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1 Introduction

Electrical networks with complex components like semiconductors can be re-
duced using MOR methods. Here we compare the proper orthogonal decomposi-
tion (POD) approach with the discrete empirical interpolation method (DEIM)
for the reduction of the nonlinearities, see e.g. [8], with the Gauß-Newton with
approximated tensors (GNAT) method, see [4]. We emphasize that our MOR
approach is not restricted to electrical networks with semiconductors but also
extends to networks containing many simple components, and complex compo-
nents modeled by PDE systems (see Figure 1) if the network allows modeling
with modified nodal analysis (MNA), see e.g. [9]. In a companion paper [11] we
compare the MOR of semiconductors in electrical networks modeled by drift-
diffusion (DD) and quantum-drift-diffusion (QDD)-equations and present nu-
merical results obtained by a simple interpolation method.

This paper is organized as follows. In Section 2 we describe the mathematical
model for the electrical network with semiconductors. In Section 3 we describe
the implementation of the GNAT method. In Section 4 we compare GNAT and
POD-DEIM for an example using the nonlinear heat transport equation. In Sec-
tion 5 we compare GNAT and POD-DEIM and present numerical results for a
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Fig. 1. Sketch of a network with many simple components and a complex component
representing a semiconductor.

simple test circuit. We find, that the GNAT method allows for lower approxi-
mation errors for the same Ansatz space, the POD-DEIM method is preferable
due to its simplicity, and its far better stability properties, especially in the case
of MOR for PDE systems.

2 Modeling of the electrical network with semiconductors

We now describe the mathematical model for electrical networks with many sim-
ple components like resistors, capacitors, and inductors and complex components
like semiconductors modeled by DD equations. First the network containing only
the simple components is modeled by a differential algebraic equation (DAE) sys-
tem which is obtained by a modified nodal analysis (MNA) [12], including the
Ohmic contacts ΓO,k, k = 1, . . . , Nc of the semiconductors as network nodes. De-
noting by e the node potentials and by jL, jV , and jS the currents of inductive,
voltage source, and semiconductor branches, the DAE reads (see, e.g. [7, 12, 14])

AC
d

dt
qC(A>Ce, t) +ARg(A>Re, t) +ALjL +AV jV +ASjS = −AI is(t), (2.1)

d

dt
φL(jL, t)−A>Le = 0, (2.2)

A>V e = vs(t). (2.3)

Here, the incidence matrix A = [AR, AC , AL, AV , AS , AI ] = (aij) represents the
network topology, e.g. at each non mass node i, aij = 1 if the branch j leaves
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node i and aij = −1 if the branch j enters node i, and aij = 0 else. The indices
R,C,L, V, S, I denote the capacitive, resistive, inductive, voltage source, semi-
conductor, and current source branches, respectively. In particular the matrix
AS denotes the semiconductor incidence matrix. The vector valued functions qC ,
g and φL are continuously differentiable defining the voltage-current relations of
the network components. The continuous vector valued functions vs and is are
the voltage and current sources. For details we refer to [9].

In a second step the semiconductors are modeled by PDE systems, which
are then coupled to the DAE of the network via the nodes related to the Ohmic
contacts. Here we first use the transient drift-diffusion equations as a continuous
model for semiconductors, see e.g. [1, 2] and the references cited there. Using the
notation and scaling introduced there, we obtain the following scaled system of
PDEs for the electrostatic potential ψ(t, x), the electron and hole concentrations
n(t, x) and p(t, x) and the current densities Jn(t, x) and Jp(t, x):

λ∆ψ = n− p− C, (2.4)

−∂tn+ νn div Jn = R(n, p), (2.5)

∂tp+ νp div Jp = −R(n, p), (2.6)

Jn = ∇n− n∇ψ, (2.7)

Jp = −∇p− p∇ψ. (2.8)

Here (t, x) ∈ [0, T ] × Ω and Ω ⊂ Rd, d = 1, 2, 3. The nonlinear function R de-
scribes the rate of electron/hole recombination, where we focus on the Shockley-
Read-Hall recombination

R(n, p) :=
np− n2i

τp(n+ ni) + τn(p+ ni)

which does not depend on the current densities. Here, τn and τp are the average
lifetimes of electrons and holes, and ni is the constant intrinsic concentration
which satisfies n2i = np if the semiconductor is in thermal equilibrium. The
scalar λ > 0 is the scaled Debye length, and νn and νp are the scaled mobilities
of electrons and holes. The temperature is assumed to be constant which leads to
a constant thermal voltage UT . The function C is the time independent doping
profile.

This system is supplemented with the boundary conditions

ψ(t, x)=ψbi(x)+(A>S e(t))k=UT log

(√
C(x)2 + 4n2i +C(x)

2ni

)
+(A>S e(t))k, (2.9)

n(t, x)=
1

2

(√
C(x)2 + 4n2i + C(x)

)
, p(t, x)=

1

2

(√
C(x)2 + 4n2i − C(x)

)
,

(2.10)

for (t, x) ∈ [0, T ]×ΓO,k, where the potential of the nodes which are connected to a
semiconductor interface enter in the boundary conditions for ψ. Here, ψbi(x) de-
notes the build-in potential and ni the constant intrinsic concentration. All other
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parts of the boundary are isolation boundaries ΓI := Γ \ ΓO, where ∇ψ · ν = 0,
Jn ·ν = 0 and Jp ·ν = 0 holds. The semiconductor model (2.4)-(2.8) is coupled to
the network through the semiconductor current vector jS with the components

jS,k =

∫
ΓO,k

(Jn + Jp − ε∂t∇ψ) · ν dσ, k = 1, . . . , Nc, (2.11)

where ν denotes the unit outward normal to the interface ΓO,k. Further details
are given in [9]. Contributions to the analytical and numerical analysis of PDAE
systems of the presented form can be found in [2, 6, 13, 14].

3 Gauß-Newton with Approximated Tensors (GNAT)

In this section we describe our implementation of the GNAT method. Numerical
results comparing GNAT with POD-DEIM are given in Section 5.

The GNAT method is a nonlinear MOR method, which is introduced in [3]
for MOR of fluid-dynamic applications.

Let us describe the GNAT approach for a time-dependent PDE system which
already is semi-discretized with respect to the spatial variable be, e.g. the finite
element method or the finite volume approach. Then we are left with a nonlinear
ODE-system of the from

ẏ(t) = F (y(t), t;µ) y(0) = y0(µ),

where µ is some parameter. Implicit time integration then yields a sequence of
nonlinear problems which at time instance tn are of the form

Rn(yn+1;µ) = 0,

i.e. at every time step we have to solve a nonlinear residual equation of the form

R(y) = 0.

For its solution we consider the Ansatz

y = y(0) + Φyyr,

where y(0) is some given reference vector and Φy is the POD basis obtained from
the snapshots computed at the given time instances. Since the dimension ny of
yr in general is much smaller than the dimension n0 of R(y) we are left with the
nonlinear least squares problem

min
y∈y(0)+<Φy>

‖R(y)‖2, (T2)

which we solve with the Gauss-Newton method; k = 0, y
(0)
r given

p(k) = arg min
a∈Rny

‖J (k)Φya+R(k)‖2,
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y(k+1)
r = y(k)r + α(k)p(k), k = k + 1.

Here, J (k) denotes the Jacobian of R at y
(k)
r and α(k) > 0 the size of the Gauss-

Newton step. The solution of this least squares problem is at least as expensive
as the solution of the full model, because it involves a large, dense n0 × ny
matrix, instead of a usually large, but sparse n20 problem, and some Gauss-
Newton iterations. Only the ansatz space for the variables y is reduced. To
reduce the computational complexity we solve the least-squares problem only
approximately, through approximating R(k) and J (k)Φy by some appropriate
low rank approximations. These low-rank approximations are obtained through
the selection of appropriate rows similar to the DEIM approach. Let ·̂ denote the
restriction operator to the sample indices, and ΦR, ΦJ POD-bases of snapshots
from R(k) and J (k)Φy, respectively. We set

R(k) ≈ ΦRR(k)
r J (k)Φy ≈ ΦJJ (k)

r

with

R(k)
r = arg min

z∈RnR

‖R̂(k) − Φ̂Rz‖2

and

J (k)
r = arg min

z∈RnJ×ny

‖ ˆJ (k)Φy − Φ̂Jz‖2.

In this procedure the selection of the most important indices is done component
wise. We take snapshots from (T2), perform a SVD to get the reduced POD-
bases ΦR, ΦJ and apply DEIM to select the most important indices. We note
that the number of indices must be at least of the size of the POD basis Φy,
but to obtain an accurate result a larger number of indices is necessary. This
is different from the POD-DEIM approach, where only the nonlinear part is
reduced in this way.

We finally obtain the procedure

p(k) = arg min
a∈Rny

‖Φ̂J
+ ˆJ (k)Φya+ ΦTJΦRΦ̂R

+
R̂(k)‖2 (T3)

y(k+1)
r = y(k)r + α(k)p(k),

where ·+ denotes the pseudo (left)-inverse.

4 Test Example

In this section we use the GNAT method to obtain a reduced order model for
the nonlinear heat conduction equation

ẏ − a∆y + by3 = 0 in Ω × (0, T ), y(0) = y0, ∂ηy = 0 on ∂Ω × (0, T ), T > 0

in the domain Ω = (0, 1). For the parameters we choose a = 1 and b = 1.
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To test the GNAT approach we use the different initial conditions y0(x) :=
max(0, 1 − |x − 1/2|/h) with h = 1/500 denoting the discretization parameter,
y0(x) := x(1− x), and y0(x) := χ([z, 1− z]) for some 0 < z < 0.5.

For the numerical discretization we apply the implicit Euler scheme with
respect to time and continuous, piecewise linear finite elements in space. The
same implicit Euler time-discretization with constant step size is used in the full
model and the POD and GNAT reduced order models.

m POD GNAT-(T2) L2 GNAT-(T2) H−1 GNAT-(T3) L2 GNAT-(T3) H−1

1 2.5431 2.5859 6.1429 2.5863 3.0165

2 1.4750 1.5815 2.1789 1.9465 1.7341

3 0.8458 0.9745 0.7983 1.0792 0.7487

4 0.4659 0.5556 0.3944 0.7154 0.3893

5 0.2477 0.2941 0.2013 0.3236 0.1979

6 0.1279 0.1512 0.1028 0.1784 0.1014

7 0.0644 0.0763 0.0519 0.9743 0.0548

8 0.0316 0.0377 0.0256 0.1221 0.0269

9 0.0151 0.0182 0.0123 0.0373 0.0123

10 0.0071 0.0085 0.0058 0.0353 0.0061

1 3.1122 3.2468 3.1023 3.2468 3.1247

2 2.5975 2.7838 2.5671 2.7842 2.5675

3 2.2933 2.8680 2.9654 3.0028 2.1774

4 1.6844 2.1068 1.3497 2.1243 1.3429

5 1.1871 1.5485 1.1526 1.6895 0.9978

6 0.7795 0.9980 0.6094 1.0006 0.6003

7 0.5105 0.6681 0.4001 0.6719 0.3974

8 0.3278 0.4288 0.2520 0.4253 0.2518

9 0.2096 0.2771 0.1615 0.3060 0.1636

10 0.1326 0.1764 0.1026 0.1767 0.1028

Table 1. GNAT: Absolut errors compared to the output of the full model in the L2-
and the H−1-norm. m denotes the number of POD basis functions. Time discretization
with implicit Euler and 4096 time steps (upper block), with trapezoidal rule and 1024
time steps (lower block). We use y0(x) = max(0, 1− |x− 1/2|/h) as initial condition.

To compute the residuals in (T2) and (T3) we use the L2 norm and also
the H−1 norm. Compared to POD-DEIM, the GNAT approach with the H−1

norm perfroms slightly better, but slightly worse with the L2 norm. Details can
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be found in Table 1, where m denotes the number of POD snapshots and the
number of indices chosen for (T3) is 2m+ 10.

We note that in this example we do not observe significant differences in the
errors between the POD and POD-DEIM MOR.

5 GNAT vs. POD-DEIM for the test circuit

Fig. 2. Basic circuit with one diode.

In this section we compare the GNAT and the POD-DEIM approaches for
the circuit in Figure 2. As a time integrator we in both cases use the implicit
Euler method.

We start with the simulation of the full model at the frequency ω := 1010 Hz.
The number of POD basis functions s is chosen such that the lack of information
content ∆(s) varies between 10−4 to 10−8.

5.1 Numeric results for GNAT and comparison to POD-DEIM

The errors of the reduced models using the GNAT (T2) and (T3) models are
given in the Figures 3 and 4.

In Figure 3 (top row), we show the error of the GNAT method with improper
scaling and GN initialized with the last time step. The GN method fails in
approximately one of 5000 cases, since it converges to a wrong local minimum.
But even if this occurs in only one time step, the solution diverges. This can
be avoided through initializing the GN iteration with the POD-DEIM solution
(lower row). The GN-iteration then converges to the correct minimum in all
cases. The GN-iteration improves the POD solution, see Figure 4 (right). The
error of the GNAT solution is about a factor two smaller than the error of
the POD solution. So using the GNAT as corrector has an additional benefit
compared to the POD predictor solution.
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Fig. 3. Error GNAT (T2) (dashed) and GNAT (T3) (solid), 500 FEM ansatz-functions,
200 (left column) and 500 (right column) time steps/snapshots. Upper row: GN iter-
ation initialized with the value at last time step. Lower row: GN iteration initialized
with the precalculated POD solution.

There is also the possibility to hand-tune the scaling of the residual blocks to
avoid the convergence of the GN-iteration to wrong local minima, see Figure 4
(left), where the results for initialization with the last time step are as good as
the results for initialization with the POD solution.

In Figure 5 we compare simulation results for the diode reduced with GNAT,
for a bad case, left, from a spike in figure 3, to the correct solution, where the
full and GNAT-reduced solution is indistinguishable, right.

5.2 Time Discretization of POD-DEIM and GNAT

In POD-DEIM the reduced system is not discretized in time. Thus an appropri-
ate solver for the DAE system can be chosen, f.e. with automatic order control
and time stepping.

The GNAT method on the other hand is time discrete, i.e. it first discretizes
in time, and then reduces. So for the control of the time step software packages
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Fig. 4. POD (dots), MOR with GNAT (T3) (solid) with initialization from last time
step and hand-tuned scaling of the residual (left). Right: GN starts with POD solution,
L2-Norm of the weighted equations.
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Fig. 5. Voltage and current through the diode for one bad case where the relative error
is of order one (left), compared to the correct solution, where the full and GNAT-
reduced solution is indistinguishable (right).

like DASPK could not be used. In the examples, we use the implicit Euler method
and the trapezoidal rule as time integrators with equidistant time steps.

Because the residual function R depends on the time discretization scheme,
the implementation is more complicated and complex, if adaptive time integra-
tion with order control is used. For variable order, we have to implement different
residual functions.

The order of the time descretization scheme used for the GNAT (and other)
reduced system should not be lower then the order of the time descretization
scheme used for the full system to avoid performance loss due to smaller time
steps. In the examples, we use therefore the same scheme for the full and reduced
systems.
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5.3 Assets and drawbacks of GNAT and POD-DEIM

In contrast to POD-DEIM, GNAT does not reduce the test spaces, so all equa-
tions are used to calculate the best approximation. This can lead to more accu-
rate approximations.

In the case of multiple equations the residuals have to be scaled in order to
consider all equations sufficiently in the residual. This is additional work but
may offer the possibility to increase the influence of important equations.

The unscaled Jacobi-matrix used in the GN-iteration of the DD-equations
is scaled very badly. The condition number is greater then 1e16, which leads to
numerical rank deficiency. Therefore, scaling is necessary to avoid unbalanced
distribution of the degrees of freedom. Without such a proper scaling the result
of the GNAT (T2) model in general is wrong.

To overcome this problem, we evaluate the functional R at the POD solution,
and finally equilibrate the six equation blocks for this solution. A weighted L2-
norm is obtained in this way. Even after this scaling the Jacobi-matrix for the
DD-equations is still badly scaled, but is sufficient to calculate the solution.

In the examples DEIM requires only as many indices as the number of basis
functions, because the approximation is only done for the nonlinear part of the
function. The linear part is approximated with POD. The GNAT (T3) method
on the other hand needs in the example more then twice as many indices to
calculate the basis functions for R and Jk to reach the accuracy of the (T2)
method.

The GNAT (T3) model error may increase also for a low lack of information
(LOI), see Figure 3 (upper left). This is due to the approximation of the equation
(gψ = grad ψ) in the GNAT (T3) model only at some selected points. The
behavior of the (T3) model is improved and it turns out to be indistinguishable
to the (T2) model even for very low LOI, if only this equation is not further
reduced. This means that all the equations are used, as in the (T2) model.
The different discretization of the potential and the gradient may be a problem
for GNAT (T3). There may be other methods to deal with this problem more
successfully.

6 Conclusions

We implemented POD-DEIM and GNAT for MOR of semiconductors in net-
works. It is one results of this research that the GN-iterations in this approach
have to be well initialized, and the residual has to be scaled carefully in the case
of MOR for multi-component PDE systems. In the investigated application it
seems to be favorable to use POD-DEIM as MOR approach, since it delivers
well approximating nonlinear reduced order models and also is very flexible and
robust in implementation.
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