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Abstract. We prove that the quaternionic companion polynomial istidgahwith the characteristic polynomial
of the complex matrix which is obtained by isomorphism frdra juaternionic companion matrix. And we show
that this is also true for the other three noncommutativelatgs inR* which include the coquaternions.
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1. Introduction. We assume that the reader is sufficiently acquainted witkaldpebra
of quaternions and with the problem of finding zeros of ueilat polynomials with quater-
nionic coefficients as well as with coefficients from nonsiieh algebras iiR*. For details
see [L3, 10, 19].

2. Data of problem.

e 1. The field of real numbers, denoted Ry the field of complex numbers, denoted
by C, the field of quaternions denoted B See p]. The elements irH will be
denoted by; = (g1, g2, g3, 1) € R*. Numbers of the fornig; , 0, 0,0) € H will be
identified with the real numbey .

2. A given vector

(2.1) a = [ag,ai,...,a,] € H"™', whereq, is invertible a,, = 1.

3. The quaternionic polynomial

(2.2)  p(z)= Z a;2/, defined by the elements of the given veator
j=0

e 4. The companion polynomial gfdefined by

n 2n min(£,n)
(2.3)¢(z) = Z aja_kszrk = Zbgzl, by = Z amai—m € R.
7,k=0 (=0 m=max(0,{—n)
e 5. The companion matrix of defined by
O O . O —ap
1 0 ... 0 —ai
(2.4) c=|: ". : : e H™*",
0 0 v 0 —ap_o
0 0 SN 1 —Qnp—1
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If a, defined in R.1), is a real or complex vector, we have the following cladgfvaorem.

THEOREM 2.1. Let the vector be real or complex. Then the eigenvaluedbhre
identical with the zeros of the polynomjal

Proof. Horn and Johnson9[ p. 146/147]. O

3. Eigenvalues for quaternionic matrices. The eigenvalue problem for a general quater-
nionic matrixA of ordern has the form

(3.1) Ax =x)\, x#0.

It has one interesting property which a real or complex eigkre problem does not have.
Let h # 0 and multiply equation3.1) from the right byh. Then,

Axh = x\h = xh(h "' \h).

That means if\ is an eigenvalue oA with respect to the eigenvectar then the similar
valueh ! \h is also an eigenvalue @ with respect tach. And this is true for alh # 0. Put

A = (M, A2, A3, \y) € H. Thus, the similarity clasp\] consists only of eigenvalues and in
each similarity class there is a unique representativeeo€ttmplex form

A=A 44/ A3+ A3+ A\ji

These eigenvalue are callstndard eigenvalues A. Aresult by Brenner,[] and Lee, [.5]
states that all quaternionic matrices of ordéraven complex standard eigenvalues. See also
Zhang, P3]. Information on similarity and quasi similarity can be gad in [LO, Section 2.1].
Already 1936 a paper on similar, quaternionic matricesighbd by Wolf appeared?p].

Leta € H anda be the conjugate af, also denoted byonj(a). Then throughout the
paper, and also for algebras introduced later, we use tlatioot

absa(a) = aa.

This number is real i and also in all other algebras introduced later. Hinwe have
absg(a) = ||al|?, where|| - || is the euclidearR® norm. In all algebras is invertible if
and only ifabsy(a) # 0. This implies that: anda are simultaneously invertible or simulta-
neously not invertible. At this point we can already prove fibllowing theorem.

THEOREM3.1. Letp be a given polynomial as described in the second sectiom ate
solutionsz of p(z) = 0 are invertible.

Proof. First we obseve that(0) = ao is not zero. Let be a noninvertible solution of
p(z) = 0. We multiplyp from the right byz. Thenp(2)z = agz+>_7_, a;2/~'2Z = agz = 0.
Sinceay is invertible, this implieg = z = 0 which is a contradiction. O

We will use the following lemma.

LEMMA 3.2. Leta,b € C with nonnegative imaginary part. The two complex numbers
a, b are similar inH, if and only if they are equal.

Proof. A necessary and sufficient condition for similarity of tWementsa, b € H is
R(a) = R(b) andabsa(a) = absy(b). See [0, Section 2.1]. Lets = a1 + agi, b = by + boi
with as > 0,b2 > 0. Then the first similarity condition implies; = b; and the second
a? + a3 = b? + b2 which altogether implies = b. 0

In order to compute the eigenvalues of the quaternionicimaty we use the isomorphic
representation of the quaternign= (q1, g2, g3, g4) in the complex2 x 2) matrix form

39 | atel gtai)_ oo 5
(32) (a) —q3+q4l 1 — ol -8 @



Proof: Companion polynomial versus companion matrix 3
See v. d. Waerden?[, p. 55]. We observe thalet(1(q)) = absz(q) = ||¢||?. Put

A - (A17A27A37A4) - Al + A2i+A3j +A4k7 A17A23A37A4 S Rnxna

Al +Asi Az + A4l :| . |: B: B

o 21 D2 2nx2n
T cAs+ AL Ay - Asi B, Bl]ec :

(3.3) 1(A):
which is in coincidence with3.2). The matrixi(A) is a complex x 2 block matrix, where
the blocks are of ordet. The quantitied, j, k denote the 2nd, 3rd, and 4th standard unit
vector inR*, respectively, regarded as algebra elements.

Thoughi(A) is complex the eigenvalues dfA) are real or appear in pairs of complex
conjugate numbers and the eigenvalues with nonnegativgimaig part coincide with the
standard eigenvalues &. This result can be found in Zhand,J. The eigenvalues of a
guaternionic matrix were used for finding quaternionic polyial zeros by Serddio, Pereira,
Vitoria, [19].

We also use the notation

AL =R(A), Ay =S(A), Ag = 3(A), Ay = Sy(A).

Let C now be the companion matrix defined ia4). If we apply 3.3 to C we obtain the
complex matrix

0 0 ... 0 a |0 0O ... 0 B
1 0 0 m 0 0 0 5
0 0 0 ano |0 O 0 Bno
0 0 1 ap-1 |0 O 0 Bn1
(3.4) 1(C) := 0 o5 To o 0 o
0 0 0 -5 |1 0 0 og
0 0 . 0 —Bn2e|0 0 . 0 @
L 0 0 ... 0 —ﬂn,1 0 0 A | Ap—1

whereay, 5, € C, £ =0,1,...,n— 1 are defined in%.2) and also in 8.5), (3.6).

The quaternionic polynomial will have quaternionic zeros which in general are not
comparable with the complex eigenvalues(@®). Therefore, it is in general not possible,
that the zeros op coincide with the eigenvalues & and Theoren®.1is not valid in the
guaternionic case.

LeEmMMA 3.3. The coefficientsg, a1, . .., a,_1 (which are defined inZ.1) and occur in
(2.2, (2.3, and in @.4)) can be recovered fron{C) which is defined in3.4).

Proof. By definition (see.2) and @3.3)) we have

(3.5) ap = —(R(ar) + S(ar)i),
(3.6) Be = —(S3(ae) + Sa(ae)i), £=0,1,...,n—1.
It follows that
3.7) ar+ Bej = —ay, Oég—l—ﬁgj:a_g—jE: —ag, £ =0,1,...,n—1.

O
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We will use the following notation for the characteristidyymomial of 1(C).
2n )
(3.8) X(A) = det(IA = 1(C)) = > XN,  xan = 1, xo invertible
j=0

The theorem we want to prove is the following.

THEOREM 3.4. The eigenvalues of the matri%C) are identical with the roots of the
companion polynomiat. Or in other words: The characteristic polynomiglof 1(C) co-
incides with the companion polynomiabf p. Or: The standard eigenvalues @f coincide
with the roots of: which have nonnegative imaginary parts.

This Theorem was already conjecturedif,[Conjecture 8.1].

We use a polynomigb of degree 6 as an example in order to show that there is high
evidence for Theorerd.4. Cf. Example 3.8 from1J].

ExampLE 3.5. Let the coefficients gf (in the order of 2.1)) be

(3.9) a=[-i,—j,—1,0,i,j,1] e H".

The companion polynomialof p is

(3.10) c(z) =22+ 210 28 - 228 2t 122 41

and the 12 roots of are

(3.11) 4+ 1, 1, +i, +i, (£1+31i)/2.

Because of the symmetry of the coefficients:dfie set of the inverse roots ofis the same
as the set of the roots. However, this does not play a role lievee compute the complex

matrix 1(C) for these data, we find that the 12 eigenvalueg @f) are the same as the 12
roots ofc. The matrixi(C) is in this case

00 000 il00OO0OO0O0 0]
10000 0/00O0O0OTO0 1
01000 1/00000 0
00100 0[00O0O0O0 0
00010 —il00O0O0O0 0
00001 0[00O0O0TO0 —1
(3.12) C=|l90000 000000 =
00000 —1[1 0000 0
00000 0[01000 1
00000 0[0O0T100 0
00000 0[00O0T1O0 i
(00000 1(0000T1 0

We have tried out many examples numerically and in all cabesiien.4was true. At least
to computer precision. For zerospbee [L0, 13, 16, 17, 19].

In the next two sections we show directly that Theor@whis true forn = 1, n = 2,
andn = 3. In a subsequent section we try to use the block structurteeofrtatrixi(C) for a
proof, however, this approach is in the end not successful.



Proof: Companion polynomial versus companion matrix 5

4. The cases < 2. Letn = 1 andp(z) = z+ a, whereq is invertible. The companion
polynomial ofp is ¢(z) = 22 + 2R(a)z + absz(a). The companion matrix i€ = [—a] and,
using 8.2,

I\ —1(C) = A+ R(a) +S(a)i  Ss(a) + Sa(a)i
Tl =Ss(a) + Sula)i A+ R(a) — S(a)i
The determinant of this matrix;(\), coincides with the companion polynomigh).
Letn = 2. The companion matrix has in this case the form

o= [0 e
1 —aq

The corresponding complex eigenvalue problem is defined by

A —ap 0 —Bo
-1 /\—Oél 0 —ﬁl

0 B A —@

0 B/ -1 N—a7

(4.1) I\ —1(C) = e Cct,

For the definition oy, 8, € C, £ = 0,1 see 8.5), (3.6). We compute the eigenvalues by
using the expansion formula:

A-—ar 0 —f —a0 0 —fo
det(IN—1(C)) = Adet | Bo A —ag | +det| Bo A —ao |.
P —1 A-ar P -1 A-an

A—ar 0 =53
det | Bo A —ap | =Adet [ A;—al A__Bl_ } +det [ ’\;—al A } =
E 1 M- 1 851 0 Qo

A((A = a2)(A —a1) + [|B1][2) — (A — o )aig + Bofn,

—ag 0  —fo
det Bo A —ag | =M\det [ 20 _BO_ } + det [ —% _@ ] -
B -1 A—a1 fi A-an o —

A( = ao(A =a7) + Bobr) + |laol]* + ] 6ol1*.
If we put all results together we obtain the characterisbiypomial of @.1):
(4.2) x(A) = det(IX —1(C)) = A* = 2R(a1)A? + (|Jea||® + [|B1]]* — 2R(c0)) A +
(2R (o + BoB1)) A + [l I* + |18l -

A comparison with the corresponding companion polynonsak([L7, Section 3]) re-
veals that 4.2) coincides with the companion polynomial. Thus, Theoft&ris valid for
n = 1 andn = 2 by using a technical proof.
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5. The caser = 3. Letn = 3. We suppose that there is a given vector
a = [ag, a1, az,as] € H*, whereq is invertible andis = 1. The quaternionic polynomial
defined by the elements of the given veaidras the form

3
(5.1 p(z) = Z a;z’ .
3=0

The companion polynomialof p reads as

min(¢,3)

3 6
(5.2) c(z) = Z aja_kszrk = Z bezt, by = Z Tmar—m € R.
£=0

73,k=0 m=max(0,0—3)

The coefficientd,, £ =0,1,...,6 read explicitly:

bo = aoao,

by = Tagay + arao,

by = apaz +ara; + azao,

b3 = Taoas +araz + azay + azao,
by = Taras+azaz +aza,

bs = a3+ azas,

bg = Tazas.

Becausai; = 1, the coefficients of the companion polynomiare:

b() = ab52 (CLQ),
bl = 2%(01_0041)7
by = absz(al) + 2%((1_0@2),

(5.3) b = 2R(ao + T1as),
by = absa(az) + 2R (aq),
bs = 2R(asz),
b = 1.

The companion matrix has the form

0 0 —aon
C=|1 0 —a |eH>.
0 1 —asg

The corresponding eigenvalue problem is defined by

A 0 —Q 0 0 _ﬁO
-1 A —O1 0 0 _ﬁl
0 -1 )\—042 0 0 —ﬂz
(5.4) IA—1(C) = 00 7B N0 —ag € C5%6
0o 0 B |-1 X —-a
0 0 fo 0 -1 N—m

The expansion formula gives
X(A) = det(IX — 1(C)) =
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D ——H 0 0 -5 0 —wo 0 0 —hHo
-1 A—a2 0 0 — B2 -1 A—a2 0 0 — B2
= Adet 0 B A 0 —aop | +det 0 B A 0 -—ao =
0 B1 -1 A a7 0 Bi -1 A —a7
0 B2 0 -1 N—a 0 B 0 -1 \N—az

=M+ (—m—a2) N+ (182> + |2l =87 —0n ) X + (G o+ B1 B2+ B2 fr + Bz —ag— o ) A+

+(H061 H2+||51 ||2+Oé_0a2+%ﬂz+gﬂo+oé_2oéo) PRt (04_1040-1-06_00614-%51 +Eﬂo) Ao ||2+Hﬂo H2 ,
which represents the characteristic polynomiadf 1(C). We have to show that it coincides with the
companion polynomiat of p. For this purpose we use the identiti&sH], (3.6) to replacea;, 5; by
aj, j = 0,1,2. We compare coefficient by coefficient.

xo = |laol|* +[|Bo||* = absz(ao) = bo,

x1 = 2R(a@ar + Bopr) = 2R(acar) = b,

x2 = |laa||” + ||A1]]” + @oaz + Bofz + B2fo + @z = absz(a1) + 2R(@az + Bofe) =
= absa(a1) + 2R(agaz) = b2,

X3 = araz + 512 + Bafi + Gzar — @0 — o =
= 2?]?(04_1042 + B1f32 — ao) = 2R(araz + ao) = b,

x4 = ||B2]1* + [laz||* — @7 — a1 = absz(az) — 2R(a1) = absz(a2) + 2R(a1) = ba,

X5 = —a2 — az = —2R(a2) = 2R(a2) = bs,

X6 =1 = bs.

Thus, forn = 3 the companion polynomial of p and the characteristic polynomigl of 1(C)
coincide and Theorer.4is valid in this case.

6. The use of the block structure. The definition ofi(C) has the form of & x 2 block
matrix. See $.3). LetI,, I, be two identity matrices with ordet, 2n, respectively. We can therefore

write
| AL =B B
(6.1) A2, —1(C) =: B, AL - B

and use the fact th&; is again a companion matrix and that the ranBafis one and use a determinant
formula for a block matrix. For a block matrix there is theléoting determinant formula: Assume that
AL, — B; isinvertible. Then

det (A2, —1(C)) = det (AL, — B1)(AL, — B1) — Bo(AL, — B1) ™' (=B2) (AL, — B1)).

c (C2n><2n7

See P0)]. The condition that\I,, — B is invertible means, that is not an eigenvalue ;. If we use
Example3.5again, we find that the eigenvaluesBf are

+i, +1, +V0.5(1 — i).

However, the eigenvalues diC) contain the values-1, +i (see 8.11) such that an exclusion of these
values will not allow to find the full spectrum ofC) by application of the block matrix formula. Thus,
the idea of using the block structure is not leading to sigces

7. The proof. We will furnish a nontechnical proof of Theored which goes as follows.

Proof. The authors Serddio, Pereira, VitoriaZ], have shown, that Niven’s algorithm will find
all zeros of a given quaternionic polynomijalif the standard eigenvalues (complex with nonnegative
imaginary part) of the quaternionic companion matrix (seé)) are used to solve Niven’s algorithm.
The standard eigenvalues serve as a means in Niven’s algowt find a similar but in general quater-
nionic value which will be a zero gf. Recently, it was shown by Opfer]{], that the same can be
accomplished by using the roots of the companion polynoisie¢ .3)). In principle it would be
sufficient that the standard eigenvalues and the roots ofdhganion polynomial would be similar.
However, Lemma.2 says that similarity of complex numbers implies equality. O
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8. An extension to the other noncommutativeR* algebras. We will see that Theo-
rem 3.4 carries over to otheR* algebras, namely t&l..,, the algebra of coquaternions, H,..
the algebra of nectarines andlih.., the algebra of conectarines. The algebta,, was introduced
by Cockle, P, 1849], [3] and the other two algebras by Schmeikal3,[2014]. All three algebras
are noncommutative, nondivision algebras. For complsteme present the multiplication rules for
H, Heoq, Hauee, Heon in Tables. 1

TABLE 8.1. The multiplication tables fdf, Hcoq, Hnec, Heon-

H|[1 i j k Heoo |1 i j k

111 1 j k 1 |1 1 j k

(8.1) ili -1 k —j i |1 -1 k —j
ilj -k -1 i i i -k 1 —i

k|lk j —-i -1 kK [k j i 1

Hiee [ 1§ j k Heow |1 i j k

T [T 1 j k T |1 1 j k

(8.2) i i 1 k j i i 1 k
i i -k -1 i il -k 1 -i

k |k —j —i 1 kK |k —j i -1

Detailed information on these algebras is givenlif, [L7]. If p is a polynomial as given in2(2), the
finding of zeros ofp in one of these three algebras is very similar, but not theesasnfinding them
in H. There is one principle difference. The number of zeros filymomials overH is limited to
the degreen, see []. In the other three algebras there may be upnén — 1) zeros. Seell0]. It
was shown by Opferl[/] that Niven's algorithm could also be used in the three nasitin algebras
Heoq, Hyec, Heon by applying the roots of the companion polynomial. The atgelmentioned belong
to the class of Clifford algebras. Introductions to Clificalgebras can be found id][ [7]. Algebras
overRY are also called geometric algebrad, [

In order to find the eigenvalues of the companion matrix, éefioverHcoq, Hyec, Heon, proceed
analogously to%.2), (3.3), but use the isomorphisms

22 22 2%2
12 : Heog = R7*7) 13t Hpee > R, 14t Heon — R

defined by
G +qs q2+qs
8.3 =
83) 12(q) [ —q2+4q3 q1—qu :|
q1—q4 G2 +gs3
8.4 ] =
(8.4) 13(q) [ P } ;
q1—9g3 G2+ qa
8.5 =
( ) 14(Q) |: @ —q 1 +qs :| P

respectively, where = (¢1, g2, g3, g4) in all algebras.

See [2] for more details and also Lam,14{, p. 52]. Observe that in all three algebras
det(1x(¢)) = absz(q) and thati,(¢), k = 2, 3,4 is a real matrix. IfC is the companion matrix we
definel, (C), k = 2,3, 4 in the same way as83(3). Sincei,(C), k = 2, 3,4 is a real matrix, the eigen-
values appear in pairs of complex conjugate values or réaésaSince the order of (C), k = 2, 3,4
is 2n, real eigenvalues, if any, appear also in an even numbet.tfiéiee are matrices over nondivision
algebras which have no eigenvalues was shownr ih [In order to show that one has to use the fact
that eigenvectors by definition must contain an invertitdmponent. For more details see the already
quoted paperl[1].

EXAMPLE 8.2. We use the same coefficientdefined in 8.5) but as coefficients of a polynomial
in Hcoq. In this case the companion polynomial is

c(z) =2 —2"0 =28 420 — 2t -2 41
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It has the 12 roots
(8.6) +1, 1, +i, +i, (£V3+1i)/2.

Let C be the6 x 6 companion matrix oveH.. defined by the coefficients. See £.4). Then the real
12 x 12 matrix12(C) is

(000 000 0/00O0O0 0 1]
0000000 O0O0O0 -1 0
10000O0[00O0O0 0 1
001000 0/00O0O0 1 0
00100 0/00O0O0 1 0
b(C)— |0 00 1 00J0000 0 1
000010/0O0O0O0 0 0
000000T1/000O0 0 0
00000O0I1L0O0O0 0 -1
00000O0I0 100 1 0
0000000010 0 -1
L0 00 O0O0O0/0O0O0T1 -1 0|

It has exactly the eigenvalues given as roots iof (8.6).

In order to show that Theoref4 is also valid for algebras other than quaternions, we shaiv th
the algorithm given by Serodio, Pereira, and Vitorig][can also be applied to the other algebras. Met
be one of the three algebrilkoq, Hyec, Heon. We have already shown i ] that the Niven algorithm
works in.A4, where the roots of the companion polynomials were used.

An eigenvalue of a matrix in one of these algebras is an atgel@ment with a corresponding
eigenvector where at least one component is invertible.[ S8eln what follows (up to TheorerB.5)
we use essentially the ideas of the authorsléf.[

LEMMA 8.3. Let C be the companion matrix as defied in4) but over A. Let A be a left
eigenvalue of the transposed mat€is, which means that

(8.7) CTx = \x, x has at least one invertible component
Then\ is a zero of the polynomial.
Proof. Letx = (z1,22,...,2,) . The equationg.7) reads explicitly:
To = AT1,
xr3 = )\1’2,
(88) l’j:)\l’j71,j:2,3,...,n,

—(aor1 +a1r2+ -+ an—1%n) = ATn.
The firstn — 1 equations can be written as
(8.9) xj:)\jflxl,j:Q,&...,n.
If we insertz;, 5 = 2,3,...,ninto the last equation we obtain
(8.10) — (aor1 + a1dxy + -+ + anfl)\"flccl) =\"z1.

Letz; be not invertible. Then, fronB(9) it follows that allz;, j = 2,3, ..., z, are noninvertible. This
contradicts the definition of an eigenvector. Thus,must be invertible. Multiplying equatior8(10)
from the right byz; ! yields the desired result. 0O
If we apply the previous Theorefl, we conclude that the left eigenvaluesf C™ are invertible.
LEMMA 8.4.The left eigenvalues of C™ are also the right eigenvalue &7T.
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Proof. We find thatx = (1, A\, A?,..., A™)T is an eigenvector of the left eigenvaldesince
CTx = \x.

Because oA\ = M\ we have
AX = XA

and )\ is also a right eigenvalue @&7. a

THEOREMS.5. LetCT be a companion matrix ovet with an invertibleao. Then the eigenvalues
of CT are the zeros of the polynomial

Proof. Follows from the Lemma8.3and8.4. The fact thaiC andC™ have the same eigenvalues
will be shown a little later. 0

Since we cannot compute the eigenvalues of the companiaixn@t (andC) of ordern directly,
we use a detour vizgn x 2n complex (for quaternions) or vizn x 2n real matrices (for algebrag) by
using the operatorsis, 13,14. See 8.2) and @.3) to (8.5). This results in real or complex eigenvalues
which define similarity classes which contain a zerp.of he authors of[9] then use Niven’s algorithm
to find the zeros op from the eigenvalues. However, usually the eigenvect@saglected which is
justified for the algebra of quaternions, since the only negiitible element it is the zero element.
In the definition B8.7) for the eigenvalues of the companion matrix we need thenagson that the
corresponding eigenvectors have at least one invertibigpooent. In order to explain the difficulties
for problems in4, we will use the following quadratic polynomigloverH..q as example:

(8.12) p(z) =2 — (i+j)z + k.

Since in all four algebra8l, He.oq, Hpee, Heon We haveij = k, cf. Table8.1, we see that = j
is a zero ofp in all four algebras. A separate investigation shows thdtlinHc.q this is the only
zero. The eigenvalues af(CT) (and of12(C) as well) are+1,4i. The similarity classes de-
fined by +£1 are{+1}. They consist only of the real elemefit-1}. However, both real elements
do not define zeros gb. The similarity class of is defined by all elements € H.,q satisfying
R(s) = 0,absz(s) = 1. Sinceabsz(j) = —1, the elemenj does not belong to this similarity class.
What are the consequences: The eigenvailtiesti are not eigenvalues of the companion matrix, they
violate the eigenvector restriction and more generallyabmpanion matrixC™ (andC) does not have
eigenvalues at all. That this phenomenon exists for thebadgen A was already established if].
Nevertheless, we are not helpless. In another papél,vWje have described, that pairs of real
eigenvalues (or of the roots of the corresponding compapadynomial) can be used to determine the
zeros. In the case of the polynomialdefined in 8.11) one finds the zerg by using the real pair
(1,—1). See [LO] for details.

9. Appendix: The companion matricesC and C™ have the same eigenvalued.et
A be an arbitrary square matrix ovet. Then, in general, the eigenvalues Afare different from
the eigenvalues oA™. By A* we denote the conjugate transposeAofor more formallyA* =
(conj(A))T = conj(AT).

THEOREM9.1. Let A be an arbitrary square matrix in one of the algebidls H.oq, Huec, Heon-
ThenA and A* have the same eigenvalues.

Proof. Let \ be an eigenvalue oA. Then) is an eigenvalue oA *. The two eigenvalues and
belong to the same similarity class. Thsand A™ have the same eigenvalues in this sefise.

Here we have to remember, that the eigenvalues of algebratdces (with elements from
H, Heoq, Hyee, Heon) always come in similarity classes. Andand ) always belong to the same
similarity class. However, we compute the eigenvalues @ftlgebraic matrices by using the operators
1, 12, 13, 14 Which brings the algebraic eigenvalue problem to an eigaavaroblem for real, 13, 14)
or complex () matrices, only one eigenvalue per similarity class of eigéues is computed.

Let C be the companion matrix, as defined in4). Then

0 1 .. 0 0
0 0 1 0 0
©.1) Cc =
0 0 0 1

—ao —ai e —Qnp—2 —Qn—1
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THEOREM9.2. The eigenvalues &E* are the zeros of the polynomial

n

p(z) =Y @2, an =1, aginvertible
j=0

Proof. Follows directly from Theorer8.5. 0
LEMMA 9.3.Letp(z) = > 7, a;z’ be a polynomial ovesd with a, invertible anda,, = 1. Let

g be an invertible element ill andp(z) = Z;‘:O(qflajq) 27 be another polynomial. Themand p
have similar zeros.

Proof. The companion polynomials gfand ofp are identical and, thus, have the same roots. The
zeros ofp and ofp are in the similarity classes of the roots. Thus, the zerost imei similar. O

THEOREM9.4. The eigenvalues of the three matri@@s CT, C* are the same.

Proof. The eigenvalues o and C* are the same. And Lemnfa3 implies that the matrices
CT, C*. also have the same eigenvalues. O

We will present a very simple example.

EXAMPLE 9.5. Let

pi(z) =z—a, p2(z)=z-a, acA, ainvertible

Itis clear thata, @ are the zeros gb1, p2, respectively. The companion polynomialspafand ofps
are bothe(z) = 22 — 2R(a)z + absa(a). The roots o areR(a) & 1/R(a)? — absz(a). In order to
find the zeros o1, p2 one has to apply Niven’s algorithm. For polynomials of degoee, it is simply

p](Z) =q-0+ RO(U7U) +R1(U,’U)Z, .7 =1,2.

Thus,Ry = —a for p1 andRy = —a for po andR; = 1 in both cases. The zeros are
1 _ fa forp;
—hy R = {a for po

Computational details are in(, 17].

The eigenvalues of the companion matri€eés = [a], C. = [a] = Cj area,a, repectively.
However, sincda|, [a] are similar, the eigenvalues @1, C2, may be regarded as the same. If we
apply one of the operations, 13,14 to C; andC2 we obtain two2 x 2 real matrices which have the
same eigenvalues which are determined by the roots of theeabo

All in all we have shown that in all four algebras the Nivenalithm applied to the roots of the
companion polynomial produces all zeros of the underlyiolyqomial p, [10], and also Niven’s algo-
rithm applied to the eigenvalues of the companion matrixsdbe same. Seé[]. Therefore, the Proof
in Section7 is valid in all algebras: The companion polynomiails the characteristic polynomial of
1(C) and ofi, (C), k = 2, 3,4, whereC is the companion matrix with respectlh Hcoq, Hnec, Heon-

REFERENCES

[1] J.L.BRENNER Matrices of quaternionsPacific J. Math. 1 (1951), pp. 329-335.

[2] J. CocKLE, On systems of algebra involving more than one imaginary; emeéquations of the fifth degree
Phil. Mag., (3) 35, 1849, pp. 434-437.

[3] J. CocKLE, http://ww. oocities.org/cockl ebio/
[4] D.J.H. Garling,Clifford algebras: an introductionCambridge Univerity Press, Cambridge, 2011, 200 pp.
[5] GEOMETRICALGEBRA: http://en.w ki pedi a. org/ wi ki / Geonetric_al gebra.

[6] B. GORDON AND T. S. MOTZzKIN, On the zeros of polynomials over division ringsans. Amer. Math. Soc.,
116 (1965), pp. 218-226.

[7]1 K. GURLEBECK AND W. SPROSSIG Quaternionic and Clifford calculus for physicists and eregrs Wiley,
Chichester, 1997, 371 pp.

[8] W. R. HAMILTON,http://en.w ki pedi a. org/wi ki /W i am Rowan_Ham | t on


http://www.oocities.org/cocklebio/
http://en.wikipedia.org/wiki/Geometric_algebra
http://en.wikipedia.org/wiki/William_Rowan_Hamilton

12 Drahoslava Janovska and Gerhard Opfer

[9] R.A.HORNAND C. R. DHNSON, Matrix analysis Cambridge University Press, Cambridge, 1992, 561 pp.

[10] D.JaNOVSKA AND G. OPFER The number of zeros of unilateral polynomials over coquaters and related
algebras Electron. Trans. Numer. Anal., 46 (2017), pp. 55-70.

[11] ———, Matrices over nondivision algebras without eigenvaludslv. Appl. Clifford Algebras 41 (2016),
pp. 591-612, DOI 10.1007/s00006-015-0615-0. (open agcess

, Zeros and singular points for one-sided, coquaternionitypomials with an extension to oth&*
algebras Electron. Trans. Numer. Anal., 41 (2014), pp. 133-158.

[13] ——, A note on the computation of all zeros of simple quaternipoignomials SIAM J. Numer. Anal., 48
(2010), pp. 244-256.

[14] T.Y.LAM, The Algebraic Theory of Quadratic Form#/. A. Benjamin, Reading, 1973, 343 pp..

[15] H.C. LEEg, Eigenvalues of canonical forms of matrices with quatermioefficientsProc. Royal Irish Academy
52 (1949), Sect. A: Mathematical and Physical Science2p®-260.

[16] 1. NIVEN, Equations in quaternionsAmer. Math. Monthly, 48 (1941), pp. 654-661.

[17] G. OpFER Niven's algorithm applied to the roots of the companion polyial overR* algebras Adv. Appl.
Clifford Algebras 27 (2017), pp. 2659—-2675, DOI 10.1000616-017-0786-y.

[18] B. ScHMEIKAL, Tessarinen, Nektarinen und andere Vierheiten. Beweig @eebachtung von Gerhard
Opfer, Mitt. Math. Ges. Hamburg, 34 (2014), pp. 81-108.

[19] R. SERODIO, E. PEREIRA, J. VITORIA, Computing the zeros of quaternion polynomi&smputer and Math-
ematics with Applications, 42 (2001), pp. 1229-1237.

[20] J.R. SLVESTERhttps://hal . archives-ouvertes. fr/hal-01509379/ docunent. Determi-
nants of block matricedMathematical Gazette, The Mathematical Association02@8d@ (501), pp. 460-
467.

[21] B.L.vAaN DER WAERDEN, Algebrg 5. Aufl., Springer, Berlin, Gottingen, Heidelberg, 19892 pp.

[22] L. A. WoLF, Similarity of matrices in which the elements are real quaiens Bull. Am. Math. Soc. 42
(1936), pp. 737 — 743.

[23] F. ZHANG, Quaternions and matrices of quaternighsnear Algebra Appl., 251 (1997), pp. 21-57.

[12]


https://hal.archives-ouvertes.fr/hal-01509379/document

