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ABSTRACT. Given a positive definite matrix A € C"*" and a Hermitian
matrix D € C™*™, we characterize under which conditions there exists
a strictly contractive matrix K € C™*™ such that the non-Hermitian
block-matrix

K*A D
has a positive definite Schur complement with respect to its submatrix A.
Additionally, we show that K can be chosen such that diagonalizability
of the block-matrix is guaranteed and we compute its spectrum. More-
over, we show a connection to the recently developed frame theory for
Krein spaces.

|50 o]

1. INTRODUCTION

Given a matrix S € C(tm)x(n+m) agqume it is partitioned as

A B
s=|ep)

where A € C"*", B € C*™ (C € C™*"™ and D € C"™*™. If A is invertible,
then the Schur complement of A in S is defined by

Siy=D—-CA'B.

This terminology is due to Haynsworth [11, 12], but the use of such a con-
struction goes back to Sylvester [15] and Schur [14]. The Schur complement
arises, for instance, in the following factorization of the block matrix S:

11 A Bl [ L, o0 A 0 I, A'B
(1.1) C D| | cAt oI, 0 D—-CA'B 0 I, ’

which is due to Aitken [1]; note that I; denotes the identity matrix of size
k x k. It is a common argument in the proof of some well-know results in
matrix analysis such as the Schur determinant formula [3]:

(1.2) det(S) = det(A) - det(S,4),
the Guttman rank additivity formula [10], and the Haynsworth inertia addi-
tivity formula [13].
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The Schur complement has been generalized in numerous ways, for exam-
ple to the case in which A is non-invertible, where generalized inverses can
be used to define it. It is a key tool not only in matrix analysis but also in
applied fields such as numerical analysis and statistics. For further details
see [16].

If S is a Hermitian matrix, then C' = B* and the Schur complement of A
in Sis Sy =D — B*A7'B. In this particular case (1.1) reads

A B] [I A'B]'[A 0 I, A7'B
ER IR R e |

which implies the following well-known criteria to determine the positive
definiteness of S: the block-matrix S is positive definite if and only if A
and 5,4 are both positive definite. This equivalence is not true for positive
semidefinite matrices, but Albert [2] showed that S is positive semidefinite
if and only if A and 5,4 are both positive semidefinite and R(B) C R(A),
where R(X) stands for the range of a matrix X. Observe that the range
inclusion R(B) C R(A) is equivalent to the existence of a matrix X € C"*™
which factorizes B as B = AX.

In the present paper, given a positive definite A € C"*" with eigenvalues
0 < Ap <--- < ) and a Hermitian D € C™*™ with eigenvalues p1 < o <

<y L0 < pipg1 <000 < g, we investigate under which conditions
there exists a strictly contractive matrix K € C™*™ such that

(1.3) S = [ K‘f}A _‘gK}

has a positive definite Schur complement S,4 with respect to the minor A,
that is, under which conditions there exists a strictly contractive matrix
K € C™™ guch that

S JA = D+ K*AK
is positive definite.

Interest in such non-Hermitian block-matrices arises, for instance, in the
recently developed frame theory in Krein spaces, see [6, 8]. There, block-
matrices as in (1.3) with a positive definite A, a Hermitian D and a positive
definite 5,4 correspond to so-called J-frame operators, see Section 5 for
more details.

In Theorem 3.3 below we show that this special structured matriz com-
pletion problem has a solution if and only if

r<n and MN+p; >0 foralli=1,...,r.

We stress that S is not diagonalizable in general, not even if S/, is posi-
tive definite. Under the above conditions, we construct a particular strictly

contractive matrix K, which depends on some parameters €1,...,&,. In
Theorem 4.2 we compute the eigenvalues of the corresponding block ma-
trix S in terms of the eigenvalues of A and D and the parameters €1, ..., &,.

A root locus analysis of the latter reveals that if each ¢; is small enough,
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then S is diagonalizable and has only (positive) real eigenvalues, although S
is non-Hermitian.

2. PRELIMINARIES

Given Hermitian matrices A, B € C™*" several relations between the
eigenvalues of A, B and A + B can be obtained. The following result was
first proved by Weyl, see e.g. [4].

Theorem 2.1. Let A, B € C"*"™ be Hermitian matrices. Then,
XN(A+B) < XN(A) + X, (B) fori<j;

J
! ' ' o
Ni(A+B) =2 N (A4) + X (B) fori>j;

J—i+n
where )\j(C’) denotes the j-th eigenvalue of C' (counted with multiplicities)
if they are arranged in nonincreasing order.

Among the numerous consequences of Weyl’s inequalities, it is worthwhile
to mention that if A, B € C™*" are Hermitian matrices such that A < B
according to Lowner’s order, then

' ' .
(2.1) A(A) < Xi(B) forj=1,...,n.

Another well-known result says that if A € C"™*" and B € C"*™, then
the non-zero eigenvalues of AB and BA are the same (and they have the
same multiplicities). Indeed, it is easy to see that

I, —A AB 0 I,, A | [0 0

0 I, B 0 0 I,| | B BA|’
and hence the matrices [ABB 8] and [g BOA] are similar. Therefore, they
have the same characteristic polynomial
(2.2) p(A) = A" det(A,, — AB) = A" det(\I,, — BA),

and the assertion follows immediately.

We use the above result to prove the following proposition. For K €
we denote by ||K|| the spectral norm of K, i.e., the operator norm induced
by the Euclidean vector norm.

C’nXm

Proposition 2.2. Let A € C™"*" be positive definite and K € C"*"™, Then,
Lo 244 . .
N(KTAK) < [|[K|"A;(A4)  for j=1,...,min{n,m}.
Proof. Since A is positive definite it has a well-defined square root A'/2,
Then, for all j =1,...,min{n,m},

M(ETAK) = N (K AV AV R) 2\ AV2E K AV2) < | KIPAY(A),

where the inequality follows from (2.1) because AYV2KK*AY? < ||K|?A.
O
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3. POSITIVE DEFINITENESS OF THE SCHUR COMPLEMENT

In this section we derive a necessary and sufficient condition for the ex-
istence of a strictly contractive matrix K such that the block matrix S
in (1.3) has a positive definite Schur complement. Throughout this section
we consider the following hypotheses.

Assumption 3.1. Assume that A € C™"*" is positive definite and D €
C™*™ is a Hermitian matrix. Let g1 < po < ... < ptp <0 < pypy1 < ... <
tm denote the eigenvalues of D (counted with multiplicities) arranged in
nondecreasing order, and let A\; > Ay > ... > A, > 0 denote the eigenvalues
of A (counted with multiplicities) arranged in nonincreasing order.

First, we record the following important observation.

Lemma 3.2. Let Assumption 3.1 hold and assume that r > n. Then, there
is no K € C"™ such that D + K*AK is positive definite.

Proof. Let K € C™™ and &; := ker (K) be the nullspace of K. Consider
the subspace Sz of C" spanned by all eigenvectors of D corresponding to
non-positive eigenvalues. By Assumption 3.1 we have that dim Sy = r and
dimS; +dimS; > (m —n) +r=m+ (r —n) > m.
Thus, S§1 NSy # {0} and for any non-trivial vector v € S§; N Sy we have
(D+ K*AK)v,v) = (Dv,v) <0.
Therefore, D + K*AK cannot be positive definite. O

In the following result we focus on a special class of matrices K. Recall
that K € C™*™ is called strictly contractive, if its singular values are all
smaller than 1. Equivalently, K is strictly contractive if and only if || K| < 1.

Theorem 3.3. Let Assumption 3.1 hold. Then, there exists a strictly con-
tractive matrizc K € C"™ such that D + K*AK s positive definite if and
only if

(3.1) r<n and X+pu; >0 foralli=1,...,r.

Proof. Assume that there exists a strictly contractive matrix K € C™*™
such that D + K*AK > 0. By Lemma 3.2, it is necessary that » < n. On
the other hand, by Theorem 2.1,

0 < Mo (D + K*AK) < XH(D) + M, (K*AK),

fori=1,...,m. In particular, for i = m —r+1,...,m we can combine the
above inequalities with Proposition 2.2 and obtain

0 < XH(D) + 1K PN i1 (A) < ptmmicet + A,
Equivalently, we have that u; +XA; >0 for j =1,...,r.
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Conversely, assume that r < n and A\; + p; > 0 for ¢ = 1,...,r. Then,
for each ¢ = 1,...,7r, let 0 < ¢; < 1 be such that g;A; + p; > 0 and define
E € C™*™ by

E = dlag (\/aa cee \/57) Or,m—r

’
O’I’L—T’,T On—TJTL—T

where 0, , stands for the null matrix in CP*9. Further, let U € C™*" and
V € C™*™ be unitary matrices such that A = UD\U* and D = VD,V*,
where
Dy =diag(\i,...,\,) and D, =diag(p1,..., tm)-
Then, for
(3.2) K :=UEV™,
it is straightforward to observe that || K| < 1 and
D+ K*AK =V (D, + E*U*AUE)V* =V (D, + E*D\E)V*

_ diag (51)‘1 + 41,60 A + ,U/r) Or,m—r s

=V . \%
Om—r,r diag (ptr41,-- -5 fm)

is a positive definite matrix. O

Remark 3.4. Let Assumption 3.1 hold. Observe that if u; = 0 for some
i =1,...,r, then the condition \; + u; > 0 is automatically fulfilled. Hence,
if we assume that dim ker D = p, then D has only r — p negative eigenvalues
and, in this case, there exists a strictly contractive matrix K € C™**™ such
that D + K*AK is positive definite if and only if

r<n and A +4+pu; >0 foralli=1,...,r—p.

4. SPECTRUM OF THE BLOCK MATRIX

Throughout this section, we consider the contraction K constructed in the
proof of Theorem 3.3 and investigate the location of the eigenvalues of the
block-matrix S in (1.3) for this particular K. The locations depend on the
parameters €1, ..., &, and hence their study resembles a root locus analysis.
Before we state the corresponding result we start with a preliminary lemma.

Lemma 4.1. Let Assumption 3.1 and (3.1) hold and set

Ai — i)
(4.1) a; = (4;), i=1,...,r

Then we have that
—Hi

7

0<

<q; <1, foralli=1,...,r
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Proof. Giveni = 1,...,r, by (3.1) we find that (\; + ;)% > 0, which implies
(\i — pi)? > —4pi\; and hence

a; > —':L—z > 0.
Furthermore,
i = i = —(Ni + i) + 270 <2,
which implies that «; < 1. Ul

We are now in the position to state the main result of this section.

Theorem 4.2. Let Assumption 3.1 and (3.1) hold. Fori=1,...,r choose
0 < g; <1 such that e;A\; + p; > 0.

If K € C™™ s the strictly contractive matriz defined in (3.2) then the
spectrum of the block matriz S € CHm*(0+m) given in (1.3) consists of

the real numbers Api1,..., An, trgls .- fm and
s ‘
(4.2) nii:%i)\“/ai—si, i=1,...,r

where «; is given by (4.1). Moreover, the following conditions hold:

a) if 0 < j\‘j’ < g < ay, then nf >n7 > 0;

b) if a; < e; <1, then n; :ﬁe C\R;
c) if e = «y, then 772-+ =1 = %()\z + p;) and there exists a Jordan
chain of length 2 corresponding to this eigenvalue.

Additionally, if ; # «; for alli=1,...,r, then S is diagonalizable.

Proof. First note that by Lemma 4.1 the ranges for ¢; in the cases a) and b)
are non-empty. Using the notation from the proof of Theorem 3.3 we obtain

o_[ A —AK]_[ UDWU* -UDEV*] _
“| KA D |~ |VE'DW* VD,V* |~

U O D, -B U 0 *_ D, -B .
_[o VHB* DM][O V} —W[B* DM]W,
where B € C™*™ is given by
B = D)\E = |: dlag (Al\/a, T )\T\/a) OT‘,m—r :| 9

On—'r,r On—r,m—fr

and W := [% 8] € Cltm)x(ntm) js ynitary. Then, if {e1,...,en m} de-

notes the standard basis of C"™, it is easy to see that
13 SWe; = i We; fori=r+1,...,n,
(4.3) and SWej=pj_nWe; forj=n+r+1,....,n+m,

which yields that Aq41,..., Ay and 41, ..., iy are eigenvalues of S.
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Now, define the following r x r diagonal matrices:
Fy :=diag (A1,...,A\p), F,, = diag (p1, ..., 1),
G :=diag (MvE1, - -, Ar/Er),

and observe that the remaining 2r eigenvalues of S coincide with the spec-
trum of the submatrix S of W*SW given by

s | P -G
]2 ]

In order to calculate the eigenvalues of S, we make use of the Schur deter-
minant formula (1.2), by which the characteristic polynomial of S is given
by

q(n) = det(S — nl,) = det(F,, — nl,) det <(S - 77[2r)/(FH—nIT)) .

Since the matrix (S — nlar))(py—y1,) = (Fx — nly) + G(F, — nI,)7'G is
diagonal and has the form

A1 — + a 0 ]
LT El—, 2
0 A2 — 1+ &2 MQEW 7
A7
i 0 0 )‘T_n+€Tur—77_
we have that
T T
£iN?
am) =] —m ][ (Ai—n+ ! >
i=1 i=1 i =
T
= H ((Mz =X —n) + 51)‘12)
=1
Thus, n € C is a root of ¢(n) if and only if
1? = (N pa)n + Nipi + ehi) = 0
for some i € {1,...,r}. This leads to the following eigenvalues of S:
N+ 1
(4.4) = 2 O - ) — 420

for i = 1,...,r. Hence, (4.2) follows and statement b) holds. For state-

ment a) we additionally observe that if ¢; > _)\’f L then

;> 5N+ ) = 3V (N — pi)? + g = 0.
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To prove c), assume that ¢; = «; for some i € {1,...,r}. Since n;r =n =
%(Ai + ;) and /g; = )‘g\f‘l, it is straightforward to compute that

(S — 5N+ Mz‘)lzr) <(1 * AfQ“) fi) = (ﬁ) ;

)

(S — 3N+ Mi)f2r) <§z> =0,

using the standard basis { f1, ..., fr} of C". The vectors above form a Jordan
chain of length 2 of S corresponding to the eigenvalue %()\l + w;). Hence,
a Jordan chain of S can be constructed corresponding to the eigenvalue
5(A; + i) can also be constructed.

Finally, assume that ¢; # «; for all 4 = 1,...,r. In this case, the
space C""™ has a basis consisting of eigenvectors of S. Indeed, this fol-
lows from (4.3) together with

(i) (o) =0 (5 (L ) -0

pi—n; 7t Hi=m;

fori=1,...,r. O

We emphasize that if for all ¢ = 1, ..., r the parameter ¢; in Theorem 4.2 is
chosen such that a) holds, then the block matrix S in (1.3) is diagonalizable
and has only positive eigenvalues. This is possible because of Lemma 4.1.

Example 4.3. We illustrate Theorem 4.2 with a simple example. Let n =
m =1, D = [0] and A = [a] with @ > 0. Then r = 1 and choosing K as
in (3.2) with 0 < e < 1 gives K = [\/c]. In this case o = 1.
By Theorem 4.2, for ¢ = % there is a Jordan chain of length 2 correspond-

ing to the only eigenvalue %, and indeed we find that

0

form a Jordan chain of S, hence S is not diagonalizable.
On the other hand, for € # % the block matrix S has eigenvalues n™ =

%—Fa\/i —candn” =3 —a\/% — e. They are positive if € < %, and they

are non-real if i < & < 1. In these last two cases S is diagonalizable.

5. APPLICATION TO J-FRAME OPERATORS

In this section, we exploit Theorems 3.3 and 4.2 to investigate whether a
block matrix S as in (1.3) represents a so-called J-frame operator and when
it is similar to a Hermitian matrix. In the following we briefly recall the
concept of J-frame operators, which arose in [6, 8] in the context of frame
theory in Krein spaces.
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In a finite-dimensional setting, every indefinite inner product space is a
(finite-dimensional) Krein space, see [9]. A map [,-] : CF x C¥ — C is
called an indefinite inner product in CF, if it is a non-degenerate Hermitian
sesquilinear form. The indefinite inner product allows a classification of
vectors: x € CF is called positive if [z,z] > 0, negative if [x,2] < 0 and
neutral if [z, z] = 0. Also, a subspace £ of C* is positive if every z € £\ {0}
is a positive vector. Negative and neutral subspaces are defined analogously.
A positive (negative) subspace of maximal dimension will be called maximal
positive (maximal negative, respectively).

It is well-known that there exists a Gramian (or Gram matrix) G' € CF**,

which is invertible and represents [-, -] in terms of the usual inner product in
CF,ie., [z,y] = (Gz,y) for all x,y € C¥. The positive (resp. negative) index
of inertia of [-, -] is the number of positive (resp. negative) eigenvalues of the

Gramian G, and it equals the dimension of any maximal positive (resp.
negative) subspace of C¥. It is clear that the sum of the inertia indices
equals the dimension of the space.

A finite family of vectors F = {f;}7_; in C* is a frame for CF, if

span({f;}{_,) = C,

see e.g. [5] and the references therein. Roughly speaking, a J-frame is a
frame, which is compatible with the indefinite inner product [, ].

Definition 5.1. Let (C*,[-,]) be an indefinite inner product space. Then,
a frame F = {f;}7_| in C* is called a J-frame for CF, if
My :=span{ feF | [f,f]=0}
and M_:=span{ feF | [f,f]<0 }

are a maximal positive and a maximal negative subspace of C¥, respectively.

If [,-] is an indefinite inner product with positive and negative index
of inertia n and m, respectively, then the maximality of M, and M_ is
equivalent to

dimMy =n and dimM_ =m.

Note that if F is a J-frame for C¥, then there are no (non-trivial) f € F
with [f, f] = 0.

Given a J-frame F = {f;}{_, for CF, its associated J-frame operator
S : CF — C* is defined by

q
Sf=>ailf. fil £

i=1

where o; = sgn [fi, fi] is the signature of the vector f;. S is an invertible
symmetric operator with respect to [-, -], i.e.,

[Sf, 9] =[f.Sg] forall f,geCF
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Its relevance follows from the indefinite sampling-reconstruction formula:
given an arbitrary f e CF,

q q
F=Y o[£, fi=D oilf. 1S
i=1 =1

In the following, we aim to apply the results from Sections 3 and 4, hence
we restrict ourselves to the following inner product on C*F = C"+™,

n m
[(51717 e >$n+m), (3/17 B yner)] = Ziﬂzy - Z$n+jyn+j~
i=1 j=1

In [6, Theorem 3.1] a criterion was provided to determine if an (invertible)
symmetric operator is a J-frame operator. In our setting it says that an
invertible operator S in (CF,[-,-]), which is symmetric with respect to [+, -],
is a J-frame operator if and only if there exists a basis of C* such that S
can be represented as a block-matrix
A  —AK

6.) s=| a5
where A € C™*"™ is positive definite, K € C"*™ is strictly contractive, and
D € C™*™ g a Hermitian matrix such that D + K*AK is also positive
definite. Any block-matrix § € Cr+m)x(m+m) of the form (5.1), which
satisfies these conditions will be called J-frame matrix.

Therefore, Theorem 3.3 can be restated in the following way.

Theorem 5.2. Let A € C™"" and D € C™*™ be matrices satisfying As-
sumption 3.1. Then there exists K € C"*™ with ||K| < 1 such that S as
in (5.1) is a J-frame matriz if and only if

r<n and XN+p; >0 fori=1,...,7.

We mention that the study of the spectral properties of a J-frame operator
is quite recent, see [6, 7]. In the case of J-frame matrices, for given A and
D, we always find conditions such that a strictly contractive K exists which
turns S into a matrix similar to a Hermitian one. The following result is a
direct consequence of Theorem 4.2 and Lemma 4.1.

Theorem 5.3. Let Assumption 3.1 and (3.1) hold. Then, there exists a
strictly contractive matriz K such that the matriz S given in (5.1) is a
J-frame matriz which is similar to a Hermitian matriz. In this case, all
eigenvalues of S are positive and there exists a basis of C*™™ consisting of
eigenvectors of S.
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