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Abstract. Given a positive definite matrix A ∈ Cn×n and a Hermitian
matrix D ∈ Cm×m, we characterize under which conditions there exists
a strictly contractive matrix K ∈ Cn×m such that the non-Hermitian
block-matrix [

A −AK
K∗A D

]
has a positive definite Schur complement with respect to its submatrix A.
Additionally, we show that K can be chosen such that diagonalizability
of the block-matrix is guaranteed and we compute its spectrum. More-
over, we show a connection to the recently developed frame theory for
Krein spaces.

1. Introduction

Given a matrix S ∈ C(n+m)×(n+m) assume it is partitioned as

S =

[
A B
C D

]
,

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n and D ∈ Cm×m. If A is invertible,
then the Schur complement of A in S is defined by

S/A := D − CA−1B.

This terminology is due to Haynsworth [11, 12], but the use of such a con-
struction goes back to Sylvester [15] and Schur [14]. The Schur complement
arises, for instance, in the following factorization of the block matrix S:

(1.1)

[
A B
C D

]
=

[
In 0

CA−1 Im

] [
A 0
0 D − CA−1B

] [
In A−1B
0 Im

]
,

which is due to Aitken [1]; note that Ik denotes the identity matrix of size
k × k. It is a common argument in the proof of some well-know results in
matrix analysis such as the Schur determinant formula [3]:

(1.2) det(S) = det(A) · det(S/A),

the Guttman rank additivity formula [10], and the Haynsworth inertia addi-
tivity formula [13].
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The Schur complement has been generalized in numerous ways, for exam-
ple to the case in which A is non-invertible, where generalized inverses can
be used to define it. It is a key tool not only in matrix analysis but also in
applied fields such as numerical analysis and statistics. For further details
see [16].

If S is a Hermitian matrix, then C = B∗ and the Schur complement of A
in S is S/A = D −B∗A−1B. In this particular case (1.1) reads[

A B
B∗ D

]
=

[
In A−1B
0 Im

]∗ [
A 0
0 D −B∗A−1B

] [
In A−1B
0 Im

]
,

which implies the following well-known criteria to determine the positive
definiteness of S: the block-matrix S is positive definite if and only if A
and S/A are both positive definite. This equivalence is not true for positive
semidefinite matrices, but Albert [2] showed that S is positive semidefinite
if and only if A and S/A are both positive semidefinite and R(B) ⊆ R(A),
where R(X) stands for the range of a matrix X. Observe that the range
inclusion R(B) ⊆ R(A) is equivalent to the existence of a matrix X ∈ Cn×m
which factorizes B as B = AX.

In the present paper, given a positive definite A ∈ Cn×n with eigenvalues
0 < λn ≤ · · · ≤ λ1 and a Hermitian D ∈ Cm×m with eigenvalues µ1 ≤ µ2 ≤
. . . ≤ µr ≤ 0 < µr+1 ≤ . . . ≤ µm, we investigate under which conditions
there exists a strictly contractive matrix K ∈ Cn×m such that

(1.3) S =

[
A −AK

K∗A D

]
has a positive definite Schur complement S/A with respect to the minor A,
that is, under which conditions there exists a strictly contractive matrix
K ∈ Cn×m such that

S/A = D +K∗AK

is positive definite.
Interest in such non-Hermitian block-matrices arises, for instance, in the

recently developed frame theory in Krein spaces, see [6, 8]. There, block-
matrices as in (1.3) with a positive definite A, a Hermitian D and a positive
definite S/A correspond to so-called J-frame operators, see Section 5 for
more details.

In Theorem 3.3 below we show that this special structured matrix com-
pletion problem has a solution if and only if

r ≤ n and λi + µi > 0 for all i = 1, . . . , r.

We stress that S is not diagonalizable in general, not even if S/A is posi-
tive definite. Under the above conditions, we construct a particular strictly
contractive matrix K, which depends on some parameters ε1, . . . , εr. In
Theorem 4.2 we compute the eigenvalues of the corresponding block ma-
trix S in terms of the eigenvalues of A and D and the parameters ε1, . . . , εr.
A root locus analysis of the latter reveals that if each εi is small enough,
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then S is diagonalizable and has only (positive) real eigenvalues, although S
is non-Hermitian.

2. Preliminaries

Given Hermitian matrices A,B ∈ Cn×n, several relations between the
eigenvalues of A, B and A + B can be obtained. The following result was
first proved by Weyl, see e.g. [4].

Theorem 2.1. Let A,B ∈ Cn×n be Hermitian matrices. Then,

λ↓j (A+B) ≤ λ↓i (A) + λ↓j−i+1(B) for i ≤ j;

λ↓j (A+B) ≥ λ↓i (A) + λ↓j−i+n(B) for i ≥ j;

where λ↓j (C) denotes the j-th eigenvalue of C (counted with multiplicities)
if they are arranged in nonincreasing order.

Among the numerous consequences of Weyl’s inequalities, it is worthwhile
to mention that if A,B ∈ Cn×n are Hermitian matrices such that A ≤ B
according to Löwner’s order, then

(2.1) λ↓j (A) ≤ λ↓j (B) for j = 1, . . . , n.

Another well-known result says that if A ∈ Cm×n and B ∈ Cn×m, then
the non-zero eigenvalues of AB and BA are the same (and they have the
same multiplicities). Indeed, it is easy to see that[

Im −A
0 In

] [
AB 0
B 0

] [
Im A
0 In

]
=

[
0 0
B BA

]
,

and hence the matrices
[
AB 0
B 0

]
and

[
0 0
B BA

]
are similar. Therefore, they

have the same characteristic polynomial

(2.2) p(λ) = λn det(λIm −AB) = λm det(λIn −BA),

and the assertion follows immediately.
We use the above result to prove the following proposition. For K ∈ Cn×m

we denote by ‖K‖ the spectral norm of K, i.e., the operator norm induced
by the Euclidean vector norm.

Proposition 2.2. Let A ∈ Cn×n be positive definite and K ∈ Cn×m. Then,

λ↓j (K
∗AK) ≤ ‖K‖2λ↓j (A) for j = 1, . . . ,min{n,m}.

Proof. Since A is positive definite it has a well-defined square root A1/2.
Then, for all j = 1, . . . ,min{n,m},

λ↓j (K
∗AK) = λ↓j (K

∗A1/2A1/2K)
(2.2)
= λ↓j (A

1/2KK∗A1/2) ≤ ‖K‖2λ↓j (A),

where the inequality follows from (2.1) because A1/2KK∗A1/2 ≤ ‖K‖2A.
�
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3. Positive definiteness of the Schur complement

In this section we derive a necessary and sufficient condition for the ex-
istence of a strictly contractive matrix K such that the block matrix S
in (1.3) has a positive definite Schur complement. Throughout this section
we consider the following hypotheses.

Assumption 3.1. Assume that A ∈ Cn×n is positive definite and D ∈
Cm×m is a Hermitian matrix. Let µ1 ≤ µ2 ≤ . . . ≤ µr ≤ 0 < µr+1 ≤ . . . ≤
µm denote the eigenvalues of D (counted with multiplicities) arranged in
nondecreasing order, and let λ1 ≥ λ2 ≥ . . . ≥ λn > 0 denote the eigenvalues
of A (counted with multiplicities) arranged in nonincreasing order.

First, we record the following important observation.

Lemma 3.2. Let Assumption 3.1 hold and assume that r > n. Then, there
is no K ∈ Cn×m such that D +K∗AK is positive definite.

Proof. Let K ∈ Cn×m and S1 := ker (K) be the nullspace of K. Consider
the subspace S2 of Cm spanned by all eigenvectors of D corresponding to
non-positive eigenvalues. By Assumption 3.1 we have that dimS2 = r and

dimS1 + dimS2 ≥ (m− n) + r = m+ (r − n) > m.

Thus, S1 ∩ S2 6= {0} and for any non-trivial vector v ∈ S1 ∩ S2 we have

〈(D +K∗AK)v, v〉 = 〈Dv, v〉 ≤ 0.

Therefore, D +K∗AK cannot be positive definite. �

In the following result we focus on a special class of matrices K. Recall
that K ∈ Cn×m is called strictly contractive, if its singular values are all
smaller than 1. Equivalently, K is strictly contractive if and only if ‖K‖ < 1.

Theorem 3.3. Let Assumption 3.1 hold. Then, there exists a strictly con-
tractive matrix K ∈ Cn×m such that D + K∗AK is positive definite if and
only if

(3.1) r ≤ n and λi + µi > 0 for all i = 1, . . . , r.

Proof. Assume that there exists a strictly contractive matrix K ∈ Cn×m
such that D + K∗AK > 0. By Lemma 3.2, it is necessary that r ≤ n. On
the other hand, by Theorem 2.1,

0 < λ↓m(D +K∗AK) ≤ λ↓i (D) + λ↓m−i+1(K∗AK),

for i = 1, . . . ,m. In particular, for i = m− r+ 1, . . . ,m we can combine the
above inequalities with Proposition 2.2 and obtain

0 < λ↓i (D) + ‖K‖2λ↓m−i+1(A) < µm−i+1 + λm−i+1.

Equivalently, we have that µj + λj > 0 for j = 1, . . . , r.
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Conversely, assume that r ≤ n and λi + µi > 0 for i = 1, . . . , r. Then,
for each i = 1, . . . , r, let 0 < εi < 1 be such that εiλi + µi > 0 and define
E ∈ Cn×m by

E =

[
diag (

√
ε1, . . . ,

√
εr) 0r,m−r

0n−r,r 0n−r,m−r

]
,

where 0p,q stands for the null matrix in Cp×q. Further, let U ∈ Cn×n and
V ∈ Cm×m be unitary matrices such that A = UDλU

∗ and D = V DµV
∗,

where

Dλ = diag (λ1, . . . , λn) and Dµ = diag (µ1, . . . , µm).

Then, for

(3.2) K := UEV ∗,

it is straightforward to observe that ‖K‖ < 1 and

D +K∗AK = V (Dµ + E∗U∗AUE)V ∗ = V (Dµ + E∗DλE)V ∗

= V

[
diag (ε1λ1 + µ1, . . . , εrλr + µr) 0r,m−r

0m−r,r diag (µr+1, . . . , µm)

]
V ∗

is a positive definite matrix. �

Remark 3.4. Let Assumption 3.1 hold. Observe that if µi = 0 for some
i = 1, . . . , r, then the condition λi +µi > 0 is automatically fulfilled. Hence,
if we assume that dim ker D = p, then D has only r−p negative eigenvalues
and, in this case, there exists a strictly contractive matrix K ∈ Cn×m such
that D +K∗AK is positive definite if and only if

r ≤ n and λi + µi > 0 for all i = 1, . . . , r − p.

4. Spectrum of the block matrix

Throughout this section, we consider the contraction K constructed in the
proof of Theorem 3.3 and investigate the location of the eigenvalues of the
block-matrix S in (1.3) for this particular K. The locations depend on the
parameters ε1, . . . , εr and hence their study resembles a root locus analysis.
Before we state the corresponding result we start with a preliminary lemma.

Lemma 4.1. Let Assumption 3.1 and (3.1) hold and set

(4.1) αi :=
(λi − µi)2

4λ2
i

, i = 1, . . . , r.

Then we have that

0 ≤ −µi
λi

< αi < 1, for all i = 1, . . . , r.
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Proof. Given i = 1, . . . , r, by (3.1) we find that (λi+µi)
2 > 0, which implies

(λi − µi)2 > −4µiλi and hence

αi > −
µi
λi
≥ 0.

Furthermore,

λi − µi = −(λi + µi) + 2λi < 2λi,

which implies that αi < 1. �

We are now in the position to state the main result of this section.

Theorem 4.2. Let Assumption 3.1 and (3.1) hold. For i = 1, . . . , r choose
0 < εi < 1 such that εiλi + µi > 0.

If K ∈ Cn×m is the strictly contractive matrix defined in (3.2) then the

spectrum of the block matrix S ∈ C(n+m)×(n+m) given in (1.3) consists of
the real numbers λr+1, . . . , λn, µr+1, . . . , µm and

(4.2) η±i =
λi + µi

2
± λi
√
αi − εi, i = 1, . . . , r,

where αi is given by (4.1). Moreover, the following conditions hold:

a) if 0 ≤ −µiλi
< εi < αi, then η+

i > η−i > 0;

b) if αi < εi < 1, then η+
i = η−i ∈ C \ R;

c) if εi = αi, then η+
i = η−i = 1

2(λi + µi) and there exists a Jordan
chain of length 2 corresponding to this eigenvalue.

Additionally, if εi 6= αi for all i = 1, . . . , r, then S is diagonalizable.

Proof. First note that by Lemma 4.1 the ranges for εi in the cases a) and b)
are non-empty. Using the notation from the proof of Theorem 3.3 we obtain

S =

[
A −AK

K∗A D

]
=

[
UDλU

∗ −UDλEV
∗

V E∗DλU
∗ V DµV

∗

]
=

=

[
U 0
0 V

] [
Dλ −B
B∗ Dµ

] [
U 0
0 V

]∗
= W

[
Dλ −B
B∗ Dµ

]
W ∗,

where B ∈ Cn×m is given by

B := DλE =

[
diag (λ1

√
ε1, . . . , λr

√
εr) 0r,m−r

0n−r,r 0n−r,m−r

]
,

and W :=
[
U 0
0 V

]
∈ C(n+m)×(n+m) is unitary. Then, if {e1, . . . , en+m} de-

notes the standard basis of Cn+m, it is easy to see that

(4.3)
SWei = λiWei for i = r + 1, . . . , n,

and SWej = µj−nWej for j = n+ r + 1, . . . , n+m,

which yields that λr+1, . . . , λn and µr+1, . . . , µm are eigenvalues of S.
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Now, define the following r × r diagonal matrices:

Fλ := diag (λ1, . . . , λr), Fµ := diag (µ1, . . . , µr),

G := diag (λ1
√
ε1, . . . , λr

√
εr),

and observe that the remaining 2r eigenvalues of S coincide with the spec-
trum of the submatrix S̃ of W ∗SW given by

S̃ :=

[
Fλ −G
G Fµ

]
.

In order to calculate the eigenvalues of S̃, we make use of the Schur deter-
minant formula (1.2), by which the characteristic polynomial of S̃ is given
by

q(η) = det(S̃ − ηI2r) = det(Fµ − ηIr) det
(

(S̃ − ηI2r)/(Fµ−ηIr)

)
.

Since the matrix (S̃ − ηI2r)/(Fµ−ηIr) = (Fλ − ηIr) + G(Fµ − ηIr)
−1G is

diagonal and has the form
λ1 − η + ε1

λ21
µ1−η 0 . . . 0

0 λ2 − η + ε2
λ22

µ2−η . . . 0
...

...
. . .

...

0 0 . . . λr − η + εr
λ2r

µr−η

 ,

we have that

q(η) =

r∏
i=1

(µi − η)

r∏
i=1

(
λi − η +

εiλ
2
i

µi − η

)

=

r∏
i=1

(
(µi − η)(λi − η) + εiλ

2
i

)
.

Thus, η ∈ C is a root of q(η) if and only if

η2 − (λi + µi)η + λi(µi + εiλi) = 0

for some i ∈ {1, . . . , r}. This leads to the following eigenvalues of S̃:

(4.4) η±i =
λi + µi

2
± 1

2

√
(λi − µi)2 − 4εiλ2

i

for i = 1, . . . , r. Hence, (4.2) follows and statement b) holds. For state-
ment a) we additionally observe that if εi >

−µi
λi

then

η−i > 1
2(λi + µi)− 1

2

√
(λi − µi)2 + 4λiµi = 0.
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To prove c), assume that εi = αi for some i ∈ {1, . . . , r}. Since η+
i = η−i =

1
2(λi + µi) and

√
εi = λi−µi

2λi
, it is straightforward to compute that(

S̃ − 1
2(λi + µi)I2r

)((
1 + 2

λi−µi

)
fi

fi

)
=

(
fi
fi

)
,

(
S̃ − 1

2(λi + µi)I2r

)(
fi
fi

)
= 0,

using the standard basis {f1, . . . , fr} of Cr. The vectors above form a Jordan

chain of length 2 of S̃ corresponding to the eigenvalue 1
2(λi + µi). Hence,

a Jordan chain of S can be constructed corresponding to the eigenvalue
1
2(λi + µi) can also be constructed.

Finally, assume that εi 6= αi for all i = 1, . . . , r. In this case, the
space Cn+m has a basis consisting of eigenvectors of S. Indeed, this fol-
lows from (4.3) together with(

S̃ − η+
i I2r

)( fi

− λi
√
εi

µi−η+i
fi

)
= 0,

(
S̃ − η−i I2r

)( fi

− λi
√
εi

µi−η−i
fi

)
= 0

for i = 1, . . . , r. �

We emphasize that if for all i = 1, . . . , r the parameter εi in Theorem 4.2 is
chosen such that a) holds, then the block matrix S in (1.3) is diagonalizable
and has only positive eigenvalues. This is possible because of Lemma 4.1.

Example 4.3. We illustrate Theorem 4.2 with a simple example. Let n =
m = 1, D = [0] and A = [a] with a > 0. Then r = 1 and choosing K as
in (3.2) with 0 < ε < 1 gives K = [

√
ε]. In this case α = 1

4 .

By Theorem 4.2, for ε = 1
4 there is a Jordan chain of length 2 correspond-

ing to the only eigenvalue a
2 , and indeed we find that(

1
a
−1
a

)
,

(
1
1

)
form a Jordan chain of S, hence S is not diagonalizable.

On the other hand, for ε 6= 1
4 the block matrix S has eigenvalues η+ =

a
2 + a

√
1
4 − ε and η− = a

2 − a
√

1
4 − ε. They are positive if ε < 1

4 , and they

are non-real if 1
4 < ε < 1. In these last two cases S is diagonalizable.

5. Application to J-frame operators

In this section, we exploit Theorems 3.3 and 4.2 to investigate whether a
block matrix S as in (1.3) represents a so-called J-frame operator and when
it is similar to a Hermitian matrix. In the following we briefly recall the
concept of J-frame operators, which arose in [6, 8] in the context of frame
theory in Krein spaces.
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In a finite-dimensional setting, every indefinite inner product space is a
(finite-dimensional) Krein space, see [9]. A map [., .] : Ck × Ck → C is
called an indefinite inner product in Ck, if it is a non-degenerate Hermitian
sesquilinear form. The indefinite inner product allows a classification of
vectors: x ∈ Ck is called positive if [x, x] > 0, negative if [x, x] < 0 and
neutral if [x, x] = 0. Also, a subspace L of Ck is positive if every x ∈ L\{0}
is a positive vector. Negative and neutral subspaces are defined analogously.
A positive (negative) subspace of maximal dimension will be called maximal
positive (maximal negative, respectively).

It is well-known that there exists a Gramian (or Gram matrix) G ∈ Ck×k,
which is invertible and represents [., .] in terms of the usual inner product in
Ck, i.e., [x, y] = 〈Gx, y〉 for all x, y ∈ Ck. The positive (resp. negative) index
of inertia of [., .] is the number of positive (resp. negative) eigenvalues of the
Gramian G, and it equals the dimension of any maximal positive (resp.
negative) subspace of Ck. It is clear that the sum of the inertia indices
equals the dimension of the space.

A finite family of vectors F = {fi}qi=1 in Ck is a frame for Ck, if

span({fi}qi=1) = Ck,

see e.g. [5] and the references therein. Roughly speaking, a J-frame is a
frame, which is compatible with the indefinite inner product [., .].

Definition 5.1. Let (Ck, [., .]) be an indefinite inner product space. Then,
a frame F = {fi}qi=1 in Ck is called a J-frame for Ck, if

M+ := span { f ∈ F | [f, f ] ≥ 0 }
and M− := span { f ∈ F | [f, f ] < 0 }

are a maximal positive and a maximal negative subspace of Ck, respectively.

If [., .] is an indefinite inner product with positive and negative index
of inertia n and m, respectively, then the maximality of M+ and M− is
equivalent to

dimM+ = n and dimM− = m.

Note that if F is a J-frame for Ck, then there are no (non-trivial) f ∈ F
with [f, f ] = 0.

Given a J-frame F = {fi}qi=1 for Ck, its associated J-frame operator

S : Ck → Ck is defined by

Sf =

q∑
i=1

σi [f, fi] fi,

where σi = sgn [fi, fi] is the signature of the vector fi. S is an invertible
symmetric operator with respect to [., .], i.e.,

[Sf, g] = [f, Sg] for all f, g ∈ Ck.
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Its relevance follows from the indefinite sampling-reconstruction formula:
given an arbitrary f ∈ Ck,

f =

q∑
i=1

σi
[
f, S−1fi

]
fi =

q∑
i=1

σi [f, fi]S
−1fi.

In the following, we aim to apply the results from Sections 3 and 4, hence
we restrict ourselves to the following inner product on Ck = Cn+m,

[(x1, . . . , xn+m), (y1, . . . , yn+m)] =

n∑
i=1

xiyi −
m∑
j=1

xn+jyn+j .

In [6, Theorem 3.1] a criterion was provided to determine if an (invertible)
symmetric operator is a J-frame operator. In our setting it says that an
invertible operator S in (Ck, [., .]), which is symmetric with respect to [., .],
is a J-frame operator if and only if there exists a basis of Ck such that S
can be represented as a block-matrix

(5.1) S =

[
A −AK

K∗A D

]
,

where A ∈ Cn×n is positive definite, K ∈ Cn×m is strictly contractive, and
D ∈ Cm×m is a Hermitian matrix such that D + K∗AK is also positive
definite. Any block-matrix S ∈ C(n+m)×(n+m) of the form (5.1), which
satisfies these conditions will be called J-frame matrix.

Therefore, Theorem 3.3 can be restated in the following way.

Theorem 5.2. Let A ∈ Cn×n and D ∈ Cm×m be matrices satisfying As-
sumption 3.1. Then there exists K ∈ Cn×m with ‖K‖ < 1 such that S as
in (5.1) is a J-frame matrix if and only if

r ≤ n and λi + µi > 0 for i = 1, . . . , r.

We mention that the study of the spectral properties of a J-frame operator
is quite recent, see [6, 7]. In the case of J-frame matrices, for given A and
D, we always find conditions such that a strictly contractive K exists which
turns S into a matrix similar to a Hermitian one. The following result is a
direct consequence of Theorem 4.2 and Lemma 4.1.

Theorem 5.3. Let Assumption 3.1 and (3.1) hold. Then, there exists a
strictly contractive matrix K such that the matrix S given in (5.1) is a
J-frame matrix which is similar to a Hermitian matrix. In this case, all
eigenvalues of S are positive and there exists a basis of Cn+m consisting of
eigenvectors of S.
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