modes at these large Courant numbers. In this part of the
scheme, a two-stage Runge-Kutta method is used for the time discretization. Since
the gravity waves are generated by the “source term” of the predictor, which is
always evaluated at the old time level, high-wave-number gravity waves get very
much distorted in the second stage of the Runge-Kutta scheme. This can eventually
lead to instabilities, if these parts of the solution become to large.
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Figure 7. Numerical solution of the balancing test case after the
first six time steps using the trapezoidal rule (blue line) and the
BDF(2) scheme (green) on a grid with 256 cells, Fr = 0.01. Left
column: perturbation in fluid depth, right column: momentum.
Each step n is one row. Asymptotic solution is plotted as dashed
lines.

The results of the multiscale method are given in Figure 10. Qualitatively, the
behavior is similar to the BDF(2)-based second correction. However, the scale
dependent blending of the two methods leads to even larger very high-wave-number
deviations, but whose amplitude is of the order of the perturbations in fluid depth.
Also some long wave perturbations persist, which cannot propagate away due to
the periodic boundary conditions.
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Figure 8. Same as Figure 7, but using the multiscale scheme (magenta).

5. Conclusion

In this work, a new multiscale semi-implicit method for the numerical solution of
low Froude number shallow water flows is introduced. It is motivated by significant
shortcomings of classical semi-implicit large time step integration schemes applied
in current atmospheric codes. A principal feature of the new method is the diverse
treatment of long and short wave solution components in accordance with the
asymptotic regime of fast gravity waves traveling over short-range topography. This
is achieved through a multilevel approach borrowing ideas from multigrid schemes
for elliptic equations. The scheme is second-order accurate and admits time steps
depending essentially on the flow velocity.

The multiscale scheme is able to properly propagate long-wave gravity waves, and
their dispersion and amplitude errors are minimized as much as the considered base
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Figure 9. Numerical solution of the balancing test case using
completely unbalanced initial data after the first four time steps
and time steps 35 and 36 using the trapezoidal rule (blue line) and
the BDF(2) discretization (green) on a grid with 256 cells, Fr = 0.01.
Asymptotic solution is plotted as dashed lines.

schemes admit. However, some artifacts can be observed in the fluid depth, which
are probably related to the explicit predictor of the semi-implicit method. But these
should be acceptable in practical applications. In the presence of bottom topography,
which varies slowly in time, the balanced state is attained after a reasonable number
of time steps.

The ultimate goal of this work is to develop a multiscale–multiply blended scheme
that not only accounts for the scale dependent propagation properties of the various
wave modes in the atmosphere, thereby creating the numerical analogon of the
blended model formulation of Klein and Benacchio [17].
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Figure 10. Same as Figure 9, but using the multiscale scheme (magenta).

6. Appendix

6.1. Numerical fluxes of the finite volume scheme. As outlined in (40), the
numerical fluxes are computed in three steps. Here, the particular terms using the
trapezoidal rule in the second correction are given. The case using the BDF(2)
discretization uses the same spatial operators, but has some differences in the
particular terms. F∗I and N∗i are the numerical fluxes approximating the flux
function and “source term” of the auxiliary system, respectively. These are

F∗I =
(

(hu)n+1/2

(hu)n+1/2un+1/2

)
and N∗i =

(
0

−(hh′x)n
)

. (61)
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The second flux term

FMAC
I – −∆t

2

(
hn(δh′,nfl )x

(hu)∗,n+1/2(δh′,nfl )x + hn(δh′,nfl )xu∗,n+1/2

)
I

(62)

corresponds to the first correction computed by equation (15). As stated above,
with this correction the new time level fluid depth can be determined. The third
contribution in (40) is given by

NP2
i –

(
0

− 1
2
(
δhnh′,nx + hn+1/2δh′,nx

))
i

(63)

and represents the correction computed by the second Helmholtz equation (19).

6.2. “Simple wave” test case. Computed errors and convergence rates (cf. section
4.2).

Table 1. Errors and convergence rates in h for the different variants
of the semi-implicit method.

method norm 256 rate γ 512 rate γ 1024 rate γ 2048

trapezoidal rule
L2 3.2801e-3 1.846 9.1251e-4 1.955 2.3530e-4 1.991 5.9190e-5
L∞ 1.0686e-2 1.705 3.2770e-3 1.898 8.7942e-4 1.977 2.2342e-4

BDF(2)
L2 4.7937e-3 1.763 1.4127e-3 1.912 3.7548e-4 1.975 9.5495e-5
L∞ 1.4599e-2 1.587 4.8593e-3 1.822 1.3743e-3 1.947 3.5642e-4

multiscale
method

L2 3.2793e-3 1.846 9.1193e-4 1.956 2.3512e-4 1.991 5.9157e-5
L∞ 1.0661e-2 1.703 3.2748e-3 1.898 8.7882e-4 1.977 2.2328e-4

Table 2. Errors and convergence rates in (hu) for the different
variants of the semi-implicit method.

method norm 256 rate γ 512 rate γ 1024 rate γ 2048

trapezoidal rule
L2 3.2422e-2 1.864 8.9047e-3 1.961 2.2875e-3 1.991 5.7556e-4
L∞ 1.0527e-1 1.722 3.1899e-2 1.904 8.5226e-3 1.977 2.1654e-3

BDF(2)
L2 4.7676e-2 1.740 1.4277e-2 1.910 3.8002e-3 1.976 9.6614e-4
L∞ 1.4534e-1 1.573 4.8843e-2 1.826 1.3778e-2 1.952 3.5620e-3

multiscale
method

L2 3.2404e-2 1.865 8.8982e-3 1.961 2.2855e-3 1.990 5.7521e-4
L∞ 1.0494e-1 1.720 3.1864e-2 1.904 8.5157e-3 1.976 2.1639e-3
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Kröner, and Nina Shokina, editors, Computational Science and High Perfor-
mance Computing IV, volume 115 of Notes on Numerical Fluid Mechanics and
Multidisciplinary Design, pages 149–164. Springer Berlin / Heidelberg, 2011.
ISBN 978-3-642-17769-9. doi:10.1007/978-3-642-17770-5 12.

[5] Floraine Cordier, Pierre Degond, and Anela Kumbaro. An asymptotic-
preserving all-speed scheme for the Euler and Navier-Stokes equa-
tions. Journal of Computational Physics, 231(17):5685–5704, 2012.
doi:10.1016/j.jcp.2012.04.025.

[6] Richard Courant, Kurt Otto Friedrichs, and Hans Lewy. Über die partiellen
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