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Abstract

We consider tracking control for linear systems with known relative degree which are possibly non-minimum phase,
i.e., their zero dynamics may have an unstable part. For a given sufficiently smooth reference signal we design a low-
complexity controller which achieves that the tracking error evolves within a prescribed performance funnel. We present
a novel approach where a new output is constructed, with respect to which the system has a higher relative degree, but
the unstable part of the zero dynamics is eliminated. Using recent results in funnel control, we then design a controller
with respect to this new output, which also incorporates a new reference signal. We prove that the original output stays
within a prescribed performance funnel around the original reference trajectory and all signals in the closed-loop system
are bounded. The results are illustrated by some simulations.
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1. Introduction

We study output tracking for linear non-minimum
phase systems with arbitrary relative degree by funnel con-
trol. The concept of funnel control was originally devel-
oped in [19], see also the survey [18] and the references
therein. The funnel controller is an adaptive controller of
high-gain type and proved to be the appropriate tool for
tracking problems in various applications, such as temper-
ature control of chemical reactor models [21], control of
industrial servo-systems [14], voltage and current control
of electrical circuits [3], control of peak inspiratory pres-
sure [32] and adaptive cruise control [2].

The above mentioned applications have the advantage
that their underlying dynamics are minimum-phase, i.e.,
their internal dynamics (zero dynamics in the linear case)
are bounded-input, bounded-output stable. The internal
dynamics and the minimum phase property are extensively
studied in the literature, see e.g. [7, 22, 28, 29]. A main
obstacle for feedback controllers are systems which are not
minimum phase, i.e., their internal dynamics have an un-
stable part. Such unstable parts of the internal dynam-
ics may impose fundamental limitations on the transient
tracking performance as shown in [33]. These limitations
were already highlighted in the seminal work by Byrnes
and Isidori [6], where they prove that the regulator prob-
lem is solvable provided that the internal dynamics of the
system have a hyperbolic equilibrium. The solution is con-
structed from the solution of a set of partial differential-
algebraic equations, which however may be very difficult to
solve, if not impossible. Extending the approach from [6],
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in [13] so called ideal internal dynamics are used and made
attractive by a suitable redefinition of the output which
does not change the relative degree. Using a sliding control
law, it is achieved that the new output tracks a suitably
modified reference signal and in the end, the original out-
put asymptotically tracks the original reference trajectory.
However, the ideal internal dynamics require a trackability
assumption, i.e., the existence of a bounded solution of the
internal dynamics when the reference signal is inserted for
the output. In [34] the approach from [13] is extended by
using the so called system center method, and [35] develop
further improvements. These methods aim at asymptoti-
cally obtaining the ideal internal dynamics, however suffi-
cient conditions for their feasibility are not available.

In a different approach, [8, 10] aim to resolve the prob-
lem imposed by unstable internal dynamics using the con-
cept of stable system inversion. In contrast to [6], an open-
loop (feedfoward) control input is calculated here for all
times, based on the given reference trajectory. A drawback
of this approach is that in the case of non-minimum phase
systems, a reverse-time integration is used and hence the
computed control input must start in advance to achieve
the desired tracking performance. Therefore, the open-
loop control input is non-causal in this case. Extensions
of this approach are discussed in [9, 11, 16, 36] for instance.

Noteworthy is also the approach presented by Isidori
in [24], where stabilization of non-minimum phase systems
by dynamic compensators is considered. The crucial as-
sumption imposed in the aforementioned work is that an
auxiliary system resulting from the interconnection with
the compensator is itself stabilizable by dynamic output
feedback. Later, [31] pointed out that this is equivalent to
using a compensator which provides a new output with re-
spect to which the interconnection has relative degree one.
The assumption then is that the internal dynamics of the
interconnection are stable. Extensions of this approach to
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regulator problems have been studied in [25, 27, 30]. It
is an advantage of this approach that by using high-gain
observers the control objective can be achieved by output
feedback only. However, prescribed performance of the
original tracking error cannot be achieved, not even if a
funnel controller would be used in this framework, since
transient bounds for the new output given by the com-
pensator do not lead to transient bounds for the original
tracking error.

Last but not least, we like to mention the approach
presented in [15], where tracking for slightly non-minimum
phase systems is considered.

In the present paper, we introduce a novel approach to
treat output tracking with prescribed performance of the
tracking error for linear non-minimum phase systems with
arbitrary relative degree. Similar to [13] we define a new
output for the system. However, our aim is not to keep
the relative degree as it is and stabilize the internal dy-
namics, but to completely remove the unstable part of the
internal dynamics by increasing the relative degree. The
new output is a part of the former internal dynamics, and
a suitable redefinition of the reference trajectory is neces-
sary as well. To this end, we insert the original reference
signal into the part of the internal dynamics which has
been eliminated by the output redefinition. If the internal
dynamics have a hyperbolic equilibrium, then it is possi-
ble to suitably adjust the initial value so that the solution,
which provides the new reference signal, is bounded; this is
different from the trackability assumption in [13]. Under a
mild assumption, we may also allow for a non-hyperbolic
equilibrium. We may then apply the funnel controller for
systems with arbitrary relative degree developed in [1] to
the system with new output and new reference signal. We
show that by a suitable choice of the design parameters it
can be achieved that the original output stays within a pre-
scribed performance funnel around the original reference
trajectory. As far as the author is aware, another result
on tracking with prescribe performance for non-minimum
phase systems is not available in the literature.

We stress that a main feature of funnel control is that
it is model-free (only structural assumptions on the system
class are required, such as the minimum phase property)
and hence inherently robust. Moreover, it was recently
shown that even for higher relative degree systems funnel
control is feasible using output error feedback only, and
no derivatives of the output are required, see [4, 5]. These
features are lost when dealing with non-minimum phase
systems, where knowledge of the system parameters and
measurement of the complete state is required in general.
The additional knowledge is used to construct the new
output and reference signal to which the funnel controller
is applied.

1.1. Nomenclature
N, N0 the set of natural numbers, N0 = N ∪

{0}
R≥0 = [0,∞)
C−(C+) the set of all complex numbers with

negative (positive) real part
Gln(R) the group of invertible matrices in

Rn×n
σ(A) the spectrum of A ∈ Rn×n
L∞(I→Rn) the set of measurable and essentially

bounded functions f : I → Rn with
norm

∥f∥∞ = ess supt∈I∥f(t)∥
Wk,∞(I→Rn) the set of k-times weakly differen-

tiable functions f : I→Rn such that
f, . . . , f (k) ∈ L∞(I→Rn)

Ck(I→Rn) the set of k-times continuously differ-
entiable functions f : I → Rn, k ∈
N0 ∪ {∞}

1.2. System class
We consider linear systems given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn,
y(t) = Cx(t),

(1)

where A ∈ Rn×n and B,C⊤ ∈ Rn×m, with the same num-
ber of inputs u : R≥0 → Rm and outputs y : R≥0 → Rm.
We assume that (1) has strict relative degree r ∈ N, that
is

CB = CAB = . . . = CAr−2B = 0, CAr−1B ∈ Gln(R),
(2)

cf. [23]. While adaptive control of minimum phase linear
systems is well-studied, see e.g. the classical works [7, 26,
28, 29], we stress that we do not assume that (1) is mini-
mum phase or, equivalently, its zero dynamics are asymp-
totically stable, cf. [22]. The latter would mean that

∀λ ∈ C− : rk

[
A− λIn B

C 0

]
= n+m,

see e.g. [20, 23]. As an important tool for the forth-
coming controller design we recall the Byrnes-Isidori form
for linear systems (1). As shown in [20, Lem. 3.5] (see
also [23]), if (2) is satisfied, then there there exists a state-
space transformation U ∈ Gln(R) such that Ux(t) =(
y(t)⊤, ẏ(t)⊤, . . . , y(r−1)(t)⊤, η(t)⊤

)⊤, where η : R≥0 →
Rn−rm, transforms (1) into

y(r)(t) =

r∑
i=1

Riy
(i−1)(t) + Sη(t) + Γu(t),

η̇(t) = Py(t) +Qη(t),

(3)

where Ri ∈ Rm×m for i = 1, . . . , r, S, P⊤ ∈ Rm×(n−rm),
Q ∈ R(n−rm)×(n−rm) and Γ := CAr−1B. Furthermore, (1)
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is minimum phase if, and only if, σ(Q) ⊆ C−. The second
equation in (3) represents the internal dynamics of the
linear system (1); if y = 0, then these dynamics are called
zero dynamics.

1.3. Control objective
To treat the non-minimum phase property of sys-

tem (1) we need to assume that the system parameters
A,B,C are known and the state x can be measured at all
times and is available to the controller. However, we stress
that knowledge of the initial value x0 is not required for
the presented controller design. Therefore, the objective
is to design a dynamic state feedback of the form

ż(t) = F
(
t, z(t), x(t), yref(t)

)
, z(0) = z0,

u(t) = G
(
t, z(t), x(t), yref(t)

)
,

(4)

where yref : R≥0 → Rm is a sufficiently smooth reference
signal, such that in the closed-loop system the tracking
error e(t) = y(t)− yref(t) evolves within a prescribed per-
formance funnel

Fφ := { (t, e) ∈ R≥0 × Rm | φ(t)∥e∥ < 1 } , (5)

which is determined by a function φ belonging to

Φr :=

φ ∈ Cr(R≥0 → R)

∣∣∣∣∣∣
φ, φ̇, . . . , φ(r) are bounded,
φ(τ) > 0 for all τ ≥ 0,
and lim infτ→∞ φ(τ) > 0

 .

Furthermore, all signals x, u, z should remain bounded,
even though (1) is non-minimum phase.

The funnel boundary is given by the reciprocal of φ
as depicted in Fig. 1. In contrast to most other works on
funnel control, cf. e.g. [1, 19], we do not allow for the case
φ(0) = 0 , which would mean that there is no restriction
on the initial value since φ(0)∥e(0)∥ < 1 and the funnel
boundary 1/φ has a pole at t = 0. For technical reasons,
we require that the funnel boundary is “finite” at t = 0.

λ

b
(0, e(0))

φ(t)−1

t

Figure 1: Error evolution in a funnel Fφ with boundary φ(t)−1.

Each performance funnel Fφ with φ ∈ Φr is bounded
away from zero as boundedness of φ implies that there
exists λ > 0 such that 1/φ(t) ≥ λ for all t ≥ 0. The
funnel boundary is not necessarily monotonically decreas-
ing, which might be advantageous in several applications.
There are situations where widening the funnel over some

later time interval might be beneficial, for instance in the
presence of periodic disturbances or strongly varying ref-
erence signals. A variety of different funnel boundaries are
possible, see e.g. [17, Sec. 3.2].

1.4. Organization of the present paper
In Section 2 we discuss the crucial assumptions in

our framework for tracking non-minimum phase systems.
These assumptions lead to the construction of a new out-
put, with respect to which the system has a higher rela-
tive degree than r, but the unstable part of the internal
dynamics is eliminated. In Section 3 the controller design
is presented, which is based on the funnel controller de-
veloped in the recent work [1]. The necessary redefinition
of the reference signal is discussed as well and incorpo-
rated in the controller. Feasibility of the control is proved
in Theorem 3.2. In Section 4 we calculate a bound for
the original tracking error, which can be adjusted to be as
small as desired by an appropriate choice of the design pa-
rameters. The developed controller is then illustrated by
a simulation in Section 5 and some conclusions are given
in Section 6.

2. Trackability assumptions

It is revealed in [13] that for tracking non-minimum
systems certain trackability assumptions are necessary. In
the following, we state the assumptions that are used in
the present paper. We stress that these assumptions are
much milder than the trackability assumption used in [13],
which essentially states that the equation

η̇(t) = Qη(t) + Pyref(t)

must have a bounded solution η : R≥0 → Rn−rm for the
given reference trajectory yref : R≥0 → Rm. Here, roughly
speaking, we only require this for the non-hyperbolic part
of the above equation. We make the following assump-
tions:

(A1) There exists T ∈ Gln−rm(R) and ℓ ∈ N such that

TQT−1 =

[
Q̂1 Q̂2

0 Q̃

]
, TP =

[
P̂

P̃

]
, (6)

where Q̂1 ∈ Rk×k, Q̂2 ∈ Rk×ℓm, Q̃ ∈ Rℓm×ℓm, P̂ ∈
Rk×m. P̃ ∈ Rℓm×m, k = n − rm − ℓm ≥ 0 with
σ(Q̂1) ⊆ C− and

[P̃ , Q̃P̃ , . . . , Q̃ℓ−1P̃ ] ∈ Glℓm(R). (7)

(A2) Let yref ∈ Wr−1,∞(R≥0 → Rm) be a given reference
signal and W ∈ Glℓm(R) be such that

WQ̃W−1 =

Q1 0 0
0 Q2 0
0 0 Q3

 ,
3



where Qj ∈ Rkj×kj , j = 1, 2, 3, and σ(Q1) ⊆ C−,
σ(Q2) ⊆ C+ and σ(Q3) ⊆ iR. Then the equation

η̇3(t) = Q3η3(t) + P3yref(t), η3(0) = 0

has a bounded solution η3 : R≥0 → Rk3 .

We will frequently choose the smallest ℓ such that (A1) is
satisfied.

Remark 2.1.

(i) We like to give a motivation for assumption (A1).
Basically it states that the unstable part of the ma-
trix Q in the Byrnes-Isidori form (3) is completely
contained in the matrix Q̃ which, together with P̃ ,
satisfies the condition (7) that will be explained in
more detail later. Note that Q̃ may contain some of
the stable eigenvalues of Q. Furthermore, we stress
that the zero block in TQT−1 in (6) imposes an ad-
ditional condition on Q which is not automatically
satisfied, because Q̃must be of size ℓm×ℓm, wherem
is given. As an example where such a decomposition
is not possible consider

Q =

−1 1 0
−1 −1 0
0 0 1

 , m = 2,

where the eigenvalues of Q are given by {−1,−1, 1}.
Then the only possible choice for ℓ would be ℓ = 1,
but a decomposition (6) is not available in this case.

(ii) In the case of single-input, single-output systems we
have m = 1 and hence in condition (A1) it is always
possible to find a decomposition (6) with σ(Q̃) ⊆ C+

for some ℓ ∈ N. However, in order to satisfy the
invertibility condition (7) in may be helpful to choose
a larger ℓ, but then a decomposition (6) may not
necessarily exist, cf. the example given in (i) above.

(iii) If the internal dynamics of (1) have a hyperbolic
equilibrium, i.e., σ(Q)∩iR = ∅ it follows that k3 = 0.
Therefore, assumption (A2) is always satisfied in this
case.

In the following, choose the smallest ℓ ∈ N such that
assumption (A1) is satisfied. With the decomposition of Q
as in (6) we may further transform the system from (3)
using Tη = (η⊤1 , η

⊤
2 )

⊤ with η1 : R≥0 → Rn−rm−ℓm, η2 :
R≥0 → Rℓm into

y(r)(t) =

r∑
i=1

Riy
(i−1)(t)+S1η1(t)+S2η2(t)+Γu(t),

η̇1(t) = Q̂1η1(t) + Q̂2η2(t) + P̂ y(t),

η̇2(t) = Q̃η2(t) + P̃ y(t),

(8)

where [S1, S2] = ST−1.

Based on this, we define a new output for system (1).
Invoking (7), set

K := [0, . . . , 0,Γ−1][P̃ , Q̃P̃ , . . . , Q̃ℓ−1P̃ ]−1 ∈ Rm×ℓm (9)

and observe that this implies

KP̃ = KQ̃P̃ = . . . = KQ̃ℓ−2P̃ = 0, KQ̃ℓ−1P̃ = Γ−1,

i.e., the linear system ż(t) = Q̃z(t) + P̃ ũ(t), ỹ(t) = Kz(t)
has strict relative degree ℓ. For later use, we record that
it follows from [20, Lem. 3.5] that

K

KQ̃
...

KQ̃ℓ−1

 ∈ Glℓm(R). (10)

As new output for system (1) we now define

ynew(t) := Kη2(t). (11)

We show that system (1) with the new output as in (11)
has strict relative degree r + ℓ. To this end, first observe
that 

ynew(t)
ẏnew(t)

...
y
(ℓ−1)
new (t)

y
(ℓ)
new(t)

 =


K

KQ̃
...

KQ̃ℓ−1

KQ̃ℓ

 η2(t) +


0
...
0

Γ−1

 y(t),

and hence it follows from (10) that there exist F1, . . . , Fℓ ∈
Rℓm×m such that

η2(t) =

ℓ∑
i=1

Fi y
(i−1)
new (t),

y(t) = Γy(ℓ)new(t) +

ℓ∑
i=1

ΓKQ̃ℓFi y
(i−1)
new (t). (12)

Therefore, invoking (8) it follows that

y(r+ℓ)new (t)=−
ℓ∑
i=1

KQ̃ℓFiy
(r+i−1)
new (t)+

r∑
i=1

Γ−1RiΓy
(ℓ+i−1)
new (t)

+

r∑
i=1

ℓ∑
j=1

Γ−1RiΓKQ̃
ℓFj y

(i+j−2)
new (t)

+

ℓ∑
i=1

Γ−1S2Fi y
(i−1)
new (t) + S1η1(t) + u(t)

and by some straightforward simplification we obtain

y(r+ℓ)new (t) =

r+ℓ∑
i=1

R̂i y
(i−1)
new (t) + S1η1(t) + u(t),

η̇1(t) =

ℓ+1∑
i=1

P̂i y
(i−1)
new (t) + Q̂1η1(t),

(13)
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for some R̂i ∈ Rm×m, i = 1, . . . , r + ℓ and P̂j ∈
R(n−rm−ℓm)×m, j = 1, . . . , ℓ + 1. Note that the unstable
part of the internal dynamics of (1), represented by Q2

and Q3, has been completely removed in (13) by using the
new output as in (11).

Remark 2.2. The determination of the new output (11)
is related to finding a so called flat output for the subsys-
tem η̇2(t) = Q̃η2(t) + P̃ y(t) of the internal dynamics as
represented in (8), where y is viewed as the input of this
subsystem. Recall that all state and input variables can
be parameterized in terms of a flat output, if it exists, see
e.g. [12]. While for linear systems as discussed here this
is straightforward, cf. (12), appropriate results from the
theory of differentially flat systems may be helpful for an
extension of the results derived in the present paper to
nonlinear systems.

3. Controller design and feasibility

In this section, we propose a novel and simple funnel
controller for output trajectory tracking with prescribed
transient behavior of the tracking error for non-minimum
phase linear systems (1) with arbitrary relative degree. To
this end, we will use the recently developed funnel con-
troller from [1] and apply it to the system (1) with new
output (11). In order for this to work, since the output
has been redefined, tracking requires an appropriate redef-
inition of the reference signal as well, so that in the end
the original output tracks the original reference trajectory
with the desired behavior. By the construction of the new
output in (11), the new reference signal is generated by the
corresponding subsystem of (8) when the original reference
signal is inserted for the original output, i.e.,

η̇2,ref(t) = Q̃η2,ref(t) + P̃ yref(t), η2,ref(0) = η02,ref ,

ŷref(t) = Kη2,ref(t).
(14)

We show in the following that if yref ∈ Wr−1,∞(R≥0 →
Rm), then by assumption (A2) and an appropriate choice
of the initial value η02,ref we may achieve that the deriva-
tives of the new reference signal ŷ(i)ref are bounded for
i = 0, . . . , r + ℓ.

Lemma 3.1. Let yref ∈ Wr−1,∞(R≥0 → Rm), assume
that (A2) holds and use the notation given there. If

η02,ref =W−1

0k1×k2−Ik2
0k3×k2

∫ ∞

0

e−Q2sP2yref(s) ds , (15)

then the initial value problem (14) has a unique global
solution such that ŷref ∈ Wr+ℓ,∞(R≥0 → Rm).

Proof. From (A2) we have that

WQ̃W−1 =

Q1 0 0
0 Q2 0
0 0 Q3

 , WP̃ =

P1

P2

P3

 ,

where σ(Q1) ⊆ C−, σ(Q2) ⊆ C+ and σ(Q3) ⊆ iR. First
note that (15) is well-defined since yref is bounded and
σ(−Q2) ⊆ C−. Furthermore, the initial value problem

ż1(t) = Q1z1(t) + P1yref(t), z1(0) = 0,

has a unique global solution which satisfies z1 ∈
Wr,∞(R≥0 → Rℓm−k2−k3). It follows from (A2) that

ż3(t) = Q3z3(t) + P3yref(t), z3(0) = 0,

has a unique global solution which is bounded. Succes-
sively taking the derivative of z3 and evaluating the dif-
ferential equation gives that z3 ∈ Wr,∞(R≥0 → Rk3). Fi-
nally, to show that

ż2(t) = Q2z2(t) + P2yref(t),

z2(0) = −
∫ ∞

0

e−Q2sP2yref(s) ds ,

has a bounded and unique global solution, although
σ(Q2) ⊆ C+, we use the following straightforward result
for linear systems: For A ∈ Rn×n with σ(A) ⊆ C+ and
B ∈ Rn×m, u ∈ L∞(R≥0 → Rm), x0 ∈ Rn there exists
x ∈ W1,∞(R≥0 → Rn) which solves ẋ(t) = Ax(t) + Bu(t)
with x(0) = x0 if, and only if, x0 +

∫∞
0
e−AsBu(s) ds = 0.

Therefore, the solution z2 satisfies z2 ∈ Wr,∞(R≥0 →
Rk2).

Now, we have that η2,ref = W−1(z⊤1 , z
⊤
2 , z

⊤
3 )⊤ and,

similar to Section 2, we may derive that

ŷ
(ℓ)
ref (t) = KQ̃ℓη2,ref(t) + Γ−1yref(t),

and hence it follows that ŷref ∈ Wr+ℓ,∞(R≥0 → Rm).

The generator (14) of the new reference signal will now
be incorporated as a dynamic part into the controller de-
sign and the funnel controller from [1] will be applied to
system (1) with new output ynew as in (11). The final
controller design is of the form (4) and given by:

η̇2,ref(t) = Q̃η2,ref(t) + P̃ yref(t), η2,ref(0) = η02,ref ,

ŷref(t) = Kη2,ref(t),

e0(t) = ynew(t)− ŷref(t),

e1(t) = ė0(t) + k0(t) e0(t),

e2(t) = ė1(t) + k1(t) e1(t),

...
er+ℓ−1(t) = ėr+ℓ−2(t) + kr+ℓ−2(t) er+ℓ−2(t),

ki(t) =
1

1− φi(t)2∥ei(t)∥2
, i = 0, . . . , r + ℓ− 1,

u(t) = −kr+ℓ−1(t) er+ℓ−1(t),

(16)
where the initial value η02,ref is as in (15) and the reference
signal and funnel functions have the following properties:

yref ∈ Wr−1,∞(R≥0 → Rm),

φ0 ∈ Φr+ℓ, φ1 ∈ Φr+ℓ−1, . . . , φr+ℓ−1 ∈ Φ1.
(17)
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ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

y(r)(t) =

r∑
i=1

Riy
(i−1)(t) + Sη(t) + Γu(t)

η̇(t) = Py(t) +Qη(t)

obtain (Q̃, P̃ ) with
η̇2(t) = Q̃η2(t) + P̃ y(t)

ynew(t) = Kη2(t)

η̇2,ref(t) = Q̃η2,ref(t) + P̃ yref(t), η2,ref(0) = η02,ref

ŷref(t) = Kη2,ref(t)

yref ∈ Wr−1,∞(R≥0 → Rm)

Controller (16)

φi ∈ Φr+ℓ−i, i = 0, . . . , r + ℓ− 1

Compute (3)

Check (A1), (A2)

Compute K in (9)

Compute η02,ref in (15)

apply

Figure 2: Construction of the funnel controller (16) depending on its design parameters.

The construction of the funnel controller (16) is summa-
rized in Fig. 2.

We stress that the derivatives ė0, . . . , ėr+ℓ−2 which ap-
pear in (16) only serve as short-hand notations and may
be resolved in terms of the virtual tracking error e0, the
funnel functions φi and the derivatives of these, cf. [1,
Rem. 2.1]. The controller structure is depicted in Fig. 3.

We stress that the application of the controller (16)
to the linear system (1) with new output as in (11) re-
sults in a nonlinear and time-varying closed-loop differ-
ential equation in general, defined on a proper subset of
R≥0 × Rn+ℓm due to the poles introduced by ki. Hence,
some care must be exercised with the existence of a so-
lution of (1), (16), by which we mean a weakly differen-
tiable function (x, η2,ref) : [0, ω) → Rn+ℓm, ω ∈ (0,∞],
which satisfies the initial conditions and differential equa-
tions in (1), (16) for almost all t ∈ [0, ω); (x, η2,ref) is called
maximal, if it has no right extension that is also a solution.

Concluding this section, we show feasibility of the novel
funnel controller design (16), which is one of the main
results of the present paper.

Theorem 3.2. Consider a linear system (1) which satis-
fies (2) and assumptions (A1) and (A2). Let ℓ ∈ N be the
smallest number such that (A1) is satisfied. Further let
yref , φ0, . . . , φr+ℓ−1 be as in (17) and x0 ∈ Rn be an initial
value such that e0, . . . , er+ℓ−1 as defined in (16) satisfy

φi(0)∥ei(0)∥ < 1 for i = 0, . . . , r + ℓ− 1.

Then the controller (16) applied to (1) yields a closed-loop
system which has a unique maximal solution (x, η2,ref) :
[0, ω) → Rn+ℓm with the properties:

(i) ω = ∞;

(ii) all involved signals x(·), η2,ref(·), u(·),
k0(·), . . . , kr+ℓ−1(·) are bounded;

(iii) the errors evolve uniformly within the respective per-
formance funnels in the sense
∀ i = 0, . . . , r + ℓ− 1 ∃ εi > 0 ∀ t ≥ 0 :

∥ei(t)∥ ≤ φi(t)
−1 − εi.

(18)

Proof. By assumptions (2), (A1) and (A2) and the calcu-
lations made in Section 2 we find that system (1) with
new output (11) is equivalent to (13) and, in particular,
it has strict relative degree r + ℓ. Since σ(Q̂1) ⊆ C− it is
straightforward to see that (13) belongs to the system class
discussed in [1]. Furthermore, the new reference signal ŷref
generated by (14) satisfies ŷref ∈ Wr+ℓ,∞(R≥0 → Rm) by
Lemma 3.1. Therefore, we may apply [1, Thm. 3.1] to (1)
with new output (11) and new reference signal ŷref , which
implies the statements (i)–(iii), except for uniqueness of
the solution (x, η2,ref). However, the latter follows from
the theory of ordinary differential equations, see e.g. [37,
§ 10, Thm. XX], since the right-hand side of the closed-
loop differential equation is measurable and locally inte-
grable in t and locally Lipschitz in the other variables.

We stress that Theorem 3.2 does not provide a bound
for the original tracking error e(t); this will be discussed
in the subsequent section.

4. Transient behavior of the original tracking error

In this section we provide a bound for the transient
behavior of the tracking error e(t), which may be calcu-
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ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

ynew(t) = Kη2(t)

Funnel Controller
from [1]

+

η̇2,ref(t) = Q̃η2,ref(t) + P̃ yref(t),

ŷref(t) = Kη2,ref(t),

η2,ref(0) = η02,ref as in (15)

+

ynew(t)

+

yref(t)

ŷref(t)

−e0(t)

u(t)

y(t)

+ −
e(t)

Figure 3: The funnel controller (16), indicated by the grey box, applied to system (1) with new output as in (11). The controller consists of
the generator of the new reference signal (14) and the funnel controller developed in [1].

lated a priori and can be adjusted using the funnel func-
tions φ0, . . . , φℓ. To obtain a reasonable bound we first
need to improve the estimate (18) in the sense that at
each time t ≥ 0 we need to find “the best” εi(t) such that
∥ei(t)∥ ≤ φi(t)

−1 − εi(t); still ensuring that εi(·) can be
calculated a priori. One possible choice for (constant) εi is
provided in [1], but this choice is far from being optimal.
In the following we derive an improvement of this.

To this end, use the notation and assumptions from
Theorem 3.2, and set ψi(t) := φi(t)

−1 for all t ≥ 0 and all
i = 0, . . . , r + ℓ − 1. Then, by (17), ψi : R≥0 → R>0

is continuously differentiable and ψ̇i is bounded, i =
0, . . . , r + ℓ− 1. Consider the initial value problems

ε̇i(t) = ψ̇i(t)− ψi+1(t) +
ψi(t)

(
ψi(t)− εi(t)

)
2εi(t)

,

εi(0) = ψi(0)− ∥ei(0)∥
(19)

for i = 0, . . . , r + ℓ − 2. In the following result we show
that (19) indeed has a unique global solution and provide
some bounds for it.
Lemma 4.1. Use the notation and assumptions from The-
orem 3.2. Set

λi := inf
t≥0

ψi(t) > 0, i = 0, . . . , r + ℓ− 1,

κi := ∥ψi+1 − ψ̇i∥∞, i = 0, . . . , r + ℓ− 2,

εi,min := min

{
λ2i

2κi + ∥ψi∥∞
, ψi(0)− ∥ei(0)∥

}
> 0,

εi,max := min

{
λi+1λi
∥ψi∥∞

,
λi
2
, ∥ei(0)∥

}
≥ 0.

Then, for all i = 0, . . . , r + ℓ − 2, the initial value prob-
lem (19) has a unique global solution εi : R≥0 → R that
satisfies

∀ t ≥ 0 : εi,min ≤ εi(t) ≤ ψi(t)− εi,max. (20)

Proof. Since the right hand side of the differential equa-
tion in (19) is measurable and locally integrable in t and
locally Lipschitz in εi (as a function defined on the rel-
atively open set { (t, ε) ∈ R≥0 × R | ε > 0 }), it follows
from the theory of ordinary differential equations, see
e.g. [37, § 10, Thm. XX], that (19) has a unique maxi-
mal solution εi : [0, ω) → R with ω ∈ (0,∞], such that εi
is weakly differentiable and εi(t) > 0 for all t ∈ [0, ω). Fur-
thermore, the closure of the graph of εi is not a compact
subset of { (t, ε) ∈ R≥0 × R | ε > 0 }. It remains to show
ω = ∞ and (20).

We first show that εi,min ≤ εi(t) for all t ∈ [0, ω).
Seeking a contradiction assume that there exists t1 ∈ [0, ω)
such that 0 < εi(t1) < εi,min. Since εi(0) ≥ εi,min there
exists

t0 := max { t ∈ [0, t1) | εi(t) = εi,min } ,

and we find that εi(t) ≤ εi,min for all t ∈ [t0, t1]. Then it
follows that

ε̇i(t) = ψ̇i(t)− ψi+1(t) +
ψi(t)

(
ψi(t)− εi(t)

)
2εi(t)

≥ −κi +
λ2i

2εi,min
− ∥ψi∥∞

2
≥ 0

for almost all t ∈ [t0, t1]. Therefore,

εi,min = εi(t0) ≤ εi(t1) < εi,min,

a contradiction.
Now we show that εi(t) ≤ ψi(t) − εi,max for all t ∈

[0, ω). Again seeking a contradiction assume that there
exists t1 ∈ [0, ω) such that εi(t1) > ψi(t1) − εi,max. Since
εi(0) = ψi(0)− ∥ei(0)∥ ≤ ψi(0)− εi,max there exists

t0 := max { t ∈ [0, t1) | εi(t) = ψi(t)− εi,max } .
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Then it follows that

εi(t) ≥ ψi(t)− εi,max ≥ λi
2

for all t ∈ [t0, t1] and hence

ε̇i(t) = ψ̇i(t)− ψi+1(t) +
ψi(t)

(
ψi(t)− εi(t)

)
2εi(t)

≤ ψ̇i(t)− λi+1 +
∥ψi∥∞ εi,max

λi
≤ ψ̇i(t)

for almost all t ∈ [t0, t1]. Therefore, εi(t1) − εi(t0) ≤
ψi(t1)− ψi(t0) which gives

εi,max = ψi(t0)− εi(t0) ≤ ψi(t1)− εi(t1) < εi,max,

a contradiction.
To see that ω = ∞, assume ω < ∞ which, invoking

εi,min ≤ εi(t) ≤ ψi(t)−εi,max for all t ∈ [0, ω), implies that
the closure of the graph of the solution εi is a compact sub-
set of { (t, ε) ∈ R≥0 × R | ε > 0 }, a contradiction.

Note that in (20) it is possible that εi,max = 0, which
is the case if, and only if, ei(0) = 0.

Example 4.2. We illustrate a typical situation, where
the funnel functions ψi(·) = φi(·)−1 are of exponential
decreasing form ψi(t) = aie

−bit + ci. Here we choose

ψ0(t) = e−2t + 0.1, ψ1(t) = 2e−2t + 0.02,

and ∥ei(0)∥ = ψ0(0)/2 = 0.55. The solution ε0 of (19) for
i = 0 is depicted in Fig. 4.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

 

 

ε0(t)
A0(t)
A0(t)! ε0(t)

Figure 4: Solution ε0 of (19) for i = 0.

Using the solutions of (19) we may now improve the
estimates (18) from Theorem 3.2.

Lemma 4.3. Use the notation and assumptions from The-
orem 3.2. Let (x, η2,ref) : R≥0 → Rn+ℓm be the solution
of (1), (16) and let εi : R≥0 → R be the solution of (19)
for i = 0, . . . , r + ℓ− 2. Then we have that

∀ i = 0, . . . , r+ℓ−2 ∀ t ≥ 0 : ∥ei(t)∥ ≤ ψi(t)−εi(t). (21)

Proof. Let i ∈ {0, . . . , r + ℓ − 2}. Seeking a contradic-
tion assume that there exists t1 > 0 such that ∥ei(t1)∥ >
ψi(t1) − εi(t1). Since we have εi(0) = ψi(0) − ∥ei(0)∥ it
follows that

t0 := max { t ∈ [0, t1) | ∥ei(t)∥ = ψi(t)− εi(t) }

is well defined. Therefore,

∥ei(t)∥ > ψi(t)− εi(t)
(20)
≥ εi,max ≥ 0,

ki(t) =
1

1− φi(t)2∥ei(t)∥2
=

ψi(t)
2

ψi(t)2 − ∥ei(t)∥2

≥ ψi(t)

2
(
ψi(t)− ∥ei(t)∥

) ≥ ψi(t)

2εi(t)

for all t ∈ (t0, t1]. Hence we find that by (16)

1
2

d
dt∥ei(t)∥

2 = −ki(t)∥ei(t)∥2 + ei+1(t)
⊤ei(t)

≤
(
− ψi(t)

2εi(t)

(
ψi(t)− εi(t)

)
+ ψi+1(t)

)
∥ei(t)∥

(19)
=
(
ψ̇i(t)− ε̇i(t)

)
∥ei(t)∥

for almost all t ∈ (t0, t1]. Then we have

∥ei(t1)∥ − ∥ei(t0)∥ =

∫ t1

t0

1
2∥ei(t)∥

−1 d
dt∥ei(t)∥

2 dt

≤
∫ t1

t0

(
ψ̇i(t)− ε̇i(t)

)
dt

=
(
ψi(t1)− εi(t1)

)
−
(
ψi(t0)− εi(t0)

)
,

and thus

0 = ψi(t0)−εi(t0)−∥ei(t0)∥ ≤ ψi(t1)−εi(t1)−∥ei(t1)∥ < 0,

a contradiction.

Remark 4.4. We like to emphasize that the estimate (21)
also holds for the class of general nonlinear systems of
functional differential equations considered in [1] and the
proof is the same as given above. This improves the result
of [1, Thm. 3.1].

In the following we utilize the estimate (21) to obtain
a bound for the original tracking error e(t). To this end,
we need to introduce some additional notation which is
motivated by [1, Prop. 3.2]. Let ε0, . . . , εr+ℓ−2 be the so-
lutions of (19) and fix t ≥ 0. Set Ni,0(t) := ψi(t) for
i = 0, . . . , r + ℓ− 1 and

Ki,0(t) :=
Ni,0(t)

εi(t)
, Mi,0(t) := Ni,0(t)Ki,0(t)

for i = 0, . . . , r+ ℓ− 2. Define, for i = 0, . . . , r+ ℓ− 2 and
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j = 0, . . . , r + ℓ− i− 1,

Ni,j(t) := Ni+1,j−1(t) +Mi,j−1(t),

Li,0(t) := Ni,0(t)
2,

Li,j(t) := 2

j−1∑
l=0

(
j−1
l

)
Ni,l(t)Ni,j−l(t),

Φi,0(t) := φi(t)
2,

Φi,j(t) := 2

j−1∑
l=0

(
j−1
l

)
|φ(l)
i (t)| · |φ(j−l)

i (t)|,

Σi,j(t) :=
1
2

(
Φi,0(t)Li,j+1(t)+Φi,1(t)Li,j(t)+Φi,j(t)Li,1(t)

+ Li,0(t)Φi,j+1(t)
)

+

j−1∑
l1=1

(
j
l1

)(
Φi,l1(t)

j−l1∑
l2=0

(
j−l1
l2

)
Ni,l2(t)Ni,j−l1−l2(t)

+Li,j−l1(t)

l1∑
l2=0

(
l1
l2

)
|φ(l2)
i (t)| · |φ(l1−l2)

i (t)|

)
,

Ki,j(t) := Ki,0(t)
2Σi,j−1(t)

+

j−1∑
l1=1

l1−1∑
l2=0

(
j−1
l1

)(
l1−1
l2

)
Σi,j−l1−1(t)Ki,l2+1(t)Ki,l1−l2−1(t),

Mi,j(t) :=

j∑
l=0

(
j
l

)
Ki,l(t)Ni,j−l(t).

Finally, set

K̂−1(t) := 0,

K̂i(t) :=

i∑
j=0

Mj,i−j(t) for i = 0, . . . , r + ℓ− 2.
(22)

We stress that K̂i depends only on φ0, . . . , φi+1 and the
initial errors e0(0), . . . , ei(0), and it is always possible to
shape the funnel boundaries ψ0, . . . , ψi+1 accordingly to
achieve that K̂i is as small as desired. To illustrate this,
we calculate K̂0 and K̂1:

K̂0(t) =
ψ0(t)

2

ε0(t)
,

K̂1(t) =M0,1(t) +M1,0(t)

=
ψ0(t)

ε0(t)

(
ψ1(t) +

ψ0(t)
2

ε0(t)

)(
1 +

2ψ0(t)

ε0(t)

)
+
ψ1(t)

2

ε1(t)
+

2ψ0(t)
4|φ̇0(t)|

ε0(t)2
.

Now, we see that K̂0(t) and K̂1(t) are small provided
that ψ0(t), ψ1(t), |φ̇0(t)| and the ratios ψ0(t)

ε0(t)
, ψ1(t)

ε1(t)
are

small. Note that εi depends on ψi, ψi+1 and ∥ei(0)∥
by (19). Investigating the behavior for large times t,
we find that for typical funnel functions (or, least, they
may be designed in this way) we have that ψ̇i(t) ≈ 0,

ψi(t) ≈ λi and ψi+1(t) ≈ λi+1, where we use the notation
from Lemma 4.1. As a consequence, from (19) we obtain
that

ε̇i(t) ≈ −λi+1+
λi(λi − εi(t))

2εi(t)
= − (2λi+1 + λi)εi(t)− λ2i

2εi(t)
,

which is solved by εi(t) =
λ2
i

2λi+1+λi
, thus εi is approxi-

mately equal to this constant for large t. Therefore, we
have

ψi(t)

εi(t)
≈ λi(2λi+1 + λi)

λ2i
=

2λi+1

λi
+ 1.

As a consequence, if λi+1 ≤ βλi for some β > 0 and
all i = 0, . . . , r + ℓ − 2, then we may guarantee that the
ratios ψi(t)

εi(t)
stay below some a priori known constant for

large t and hence, in order to make K̂i(t) smaller it is
indeed sufficient to make λ0, . . . , λi+1 smaller in a way that
λj+1 ≤ βλj is still guaranteed for j = 0, . . . , i.

In the example above, choosing ψ0(t), ψ1(t) small with
λ1 ≤ βλ0 and λ2 ≤ βλ1 while keeping |φ̇0(t)| small (for t
large enough) establishes any desired quantity for K̂0(t)
and K̂1(t).

Theorem 4.5. Use the notation and assumptions from
Theorem 3.2. Let (x, η2,ref) : R≥0 → Rn+ℓm be the solution
of (1), (16). Then the original tracking error e(t) = y(t)−
yref(t) satisfies

∀ t ≥ 0 : ∥e(t)∥ ≤
ℓ+1∑
i=1

αi
(
ψi−1(t) + K̂i−2(t)

)
, (23)

where αi := ∥ΓKQ̃ℓFi∥ for Fi as in (12), i = 1, . . . , ℓ,
αℓ+1 := ∥Γ∥ and K̂i is as in (22), i = −1, . . . , ℓ− 1.

Proof. By (12), and a similar equation for yref in terms
of ŷref , we find that

e(t) = Γe
(ℓ)
0 (t) +

ℓ∑
i=1

ΓKQ̃ℓFie
(i−1)
0 (t)

for all t ≥ 0. Inequality (23) now follows from [1,
Prop. 3.2], where we use a straightforward extension of
this result here: Instead of using the estimate (18) with
constant εi we use (21) with the solutions εi(·) of (19) and
instead of taking the supremum norm of ψi and φ

(j)
i in

the definition of K̂i we use the values at each t ≥ 0. The
modification of the proof of [1, Prop. 3.2] is obvious and
omitted.

We like to highlight that it is a consequence of inequal-
ity (23) that indeed the controller (16) achieves prescribed
performance of the tracking error e(t) = y(t) − yref(t)
for (1), i.e., ∥e(t)∥ < φ(t)−1 for all t ≥ 0. Given
any φ ∈ Φ0 such that φ(0)∥e(0)∥ < 1, we may always
choose φ0, . . . , φr+ℓ−1 satisfying (17) such that

∀ t ≥ 0 :

ℓ+1∑
i=1

αi
(
φi−1(t)

−1 + K̂i−2(t)
)
< φ(t)−1, (24)
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since, as illustrated above, it can be achieved that K̂i is as
small as desired. For instance, if r = ℓ = 2 and α1, α2, α3

as in Theorem 3.2 are given and, for simplicity, we assume
that e0(0) = e1(0) = 0, then we may choose constant
φj = ψ−1

j = λ−1
j , j = 0, 1, 2, such that λ1 ≤ βλ0 for some

β > 0. In this case, the initial value problem (19) is given
by

ε̇j(t) = −
(2λj+1 + λj)εj(t)− λ2j

2εj(t)
, εj(0) = λj

for j = 0, 1. Since ε̇j(0) = −λj+1 < 0 and ε̂j(t) =
λ2
j

2λj+1+λj

is the equilibrium solution, a simple analysis reveals that εj
is strictly monotonically decreasing with limt→∞ εj(t) =

λ2
j

2λj+1+λj
. Therefore, we obtain

K̂0(t) ≤ 2λ1 + λ0 ≤ (2β + 1)λ0,

K̂1(t) ≤
2(2λ1 + λ0)(λ1 + λ0)(4λ1 + 3λ0)

λ20
+ λ1 + 2λ2

≤ 2(2β + 1)(β + 1)(4β + 3)λ0 + λ1 + 2λ2.

Then, we find that ∥e(t)∥ < φ(t)−1 holds for all t ≥ 0, if
λ0, λ1, λ2 are chosen small enough so that the inequality

α1λ0 + α2

(
λ1 + (2β + 1)λ0

)
+ α3

(
3λ2+λ1+2(2β+1)(β+1)(4β+3)λ0

)
< inf
t≥0

φ(t)−1

is satisfied.

Remark 4.6. We stress that a general construction
formula for φ0, . . . , φr+ℓ−1 such that (24) holds for a
given φ ∈ Φ0 is not available yet. Further research is
necessary to find a suitable way for handling K̂i in (24),
which depends on φ0, . . . , φi+1 and e0(0), . . . , ei(0). Nev-
ertheless, appropriately adjusting these design parameters
in offline simulations will yield the desired inequality (24).

5. Simulations

We illustrate the funnel controller (16) by means of a
modified linear version of the example discussed in [10].
To this end, consider a system (1) with

A =


−1 1 0 0
0 −3 0 1
1 0 −2 0
0 0 3 −1

 , B =


0
2
0
0

 , C = [1, 0,−3, 0],

which has strict relative degree r = 2. The initial value is
chosen as x0 = 0 and the reference trajectory as

yref(t) =

{
(1− cos t), t ∈ [0, 2π],

0, t > 2π.

Clearly, we have yref ∈ W1,∞(R≥0 → R). In order to
determine the new output as in (11) we need to transform

the system into Byrnes-Isidori form (3). With η1 = x4 and
η2 = 3x3 this form is given by

ÿ(t) = −18y(t)− 7ẏ(t) + η1(t)− 8η2(t) + 2u(t),

η̇1(t) = −η1(t) + η2(t),

η̇2(t) = η2(t) + 3y(t).

It is now easy to see that assumption (A2) is satisfied since
k3 = 0 and assumption (A1) is satisfied with the choice
ℓ = 1 and Q̃ = 1, P̃ = 3. Hence, K as in (9) is given by

K = Γ−1P̃−1 =
1

6

and the new output (11) is ynew(t) = 1
6η2(t) =

1
2x3(t). The

initial value η02,ref as in (15) needed for the controller (16)
can be computed as

η02,ref = −3

∫ ∞

0

e−syref(s) ds

= −3

∫ 2π

0

e−s(1− cos s) ds = −1069

714
.

The funnel functions are chosen as

φ0(t) =
(
e−2t + 0.01

)−1
, φ1(t) =

(
2e−2t + 0.01

)−1
,

φ2(t) =
(
2e−10t + 0.01

)−1
,

and clearly (17) is satisfied and the initial errors
e0(0), e1(0), e2(0) lie within the respective funnel bound-
aries. Therefore, feasibility of the controller (16) is guar-
anteed by Theorem 3.2.

The bound (23) for the original tracking error e = y −
yref as given in Theorem 4.5 reads as follows:

∥e(t)∥ ≤ α1ψ0(t) + α2

(
ψ1(t) + K̂0(t)

)
=: Ψ(t), t ≥ 0,

where ψi(·) = φi(·)−1 for i = 0, 1. Clearly, α2 = ∥Γ∥ = 2
and we calculate that α1 = ∥ΓKQ̃F1∥ = 2. Then we
obtain that

∥e(t)∥ ≤ Ψ(t) = 2

(
ψ0(t) + ψ1(t) +

ψ0(t)
2

ε0(t)

)
,

where ε0 is the solution of (19) for i = 0.
The simulation of the controller (16) applied to sys-

tem (1) over the time interval [0, 10] has been performed
in MATLAB (solver: ode15s, rel. tol.: 10−14, abs. tol.:
10−10) and is depicted in Fig. 5. Fig. 5a shows the original
output y, the reference signal yref and the bounds yref ±Ψ
for the output. The states are depicted in Fig. 5b and the
input in Fig. 5c. It can be seen that a prescribed perfor-
mance of the tracking error can be achieved with the funnel
controller (16), while at the same time the generated input
is bounded and shows an acceptable performance as well.
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Figure 5: Simulation of the controller (16) for system (1).

6. Conclusion

In the present paper we proposed a novel controller
for achieving tracking with prescribed performance of the
tracking error for linear non-minimum phase systems. Our
approach is based on the construction of a new output for
the system given by (11) to which the recently developed
funnel controller from [1] is applied. To guarantee fea-
sibility a new reference signal needs to be calculated as
well, which is given by the solution of (14) with initial
value (15). The resulting controller (16) is shown to be

feasible in Theorem 3.2 and bounds for the original track-
ing error have been derived in Theorem 4.5. It has been
shown that, by appropriately designing the funnel func-
tions, these bounds can be adjusted to be as small as de-
sired. At the same time, the input u generated by (16)
remains bounded.

We stress that some features of funnel control (see
e.g. [1, 5, 19]) are lost with this approach: The con-
troller (16) is not model-free in general, since knowl-
edge of Q̃ and P̃ is required to determine the new out-
put (11) and the new reference (14). Furthermore, mea-
surement of y, ẏ, . . . , y(r−1) is not sufficient, but it is re-
quired that additional state variables can be measured so
that ynew, ẏnew, . . . , yr+ℓ−1

new are available to the controller.
However, knowledge of the initial value x0 is not required,
cf. Section 1.3.

Because of the above remarks, a drawback of the con-
troller design (16) is that it is not robust, but prone to
modelling errors and disturbances, in particular in the
computation of the initial value (15). Further research
is necessary to overcome this robustness issue.
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