
LINEAR-QUADRATIC OPTIMAL CONTROL OF
DIFFERENTIAL-ALGEBRAIC SYSTEMS: THE INFINITE TIME

HORIZON PROBLEM WITH ZERO TERMINAL STATE
TIMO REIS∗ AND MATTHIAS VOIGT† ,‡
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1. Introduction. We consider differential-algebraic systems

(1.1) d
dtEx = Ax+Bu,

where E, A ∈ Rn×n are such that the pencil sE − A ∈ R[s]n×n is regular, i. e.,
det(sE − A) is not the zero polynomial, and B ∈ Rn×m (we refer to the end of
this section for the notation). For an interval I ⊂ R, the Rn- (resp. Rm-) valued
functions x and u are called generalized state and input of the system, respectively.
We denote the set of systems (1.1) by Σn,m, and we write [E,A,B] ∈ Σn,m. We
call (x, u) : I → Rn × Rm a solution of [E,A,B] on I, if x and u are locally square
integrable and (1.1) holds in the weak sense. We further call (x, u) a solution of
[E,A,B], if it is a solution of [E,A,B] on R.

Note that (x, u) being a solution of implies that Ex is absolutely continuous, hence
the evaluation Ex(0) := (Ex)(0) is well-defined. We further consider the vector space
of consistent initial differential variables of [E,A,B], which is given by

(1.2) Vdiff
[E,A,B] := {x0 ∈ Rn : ∃ a solution (x, u) of [E,A,B] with Ex(0) = Ex0} .

For an interval I ⊆ R and matrices Q = Q> ∈ Rn×n, S ∈ Rn×m, and R = R> ∈
Rm×m we introduce the cost functional

(1.3) J (x, u, I) :=
∫
I

(
x(τ)
u(τ)

)> [
Q S
S> R

](
x(τ)
u(τ)

)
dτ.
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For a given x0 ∈ Vdiff
[E,A,B] we consider the following optimal control problems:

(OC+) Minimize J (x, u,R≥0)
subject to d

dtEx = Ax+Bu with Ex(0) = Ex0 and Ex(∞) = 0.

(OC–) Minimize J (x, u,R≤0)
subject to d

dtEx = Ax+Bu with Ex(0) = Ex0 and Ex(−∞) = 0.

Note that the above optimal control problems are also subject to the terminal condi-
tions Ex(±∞) = 0 which is a short-hand notation for limt→±∞Ex(t) = 0.

This article is devoted to a deep analysis of the above optimal control problems.
We will first study feasibility. Loosely speaking, this refers to the property that for
each x0 ∈ Vdiff

[E,A,B] there exists a solution (x, u) of [E,A,B] on R≥0 (resp. on R≤0)
with Ex(±∞) = 0 and additionally, the cost functional cannot be made arbitrarily
negative. We analyze existence and construction of optimal controls, i.e., minimiz-
ers of the above optimization problems. Further, we characterize regularity, which
is a property referring to the existence and uniqueness of optimal controls for any
consistent initial condition.

In our approach to the optimal control problems (OC+) and (OC–), we present
an approach similar to the one of Willems in his seminal article [39]. Namely, our
findings are based on quadratic storage functions and certain matrix equations which
can be solved for a Hermitian matrix expressing the optimal cost. Precise definitions
of the aforementioned concepts will - together with an outline of the results - be
presented in the forthcoming section.

Nomenclature. We use the standard notations N0, R, C, i, A>, In, 0m×n for
the natural numbers including zero, the real numbers, the complex numbers, the
imaginary unit, the transpose of a matrix, the identity matrix of size n× n, and the
zero matrix of size m × n (subscripts are omitted, if clear from context). The group
of invertible n × n matrices with entries in R is denoted by Gln(R). Further, the
following notation is used throughout this article:

C+, C− the open sets of complex numbers with positive and
negative real part, resp.

R≥0, R≤0 the sets of nonnegative and nonpositive real numbers,
resp.

R[s] the ring of real polynomials
imRA, kerRA, rankRA the image, kernel, and rank of a matrix A ∈ Rm×n

over the ring R
L2(I,Rn), L2

loc(I,Rn) the spaces of measurable and (locally) square inte-
grable functions f : I → Rn on the set I ⊆ R,
where functions which agree almost everywhere are
identified

f |Ĩ the restriction of f : I →M to Ĩ ⊆ I (where M is a
set)
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2. Outline and main concepts. The optimal control problems (OC+) and
(OC–) motivate the introduction of the value functions V+, V− : EVdiff

[E,A,B] → R ∪
{−∞,∞}, called the optimal costs

(2.1) V+(Ex0) = inf {J (x, u,R≥0) : (x, u) is a solution of [E,A,B] on R≥0

with Ex(0) = Ex0 and Ex(∞) = 0} ,
(2.2) V−(Ex0) = − inf {J (x, u,R≤0) : (x, u) is a solution of [E,A,B] on R≤0

with Ex(0) = Ex0 and Ex(−∞) = 0} ,

Next we define some notions which are, loosely speaking, related to the solvability
of the optimal control problems. These concepts are crucial for all considerations in
this article.

Definition 2.1 (Feasibility, regularity, optimal control). Let [E,A,B] ∈ Σn,m
and Q = Q> ∈ Rn×n, S ∈ Rn×m, and R = R> ∈ Rm×m be given.

a) The optimal control problem (OC+) (resp. (OC–)) is called feasible, if for
all x0 ∈ Vdiff

[E,A,B] it holds that

−∞ < V+(Ex0) <∞, (resp. −∞ < V−(Ex0) <∞).

b) A solution (x∗, u∗) of [E,A,B] on R≥0 (resp. on R≤0) with Ex(0) = Ex0 and
Ex∗(∞) = 0 (resp. Ex∗(−∞) = 0) is called an optimal control for (OC+)
(resp. (OC–)), if

V+(Ex0) = J (x∗, u∗,R≥0) (resp. V−(Ex0) = J (x∗, u∗,R≤0)).

c) The optimal control problem (OC+) (resp. (OC–)) is called regular, if for
all x0 ∈ Vdiff

[E,A,B], there exists a unique optimal control for (OC+) (resp.
(OC–)).

The key ingredient for our considerations are so-called storage functions. This concept
has been introduced for ordinary differential equations in [39, 14].

Definition 2.2 (Storage function, dissipation inequality). Let [E,A,B] ∈ Σn,m
and Q = Q> ∈ Rn×n, S ∈ Rn×m, R = R> ∈ Rm×m it given. A continuous function
V : EVdiff

[E,A,B] → R is called a storage function, if it is continuous, V (0) = 0, and the
cost functional J (·, ·, ·) as in (1.3) fulfills the dissipation inequality

(2.3) J (x, u, [t0, t1]) + V (Ex(t1)) ≥ V (Ex(t0))

for all solutions (x, u) of [E,A,B] and t0, t1 ∈ R with t0 ≤ t1.

Our special emphasis will be put on quadratic storage functions. In this case, there
exists some Hermitian matrix P ∈ Rn×n such that V attains the form

(2.4) V (Ex0) = x>0 E
>PEx0 ∀x0 ∈ Vdiff

[E,A,B].
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To further characterize quadratic storage functions, we present the notion of the
system space.

Definition 2.3. The system space of [E,A,B] ∈ Σn,m is the smallest subspace
Vsys

[E,A,B] ⊆ Rn+m such that

∀ solutions (x, u) of [E,A,B] :
(
x(t)
u(t)

)
∈ Vsys

[E,A,B] for almost all t ∈ R.

A geometric characterization of the system space can be found in [37]. For the theory
presented in this article, it is crucial to introduce what we mean be equality and
positive semi-definiteness on some subspace.

Definition 2.4. Let V ⊆ Rn be a subspace and M, N ∈ Rn×n be Hermitian
matrices. Then we write

M =V N :⇐⇒ x>Mx = x>Nx ∀x ∈ V,
M ≥V N :⇐⇒ x>Mx ≥ x>Nx ∀x ∈ V.

The previous definitions enable us to introduce the Kalman-Yakubovich-Popov (KYP)
inequality and the Lur’e equation.

Definition 2.5 (Kalman-Yakubovich-Popov inequality, Lur’e equation). Let
[E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m, R = R> ∈ Rm×m be given. We
call P ∈ Rn×n a solution of the Kalman-Yakubovich-Popov (KYP) inequality, if

(2.5)
[
A>PE + E>PA+Q E>PB + S

B>PE + S> R

]
≥Vsys

[E,A,B]
0, P = P>.

Further, for some q ∈ N0, we call a triple (P,K,L) ∈ Rn×n × Rq×n × Rq×m solution
of the Lur’e equation, if

(2.6)
[
A>PE + E>PA+Q E>PB + S

B>PE + S> R

]
=Vsys

[E,A,B]

[
K>

L>

] [
K L

]
, P = P>

is satisfied with

(2.7) rankR[s]

[
−sE +A B

K L

]
= n+ q.

A solution (P,K,L) ∈ Rn×n×Rq×n×Rq×m of the Lur’e equation is called stabilizing,
if additionally,

(2.8) rankC

[
−λE +A B

K L

]
= n+ q ∀λ ∈ C+,

and anti-stabilizing, if additionally,

(2.9) rankC

[
−λE +A B

K L

]
= n+ q ∀λ ∈ C−.

Note that it follows immediately that, if (P,K,L) solves the Lur’e equation, then P
is a solution of the KYP inequality.

The Lur’e equation and KYP inequality are crucial for our approach to the linear-
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quadratic optimal control problem. The main theses of this article are listed at the
end of this section. Indeed, we will show that the value functions and optimal controls
can be expressed by means of (anti-)stabilizing solutions of the Lur’e equation.

To formulate our main results, we present some notions related controllability
and stabilizability of differential-algebraic systems. Algebraic characterizations can
be found in [5].

Definition 2.6 (Controllability and stabilizability). The system [E,A,B] ∈
Σn,m is called

a) behaviorally stabilizable, if for all solutions (x, u) of [E,A,B] on R≤0 there
exists a solution (x̃, ũ) of [E,A,B] with (x̃, ũ)|R≤0 = (x, u) and

lim
t→∞

ess sup
τ>t

‖(x̃(τ), ũ(τ))‖ = 0;

b) behaviorally anti-stabilizable, if for all solutions (x, u) of [E,A,B] on R≥0
there exists a solution (x̃, ũ) of [E,A,B] with (x̃, ũ)|R≥0 = (x, u) and

lim
t→−∞

ess sup
τ<t

‖(x̃(τ), ũ(τ))‖ = 0;

c) behaviorally controllable, if for all solutions (x1, u1), (x2, u2) of [E,A,B]
there exists some T > 0 and a solution (x, u) of [E,A,B] with

(x(t), u(t)) =
{

(x1(t), u1(t)) for t < 0,
(x2(t), u2(t)) for t > T.

The main theses of this article are listed below. We first highlight the connection
between the solutions of the KYP inequality and storage functions:

S) For a Hermitian matrix P ∈ Rn×n, V as in (2.4) is a quadratic storage
function, if and only if P solves the KYP inequality (2.5), see Theorem 4.3.

Thereafter we will prove the following for the optimal control problem on the positive
time axis:

1+) If (OC+) is feasible, then the value function V+ is a quadratic storage func-
tion (and thus corresponds to a solution of the KYP inequality). In this case,
for all storage functions V : EVdiff

[E,A,B] → R it holds that

V (Ex0) ≤ V+(Ex0) ∀x0 ∈ Vdiff
[E,A,B],

see Theorem 5.2 and Theorem 5.4 a).
2+) The problem (OC+) is feasible, if and only if [E,A,B] is behaviorally sta-

bilizable and there exists a storage function, see Theorem 5.4 a).
3+) The problem (OC+) is feasible, if and only if [E,A,B] is behaviorally stabi-

lizable and the Lur’e equation has a stabilizing solution, see Theorem 5.7 a).
4+) If (P,K,L) is a stabilizing solution of the Lur’e equation, then (x∗, u∗) is an

optimal control for (OC+), if and only if it satisfies the optimality differen-
tial-algebraic equation

(2.10) d
dt

[
E 0
0 0

](
x∗
u∗

)
=
[
A B
K L

](
x∗
u∗

)
with Ex∗(0) = x0 and Ex∗(∞) = 0, see Theorem 5.7 a).

5



5+) If (P,K,L) is a stabilizing solution of the Lur’e equation, then the optimal
control problem (OC+) is regular, if and only if

(2.11)
[
E 0
0 0

]
· Vsys

[E,A,B] +
[
A B
K L

]
·
(

(kerE × Rm) ∩ Vsys
[E,A,B]

)
=
[
E 0
0 0

]
· Vsys

[E,A,B] +
[
A B
K L

]
· Vsys

[E,A,B]

and

(2.12) kerC
[
−iωE +A B

K L

]
= {0} ∀ω ∈ R,

see Theorem 5.8 a).

Likewise, we will show the following assertions for optimal control problems on R≤0.
1–) If (OC–) is feasible, then the value function V− is a quadratic storage function

(and thus corresponds to a solution of the KYP inequality). In this case, for
all storage functions V : EVdiff

[E,A,B] → R it holds that

V−(Ex0) ≤ V (Ex0) ∀x0 ∈ Vdiff
[E,A,B],

see Theorem 5.2 and Theorem 5.4 b).
2–) The problem (OC–) is feasible, if and only if [E,A,B] is behaviorally anti-

stabilizable and there exists a storage function, see Theorem 5.4 b).
3–) The problem (OC–) is feasible, if and only if [E,A,B] is behaviorally anti-

stabilizable and the Lur’e equation has an anti-stabilizing solution, see The-
orem 5.7 b).

4–) If (P,K,L) is an anti-stabilizing solution of the Lur’e equation, then (x∗, u∗)
is an optimal control for (OC–), if and only if it satisfies the optimality
differential-algebraic equation (2.10) with Ex∗(0) = Ex0 and Ex∗(−∞) = 0,
see Theorem 5.7 b).

5–) If (P,K,L) is an anti-stabilizing solution of the Lur’e equation, then the
optimal control problem (OC–) is regular, if and only if (2.11) and (2.12)
are satisfied, see Theorem 5.8 b).

For behaviorally controllable systems, we will show that feasibility of the optimal
control problems on positive and negative time axis is equivalent.
1+–) If [E,A,B] is behaviorally controllable, then (OC+) is feasible if, and only

if (OC–) is feasible, see Corollary 5.5.

3. Curiosities in optimal control of differential-algebraic equations. In
this part, we present some examples which emphasize the main differences between
optimal control of ordinary differential equations and differential-algebraic equations.
Whereas in control of ordinary differential equations, positive semi-definiteness of the
input weight R is necessary for feasibility of the optimal control problem [39], this is
not necessarily true in the case of differential-algebraic equations:
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Example 3.1. Feasibility of the optimal control problem (OC+) does not imply
R ≥ 0: Consider the optimal control problem

(3.1)

Minimize J (x, u,R≥0) =
∫ ∞

0
x2

2(t)− 1
2u

2(t)dt

subject to d
dt

[
1 0
0 0

](
x1
x2

)
=
[
−1 1
0 1

](
x1
x2

)
+
[

0
−1

]
u

with x1(0) = x01 and x1(∞) = 0.

For this optimal control problem we have – in the notation of (1.3) and (OC+) –
R = − 1

2 < 0. However, resolving the algebraic constraint x2 = u yields that this
optimal control problem is equivalent to

(3.2)
Minimize J (x1, u,R≥0) =

∫ ∞
0

1
2u

2(t)dt

subject to d
dtx1 = −x1 + u with x1(0) = x01 and x1(∞) = 0.

together with x2 = u. The optimal control problem (3.2) is even regular. Namely, the
non-negative cost functional can be made zero by setting u∗ = 0. Then we have indeed
x∗,1(t) = e−t · x01 with x∗,1(∞) = 0. Therefore, the differential-algebraic optimal
control problem (3.1) is regular with optimal control

(( x∗,1
x∗,2

)
, u∗
)
where x∗,1(t) =

e−t · x01 and x∗,2 = u∗ = 0. In particular, (3.1) is a feasible optimal control problem.

Whereas in control of ordinary differential equations, regularity of the input
weight R is necessary for regularity of the optimal control problem [10], this is not
necessarily true for differential-algebraic equations, as the following example shows:

Example 3.2. Regularity of the optimal control problem (OC+) does not imply
that R is invertible: Consider the optimal control problem

(3.3)

Minimize J (x, u,R≥0) =
∫ ∞

0

1
2x

2
2(t)dt

subject to d
dt

[
1 0
0 0

](
x1
x2

)
=
[
−1 1
0 1

](
x1
x2

)
+
[

0
−1

]
u

with x1(0) = x01 and x1(∞) = 0.

For this optimal control problem we have – in the notation of (1.3) and (OC+) –
R = 0. However, resolving the algebraic constraint x2 = u yields that this optimal
control problem is again equivalent to (3.2), now together with x2 = u. The lat-
ter is even a regular optimal control problem with – as previously shown – optimal
control (x∗,1, u∗) with x∗,1(t) = e−t · x01 and u∗ = 0. Therefore, the differential-
algebraic optimal control problem is again regular with optimal control

(( x∗,1
x∗,2

)
, u∗
)

with x∗,1(t) = e−t · x01 and x∗,2 = u∗ = 0.

Next we show that the index of the differential-algebraic equation [E,A,B] does
not necessarily cause singularity of the optimal control problem (OC+). In our
context, the index is defined by the nilpotency index of the nilpotent matrix N in
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a quasi-Weierstraß form

(3.4) W (sE −A)T =
[
sI −A1 0

0 sN − I

]
for some W, T ∈ Gln(R), see [6].

Example 3.3. There are regular optimal control problems with arbitrary index:
Consider the system [E,A,B] ∈ Σn,1 with

E =


0

1
. . .
. . . . . .

1 0

 , A =


1

−1
. . .
. . . . . .

−1 1

 , B =


1
0
...
0

 .

Then A−1(sE −A) is in quasi-Weierstraß form, and we obtain that the index of this
differential-algebraic equation is n.

We further define a cost functional (1.3) with the matrices R = 0, S = 0, and
Q ∈ Rn×n which has the entry 1 at the lower right position and zeros elsewhere. This
yields the optimal control problem

(3.5)

Minimize J (x, u,R≥0) =
∫ ∞

0
x2
n(t)dt

subject to

0 = x1 +u,
d
dtx1 = −x1 +x2,

...
d
dtxn−1 = −xn−1 +xn,

with x1(0) = x01, . . . , xn−1(0) = x0,n−1 and
x1(∞) = . . . = xn−1(∞) = 0.

Since u only enters in the algebraic equation u+ x1 = 0, we see that the optimal
control problem is equivalent to

(3.6)

Minimize J (x, u,R≥0) =
∫ ∞

0
x2
n(t)dt

subject to

d
dtx1 = −x1 +x2,

...
d
dtxn−1 = −xn−1 +xn,

with x1(0) = x01, . . . , xn−1(0) = x0,n−1 and
x1(∞) = . . . = xn−1(∞) = 0.

together with u = −x1. However, since the ordinary differential equation in (3.6)
with the additional constraint xn = 0 is asymptotically stable, we obtain that the
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nonnegative cost functional J (x, u,R≥0) can indeed be made zero. Thus, an optimal
control (x∗, u∗) has to fulfill x∗,n = 0 and the optimal control (x∗, u∗) is uniquely
determined by x∗,n = 0, and

d
dtx∗,1 = −x∗,1 +x∗,2,

...
d
dtx∗,n−2 = −x∗,n−2 +x∗,n−1,
d
dtx∗,n−1 = −x∗,n−1,

with the initial conditions x∗,1(0) = x01, . . . , x∗,n−1(0) = x0,n−1, and u∗ = −x∗,1. In
particular, the optimal control problem is regular.

4. Storage functions and the Kalman-Yakubovich-Popov inequality.
Here we present the details on storage functions, the KYP inequality (see Def. 2.2 &
Def. 2.5) and their connection.

First we consider the special case where the storage function is differentiable. For
this we need an auxiliary result which basically states that we can often restrict to
smooth solutions.

Lemma 4.1. Let [E,A,B] ∈ Σn,m be given. Then the following holds:
a) For all ( x0

u0 ) ∈ Vsys
[E,A,B], there exists some infinitely often differentiable so-

lution (x, u) of [E,A,B] with x(0) = x0 and u(0) = u0. In particular,
x0 ∈ Vdiff

[E,A,B].
b) For all x0 ∈ Vdiff

[E,A,B], there exists some infinitely often differentiable solution
(x, u) of [E,A,B] with Ex(0) = Ex0. In particular, there exists some ( x01

u01 ) ∈
Vsys

[E,A,B] with Ex0 = Ex01.

Proof. This follows by an application of [6, Thm. 3.2] to the differential-algebraic
equation d

dtEw(t) = Aw(t) with E =
[
E 0

]
, A =

[
A B

]
, and w(t) =

(
x(t)
u(t)

)
.

Proposition 4.2. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m,
R = R> ∈ Rm×m be given. Then a differentiable function V : EVdiff

[E,A,B] → R with
V (0) = 0 is a storage function, if and only if

(4.1)
(
x0
u0

)> [
Q S
S> R

](
x0
u0

)
≥ −(∇V (Ex0))>(Ax0 +Bu0) ∀

(
x0
u0

)
∈ Vsys

[E,A,B],

where ∇V (Ex0) ∈ Rn denotes the gradient of V in Ex0.

Proof. First assume that V : EVdiff
[E,A,B] → R is a differentiable storage function.

Suppose that ( x0
u0 ) ∈ Vsys

[E,A,B]. Then, by Lemma 4.1, there exists some infinitely often
differentiable solution (x, u) of [E,A,B] with x(0) = x0 and u(0) = u0. Consequently,
the real-valued function t 7→ V (Ex(t)) is differentiable. The dissipation inequality
yields that for all h > 0 we have

1
h

(V (Ex(h))−V (Ex(0))) ≥ − 1
h
J (x, u, [0, h]) = − 1

h

∫ h

0

(
x(t)
u(t)

)>[
Q S
S> R

](
x(t)
u(t)

)
dt.

9



Now taking the limit h→ 0, we see that the right hand side converges to

−
(
x(0)
u(0)

)> [
Q S
S> R

](
x(0)
u(0)

)
= −

(
x0
u0

)> [
Q S
S> R

](
x0
u0

)
.

Then (4.1) is a consequence of the fact that the left hand side tends to

d
dtV (Ex(t))

∣∣
t=0 = (∇V (Ex(0)))> d

dtEx(t)
∣∣
t=0

= (∇V (Ex(0)))>(Ax(0) +Bu(0)) = (∇V (Ex0))>(Ax0 +Bu0).

To prove the reverse implication, assume that (4.1) is satisfied. Let (x, u) be
a solution of [E,A,B] and let t0, t1 ∈ R with t0 ≤ t1. Then, by using the chain
rule for weak derivatives [29] and the fundamental theorem of calculus for weakly
differentiable functions [1, Sec. E3.6] together with

(
x(t)
u(t)

)
∈ Vsys

[E,A,B] for almost all
t ∈ [t0, t1], we obtain

V (Ex(t1))− V (Ex(t0)) =
∫ t1

t0

d
dtV (Ex(t))dt

=
∫ t1

t0

(∇V (Ex(t)))> d
dtEx(t)dt

=
∫ t1

t0

(∇V (Ex(t)))>(Ax(t) +Bu(t))dt

≥ −
∫ t1

t0

(
x(t)
u(t)

)> [
Q S
S> R

](
x(t)
u(t)

)
dt = −J (x, u, [t0, t1]),

i. e., the dissipation inequality (2.3) is fulfilled.

Next we show that the set of quadratic storage functions corresponds to the set
of solutions of the KYP inequality.

Theorem 4.3. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m, R =
R> ∈ Rm×m be given. Then the following two statements are equivalent for P ∈
Rn×n:

a) It holds that P = P> and V : EVdiff
[E,A,B] → R, Ex0 7→ x>0 E

>PEx0 is
a storage function.

b) The matrix P solves the KYP inequality (2.5).

Proof. First note that for P = P> ∈ Rn×n, the function V : EVdiff
[E,A,B] → R,

Ex0 7→ x>0 E
>PEx0 fulfills ∇V (Ex0) = 2E>PEx0. Thus for all ( x0

u0 ) ∈ Vsys
[E,A,B] we

have

(∇V (Ex0))>(Ax0 +Bu0) = 2x>0 E>P (Ax0 +Bu0)

=
(
x0
u0

)> [
A>PE + E>PA E>PB

B>PE 0

](
x0
u0

)
.

(4.2)

Now we show that “a)⇒b)”: Assume that P = P> ∈ Rn×n and that V :
EVdiff

[E,A,B] → R, Ex0 7→ x>0 E
>PEx0 is a storage function. Let ( x0

u0 ) ∈ Vsys
[E,A,B] be

given. By combining (4.2) with Proposition 4.2, we obtain that the KYP inequality
(2.5) is satisfied.
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Next we show “b)⇒a)”: If P fulfills (2.5), then for all ( x0
u0 ) ∈ Vsys

[E,A,B] we have

(
x0
u0

)> [
Q S
S> R

](
x0
u0

)
≥ −

(
x0
u0

)> [
A>PE + E>PA E>PB

B>PE 0

](
x0
u0

)
.

By further using that V : EVdiff
[E,A,B] → R, Ex0 7→ x>0 E

>PEx0 fulfills (4.2), we obtain
from Proposition 4.2 that V is a storage function.

Next we show that the right hand side of the KYP inequality can be factored in
a special way for which we need the following auxiliary result.

Lemma 4.4. Let V ⊆ Rn be a subspace and M ∈ Rn×n with M ≥V 0. Then there
exists some ` ∈ N0 and K ∈ R`×n such that KV = R` and M =V K>K.

Proof. Let r := dimV and T ∈ Gln(R) be such that T (Rr × {0}) = V. Partition

T>MT =
[
M11 M12
M>12 M22

]
with M11 ∈ Rr×r, M12 ∈ Rr×(n−r), and M22 ∈ R(n−r)×(n−r). Then for all x ∈ Rr it
holds that T ( x0 ) ∈ V, and thus

x>M11x =
(
x
0

)> [
M11 M12
M>12 M22

](
x
0

)
=
(
x
0

)>
T>MT

(
x
0

)
≥ 0.

As a consequence, M11 ≥ 0. Define ` := rankRM11. From the positive semi-
definiteness of M11, we obtain that there exists some K1 ∈ R`×r with M11 = K>1 K1.
In particular, K1 has full row rank. Now define K :=

[
K1 0

]
T−1. Then

KV =
[
K1 0

]
T−1V =

[
K1 0

]
(Rr × {0}) = imRK1 = R`.

Next we show that M =V K>K: Assume that v ∈ V. Then there exists some x ∈ Rr
with v = T ( x0 ). Further we have

(
x
0

)>
T>MT

(
x
0

)
= x>M11x = x>K>1 K1x =

(
x
0

)> [
K1 0

]> [
K1 0

](x
0

)
= v>(T−>)

[
K1 0

]> [
K1 0

]
T−1v = v>K>Kv.

Proposition 4.5. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m,
R = R> ∈ Rm×m be given. Assume that P ∈ Rn×n solves the KYP inequality (2.5).
Then there exist q ∈ N0, K ∈ Rq×n and L ∈ Rq×m such that (2.6) and

(4.3)
[
K L

]
Vsys

[E,A,B] = Rq.

Further, the dissipation inequality can be reformulated to

(4.4)
J (x, u, [t0, t1]) + x(t1)>E>PEx(t1) = x(t0)>E>PEx(t0) + ‖Kx+ Lu‖2L2([t0,t1],Rq)

∀ solutions (x, u) of [E,A,B] and t0, t1 ∈ R with t0 ≤ t1.
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Proof. The existence of q ∈ N0, K ∈ Rq×n, and L ∈ Rq×m such that (2.6)
and (4.3) are satisfied follows from Lemma 4.4. The assertion in (4.4) follows by an
argumentation as in the proof of statement “b)⇒a)” from Theorem 4.3.

Willems has called Kx + Lu the dissipation rate in his article [39] on optimal
control of ordinary differential equations. We can conclude the following for the
dissipation inequality on the whole positive time axis.

Corollary 4.6. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m, R =
R> ∈ Rm×m be given. Assume that P ∈ Rn×n solves the KYP inequality (2.5) and
that further K ∈ Rq×n and L ∈ Rq×m solve (2.6). Assume that x0 ∈ Vdiff

[E,A,B] and let
(x, u) be a solution of [E,A,B] with Ex(0) = Ex0 and Ex(∞) = 0 on R≥0 be given.
Then J (x, u,R≥0) is finite, if and only if Kx + Lu ∈ L2(R≥0,Rq). In this case we
have

(4.5) J (x, u,R≥0) = x>0 E
>PEx0 + ‖Kx+ Lu‖2L2(R≥0,Rq).

Proof. Let x0 ∈ Vdiff
[E,A,B] and (x, u) be a solution of [E,A,B] with Ex(0) = Ex0

and Ex(∞) = 0 be given. Then x(∞)>E>PEx(∞) = 0 and we see that, by taking
the limit t→∞, that the left hand side in (4.4) converges, if and only if the right hand
side in (4.4) converges. This limiting process further gives rise to equation (4.5).

5. Optimal control with zero terminal condition. In this part we take
a closer look at the optimal control problems (OC+) and (OC–). We proceed as
follows: We first show that, in case of the respective feasibility, the value functions
V+ and V− are quadratic storage functions. As a consequence of Theorem 4.3, the
value functions can be expressed by means of a solution of the KYP inequality (2.5).
We will show that the value functions indeed induce special solutions of the KYP
inequality, namely the stabilizing and anti-stabilizing solution of the Lur’e equation.
The latter type of algebraic matrix equation has been analyzed in detail in [37] from
a linear algebraic point of view. Numerical solution for equations of this type has been
considered in [35, 36]. Here we will show that feasibility of (OC+) (resp. (OC–)) is
equivalent to the existence of stabilizing (resp. anti-stabilizing) solutions of the Lur’e
equation. In other words, we have necessary and sufficient conditions on feasibility
of the optimal control problems (OC+) and (OC–). The solutions of the Lur’e
equations will further be used to characterize regularity and to design optimal controls.

Before we prove that the value functions are quadratic storage functions, we briefly
present the connection between (anti-)stabilizability and feasibility of the optimal
control problems (OC+) and (OC–).

Proposition 5.1. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m,
R = R> ∈ Rm×m be given. Then the following holds:

a) If (OC+) is feasible, then [E,A,B] is behaviorally stabilizable,
b) If (OC–) is feasible, then [E,A,B] is behaviorally anti-stabilizable.
Proof. To prove statement a), assume that (OC+) is feasible. Then V+(Ex0) <

∞ for all x0 ∈ Vdiff
[E,A,B]. In particular, the set of all solutions (x, u) of [E,A,B] with

Ex(0) = Ex0 and Ex(∞) = 0 is non-empty for all x0 ∈ Vdiff
[E,A,B]. This gives rise to

stabilizability of [E,A,B]. The proof of assertion b) is analogous.
Next we show that V+ and V− are quadratic storage functions.
Theorem 5.2. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m, R =

R> ∈ Rm×m be given. Then the following holds:
12



a) If (OC+) is feasible, then V+ is a quadratic storage function.
b) If (OC–) is feasible, then V− is a quadratic storage function.

Proof. It suffices to prove statement a). The second assertion can then be inferred
from the fact that replacing E by −E reflects the solutions, that is

(5.1) (x(·), u(·)) is a solution of [E,A,B]
⇐⇒ (x(−·), u(−·)) is a solution of [−E,A,B],

and the fact that V− is the value function for the optimal cost in (OC–), if and only
if Ṽ+ := −V− is the value function corresponding to the optimal control problem for
the system [−E,A,B] on the positive time axis.

Assume that (OC+) is feasible. Then [E,A,B] is stabilizable by Proposition 5.1.
For x0 ∈ Vdiff

[E,A,B], consider the set of trajectories of [E,A,B] which are square inte-
grable on R≥0 and initial differential value x0, i. e.,

BL2(x0) :=
{

(x, u) ∈ L2(R≥0,Rn)× L2(R≥0,Rm) :
(x, u) is a solution of [E,A,B] on R≥0 with Ex(0) = Ex0

}
.

Note that BL2(x0) is nonempty for all x0 ∈ Vdiff
[E,A,B] since [E,A,B] is stabilizable.

Consider the functional Ṽ+ : EVdiff
[E,A,B] → R ∪ {−∞,∞} with

Ṽ+(Ex0) = inf {J (x, u,R≥0) : (x, u) ∈ BL2(x0)} .

Step 1: We show that

(5.2) V+(Ex0) ≤ Ṽ+(Ex0) <∞ ∀x0 ∈ Vdiff
[E,A,B].

Assume that x0 ∈ Vdiff
[E,A,B]. Then, by stabilizability of [E,A,B], there exists some

(x, u) ∈ BL2(x0). This gives rise to J (x, u,R≥0) ∈ R, whence Ṽ+(Ex0) <∞. On the
other hand, (x, u) ∈ BL2(x0) implies that x, d

dt (Ex) ∈ L2(R≥0,Rn) and therefore, we
obtain from [11, Thm. 3], a variant of Barbălat’s lemma, that Ex(∞) = 0. Hence,
Ṽ+(Ex0) is the infimum over a set which is contained in the set whose infimum is
V +(Ex0). This implies (5.2).

Step 2: We show that Ṽ+ is quadratic: To this end, we need to show that for all
λ ∈ R and x0, x01, x02 ∈ Vdiff

[E,A,B] it holds that

Ṽ+(λ · Ex0) = |λ|2 · Ṽ+(Ex0),(5.3a)

Ṽ+(E(x01 − x02)) + Ṽ+(E(x01 + x02)) = 2 · Ṽ+(Ex01) + 2 · Ṽ+(Ex02).(5.3b)

An expansion of the products in the integral yields that for all λ ∈ R and solutions
(x1, u1), (x2, u2) of [E,A,B] with (x1, u1), (x2, u2) ∈ L2(R≥0,Rn)×L2(R≥0,Rm), the
cost function fulfills

J (λx1, λu1,R≥0) = |λ|2 · J (x1, u1,R≥0),(5.4a)
2 · J (x1, u1,R≥0) + 2 · J (x2, u2,R≥0) = J (x1 + x2, u1 + u2,R≥0)(5.4b)

+ J (x1 − x2, u1 − u2,R≥0).
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We first prove (5.3a): We have Ṽ+(0) ≤ 0, since J (0, 0,R≥0) = 0. On the other
hand, the existence of a solution (x, u) of [E,A,B] with Ex(0) = Ex(∞) = 0 with
with J (x, u,R≥0) < 0 would imply, by taking scalar multiples of (x, u), that V+(0) ≤
Ṽ+(0) = −∞. Hence, feasibility of (OC+) gives rise to Ṽ+(0) = 0. Thus, we have

Ṽ+(0 · Ex0) = 0 = |0|2 · Ṽ+(Ex0).

Further, for all λ ∈ R \ {0}, x0 ∈ Vdiff
[E,A,B], and ε > 0, the definition of Ṽ+ leads to

the existence of some (x, u) ∈ BL2(x0) with

J (x, u,R≥0) ≤ Ṽ+(Ex0) + ε
λ2 ,

and therefore we have

Ṽ+(E(λx0)) ≤ J (λx, λu,R≥0) = |λ|2 · J (x, u,R≥0)

≤ |λ|2 ·
(
Ṽ +(Ex0) + ε

|λ|2

)
= |λ|2 · Ṽ +(Ex0) + ε.

Since the above inequality holds for all ε > 0 it follows that

(5.5) Ṽ+(E(λx0)) ≤ |λ|2 · Ṽ+(Ex0).

The reverse inequality follows from

Ṽ+(Ex0) = Ṽ+
(
E
( 1
λ · λx0

)) (5.5)
≤ 1

|λ|2 · Ṽ+(E(λx0)).

Altogether we obtain that (5.3a) is satisfied.
Next we show (5.3b): Assume that x01, x02 ∈ Vdiff

[E,A,B] and ε > 0. The definition
of Ṽ+ implies that there exist (x1, u1) ∈ BL

2(x01), (x2, u2) ∈ BL
2(x02) and

(5.6) J (x1, u1,R≥0) ≤ Ṽ+(Ex01) + ε
4 , J (x2, u2,R≥0) ≤ Ṽ+(Ex02) + ε

4 .

Then we obtain

Ṽ+ (E(x01 + x02)) + Ṽ+ (E(x01 − x02))
≤ J (x1 + x2, u1 + u2,R≥0) + J (x1 − x2, u1 − u2,R≥0)

(5.4b)= 2 · J (x1, u1,R≥0) + 2 · J (x2, u2,R≥0)
(5.6)
≤ 2 · Ṽ+(Ex01) + 2 · Ṽ+(Ex02) + ε.

Since the above inequality holds for all ε > 0 we have

(5.7) Ṽ+ (E(x01 + x02)) + Ṽ+ (E(x01 − x02)) ≤ 2 · Ṽ +(Ex01) + 2 · Ṽ+(Ex02).

Now we prove the reverse inequality: For x̃01 = 1
2 (x01 + x02) and x̃02 = 1

2 (x01 − x02)
we have x̃01 + x̃02 = x01 and x̃01 − x̃02 = x02. Then (5.4a) is satisfied due to

2 · Ṽ+(Ex01) + 2 · Ṽ+(Ex02)

= 2 · Ṽ+(E(x̃01 + x̃02)) + 2 · Ṽ+(E(x̃01 − x̃02))
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(5.7)
≤ 4 · Ṽ+(Ex̃01) + 4 · Ṽ+(Ex̃02)

= 4 · Ṽ+
(
E
( 1

2 (x01 + x02)
))

+ 4 · Ṽ+
(
E
( 1

2 (x01 − x02)
))

(5.3a)= Ṽ+(E(x01 + x02)) + Ṽ+(E(x01 − x02)).

Step 3: We prove that Ṽ+ is a storage function. Since Ṽ+ is quadratic by Step 2,
it is continuous with Ṽ (0) = 0. Now assume that t ≥ 0 and (x, u) be a solution of
[E,A,B] with Ex(0) = Ex0. By definition of Ṽ+, there exists some (x̃, ũ) ∈ BL2(x(t))
with

(5.8) J (x̃, ũ,R≥0) ≤ Ṽ+(Ex(t)) + ε.

Consider the concatenation (x, u) with (x(τ), u(τ)) = (x(τ), u(τ)) for all τ ∈ [0, t],
and (x(τ), u(τ)) = (x̃(τ − t), ũ(τ − t)) for all τ ∈ [t,∞). Then (x, u) is a solution of
[E,A,B] with Ex(0) = Ex0. In particular, we have (x, u) ∈ BL2(x0). Then, by using
time-invariance, we obtain

Ṽ+(Ex0) ≤ J (x, u,R≥0) = J (x, u, [0, t]) + J (x, u, [t,∞))
= J (x, u, [0, t]) + J (x(·+ t), u(·+ t),R≥0)
= J (x, u, [0, t]) + J (x̃, ũ,R≥0)

(5.8)
≤ J (x, u, [0, t]) + Ṽ +(Ex(t)) + ε.

The result follows now by time-invariance of [E,A,B] and by the fact that ε > 0 can
be made arbitrarily small.

Step 4: We show that Ṽ+ = V+. Assume that x0 ∈ Vdiff
[E,A,B]. The inequality

V+(Ex0) ≤ Ṽ+(Ex0) has already been proven in Step 1. To show the reverse in-
equality, consider a solution (x, u) of [E,A,B] with Ex(0) = Ex0, Ex(∞) = 0 and
J (x, u,R≥0) ∈ R. Since by Step 3, Ṽ+ is a storage function, we obtain that for all
t ≥ 0 it holds that

Ṽ+(Ex0)− Ṽ+(Ex(t)) ≤ J (x, u, [0, t]).

Taking the limit t→∞ and using Ex(∞) = 0 together with the continuity of Ṽ+ and
Ṽ+(0) = 0, we obtain

Ṽ+(Ex0) ≤ J (x, u,R≥0).

This implies Ṽ+(Ex0) ≤ V+(Ex0).

As an immediate consequence, we have that the value functions define special
solutions of the KYP inequality.

Corollary 5.3. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m, R =
R> ∈ Rm×m be given. Then the following holds:

a) If (OC+) is feasible, then there exists a solution P+ ∈ Rn×n of the KYP
inequality (2.5) with V+(Ex0) = x>0 E

>P+Ex0 for all x0 ∈ Vdiff
[E,A,B].

b) If (OC–) is feasible, then there exists a solution P− ∈ Rn×n of the KYP
inequality (2.5) with V−(Ex0) = x>0 E

>P−Ex0 for all x0 ∈ Vdiff
[E,A,B].
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Proof. Assume that (OC+) is feasible. Theorem 5.2 implies that there exists
some Hermitian P ∈ Rn×n with V+(Ex0) = x>0 E

>P+Ex0 for all x0 ∈ Vdiff
[E,A,B]. Since

further by Theorem 5.2, V+ is a storage function, Theorem 4.3 then gives rise to the
fact that P+ solves the KYP inequality (2.5). Statement b) can be inferred by the
same argumentation.

Now we present some characterizations for feasibility, and we show that V+ and
V− have a certain extremality condition among all storage functions.

Theorem 5.4. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m, R =
R> ∈ Rm×m be given.

a) The following statements are equivalent:
i) The problem (OC+) is feasible, i. e., V+(Ex0) ∈ R for all x0 ∈ Vdiff

[E,A,B].
ii) The system [E,A,B] is behaviorally stabilizable and there exists a storage

function V .
iii) The system [E,A,B] is behaviorally stabilizable and the KYP inequality

(2.5) has a solution P ∈ Rn×n.
Further, in case of feasibility of (OC+), all storage functions V fulfill

(5.9) V (Ex0) ≤ V+(Ex0) ∀x0 ∈ Vdiff
[E,A,B].

b) The following statements are equivalent:
i) The problem (OC–) is feasible, i. e., V−(Ex0) ∈ R for all x0 ∈ Vdiff

[E,A,B].
ii) The system [E,A,B] is behaviorally anti-stabilizable and there exists a

storage function V .
iii) The system [E,A,B] is behaviorally anti-stabilizable and the KYP in-

equality (2.5) has a solution P ∈ Rn×n.
Further, in case of feasibility of (OC–), all storage functions V fulfill

(5.10) V−(Ex0) ≤ V (Ex0) ∀x0 ∈ Vdiff
[E,A,B].

Proof. Assertion b) can again be inferred from a) by replacing E by −E. This
follows by using (5.1) and the fact that V is a storage function, if and only if −V is
a storage function for the problem in which E is replaced by −E.

Hence it suffices to prove a):
“i)⇒iii)”: Assume that (OC+) is feasible: Then [E,A,B] is behaviorally stabi-

lizable by Proposition 5.1. Further, the existence of a solution of the KYP inequality
follows from Corollary 5.3.

“iii)⇒ii)”: This follows from Theorem 4.3.
“ii)⇒i)”: Assume that [E,A,B] is behaviorally stabilizable and there exists a con-

tinuous V : EVdiff
[E,A,B] → R with V (0) = 0 such that the dissipation inequality (2.3)

is satisfied. Assume that x0 ∈ Vdiff
[E,A,B]. Behavioral stabilizability of [E,A,B] yields

the existence of some of a solution (x, u) on R≥0 with Ex(0) = x0, Ex(∞) = 0 and
J (x, u,R≥0) < ∞, and thus V (Ex0) < ∞. Further, by taking the limit t → ∞, we
obtain

J (x, u,R≥0) = lim
t→∞

J (x, u, [0, t]) ≥ lim
t→∞

V (Ex(0))− V (Ex(t)) = V (Ex0).

By taking the infimum over all solutions (x, u) with Ex(0) = Ex0 and Ex(∞) = 0,
we obtain that V+(Ex0) ≥ V (Ex0) > −∞. This proves feasibility of (OC+) as well
as the inequality (5.9).
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Now we present some consequences of the previous results.

Corollary 5.5. Let [E,A,B] ∈ Σn,m be behaviorally controllable and let Q =
Q> ∈ Rn×n, S ∈ Rn×m, R = R> ∈ Rm×m be given. Then the following statements
are equivalent:

a) The problem (OC+) is feasible.
b) The problem (OC–) is feasible.
c) There exists a storage function V .
d) The KYP inequality (2.5) has a solution P ∈ Rn×n.

In the case where the above assertions are valid, we have

V−(Ex0) ≤ V (Ex0) ≤ V+(Ex0) ∀x0 ∈ Vdiff
[E,A,B].

Proof. This follows immediately from Theorem 5.4.

Corollary 5.6. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m, R =
R> ∈ Rm×m be given.

a) If (OC+) is feasible, then there exists some solution P+ ∈ Rn×n of the KYP
inequality (2.5). Further, for all solutions P ∈ Rn×n of the KYP inequality
(2.5) we have

(5.11) P ≤EVdiff
[E,A,B]

P+.

b) If (OC–) is feasible, then there exists some solution P− ∈ Rn×n of the KYP
inequality (2.5). Further, for all solutions P ∈ Rn×n of the KYP inequality
(2.5) we have

(5.12) P− ≤EVdiff
[E,A,B]

P.

Proof. If (OC+) is feasible, then Corollary 5.3 implies that there exists a solution
P+ ∈ Rn×n of the KYP inequality (2.5) with V+(Ex0) = x>0 E

>P+Ex0 for all x0 ∈
Vdiff

[E,A,B]. Assume that P ∈ Rn×n is a further solution of the KYP inequality (2.5).
Then, by Theorem 4.3, V : EVdiff

[E,A,B] → R, x0 7→ V (Ex0) = x>0 E
>PEx0 is a storage

function. Then (5.11) can be concluded from (5.9).
The statement for (OC–) can again be proven by an analogous argumentation.

We have seen that the value functions are defined by extremal solutions of the
KYP inequality. Next we present a further characterization which allows to design
optimal controls and to check for regularity of the optimal control problems (OC+)
and (OC–). We have seen in Proposition 4.5 that the right hand side of the KYP
inequality can be factored in a special way. Now we present a certain “specialization”
of the KYP inequality which will turn out to be useful for our considerations on
optimal control. Namely, we seek some q ∈ N0 and a triple (P,K,L) ∈ Rn×n×Rq×n×
Rq×m with solves the Lur’e equation. That is, (2.6) holds with (2.7). In particular, we
show that the stabilizing and anti-stabilizing solutions of the Lur’e equation represent
the value functions for (OC+) and (OC–) and moreover, that they determine the
optimal controls. This is done in the following theorem. The condition Kx∗+Lu∗ = 0
obtained below results in a closed-loop system that is “outer”, see [16].

Theorem 5.7. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m, R =
R> ∈ Rm×m be given. Then the following statements are satisfied:

a) The following two statements are equivalent:
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i) The system [E,A,B] is behaviorally stabilizable and the Lur’e equation
(2.6) has a stabilizing solution (P,K,L) ∈ Rn×n × Rq×n × Rq×m.

ii) The problem (OC+) is feasible.
In this case, the value functions fulfills V+(Ex0) = x>0 E

>PEx0 for all x0 ∈
Vdiff

[E,A,B]. Further, a solution (x∗, u∗) of [E,A,B] on R≥0 with Ex(0) = Ex0
and Ex(∞) = 0 is an optimal control, if and only if Kx∗ + Lu∗ = 0.

b) The following two statements are equivalent:
i) The system [E,A,B] is behaviorally anti-stabilizable and the Lur’e equa-

tion (2.6) has an anti-stabilizing solution (P,K,L) ∈ Rn×n × Rq×n ×
Rq×m.

ii) The problem (OC–) is feasible.
In this case, the value functions fulfills V−(Ex0) = x>0 E

>PEx0 for all x0 ∈
Vdiff

[E,A,B]. Further, a solution (x∗, u∗) of [E,A,B] on R≤0 with Ex(0) = Ex0
and Ex(−∞) = 0 is an optimal control, if and only if Kx∗ + Lu∗ = 0.

Proof. Again, it suffices to show the statement a):
“i)⇒ii)”: Assume that [E,A,B] is behaviorally stabilizable and that (P,K,L) ∈

Rn×n × Rq×n × Rq×m is a stabilizing solution of the Lur’e equation. In particular,
P solves the KYP inequality (2.5). Then the feasibility of (OC+) follows from
Theorem 5.4.

“ii)⇒i)”: Assume that (OC+) is feasible. Then [E,A,B] is behaviorally stabi-
lizable by Proposition 5.1. Next we show that the Lur’e equation has a stabilizing
solution. By Theorem 5.2, feasibility of (OC+) implies that the value function V+ is
a quadratic storage function. In other words, there exists some Hermitian P ∈ Rn×n
such that V+(Ex0) = x>0 E

>PEx0 for all x0 ∈ Vdiff
[E,A,B]. Theorem 4.3 then gives rise

to the fact that P solves the KYP inequality (2.5), and by Proposition 4.5, we obtain
that there exist q ∈ N0, K ∈ Rq×n, L ∈ Rq×m such that

[
K L

]
Vsys

[E,A,B] = Rq and
(2.6) is satisfied. Now we show that (P,K,L) is a stabilizing solution of the Lur’e
equation. To this end, we have to prove that (2.8) is fulfilled. According to [16,
Thm. 6.6 a)], this is the case if the following two statements are valid:

1) If for y0 ∈ Rq we have y>0 (Kx + Lu) ≡ 0 for all solutions (x, u) of [E,A,B],
then y0 = 0.

2) For all x0 ∈ Vdiff
[E,A,B] and ε > 0, there exists a solution (x, u) of [E,A,B] on

R≥0 with Ex(0) = Ex0, Ex(∞) = 0 and ‖Kx+ Lu‖L2(R≥0,Rq) < ε.
First we show 1): Assume that for y0 ∈ Rq we have y>0 (Kx + Lu) ≡ 0 for all

solutions (x, u) of [E,A,B]. Since
[
K L

]
Vsys

[E,A,B] = Rq, there exists some (x0, u0) ∈
Vsys

[E,A,B] with Kx0 + Lu0 = y0. By Lemma 4.1, there exists some infinitely often
differentiable solution (x, u) of [E,A,B] with x(0) = x0 and u(0) = u0. Then 0 =
y>0 (Kx(0) + Lu(0)) = y>0 (Kx0 + Lu0) = y>0 y0 = ‖y0‖2, which implies y0 = 0.

Next we show 2): Suppose that x0 ∈ Vdiff
[E,A,B] and ε > 0. By definition of the

value function, there exists some solution (x, u) of [E,A,B] on R≥0 with Ex(0) =
Ex0, Ex(∞) = 0 and J (x, u,R≥0) − V+(Ex0) < ε2. On the other hand, by using
V+(Ex0) = x>0 E

>PEx0 and Corollary 4.6, we obtain

‖Kx+ Lu‖2L2(R≥0,Rq) = J (x, u,R≥0)− x>0 E>PEx0 = J (x, u,R≥0)− V+(Ex0) < ε2,

and the proof of “ii)⇒i)” is complete.
Now we prove the remaining statement: Assume that (P,K,L) ∈ Rn×n×Rq×n×

Rq×m is a stabilizing solution of the Lur’e equation (2.6) and [E,A,B] is behaviorally
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stabilizable. Assume further that x0 ∈ Vdiff
[E,A,B]. Then the value function fulfills

x0E
>PEx0 ≤ V+(Ex0) by Theorem 5.4. To prove that also x0E

>PEx0 ≥ V+(Ex0),
let ε > 0. Since (P,K,L) is a stabilizing solution, we know that (2.8) is satisfied. Then,
by [16, Thm. 6.6], there exists a solution (x, u) of [E,A,B] on R≥0 with Ex(0) = Ex0,
Ex(∞) = 0 and ‖Kx+ Lu‖2L2(R≥0,Rq) < ε. By using Corollary 4.6, we obtain that
this trajectory fulfills

J (x, u,R≥0) = x>0 E
>PEx0 + ‖Kx+ Lu‖2L2(R≥0,Rq) < x>0 E

>PEx0 + ε,

and thus x>0 E>PEx0 ≥ V+(Ex0).
Finally we show that a solution (x∗, u∗) of [E,A,B] on R≥0 with Ex(0) = Ex0 and

Ex(∞) = 0 is an optimal control, if and only if Kx∗ +Lu∗ = 0: If a solution (x∗, u∗)
of [E,A,B] on R≥0 with Ex(0) = Ex0 and Ex(∞) = 0 is an optimal control, then
V+(Ex0) = J (x∗, u∗R≥0). Then by using V+(Ex0) = x>0 E

>PEx0 and Corollary 4.6,
we obtain

x>0 E
>PEx0 = V+(Ex0) = J (x∗, u∗,R≥0) = x>0 E

>PEx0 + ‖Kx∗ + Lu∗‖2L2(R≥0,Rq) ,

and thus Kx∗ + Lu∗ = 0. On the other hand, by the same argumentation, we see
that x>0 E>PEx0 = V+(Ex0) = J (x∗, u∗,R≥0), if Kx∗ + Lu∗ = 0 is satisfied.

We have seen in Theorem 5.7 that a solution (x∗, u∗) of [E,A,B] on R≥0 with
Ex(0) = Ex0 and Ex(∞) = 0 is an optimal control, if and only if it fulfills the
differential-algebraic equation (2.10). As a consequence, regularity corresponds to the
unique solvability of the differential-algebraic equation (2.10) for all x0 ∈ Vdiff

[E,A,B].
This is characterized in the following theorem.

Theorem 5.8. Let [E,A,B] ∈ Σn,m and Q = Q> ∈ Rn×n, S ∈ Rn×m, R =
R> ∈ Rm×m be given.

a) If (OC+) is feasible and (P,K,L) ∈ Rn×n × Rq×n × Rq×m is a stabilizing
solution of the Lur’e equation (2.6), then the following two statements are
equivalent:
i) The problem (OC+) is regular.
ii) The conditions (2.11) and (2.12) are satisfied.

b) If (OC–) is feasible and (P,K,L) ∈ Rn×n×Rq×n×Rq×m is an anti-stabilizing
solution of the Lur’e equation (2.6), then the following two statements are
equivalent:
i) The problem (OC–) is regular.
ii) The conditions (2.11) and (2.12) are satisfied.

Proof. As before, it suffices to show statement a). Since Theorem 5.7 implies
that optimal controls are exactly those elements of the behavior which fulfill (2.10),
we know that i) is equivalent to

i’) For all x0 ∈ Vdiff
[E,A,B], the differential-algebraic equation (2.10) has a unique

solution.
The rest of the proof proceeds in several steps.
Step 1: We show that i’) implies

(5.13) kerR[s]

[
−sE +A B

K L

]
= {0}.
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Assuming the opposite, then [5, Cor. 5.2] implies that the solution set of

(5.14) d
dt

[
E 0
0 0

](
x
u

)
=
[
A B
K L

](
x
u

)
defines a non-autonomous system in the sense of [33, Def. 3.2.1]. Since, by [33,
Thm. 5.2.14], the solution set of (5.14) can be represented as a direct sum of an au-
tonomous and a behaviorally controllable part, the latter is nontrivial. Then we can
conclude from [33, Thm. 5.2.14] that there exists some nontrivial solution (x, u) of
(5.14) with (x, u)|R≤0

= 0 and (x, u)|[1,∞) = 0. This is a contradiction to i’).
Step 2: We show that i’) implies (2.12). Aiming for a contradiction, assume that
i’) is satisfied and that kerC

[−iωE+A B
K L

]
6= {0} for some ω ∈ R. Let ( xc0

uc0 ) ∈
Cn × Cm \ {(0, 0)} be an element of this nullspace. Then

(
xc(t)
uc(t)

)
= ( xc0

uc0 ) · eiωt

is a solution of the complex differential-algebraic equation (5.14). Since E,A,B,K
and L are real, we have that the component- and pointwise imaginary part(

x(t)
u(t)

)
:= Im

((
xc(t)
uc(t)

))
=
(

Re (xc0) sin(ωt) + Im (xc0) cos(ωt)
Re (uc0) sin(ωt) + Im (uc0) cos(ωt)

)
solves the real differential-algebraic equation (5.14). By (5.13) and [5, Cor. 5.2], this
is moreover the unique solution of (5.14) with Ex(0) = Ex0 for x0 := Im (xc0). The
limit Ex(∞) does not exist. However, the optimal control with Ex(0) = Ex0 and
Ex(∞) = 0 should satisfy (5.14). This is again a contradiction.
Step 3: Let V ∈ R(n+m)×k be a matrix with full column rank and imR V = Vsys

[E,A,B].
We show that (2.11) is equivalent to
(5.15)

imR

[
E 0
0 0

]
V +

[
A B
K L

]
V · kerR

([
E 0
0 0

]
V

)
= imR

[
E 0
0 0

]
V + imR

[
A B
K L

]
V.

By using imR V = Vsys
[E,A,B], we see that (2.11) is satisfied, if we can show that

V · kerR
([
E 0
0 0

]
V

)
= (kerRE × Rm) ∩ Vsys

[E,A,B].

To show “⊆”, assume that ( x0
u0 ) ∈ V · kerR ([E 0

0 0 ]V ). Then there exists some w0 ∈ Rk
with V w0 = ( x0

u0 ) and [E 0
0 0 ]V w0 = 0. This gives rise to(
x0
u0

)
= V w0 ∈ (kerRE × Rm) ∩ Vsys

[E,A,B].

For the inclusion “⊇”, assume that ( x0
u0 ) ∈ (kerRE×Rm)∩Vsys

[E,A,B]. Then, by ( x0
u0 ) ∈

Vsys
[E,A,B], there exists some w0 ∈ Rk with V w0 = ( x0

u0 ). By ( x0
u0 ) ∈ (kerRE × Rm), we

obtain
0 =

[
E 0
0 0

](
x0
u0

)
=
[
E 0
0 0

]
V w0 = 0,

and thus (
x0
u0

)
= V w0 ∈ V · kerR

([
E 0
0 0

]
V

)
.

Step 4: Let V ∈ R(n+m)×k be a matrix with full column rank and imR V = Vsys
[E,A,B].
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We show that w ∈ L2
loc(R,Rk) fulfills

(5.16) d
dt

[
E 0
0 0

]
V w =

[
A B
K L

]
V w,

if and only if ( xu ) := V w fulfills (5.14): If w fulfills (5.16), then (x, u) = V w clearly
satisfies (5.14). On the other hand, if (x, u) fulfills (5.14), then (x, u) is a solution of
[E,A,B], and thus

(
x(t)
u(t)

)
∈ Vsys

[E,A,B] = imR V for almost all t ∈ R. Then there exists

some w ∈ L2
loc(R,Rk) such that

(
x(t)
u(t)

)
= V w(t) for almost all t ∈ R. Plugging this

into (5.14), we obtain (5.16).
Step 5: We show that i’) implies (2.11): Assume that i’) holds and let V ∈ R(n+m)×k

be a matrix with full column rank and imR V = Vsys
[E,A,B]. We first show that for all

w0 ∈ Rk there exists a w ∈ L2
loc(R,Rk) such that (5.16) is fulfilled with

(5.17)
[
E 0
0 0

]
V w(0) =

[
E 0
0 0

]
V w0.

Assume that w0 ∈ Rk is given. Then, by Lemma 4.1, for ( x0
u0 ) := V w0 ∈ Vsys

[E,A,B] there
exists some infinitely often differentiable solution (x, u) of [E,A,B] with x(0) = x0
and u(0) = u0. As a consequence, x0 ∈ Vdiff

[E,A,B] and i’) implies that the differential-
algebraic equation (5.14) has a unique solution with Ex(0) = Ex0. By the result from
Step 4, we obtain that there exists some w ∈ L2

loc(R,Rk) such that (5.16) is fulfilled
with V w = ( xu ). We further have[

E 0
0 0

]
V w0 =

[
E 0
0 0

](
x0
u0

)
=
(
Ex0

0

)
=
(
Ex(0)

0

)
=
[
E 0
0 0

](
x(0)
u(0)

)
=
[
E 0
0 0

]
V w(0).

We have shown that the differential-algebraic equation (5.16) with initial condition
(5.17) has a solution for all w0 ∈ Rn. By using [5, Cor. 4.3], we obtain that (5.15) is
satisfied. Then, by the result from Step 3, (2.11) is fulfilled.
Step 6: We show that (2.12) implies that for all solutions (x, u) of (5.14) satisfy
Ex(∞) = 0: Equation (2.12) implies that rankR[s]

[−sE+A B
K L

]
= n+m. On the other

hand, since (P,K,L) is a solution of the Lur’e equation, we have (2.7) which implies
q = m. This fact together with (2.12) and since (P,K,L) is a stabilizing solution of
the Lur’e equation, implies that

kerC
[
−λE +A B

K L

]
= {0} ∀λ ∈ C \ C−.

Then we obtain from [33, Thm. 7.2.2] that all solutions (x, u) of (5.14) fulfill Ex(∞) =
0.
Step 7: We show that (2.11) implies that for all x0 ∈ Vdiff

[E,A,B] there exists a solution
(x, u) of (5.14) with Ex(0) = Ex0: Assume that (2.11) is satisfied and let x0 ∈
Vdiff

[E,A,B]. Then, by Lemma 4.1, there exists some ( x01
u01 ) ∈ Vsys

[E,A,B] with Ex0 =
Ex01. Let w0 ∈ Rk with ( x01

u01 ) = V w0. Since, by Step 3, (2.11) implies (5.15),
[5, Cor. 4.3] implies that there exists a solution w ∈ L2

loc(R,Rk) of the differential-
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algebraic equation (5.16) with initial condition (5.17). Then, by Step 4, we obtain
that ( xu ) := V w fulfills (5.14). Further, we have

Ex0 = Ex01 =
[
E 0

](x01
u01

)
=
[
E 0

]
V w0

=
[
E 0

]
V w(0) =

[
E 0

](x(0)
u(0)

)
= Ex(0).

Step 8: We deduce the overall statement: By the initial statement in this proof,
it suffices two prove the equivalence between i’) and (2.11), (2.12). We obtain from
Step 2 that i’) implies (2.12) and from Step 5 that i’) implies (2.11). This yields the
implication “i)⇒ii)”.
Now we show the converse. By Step 6, we obtain that, if (2.12) is satisfied, then all
solutions (x, u) of (5.14) fulfill Ex(∞) = 0. If (2.11) is fulfilled, then by Step 7, for
all x0 ∈ Vdiff

[E,A,B] there exists a solution (x, u) of (5.14) with Ex(0) = Ex0. To deduce
that (2.11), (2.12) imply i’), it suffices to justify that the prescription of the initial
condition Ex(0) = Ex0 yields a unique solution of (x, u) of (5.14). This is however
a consequence of [5, Cor. 5.2] and (5.13) proven in Step 1.

6. Notes and references. In this section we discuss the relation of our new re-
sults to work that was previously done. Our approach via storage and value functions
is motivated by Jan C. Willems’ article [39], where the optimal control problems
discussed here have been introduced for systems governed by ordinary differential
equations. Feasibility conditions in terms of the solvability of the KYP inequality, an
algebraic Riccati inequality, and the algebraic Riccati equation have been developed
under the additional assumption of controllability. In order to solve the optimal con-
trol problem (in the case where R is invertible, which is for instance the case if it is
regular) one employs the algebraic Riccati equation (ARE) [39, 28]

(6.1) A>X +XA−
(
XB + S

)
R−1(B>X + S>

)
+Q = 0, X = X>.

In the literature there exist various attempts to generalize the KYP inequality and
the ARE to differential-algebraic systems. Many works focus on the case that the
L2-norm of an output y = Cx + Du is minimized and therefore, there is a focus on
the special case

(6.2)
[
Q S
S> R

]
=
[
C>

D>

] [
C D

]
≥ 0.

In this case, the P = 0 solves KYP inequality. In [13], the optimal control problem
with the additional assumption (6.2) is approached by considering a generalized KYP
inequality

(6.3)
[
A>PE + E>PA+Q E>PB + S

B>PE + S> R

]
≥ 0, P = P>.

In [13, Thm. 4.7] it is shown that if the system [E,A,B] is impulse controllable and
behaviorally stabilizable, then there exists a maximal solution of (6.3) such that we
obtain

V+(Ex0) = x>0 E
>PEx0 ≥ 0 ∀x0 ∈ Rn.
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However, in the case that (6.2) is not satisfied, it is possible that the KYP inequality
(6.3) has no solution even if the linear-quadratic optimal control problem is feasible.
The latter has been observed in [12] in the context of passive systems. This is due to
the fact that the inequality (6.3) is not restricted to the system space. On the other
hand, existence and uniqueness results for optimal controls with positive semi-definite
cost functional are presented in [13]. These conditions are based on rank conditions
for the pencil

[−sE+A B
C D

]
.

Another approach which was originally designed for behavior systems is presented
in [8, 7]. There, also specializations to differential-algebraic systems are given, however
under the additional assumption that [E,A,B] is completely controllable (a much
stronger condition than behavioral controllability, see [5]). These considerations are
based on the linear matrix inequality

(6.4)
[
A>H +H>A+Q A>J +H>B + S
B>H + J>A+ S> B>J + J>B +R

]
≥ 0, E>H = H>E, E>J = 0.

which has to be solved for a pair (H,J) ∈ Rn×n×Rn×m. It is shown that for impulse
controllable systems, P = H is a solution of (2.5), if and only if there exists a matrix
J such that (H,J) solves (6.4), see also [37].

Other approaches are based on generalizations of the ARE to differential-algebraic
equations. One possibility is presented in [25, 26], where

(6.5) A>X +X>A− (X>B + S)R−1(B>X + S>) +Q = 0, E>X = X>E

is considered under the assumptions (6.2) and R > 0. It has been proven that

V+(Ex0) = x>0 E
>XEx0 ≥ 0 ∀x0 ∈ Rn,

where X is a stabilizing solution of (6.5), meaning that sE−(A−BR−1(B>X+S>))
is of index at most one and all its eigenvalues are contained in C−. By [9], a necessary
condition for the existence of such a solutionX is impulse controllability. On the other
hand, a sufficient condition for the existence of a solution under the above mentioned
assumptions is

rankC

−iωE +A B
Q S
S> R

 = n+m ∀ω ∈ R,

which has been shown in [17]. In [37] it is shown that if X is a stabilizing solution
of (6.5), then (X,K,L) with K = R−1/2(B>X + S>) and L = R1/2 is a stabilizing
solution of the Lur’e equation (2.6).

A further solvability analysis of this type of equation is given in [19, 18] where
the generalized ARE

A>X +X>A+Q+X>RX = 0, E>X = X>E

is considered for E, A, Q, R ∈ Rn×n with Q = Q> and R = R>. A solution X ∈
Rn×n is called stabilizing, if the pencil −sE +A+RX has index at most one and all
its eigenvalues are in C−, which requires impulse controllability of [E,A,R] ∈ Σn,n.
It is proven in [19] that solvability of the generalized ARE requires the solvability
of a so-called quadratic matrix equation. Moreover, in [18] stabilizing solutions are
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constructed using deflating subspaces of Hamiltonian matrix pencils.
In [30], the optimal control problem (OC+) for systems of index at most one

with R ≥ 0, Q ≥ 0, and S = 0 is studied. In the case R > 0, the value function can be
again expressed by the stabilizing solution X (i.,e., the pencil sE − A + BR−1B>X
has index at most one and all its eigenvalues are in C−) of the generalized ARE

(6.6) A>XE + E>XA− E>XBR−1B>XE +Q = 0, X = X>.

Again, in [37] it is discussed that if X ∈ Rn×n is a stabilizing solution of (6.6), then
(X,K,L) with K = R−1/2(B>X + S>) and L = R1/2 is a stabilizing solution of the
Lur’e equation (2.6).

One of the disadvantages of the generalization of the ARE is the need for invert-
ibility of R, which is neither necessary for feasibility nor for regularity of the optimal
control problem, see Sec. 3. If (OC+) is regular, then it is possible to transform the
system [E,A,B] ∈ Σn,m by certain feedback transformations to so-called SVD coor-
dinates and then extract a regular optimal control problem governed by an ordinary
differential equation (see [4] and [32]). Such transformations however require impulse
controllability of the system.

An alternative approach to optimal control of differential-algebraic equations with
scalar input has recently been published [15]. The key ingredient of this approach is
an a priori transformation to quasi-Weierstraß form (3.4) leading to an equivalent
optimal control problem for ordinary differential equations.

Boundary value problems for the solution of linear-quadratic optimal control prob-
lems and the associated even matrix pencils have also been studied intensively in the
literature. In [32], the problem of constructing solutions is mainly considered from the
numerical point of view. The spectral structure of these pencils for the case E = In
and their relation to the Lur’e equation are considered in [34], whereas [38, 37] extend
this analysis to the case of differential-algebraic systems. Moreover, in [38] also feasi-
bility of the optimal control problems as well as existence and uniqueness of optimal
controls have been studied for impulse controllable systems. For the latter, equivalent
conditions have been given in terms of the spectrum of the matrix pencil

[−sE+A B
K L

]
.

To complete the literature review we briefly discuss some generalizations into the
direction of time-varying and nonlinear differential-algebraic equations. In [27], linear-
quadratic optimal control problems for time-varying differential-algebraic equations
and time-varying weights Q, S, and R in the cost functional are treated. Then a time-
varying boundary value problem is constructed. Necessary and sufficient conditions
for feasibility of the optimal control problems are derived via an inherent Hamiltonian
ODE system which is obtained by applying certain projectors to the boundary value
problem. We also refer to [2, 3] where differential-algebraic equations of index two
are considered.

A different approach for time-varying optimal control problems has been devel-
oped in [23, 21, 22]. In [22] two optimality boundary value problems are consid-
ered, one constructed from the original system and another one based on a so-called
strangeness-free formulation of the differential-algebraic system (which corresponds
to impulse controllability in our context). Then the solvability conditions and so-
lutions of both boundary value problems are studied and they are related to each
other. Moreover, in the recent works [24, 31], structured global condensed forms for
the optimality system are derived which allow to analyze its properties.

Control problems subject to nonlinear differential-algebraic equations are mainly
treated in the works by Kunkel and Mehrmann, see for instance [20, 21]. The

24



optimal control problem is approached in [21] by using local linearizations of the
nonlinear equation which usually result in time-varying linear differential-algebraic
equations and allow the application of the previously mentioned techniques.
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