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Abstract

We extend a recent higher-integrability result for the gradient of minimiz-
ers of the Mumford-Shah functional to a suitable class of almost-minimizers.
The extension crucially depends on an L∞ gradient estimate up to regular
portions of the discontinuity set of an almost-minimizer.

1 Introduction

Consider a bounded open set Ω in Rn, n ≥ 2, a parameter λ ∈ (0,∞), and a scalar
function g ∈ L∞(Ω). The Mumford-Shah functional∫

Ω\K
|∇u|2 dx+ λ

∫
Ω\K
|u− g|2 dx+Hn−1(K) (1.1)

(with the (n−1)-dimensional Hausdorff measure Hn−1) is defined on pairs (u,K),
where K is a closed subset of Ω and the scalar function u ∈ L2(Ω \ K) has a
classical (or weak) derivative ∇u ∈ L2(Ω \ K,Rn) on Ω \ K, but is allowed to be
non-differentiable and discontinuous at points of K.
The functional in (1.1) with n = 2 has been originally introduced by Mumford–
Shah [MS89] in connection with the segmentation of a noisy greyscale image, which
can be thought of as a [0, 1]-valued g. The hope is then that an unconstrained
minimizer (u,K) of the functional consists of a denoised version u of the image
and, more crucially, of an edge set K which segments the image into comparably
homogeneous regions. In addition, the Mumford-Shah functional has also emerged
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into a basic object of theoretical interest, since the interplay between the volume
term

∫
Ω\K |∇u|2 dx and the surface term Hn−1(K) has turned out to be highly non-

trivial. This has lead to the development of an elaborate analytical theory (see
[DGCL89, Bon96, Dav96, AP97, AFP97, Leg99, AFP00, Rig00, MS01a, MS01b,
Fus03, Dav05], for instance), but still some finer issues in the regularity theory
of minimizers (u,K) have remained unsolved. The most prominent such issue is
certainly the Mumford-Shah conjecture on the precise nature of possible singularities
of the edge set K in dimension n = 2. Here we focus on another such issue, vaguely
related1 to the conjecture, namely on Lp estimates for ∇u, locally on Ω but up to
K. In this regard De Lellis–Focardi [DLF13] (in dimension n = 2) and subsequently
De Phillipis–Figalli [DPF14] (in arbitrary dimension n ≥ 2) have recently proven
slight extra integrability of ∇u. Precisely they proved the existence of some ε > 0
such that ∇u ∈ L2+ε(Ω′ \K,Rn) holds for every open Ω′ b Ω; see also [Foc16] for a
survey on these issues. Here we extend the extra integrability result from minimizers
to a suitable class of almost-minimizers (see below and Section 2 for the relevant
terminology for SBV functions):

Theorem 1.1. If u ∈ SBV(Ω) is an (a, b)-almost-minimizer of the Mumford-Shah
functional in the sense of Definition 3.1, then there exists some ε > 0 such that
∇u ∈ L2+ε(Ω′,Rn) holds for every open Ω′ b Ω.

This extension is in line with the overall Mumford-Shah regularity theory, in which
nowadays almost all results are available for almost-minimizers [AP97, AFP97,
AFP00, Dav05]. Indeed, the transition to almost-minimizers is technically very
convenient also in other variational problems, since minimizers of related problems
with additional coefficients, terms, or constraints (compare [Anz83] and [DGG00,
Section 2]) are almost-minimizers. Particularly in the Mumford-Shah case, minimiz-
ers of the full Mumford-Shah functional (1.1) can be viewed as almost-minimizers
of its variant ∫

Ω\K
|∇u|2 dx+Hn−1(K) , (1.2)

defined on the same pairs (u,K) as before. With this connection (see Proposition
4.1 for a precise statement in our setting) at hand we can then limit all further
considerations to the reduced Mumford-Shah functional (1.2) without zero-order
term.
We emphasize that the treatment of almost-minimizers requires one essential devi-
ation from [DPF14], which we now describe. Indeed the proof in [DPF14] draws
on the fact that a minimizing u for (1.2) is harmonic (or, in case of (1.1) satisfies
a similar equation) on Ω \ K and gradient estimates can be deduced. In our case

1In fact, the relation is the following: By a result of Ambrosio–Fusco–Hutchinson [AFH03] (cf.
[DLFR14]), local Lp integrability of ∇u up to K with p ∈ (2, 4) implies that the singular set of K
has Hausdorff dimension ≤ n− p

2 . Thus, if one could obtain this integrability for p arbitrarily close
to 4, then one could conclude that the singular set has dimension ≤ n− 2. Moreover, in dimension
n = 2, if one could even establish that ∇u is locally in the Lorentz space L4,∞, then a result of
[DLF13] comes yet closer to the conjecture. It shows that the singular set is a locally finite subset
of Ω and a classification of singularities à la Bonnet [Bon96] is possible.
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instead, since u just almost-minimizes the Dirichlet integral on Ω\K, we cannot rely
on an equation, and an additional comparison between the almost-minimizer and a
minimizing harmonic function renders necessary. In “interior” away-from-K situa-
tions, gradient estimates for u follow easily. However, the crucial point of the proof
lies in the treatment of a sort-of “boundary” up-to-K situation, and in this case the
deduction of gradient estimates for u also depends on flattening of (regular parts of)
K and reflection of u across the flattened boundary. While the basic approach is
still standard in boundary regularity issues, the details get somewhat technical, and
we believe that this part of the proof deserves the careful account which we provide
in Section 5. The other arguments in the proof stay closer to [DPF14] and are thus
described much more concisely.
Finally, we close this introduction with a rough discussion of the setting and the
technically feasible class of almost-minimizers for our result. To this end we first
mention that we work in the natural framework introduced in [DGA88, Amb89,
DGA89, Amb90] of SBV functions u on Ω, on which the reduced Mumford-Shah
functional takes the form

MS[u;A] =
∫
A
|∇u|2 dx+Hn−1(Su ∩ A) (1.3)

(where A is a measurable subset of Ω, ∇u denotes the density of the absolutely
continuous part of the gradient measure of u, and Su stands for the approximate
discontinuity set of u). Basically our almost-minimizers are then defined by condi-
tions of the type

MS[u; Br] ≤ MS[u+ ϕ; Br] + Θ(r) (1.4)

for all SBV functions ϕ with support in a ball Br ⊂ Ω of radius r > 0, where
Θ: [0,∞) → [0,∞) is a certain fixed modulus. While most results on Mumford-
Shah almost-minimizers apply under the hypotheses2 Θ(r) > rn−1 or Θ(r) > rn−1+a

with arbitrarily small a > 0, this does not seem achievable for our result. In fact,
the proof draws on auxiliary C1,β estimates, and obtaining those even for almost-
minimizers of the Dirichlet integral requires the stronger condition Θ(r) > rn+b with
b > 0. Yet again true minimizers of the full Mumford-Shah functional (1.1) only
satisfy (1.4) with Θ(r) > rn but not neccesarily with Θ(r) > rn+b. This dilemma
drives us to introduce a suitable class of SBV almost-minimizers, which we call (a, b)-
almost-minimizers, by generally requiring (1.4) with Θ(r) > rn−1+a, a > 0, but also
imposing (1.4) as in [DGG00] with Θ(r) = Θu,ϕ(r) > rb

∫
Br(1 + |∇u|2 + |∇ϕ|2) dx

in specific situations3; see Definition 3.1. While the resulting notion may seem
awkwardly technical, it does meet the basic requirements: It is wide enough to
include all true minimizers of (1.1) (see Section 4), but also restrictive enough to
enable gradient comparison estimates and to ultimately carry out the proof of the
higher integrability result. Since furthermore the notion is very general, we believe

2Here A(r) > B(r) means A(r) ≤ CB(r) for r ∈ [0,∞) with some r-independent constant
C ∈ [0,∞).

3Indeed the specific situations are those in which Br does not intersect the singular part of Su

and the variation ϕ does not enlarge the discontinuity set.

3



that it indeed constitutes a technically adequate basis for results which depend on
regularity of both ∇u and Su.
The results of this paper are partially contained in the first author’s master thesis
[Pio16], which has been directed by the second author.

2 Preliminaries

In this paper, we use N for the positive integers and N0 for the non-negative inte-
gers. We take 2 ≤ n ∈ N and assume Ω ⊂ Rn to be a bounded open set. For a
measurable set A ⊂ Rn we write Ln(A) for the Lebesgue measure and Hk(A) for
the k-dimensional Hausdorff measure. If 0 < Ln(A) <∞, we use the notation

−
∫
A
u(y) dy = 1

Ln(A)

∫
A
u(y) dy

for the mean value integral of a function u ∈ L1(A). If the domain of integration is
a ball Br(x) and the center is unambiguous, we shorten this to (u)r ..= −

∫
Br(x) u(y) dy.

We set ωn ..= Ln(B1(x)). For % > 0 we call N%(E) ..= {x ∈ Rn : dist(x,E) < %} the
%-neighborhood of a set E ⊂ Rn. We will express by A b Ω that A is a compact set
with A ⊂ Ω.
We briefly recall some notions related to BV functions and refer to [AFP00] for gen-
eral information on this topic. For a function u ∈ BV(Ω) we define the approximate
discontinuity set Su ⊂ Ω by

x /∈ Su ⇐⇒ ∃z ∈ R, s.t. lim
%→0
−
∫

B%(x)
|u(y)− z| dy = 0.

The distributional derivativeDu of u ∈ BV(Ω) can be decomposed into an absolutely
continuous part Dau and a singular part Dsu with respect to the Lebesgue measure
Ln. We have Dau = (∇u)Ln, where ∇u is the approximate differential of u. We call
u ∈ BV(Ω) a special function of bounded variation, if Dsu is concentrated on Su,
that is |Dsu|(Ω \ Su) = 0, and write SBV(Ω) for the corresponding function space.
Under this assumption Dsu is absolutely continuous with respect to the measure
Hn−1 Su, which denotes the restriction of Hn−1 to Su. Because the derivative
of a W1,1 function consists only of the absolutely continuous part, we have, for
u ∈ SBV(Ω), the useful equivalence

u ∈ W 1,1(Ω) ⇐⇒ Hn−1(Su) = 0 . (2.1)

Lemma 2.1. There exists a dimensional constant C > 0 such that, if h is a har-
monic function defined on a ball Br ⊂ Rn with radius r > 0 and 0 < τ ≤ 1

2 , it
holds

−
∫

Brτ
|∇h− (∇h)rτ |2 dx ≤ Cτ 2−

∫
Br
|∇h− (∇h)r|2 dx. (2.2)
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Proof. This is a well-known estimate for harmonic functions. It can be derived from
the bound |V (x)−(V )%| ≤ −

∫
B% |V (x)−V (y)| dy ≤ % supB% |∇V | for V ∈ C1(B%,R

n),
x ∈ B% and an interior estimate for harmonic functions (see [AFP00, Lemma 7.44]).
In short one has

−
∫

Brτ
|∇h− (∇h)rτ |2 dx ≤ (τr)2 sup

x∈Bτr
|∇2h|2 ≤ Cτ 2−

∫
Br
|∇h− (∇h)r|2 dx .

Lemma 2.2. If v ∈ L2(Br) on a ball Br ⊂ Rn, then for all y ∈ Rn there holds

−
∫

Br
|v − (v)r|2 dx ≤ −

∫
Br
|v − y|2 dx.

Proof. This can be easily seen by calculating the minimum of the function f(y) ..=
−
∫

Br |v − y|
2 dx in Rn.

3 Definition and basic properties of almost-mini-
mizers

Here we spell out our definition of almost-minimizers, which has already been mo-
tivated and explained in the introduction.

Definition 3.1 (almost-minimizer). Let a, b > 0. For a function u ∈ SBV(Ω) and
a measurable set A ⊂ Ω we define the (reduced) Mumford-Shah functional MS by
(1.3). We say that a function u ∈ SBV(Ω) that fulfills

MS[u; Br] <∞ for all balls Br b Ω (3.1)

is an (a, b)-almost-minimizer on Ω, if there exists a constant Cm > 0 such that the
following conditions hold:

1. For all balls Br b Ω and functions v ∈ SBV(Ω) with {u 6= v} b Br we have

MS[u; Br] ≤ MS[v; Br] + Cmr
n−1+a. (3.2)

2. For all balls Br b Ω, such that Su coincides in Br with the rotated graph of
an arbitrary function f : Rn−1 → R, and for all ϕ ∈ SBV(Br)∩W1,2(Br \ Su)
with suppϕ b Br we have

MS[u; Br] ≤ MS[u+ ϕ; Br] + Cmr
b
∫

Br

(
1 + |∇u|2 + |∇ϕ|2

)
dx. (3.3)

Remark 3.2. Consider a function u ∈ SBV(Ω) that satisfies (3.1) and condition
(3.2) for a > 1. Then (3.3) holds for b = a− 1 and u is an (a, b)-almost-minimizer.
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Proposition 3.3 (energy upper bound and density lower bound). If u ∈ SBV(Ω)
is an (a, b)-almost-minimizer of MS, then there exists a C0 ≥ 1 and a radius r0 ≤ 1,
such that for all balls Br(x) ⊂ Ω with r ≤ r0 we have∫

Br(x)
|∇u|2 dy +Hn−1(Su ∩ Br(x)) ≤ C0r

n−1 (3.4)

and for all balls Br(x) ⊂ Ω with center x ∈ Su and r ≤ r0 we get

C−1
0 rn−1 ≤ Hn−1(Su ∩ Br(x)) ≤ C0r

n−1. (3.5)

Proof. This is a well-known fact about almost-minimizers in the sense of (3.2). See
for example [AFP00, Lemma 7.19] and [AP97].

Remark 3.4. As a routine consequence of the density lower bound in (3.5) and a
theorem on k-dimensional densities (see [AFP00, Theorem 2.56]), almost-minimizers
in the sense of (3.2) satisfy

Hn−1((Su \ Su) ∩ Ω) = 0 .

If u also fulfills (3.3), we have Hn−1(Su+ϕ) ≤ Hn−1(Su) for ϕ as in Definition 3.1,
and (3.3) actually implies∫

Br
|∇u|2 dx ≤

∫
Br
|∇u+∇ϕ|2 dx+ Cmr

b
∫

Br

(
1 + |∇u|2 + |∇ϕ|2

)
dx.

4 Minimizers of the full functional are almost-
minimizers

In this section we show that minimizers of the full Mumford-Shah functional are
almost-minimizers of the reduced functional. Actually, we consider the SBV version
of (1.1), that is

MSg[u] :=
∫

Ω
|∇u|2 dx+ λ

∫
Ω
|u− g|2 dx+Hn−1(Su) for u ∈ SBV(Ω) (4.1)

with g ∈ L∞(Ω), λ ∈ (0,∞), and we recall that minimizers u ∈ SBV(Ω) of MSg
correspond to minimizers (u,K) = (u, Su) of (1.1); see for instance [Fus03]. Since,
in this sense, the minimization problems for MSg and (1.1) are equivalent, it is
enough to show that minimizers of MSg are also almost-minimizers in our sense. A
precise statement of this result reads:

Proposition 4.1. If u ∈ SBV(Ω) is a minimizer of MSg, then u is an (a, b)-almost-
minimizer of MS with a = b = 1.

Proof. First we observe, that every minimizer u of MSg is bounded almost every-
where by ‖g‖∞, i.e. ‖u‖∞ ≤ ‖g‖∞. This can be checked by comparing the minimizer
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u with the truncated function ũ(x) = max{−‖g‖∞,min{‖g‖∞, u(x)}}. Notice that
ũ ∈ SBV(Ω), Sw ⊂ Su and |∇ũ| ≤ |∇u| almost everywhere. Arguing by contradic-
tion yields u = ũ almost everywhere and consequently ‖u‖∞ ≤ ‖g‖∞. Moreover,
comparing with w ≡ 0 ∈ SBV(Ω), we get an upper bound MSg[u] ≤ MSg[0] =
λ‖g‖2

L2(Ω) for MSg[u].
Step 1: We show that u satisfies condition (3.2). For this purpose let Br b Ω
and v ∈ SBV(Ω) with {v 6= u} b Br. Using a truncation we define ṽ(x) =
max{−‖g‖∞,min{‖g‖∞, v(x)}} and as before ṽ ∈ SBV(Ω), Sṽ ⊂ Sv and |∇ṽ| ≤ |∇v|
almost everywhere. Observe that there is no cutoff outside Br, that is ṽ(x) = v(x) =
u(x) for x /∈ Br, because u is bounded by ‖g‖∞ and {v 6= u} b Br. We can estimate
the difference between g and the truncated function ṽ by calculating∫

Br
|ṽ − g|2 dx ≤

∫
Br

2
(
|ṽ|2 + |g|2

)
dx ≤ 4ωn‖g‖∞rn.

Using this estimate and applying the minimality MSg[u] ≤ MSg[ṽ] on the ball Br

we get

MS[u; Br] ≤
∫

Br
|∇ṽ|2 dx+Hn−1(Sṽ ∩ Br) + λ

∫
Br
|ṽ − g|2 dx− λ

∫
Br
|u− g|2 dx

≤
∫

Br
|∇v|2 dx+Hn−1(Sv ∩ Br) + 4ωnλ‖g‖∞rn

≤ MS[v; Br] + Crn−1+a

with C = 4ωnλ‖g‖∞ and a = 1. This proves the statement.
Step 2: We show that u also satisfies condition (3.3). Consider a ball Br b Ω, such
that Su∩Br coincides with the rotated graph Γ of a function f : Rn−1 → R. Assume
for simplicity that Br is centered at zero and the rotation is the identity. We first
establish a Poincaré type inequality for ϕ̃ ∈ C1(Br \ Su) with supp ϕ̃ b Br. To this
end, we abbreviate Dr

..= {x′ ∈ Rn−1 : |x′| < r},

B+ ..= {(x′, xn) ∈ Br : xn > f(x′)} , B− ..= {(x′, xn) ∈ Br : xn < f(x′)} .

Now we write ϕ̃(x′, xn) =
∫ xn
−r ∂nϕ̃(x′, t) dt and use Fubini’s theorem and Hölder’s

inequality in a standard way to get
∫

B−
|ϕ̃|2 dx ≤ 2r

∫
Dr

∫ min{f(x′),r}

−r

∫ xn

−r
|∂nϕ̃(x′, t)|2 dt dxn dx′

≤ 4r2
∫
Dr

∫ f(x′)

−r
|∂nϕ̃(x′, t)|2 dt dx′ ≤ 4r2

∫
B−
|∇ϕ̃|2 dx.

Clearly, the analogous inequality holds on B+ and thus on the whole ball Br. By
approximation the estimate on Br extends to ϕ ∈ SBV(Br) ∩W1,2(Br \ Su) with
suppϕ b Br. Indeed, by the Meyers-Serrin theorem we find a sequence {ϕn}n∈N ⊂
C1(Br\Su)∩W1,2(Br\Su) which converges to ϕ in the W1,2-norm. We have suppϕ ⊂
Bt for some t < r and consider a cut-off function η ∈ C1

cpt(Br) with η ≡ 1 in Bt.
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Then {ηϕn}n∈N also converges to ϕ in W1,2(Br \ Su), and the previously derived
Poincaré inequality holds for ηϕn on Br. Passing to the limit, we conclude∫

Br
|ϕ|2 dx ≤ 4r2

∫
Br
|∇ϕ|2 dx . (4.2)

Now we turn to our main concern. As in Step 1 we utilize ‖u‖∞ ≤ ‖g‖∞ and the
fact that u is a minimizer for MSg. Combining this with Young’s inequality in the
form 2|ϕ| ≤ r + 1

r
|ϕ|2 and, in the last step, with the inequality (4.2), we infer

MS[u; Br] ≤ MS[u+ ϕ; Br] + λ
∫

Br
|u− g + ϕ|2 dx− λ

∫
Br
|u− g|2 dx

≤ MS[u+ ϕ; Br] + 2λ
∫

Br
|u− g| |ϕ| dx+ λ

∫
Br
|ϕ|2 dx

≤ MS[u+ ϕ; Br] + 2λr‖g‖∞Ln(Br) +
(
2λ‖g‖∞

1
r

+ λ
) ∫

Br
|ϕ|2 dx

≤ MS[u+ ϕ; Br] + Crb
∫

Br

(
1 + |∇u|2 + |∇ϕ|2

)
dx,

with b = 1 and a constant C, that depends on ‖g‖∞, λ, and the diameter of the
bounded set Ω. This completes the proof.

5 L∞ gradient estimates

In this section we derive L∞ bounds for ∇u, which are crucial for our purposes. We
start with an “interior” case.

Lemma 5.1 (gradient estimate away from Su). If u ∈ SBV(Ω) is an (a, b)-almost-
minimizer of MS, then, for every β ∈ (0, 1) with β ≤ b

2 , there exist constants C
′ ≥ 1

and 0 < r′ ≤ 1 with the following property. For every Lebesgue point x0 ∈ Ω of ∇u
and every r < r′ with Br(x0) ∩ Su = ∅ and Br(x0) b Ω, it holds

|∇u(x0)|2 ≤ C ′−
∫

Br

(
|∇u|2 + r2β

)
dx. (5.1)

Proof. We will only deal with balls centered at x0, and for this reason we simplify
our notation by writing Br instead of Br(x0). Notice that rb ≤ r2β and thus u
satisfies condition (3.3) with 2β instead of b. Recall that u ∈ W1,2(Br) because of
Su ∩ Br = ∅ and (2.1).
Step 1: It is well known that there exists a unique harmonic function h on Br with
ϕ ..= h− u ∈W1,2

0 (Br). We now employ condition (3.3) with the test function ϕ on
balls Bs with s > r and then send s↘ r. In this way we obtain∫

Br
|∇u|2 dx ≤

∫
Br
|∇h|2 dx+ Cmr

2β
∫

Br

(
1 + |∇u|2 + |∇u−∇h|2

)
dx .
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Taking into account the harmonicity of h we infer

−
∫

Br
|∇u−∇h|2 dx = −

∫
Br
|∇u|2 dx−−

∫
Br
|∇h|2 dx+ 2−

∫
Br
∇h·∇ϕ dx

≤ Cmr
2β−
∫

Br

(
1 + |∇u|2 + |∇u−∇h|2

)
dx .

Choosing r′ small enough that Cmr′2β ≤ 1
2 and absorbing a term on the left-hand

side, we arrive at

−
∫

Br
|∇u−∇h|2 dx ≤ 2Cmr2β−

∫
Br

(
1 + |∇u|2

)
dx .

Step 2: Here we deduce the basic excess decay. We work with a constant C, which
varies from line to line, and with 0 < τ ≤ 1

2 . By Step 1, Lemma 2.1, and Lemma
2.2 we get

−
∫

Bτr
|∇u− (∇u)τr|2 dx ≤ −

∫
Bτr
|∇u− (∇h)τr|2 dx

≤ C

(
−
∫

Bτr
|∇h− (∇h)τr|2 dx+−

∫
Bτr
|∇u−∇h|2 dx

)

≤ C

(
τ 2−
∫

Br
|∇h− (∇h)r|2 dx+−

∫
Bτr
|∇u−∇h|2 dx

)

≤ Ĉτ 2−
∫

Br
|∇u− (∇u)r|2 dx+ Cτ−n−

∫
Br
|∇u−∇h|2 dx

≤ τ 2γ−
∫

Br
|∇u− (∇u)r|2 dx+ C∗r

2β−
∫

Br

(
1 + |∇u|2

)
dx .

Here, in the last step we fixed τ such that Ĉτ 2 ≤ τ 2γ for some γ ∈ (β, 1). We
emphasize that Ĉ, τ , and C∗ depend only on the dimension n, on Cm, and on b.
Step 3: Next we iterate the estimate from Step 2. We introduce the abbreviation

E(τ ir) ..= −
∫

Bτir
|∇u− (∇u)τ ir|2 dx for i ∈ N0

for the excess on Bτ ir and set

Mi
..= τ 2i(γ−β) + 2C∗τ−2β

i−1∑
`=0

τ 2`(γ−β) for i ∈ N0 .

We can assume C∗ ≥ 1 and therefore M0 ≤ M1 ≤ · · · ≤ Mi for i ∈ N. Because of
τ ∈ (0, 1) and γ−β > 0 it follows that Mi are bounded for i→∞ and consequently
we have M ..= sup

i∈N0

Mi <∞.

We now prove by induction the hypothesis

E(τ ir) ≤Miτ
2iβ
(
r2β +−

∫
Br
|∇u|2 dx

)
for every r ∈ (0, r′) and i ∈ N0 (5.2)
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with r′ ..= min{[Mτ−n(1 + 1
1−τβ )2]

1
−2β , (2Cm)−β, 1}.

Base case: For i = 0, we have M0 = 1, and by employing Lemma 2.2 it follows

E(r) = −
∫

Br
|∇u− (∇u)r|2 dx ≤ −

∫
Br
|∇u− 0|2 dx+ r2β.

Inductive step: Assume that (5.2) holds for i = 0, 1, . . . k with a k ∈ N0. We show
that (5.2) is true for i = k + 1. First of all, notice, that by replacing r with τ ir in
Step 1 and Step 2 we immediately get the corresponding result

E(τ k+1r) ≤ τ 2γE(τ kr) + C∗(τ kr)2β
(

1 +−
∫

B
τkr

|∇u|2 dx
)

(5.3)

for i = k + 1. Next we derive an estimate for the integral on the right-hand side of
(5.3). Adding and subtracting mean values iteratively gives
(
−
∫

B
τkr

|∇u|2 dx
) 1

2

≤
(
−
∫

B
τkr

|∇u−(∇u)τkr|2 dx
) 1

2

+ |(∇u)r|+
k−1∑
i=0
|(∇u)τ i+1r−(∇u)τ ir|

≤ |(∇u)r|+ E(τ kr) 1
2 +

k−1∑
i=0

(
−
∫

Bτi+1r

|∇u− (∇u)τ ir|2 dx
) 1

2

≤ |(∇u)r|+ τ−
n
2

k∑
i=0

E(τ ir) 1
2 .

Using the induction hypothesis and evaluating the geometric series, we get

k∑
i=0

E(τ ir) 1
2 ≤

k∑
i=0

M
1
2
i τ

iβ

(
r2β +−

∫
Br
|∇u|2 dx

) 1
2

≤ M
1
2
k

1− τβ

(
r2β +−

∫
Br
|∇u|2 dx

) 1
2

.

Setting Cτ ..= τ−
n
2 (1 + 1

1−τβ ) we conclude

−
∫

B
τkr

|∇u|2 dx ≤ C2
τMk

(
r2β +−

∫
Br
|∇u|2 dx

)
. (5.4)

We use this estimate on the right-hand side of (5.3) and use the induction hypothesis
once more to get

E(τ k+1r)

≤ τ 2γE(τ kr) + C∗τ
2kβr2β

(
1 + C2

τMk

(
r2β +−

∫
Br
|∇u|2 dx

))
≤ τ 2γMkτ

2kβ
(
r2β+−

∫
Br
|∇u|2 dx

)
+ C∗τ

2kβ
(
r2β+C2

τMkr
4β+C2

τMkr
2β−
∫

Br
|∇u|2 dx

)
≤ τ 2(k+1)β

(
C∗τ

−2β(1 + C2
τMkr

2β) + τ 2(γ−β)Mk

)(
r2β +−

∫
Br
|∇u|2 dx

)
.

10



Due to the way we defined r′ and Cτ it follows

C2
τMkr

2β ≤ C2
τMk(

1
C2
τMk

)
2β
2β = 1

and because of Mk+1 = τ 2(γ−β)Mk + 2C∗τ−2β we conclude

E(τ k+1r) ≤ τ 2(k+1)β
(
2C∗τ−2β + τ 2(γ−β)Mk

)(
r2β +−

∫
Br
|∇u|2 dx

)
= τ 2(k+1)βMk+1

(
r2β +−

∫
Br
|∇u|2 dx

)
,

and this proves the inductive step.
Step 4: We recall that, by assumption, x0 is a Lebesgue point of ∇u. Moreover,
we record that Step 3 also gives (5.4) for all k ∈ N. All in all, we thus conclude

|∇u(x0)|2 = lim
k→∞
|(∇u)τkr|2 ≤ lim sup

k→∞
−
∫

B
τkr

|∇u|2 dx ≤ C2
τM

(
r2β +−

∫
Br
|∇u|2 dx

)
.

This proves the lemma.

Next we establish a similar L∞ bound also in a sort-of “boundary” case.

Lemma 5.2 (gradient estimate near regular points of Su). Let u ∈ SBV(Ω) be
an (a, b)-almost-minimizer of MS. Then, for all α, β ∈ (0, 1) with β ≤ 1

2 min{α, b},
there exist constants C ′′ ≥ 1 and 0 < r′′ ≤ 1 with the following property. If B2r(x0) b
Ω is a ball with x0 ∈ Su and 0 < r ≤ r′′ such that

Su ∩ B2r(x0) = [x0 + Γ] ∩ B2r(x0) ,

where Γ is the rotated graph of a C1,α function f : Rn−1 → R with f(0) = 0 that
fulfills

‖∇f‖∞ + rα[∇f ]C0,α ≤ 1
10 , (5.5)

then we have

sup
x∈B r

100
(x0)
|∇u(x)|2 ≤ C

′′−
∫

B2r(x0)

(
|∇u|2 + r2β

)
dx. (5.6)

Proof. We assume x0 = 0, and we omit the center for balls around 0. Possibly
reparametrizing the graph Γ over a different hyperplane, we can also assume that
Γ is the graph of f with ∇f(0) = 0 without need for further rotation. We start
by investigating a transformation Φ that maps Su ∩ Br in the hyperplane H ..=
Rn−1 × {0}. For x = (x′, xn) ∈ Rn−1 × R we define this C1,α diffeomorphism
Φ : Rn → Rn by setting

Φ(x′, xn) ..= (x′, xn − f(x′)).
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It is easy to check det DΦ(x) = 1 and DΦ(0) = In (with the n×n unit matrix In).
Moreover, DΦ inherits the Hölder property from ∇f , in fact ‖DΦ(x) − DΦ(y)‖ ≤
nL|x− y|α with operator norm ‖A‖ ..= max

|x|=1
|Ax| and Hölder constant L of ∇f .

For x ∈ Br, the assumption ‖∇f‖∞ ≤ 1
10 immediately implies |Φ(x)− Φ(0)| ≤ 11

10r.
Taking into account that the inverse function Φ−1(x′, xn) = (x′, xn + f(x′)) has the
same properties, for Vr ..= Φ(Br), we have

B 9
10 r
⊂ Vr ⊂ B 11

10 r
.

After these preliminary considerations we focus our attention on the transformed
function w ..= u ◦ Φ−1 on Vr. We obtain w ∈ SBV(Vr) and w ∈ W1,2(Vr \ Sw),
because Φ is a C1 diffeomorphism. Furthermore, we have

Sw ∩ Vr = Φ(Su ∩ Br) = H ∩ Vr
by definition of Φ. Let ϕ̃ be a function that fulfills ϕ̃ ∈ W1,2(Vr \ Sw) ∩ SBV(Vr)
and supp(ϕ̃) b Vr. Thus ϕ ..= ϕ̃ ◦ Φ is a comparison function for u, that is ϕ ∈
W1,2(Br \ Su) ∩ SBV(Br) and supp(ϕ) b Br. Now we check in which way condition
(3.3) for u transfers to w. To this end we compute∫
Vr\Sw

|∇w(y)|2 dy =
∫

Br\Su
|DΦ−1(Φ(x)) · ∇u(x)|2 | det(DΦ)| dx

≤
∫

Br\Su
‖DΦ−1(Φ(x))−DΦ−1(Φ(0)) + In‖2 |∇u(x)|2 dx

≤
∫

Br\Su

(
nL|Φ(x)− Φ(0)|α + ‖In‖

)2
|∇u(x)|2 dx

≤
[
1 + 2nL

(11
10r

)α
+ n2L2

(11
10r

)2α ] ∫
Br\Su

|∇u(x)|2 dx

≤
[
1 + Tr

][ ∫
Br\Su

|∇u(x)+∇ϕ(x)|2 dx+ Cmr
b
∫

Br\Su

(
1+|∇u(x)|2+|∇ϕ(x)|2

)
dx
]
,

where we set Tr ..= 2nL
(

11
10r
)α

+ n2L2
(

11
10r
)2α

. Using the inverse transformation,
we get additional factors Tr and we obtain∫

Vr\Sw
|∇w|2 dy

≤
∫
Vr\Sw

|∇w+∇ϕ̃|2 dy +
[
2Tr + T 2

r + (1+Tr)2Cmr
b
] ∫

Vr\Sw

(
1+|∇w|2+|∇ϕ̃|2

)
dy

≤
∫
Vr\Sw

|∇w +∇ϕ̃|2 dy + C̃r2β
∫
Vr\Sw

(
1 + |∇w|2 + |∇ϕ̃|2

)
dy,

where we used 2β = min{α, b} to eliminate the different powers of r. Next, we have
to transfer this estimate to balls B% ⊂ B 9

10 r
⊂ Vr with center Φ(0) = 0. To this

purpose consider φ ∈W1,2(B% \ Sw) ∩ SBV(B%) with supp(φ) b B%, so that ∇φ = 0
on Vr \ B%. This yields∫

B%
|∇w|2 dy ≤

∫
B%
|∇w +∇φ|2 dy + Ĉr2β

∫
B%
|∇φ|2 dy + Ĉr2β

∫
Bs

(
1 + |∇w|2

)
dy,
(5.7)
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with s ..= 11
10r. Notice, that w is well defined on Bs because of Φ−1(B 11

10 r
) ⊂ B2r ⊂ Ω.

To recap, we now have a SBV function w, that fulfills (5.7) on a ball B% and whose
discontinuity set Su is equal to a hyperplane H. Therefore, the set Su divides the
ball B% into two half-balls

B±% = {(y′, yn) ∈ B% : ±yn > 0}

and w is a W1,2 function on each of them. This makes it possible, to define two W1,2

functions w+ and w− on the whole ball by even reflection:

w±(y′, yn) ..=
{
w(y′, yn) for ± yn > 0
w(y′,−yn) for ± yn < 0

for (y′, yn) ∈ Bs. From now on, we fix % ..= 8
10r = 8

11s. Consequently, we are in a
similar situation as in Lemma 5.1 and can closely follow the steps of its proof.
Step 1: Let h± ∈ W1,2(B%) denote the harmonic functions such that ϕ± ..=
h± − w± ∈W1,2

0 (B%). We use these functions to define

h ..= h+1B+
%

+ h−1B−% and ϕ ..= ϕ+1B+
%

+ ϕ−1B−% .

Thus, we have ϕ ∈ SBV(B%) ∩W1,2(B% \H), ϕ = h− w with zero boundary values
at ∂B% (see [AFP00, Theoreme 3.84 and Theorem 3.87]). This means, ϕ is a valid
comparison function for w (at first in a slightly bigger ball B%′ where ϕ has compact
support, then taking the limit %′ ↘ %) and from (5.7) we infer∫

B%
|∇ϕ|2 dy =

∫
B%
|∇w|2 dy −

∫
B%
|∇h|2 dy +

∫
B%

2∇w·∇h dy

≤ Ĉr2β
∫

B%
|∇ϕ|2 dy + Ĉr2β

∫
Bs

(
1 + |∇w|2

)
dy.

For r small enough, we can absorb one term to deduce

−
∫

B%
|∇h+−∇w+|2 dy+−

∫
B%
|∇h−−∇w−|2 dy ≤ C̄r2β−

∫
Bs

(
1 + |∇w+|2 + |∇w−|2

)
dy.

(5.8)
Step 2: For i ∈ N0 and 0 < τ ≤ 1

2 we define the excess as

E(τ i%) ..= −
∫

Bτi%
|∇w+ − (∇w+)τ i%|2 dy +−

∫
Bτi%
|∇w− − (∇w−)τ i%|2 dy.

Using (5.8), Lemma 2.1, Lemma 2.2 we follow the calculations of Step 2 in Lemma
5.1. In short this yields

E(τ%) ≤ C̃

(
τ 2E(%) + 2

τn
−
∫

B%
|∇w+ −∇h+|2 dy + 2

τn
−
∫

B%
|∇w− −∇h−|2 dy

)

≤ τ 2γE(%) + C∗%
2β−
∫

Bs

(
1 + |∇w+|2 + |∇w−|2

)
dy ,
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where we have chosen 0 < τ ≤ 1
2 such that C̃τ 2 ≤ τ 2γ for some γ ∈ (β, 1).

Step 3: Again, the previous calculations can be easily transfered to smaller balls
Bτ i%, so that we get

E(τ i+1%) ≤ τ 2γE(τ i%) + C∗(τ i%)2β−
∫

Bτis

(
1 + |∇w+|2 + |∇w−|2

)
dy (5.9)

for i ∈ N0. Set

Mi
..= τ 2i(γ−β) + 2C∗τ−2β

i−1∑
l=0

τ 2l(γ−β) for i ∈ N0

and recall, that the sequence Mi is non-decreasing and bounded by a value M.

The following induction is mostly similiar to the one in the proof of Lemma 5.1,
but we examine both functions w+ and w− at once, and the transformation between
the radii % = 8

10r = 8
11s gives rise to some additional factors. Our goal is to prove

for every r ∈ (0, r′′) and i ∈ N0 the hypothesis

E(τ i%) ≤Miτ
2iβ
(
%2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy
)
, (5.10)

where % = 8
10r and r′′ ..= min{[Mτ−2n(1 + 1

1−τβ )2]
1
−2β , (2Ĉ)−β, 1}.

Base cases: For i = 0, we get M0 = 1, and using Lemma 2.2 and s/% ≤ 2 we
immediately have

E(%) ≤ −
∫

B%

(
|∇w+|2 + |∇w−|2

)
dy ≤ %2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy .

We also treat the case i = 1 as a base case. In this case the claim follows from the
case i = 0 and (5.9) as follows:

E(τ%) ≤ τ 2γE(%) + C∗%
2β−
∫

Bs

(
1 + |∇w+|2 + |∇w−|2

)
dy

≤ τ 2γ%2β + τ 2γ2n−
∫

Bs

(
|∇w+|2 + |∇w−|2

)
dy + C∗%

2β−
∫

Bs

(
1 + |∇w+|2 + |∇w−|2

)
dy

≤ (τ 2γ + 2C∗)
(
%2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy
)

= M1τ
2β
(
%2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy
)
.

Inductive step: Suppose (5.10) is true for i = 0, 1, 2, . . . , k with a positive integer k.
Then we show that it holds for i = k + 1. The calculations are mostly the same as
before, but we need to consider an integral with domain Bτk−1% (which makes sense
since k − 1 ≥ 0). We first use the estimate τs ≤ 1

2 ·
11
8 % ≤ %, then add and subtract

mean values iteratively. In this way we arrive at(
−
∫

B
τks

(
|∇w+|2 + |∇w−|2

)
dy
) 1

2 ≤
(
τ−n−

∫
B
τk−1%

(
|∇w+|2 + |∇w−|2

)
dy
) 1

2

≤ τ−n/2
(
−
∫

B%

(
|∇w+|2 + |∇w−|2

)
dy
) 1

2 + τ−n
k−1∑
i=0

E(τ i%) 1
2 .
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Using the inductive hypothesis we get
k−1∑
i=0

E(τ i%) 1
2 ≤

k−1∑
i=0

(
Miτ

2iβ
(
%2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy
)) 1

2

≤
( 1

1− τβ
)
M

1
2
k

(
%2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy
) 1

2

.

Setting Cτ ..= τ−n(1 + 1
1−τβ ) we conclude

−
∫

B
τks

(
|∇w+|2 + |∇w−|2

)
dy ≤ C2

τMk

(
%2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy
)
.

From the estimate (5.9), the preceding inequality, and the hypothesis (5.10) for
i = k, we infer

E(τ k+1%) ≤ τ 2γE(τ k%) + C∗(τ k%)2β−
∫

B
τks

(
1 + |∇w+|2 + |∇w−|2

)
dy

≤ τ 2γE(τ k%) + C∗(τ k%)2β
(

1 + C2
τMk

(
%2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy
))

≤ τ 2(k+1)β
(
C∗τ

−2β(1+C2
τMk%

2β) + τ 2(γ−β)Mk

)(
%2β + 2n−

∫
Bs

(
|∇w+|2+|∇w−|2

)
dy
)
.

In view of the choice of r′′ it follows C2
τMk%

2β ≤ 1 and we conclude

E(τ k+1%) ≤ τ 2(k+1)β
(
2C∗τ−2β + τ 2(γ−β)Mk

)(
%2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy
)

= τ 2(k+1)βMk+1
(
%2β + 2n−

∫
Bs

(
|∇w+|2 + |∇w−|2

)
dy
)
.

Step 4: Notice, that the deduced estimates are also true for balls B%(z) with
z ∈ Br/50 ∩H, because we still have B%(z) ⊂ B 9

10 r
and the hyperplane H splits the

ball in two half-balls.
We now want an estimate for the gradient ∇w for Lebesgue points ŷ ∈ Br/50 \ H
which again fulfill B%(ŷ) ⊂ B 9

10 r
. Let z ∈ Br/50∩H be such that |ŷ−z| = dist(ŷ, H).

Let l ∈ N0 be the power of τ , such that Bτ l%(ŷ) ∩ H 6= ∅ and Bτ l+1%(ŷ) ∩ H = ∅.
This means, Bτ l%(ŷ) is the last ball of the sequence (Bτ i%(ŷ))i∈N0 that intersects H,
thus we have dist(ŷ, H) ≤ τ l%. The basic idea is to use an estimate like in Lemma
5.1 for the small balls around ŷ that do not intersect H, and the remaining balls
can be estimated by balls around z ∈ H where we can use (5.10). Because of τ ≤ 1

2
we have Bτ l+1%(ŷ) ⊂ Bτ l−1%(z) and this yields the helpful estimate

−
∫

B
τl+1%(ŷ)

|∇w| dy ≤ 1
τ 2n−

∫
B
τl−1%(z)

(|∇w+|+ |∇w−|) dy. (5.11)

(We can assume l ≥ 1, because the case l = 0 can be directly calculated by compar-
ison with the ball Bs, so that z ∈ H is not needed.) In order to control

|∇w(ŷ)| = lim
k→∞
|(∇w)B

τk%
(ŷ)| ≤ |(∇w)B

τl+2%(ŷ)|+
∞∑
i=0
|(∇w)B

τi+l+3%(ŷ)−(∇w)B
τi+l+2%(ŷ)|,

(5.12)
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we first treat the sum on the right side. Rewriting a single summand we can estimate
it by

τ−n−
∫

B
τi+l+2%(ŷ)

|∇w − (∇w)B
τi+l+2%(ŷ)| dy ≤ τ−

n
2 [E(τ i(τ l+2%); ŷ)] 1

2 .

Notice that w ∈W1,2(Bτ l+1%(ŷ)), which allows us to follow the exact steps of Lemma
5.1 (using the transformed minimality condition (5.7)) to get an estimate for the
excess. This results in

∞∑
i=0

[E(τ i(τ l+2%); ŷ)] 1
2 ≤

(
C−
∫

B
τl+1%(ŷ)

(
|∇w|2 + r2β

)
dy
) 1

2

with the obvious notation for the excess on balls centered at ŷ. Using (5.11) to pass
over to Bτ l−1%(z) we can use a similar argument utilizing (5.10) to conclude(

−
∫

B
τl+1%(ŷ)

|∇w|2 dy
) 1

2

≤
(

1
τ 2n−

∫
B
τl−1%(z)

(
|∇w+|2 + |∇w−|2

)
dy
) 1

2

≤ τ−
3
2 [E(τ l−2%); z] 1

2 + τ−n
(
|(∇w+)B

τl−2%(z)|+ |(∇w−)B
τl−2%(z)|

)
≤ 2n+2τ−n

(
−
∫

Bs
|∇w|2 dy

) 1
2

+ 2τ− 3n
2

l−2∑
i=0

[E(τ i%; z)] 1
2

≤ 2n+2τ−n
(
−
∫

Bs
|∇w|2 dy

) 1
2

+ 4τ− 3n
2

∞∑
i=0

M
1
2 τ iβ

(
%2β + 2n−

∫
Bs
|∇w|2 dy

) 1
2

≤
(
C−
∫

Bs

(
|∇w|2 + r2β

)
dy
) 1

2

.

We can use the same argument to estimate the remaining term |(∇w)B
τl+2%(ŷ)| of

equation (5.12), and in conclusion (5.12) yields

|∇w(ŷ)| ≤
(
C−
∫

Bs

(
|∇w|2 + r2β

)
dy
) 1

2

.

Transforming this estimate back to u generates once again factors Tr = 2nL
(

11
10r
)α

+

n2L2
(

11
10r
)2α

which can be estimated by a dimensional constant because of the as-
sumption rα‖∇f‖C0,α ≤ 1

10 . For x̂ ∈ Br/100 we clearly have ŷ = Φ(x̂) ∈ Br/50 and it
follows

|∇u(x̂)|2 = |DΦ(x̂) · ∇w(ŷ)|2 ≤ (1 + Tr/100)|∇w(ŷ)|2

≤ (1 + Tr/100)C−
∫

Bs

(
|∇w|2 + r2β

)
dy

≤ (1 + Tr/100)C(1 + Tr/100)−
∫

Φ−1(Bs)

(
|∇u|2 + r2β

)
dx

≤ C
′′−
∫

B2r

(
|∇u|2 + r2β

)
dx.
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Finally, because almost every point is a Lebesgue point, we have

sup
x∈B r

100

|∇u(x)|2 ≤ C
′′−
∫

B2r

(
|∇u|2 + r2β

)
dx .

This completes the proof.

In the next statement, we summarize the highly developed partial regularity theory
for Mumford-Shah almost-minimizers with its culmination in the porosity of the
set of singular points of Su, and we also incorporate — the decisive feature for our
purposes — the gradient estimate near regular points of Su.

Proposition 5.3. If u ∈ SBV(Ω) is an (a, b)-almost-minimizer of MS, then there
exist r0 > 0, 1

15 > ε > 0, and L0 > 0, such that for all x ∈ Su with Br(x) b Ω and
r < r0, we find y ∈ Br/2(x) ∩ Su such that

Su ∩ B2r/L0(y) = [y + Γ] ∩ B2r/L0(y),

where Γ is a rotated graph of a C1,α function f : Rn−1 → R with f(0) = 0 and
α = min{a,1/2}

2(n+1) . Furthermore, the L∞-norm and the C0,α-seminorm of f can be
bounded by

‖∇f‖∞ + rα[∇f ]C0,α ≤ ε , (5.13)

and we have
r sup

B2r/L0 (y)
|∇u|2 ≤ L2

0. (5.14)

Proof. Taking into account that u fulfills the requirements of the almost-minimizer
concept used in [Dav05], we employ [Dav05, Corollary 75.15]. Thus, we find a
y ∈ Br/2(x)∩Su such that Su coincides in Bs(y) with a rotation of the graph of a C1

function f , for some C � 1 and 200
C
r ≤ s < 1

6r. Indeed, the proof of this statement
in [Dav05] basically follows the reasoning for true minimizers in [Dav96, Rig00]. It
first establishes, for some ε < 1

15 , the smallness condition for the excess (cf. [Dav05,
Theorem 75.2] and the remarks thereafter)

s1−n
(∫

B2s(y)
|∇u(z)|2 dz + s−2 inf

A∈A

∫
Su∩B2s(y)

dist(z, A)2 dHn−1(z)
)
≤ ε

(where A is the set of all affine hyperplanes in Rn) and then applies the ε-regularity
theorem [AFP97, Theorem 3.1]. From the latter theorem we read off that f can even
be taken C1,α with the exponent α stated above, and by tracing the corresponding
estimates in [AP97, Theorem 5.3, Remark 5.4, Lemma 6.1], [AFP97, Corollary 6.2]
we arrive at (5.13); compare also [AFP00, Theorems 8.1, 8.2, 8.3] for the case a ≥ 1.
In view of (5.13) we can finally apply Lemma 5.2 on Bs(y) (with any admissible
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choice of β) to obtain

sup
B2r/C(y)

r|∇u|2 ≤ sup
B s

200
(y)
r|∇u|2 ≤ rC

′′−
∫

Bs(y)

(
|∇u|2 + s2β

)
dz

≤ C
′′ r

sωn
s1−n

∫
B2s(y)

|∇u|2 dz + C ′′rs2β

≤ C
′′

400ωn
Cε+ C

′′
r2β+1

0 ≤ L2
0,

for sufficiently large L0. This shows (5.14), and the proof is complete.

6 Proof of the higher integrability result

This section follows closely [DPF14]. However, while in [DPF14] gradient estimates
follow easily from the fact that u is harmonic in Ω \ K and solves a Neumann
problem, this basic reasoning is longer available in our case of almost-minimizers.
We thus rely, as a substitute, on the gradient estimates of Section 5 and also stay
in SBV setting where Su replaces K. Still, since the reasoning remains close enough
to [DPF14], we only provide a comparably brief rereading and refer to [DPF14] for
full details.
As usual, let u ∈ SBV(Ω) be an (a, b)-almost-minimizer of MS on an open bounded
set Ω ⊂ Rn. We work on a fixed ball B2r0(x0) b Ω with radius r0 small enough that
the requirements of Corollary 3.3, Lemma 5.1 and Proposition 5.3 are fulfilled. To
simplify notation we omit the center for every ball centered at x0.
In the following we examine the superlevel sets

Ah ..= {x ∈ B2r0 \ Su : |∇u(x)|2 ≥Mh+1}

for M � 1 and h ∈ N.
With the help of the gradient estimates away from Su we first establish the following
lemma, which in turn plays a role in the full proof of Lemma 6.2.

Lemma 6.1. There exists M0 > 0, such that for M ≥M0 and r ≤ r0 we have

Ah ∩ Br−2M−h ⊂ NM−h(Su ∩ Br) for every h ∈ N.

Proof. Using the notation of Corollary 3.3 and Lemma 5.1 we make the choice
M0 ..= max{C ′(C0/ωn+2), 1/r0, 1/r′} and assume M ≥ M0. Let h ∈ N, x ∈ Ah ∩
Br−2M−h 6= ∅ be a Lebesgue point of ∇u, d ..= dist(x, Su) and z ∈ Su such that
|x− z| = d.
We assume d > M−h and argue by contradiction. It follows BM−h(x) ∩ Su = ∅ and
because of our choice of M0, the requirements for the energy upper bound (3.4)

18



and the gradient estimate (5.1) away from Su are fulfilled on BM−h(x). Using these
estimates and the definition of Ah we conclude

Mh+1 ≤ |∇u(x)|2 ≤ C ′−
∫

B
M−h (x)

(
|∇u|2 +M−h2β

)
dy

≤ C ′
(
C0

ωn
Mh +M−h2β

)
≤ C ′

(
C0

ωn
+ 1

)
Mh.

This givesM ≤ C ′(C0/ωn+1) which is impossible, since we tookM0 ≥ C ′(C0/ωn+2).
Therefore, we have d ≤ M−h, which yields z ∈ Br and x ∈ NM−h(Su ∩ Br). Taking
into account that almost every point is a Lebesgue point, this proves the lemma.

Lemma 6.2. Assume that ε and L0 are as in Proposition 5.3. Then there exist
C1, C2,M2 ≥ 1, α ∈ (0, 1

4) and sequences of radii {Rh}h∈N, {Sh}h∈N, such that for
M ≥M2 and every h ∈ N we have:

1. The radii fulfill

• r0 ≥ Rh ≥ Sh ≥ Rh+1 ≥ r0/2,

• Rh −Rh+1 ≤M−h+1
2 and Sh −Rh+1 = 8M−(h+1),

• Hn−1
(
Su ∩ (BSh \BRh+1)

)
≤ C1M

−h+1
2 .

2. We can find suitable sets Kh ⊂ (Su ∩ BSh) which describe the “bad parts” of
Su in such a way that the size of the superlevel sets Ah can be estimated by

|Ah+2 ∩ BRh+2 | ≤ C2M
−(h+1)Hn−1(Kh) (6.1)

and the size of Kh is bounded by

Hn−1(Kh) ≤ C1hM
−2α(h−1). (6.2)

Proof. For the complete formulation of the lemma and its proof we refer to [DPF14,
Lemma 3.3]. The only difference occurs in Step 3 of the proof given there, where we
have to use Proposition 5.3 to find a family

Fh+1 ..= {BM−(h+1)/L0(yi)}i∈Ih

that fulfills
sup

B2M−(h+1)/L0
(yi)
|∇u|2 ≤ L2

0M
h+1 < Mh+2

for sufficiently large M . The remainder of the proof is analogous to [DPF14].

Proof of Theorem 1.1. Fix M ..= M2. Combining (6.1) and (6.2) yields

|Ah+2 ∩ BRh+2| ≤ C1C2hM
−h(1+2α)
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for all h ≥ 2. Using the definition of Ah and Rh ≥ r0/2 we get

|{x ∈ Br0/2 \ Su : |∇u|2(x) ≥Mh}| ≤ C1C2M
3(1+2α)hM−h(1+2α) (6.3)

for all h ≥ 5. Setting γ = 1 + α this implies∫
Br0/2

|∇u|2γ dx = γ
∫ ∞

0
tγ−1|(Br0/2 \ Su) ∩ {|∇u|2 ≥ t}| dt

≤ C + γMγ
∞∑
h=5

Mhγ|(Br0/2 \ Su) ∩ {|∇u|2 ≥Mh}|

≤ C + C̃
∞∑
h=5

h(Mγ−1−2α)h <∞.

Since Br0/2 denotes a ball with arbitrary center x0 ∈ Ω (and sufficiently small radius),
this implies ∇u ∈ L2γ(Ω′,Rn) for every open Ω′ b Ω and completes the proof of the
theorem.
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