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Abstract

We consider nonlinear electrical circuits for which we derive a port-Hamiltonian formulation. After recalling
a framework for nonlinear port-Hamiltonian systems, we model each circuit component as an individual
port-Hamiltonian system. The overall circuit model is then derived by considering a port-Hamiltonian
interconnection of the components. We further compare this modelling approach with standard formulations
of nonlinear electrical circuits.
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1. Introduction

Port-Hamiltonian system models encompass a very large class of nonlinear physical systems [10, 23] and arise
from port-based network modelling of complex lumped parameter systems from various physical domains,
such as, for instance, mechanical and electrical systems. Modelling by port-Hamiltonian systems has gained
a lot of attention, see, for instance, the surveys [10, 22]. Tremendous progress has been recently made in
port-Hamiltonian modelling of constrained dynamical systems, which leads to differential-algebraic equations
[4, 12, 13, 15, 22|. This enables to apply the framework to modelling of multibody systems with holonomic
and non-holonomic constraints as well as electrical circuits. Examples of the latter class has been considered
from a port-Hamiltonian point of view in [10, 21, 22, 25]. However, an approach to electrical circuits has been
only made for the case where the circuit contains only capacitances and inductances [6]. The recent progress
in port-Hamiltonian differential-algebraic equations however allows to treat a by far wider class of electrical
circuits. This is exactly the purpose of this article, where we consider a variety of electrical components,
such as resistances, capacitances, inductances, diodes, transformers, transistors, current sources and voltage
sources from a port-Hamiltonian perspective. Thereafter, we consider the circuit interconnection structure
by utilizing the underlying graph of the given electrical circuit. This gives rise to a port-Hamiltonian model,
which only incorporates the Kirchhoff laws. Finally, the port-Hamiltonian model of the electrical circuit is
obtained by an interconnection with the individual port-Hamiltonian systems representing the components.
We will compare the resulting dynamical system with well-known formulations of nonlinear electrical circuits
like the (charge/flux-oriented) modified nodal analysis and the modified loop analysis.

2. Port-Hamiltonian systems and their interconnections

2.1. Port-Hamiltonian DAE systems
We review some basics in port-Hamiltonian differential-algebraic equations (DAEs) from [12, 13]. An im-
portant concept is that of the Dirac structure, which describes the power preserving energy-routing of the
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system. In a very general setting, a Dirac structure on a manifold M is defined [8, Def. 2.2.1] as a cer-
tain subbundle of D C TM & T*M (i.e., the direct sum of the tangent bundle and co-tangent bundle
of M). It turns out that, even for nonlinear circuits, this general definition is not needed, and we may
introduce Dirac structures only for the simple case where M = R™ (which gives rise to the identification
T*R™ 2 TR™ 2 R" x R™) and D C R™ x R™ is a subspace.

Definition 2.1 (Dirac structure). A subspace D C R™xR" is called a Dirac structure, if for all f,e € R"
holds R R
(f,e)eD < V(f,e)eD:e'f+e' f=0.

We will also write (f,e) € D C F x &, where F denotes the space of flows and &€ = R™ = F* denotes the
space of efforts. A useful characterisation of Dirac structures is the following.

Proposition 2.2 ([8, Prop. 1.1.5]). A subspace D C R™ x R" is a Dirac structure if, and only if, there
evist K, L € R™*™ with KL + LKT =0 and vk [K L] = n, such that

D={(fe) eR" xR" | Kf + Le = 0}. (1)

Now we introduce a relation describing the energy storage of the system and is called Lagrange submanifold.
Again, the general definition of Lagrange submanifold as found in [11, p. 568] is not needed for nonlinear
circuits. It suffices to consider the case of submanifolds of R” x R™. Typically, the manifolds are assumed
to be smooth. This can however be relaxed, and we may consider less-smooth manifolds for our purposes.

Definition 2.3 (Lagrange submanifold). 4 submanifold £L C R™ x R™ is called Lagrange submanifold
of R™ x R™, if for all x € L and (v1,v2) € R™ x R™ holds

(v1,v2) € TLL <= Y(wi,wy) € T, L: UI’LUQ — U;wl =0.
Hereby, T,,L C R™ x R™ stands for tangent space of L at x € L.

In the following we show that gradient fields induce Lagrange submanifolds.

Proposition 2.4. Let Q : R™ — R™ be continuously differentiable. Then the submanifold consisting of the

graph of Q, i.e.,
Lo ={(z,Q(z)) e R" xR" | z € R"}

is a Lagrange submanifold if, and only if, Q is a gradient field. In other words, there exists some twice
continuously differentiable function H : R™ — R such that VH = Q.

Proof. Using that R™ is simply connected, the case of smooth @ follows from [11, Prop. 22.12]. The less
smooth case follows by a straightforward modification of the proof of [11, Prop. 22.12]. O

The case where a Lagrangian submanifold is a subspace deserves special attention.

Proposition 2.5 ([12, Prop. 5.2]). A subspace L C R™ x R™ is a Lagrangian submanifold if, and only if,
L={(fe)eR"xR" | STf=Ple}

for some matrices S, P € R™™ with STP = PTS and tk[ST PT] =n.

Another concept needed for port-Hamiltonian systems is that of the resistive relation, which represents the
internal energy dissipation of the system. It is defined as a relation on the space of resistive flows Fr and
space of resistive efforts Eg [10, Sec. 2.4]. In our setting, both £ and Fg will be again R™.

Definition 2.6 (Resistive relation). A relation R C R™ x R™ is called resistive, if

YV (fr,er) ER: e;rzfn <0.
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Figure 1: Visual representation of a pH system.

Having defined Dirac structures, Lagrange submanifolds and resistive relations, we are now ready to intro-
duce port-Hamiltonian systems. Again note this class can be defined in a more general setting by using
manifolds [10, 13]. We ‘boil this down’ to the setup which is needed for electrical circuits.

Definition 2.7 (Port-Hamiltonian (pH) system). Let ng,ng,np € Ng and denote
Fr=E,=R"", Fr=Ekr =R"R, Fp=Ep=R"7.

A port-Hamiltonian (pH) system is a triple (D,L,R), where D C (Fz X Fr X Fp) x (Ex X Er x Ep) is
a Dirac structure (see Definition 2.1), L C Fr x E¢ is a Lagrange submanifold (see Definition 2.3) and
R C Fr X Er a resistive relation (see Definition 2.6).

The elements of Fr, €z, Fr, Er, Fp, Ep are, accordingly, called the energy-storing flows/efforts, resistive
flows/efforts and external flows/efforts.

The dynamics of the pH system are specified by the differential inclusion

(_%x(t)va(t)?fP(t)>€£(t>7eR<t)ae73(t)) €D, ($(t>,€£(t)) € £> (fR(t)7eR(t>) €R.

Note that, in this paper, we do not investigate any solvability theory of the resulting equations.

2.2. Interconnection of port-Hamiltonian systems

A key property of pH systems is that this class is closed under power-conserving interconnection. Different
methods of how to design such interconnections are for example elucidated in [3, 7, 10, 26]. The intercon-
nection we will be using for the electrical circuits follows the ideas presented in [10]. Interconnection is
based on the assumption that each system has two kinds of external flows and efforts, namely specific and
to-be-linked ones, where the latter ones are belonging to the same space for each Dirac structure.

Definition 2.8 (Interconnection of pH systems). Fori= 1,2, let (D;,L;,R;) be two pH systems with
specific flow and effort spaces,

Fi =Fri X Fri X Fpi X Fplink, & = Fri X Eri X Epi X Eplinks

which are subdivided into an energy-storing, a resistive, a specific external part, and a to-be-linked part. We
define the interconnection of (D1, L1, R1) and (Da, L2, Ra),

(D1, L1, R1) 0 (D2, L2, R2) := (D, L, R),
with respect to (Fpiink, Eplink) as the pH system given by
D= {((fch fr2)s (fris [r2), (fP1, fr2), (ec1,ec2), (er1, er2), (ep1, ep2))
| 3(fiink, €link) € Flink X Eink : (f£1, fR1, P15 fiinks €21, €R1, €P1, €link) € Dy
A (fr2, fr2s P2, — fink, €£2, €R2, €p2, €link) € D2},

and

L={((fz1,fr2),(ec1,er2)) € (Fr1 x Fr2) X (Ec1 x Er2)| (frisec1) € L1 A (fra,er2) € Lo},
R ={((fr1, fr2), (er1,eRr2)) € (Fr1 X Fr2) X (Er1 X ER2)| (fr1,6R1) € R1 A (fr2,eR2) € Ra}.
3
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Figure 2: Composition of two Dirac structures. Figure 3: Interconnection of two pH systems.

The above constructed set D is indeed a Dirac structure [10, Chap. 6. It is obvious that £ is a Lagrange
submanifold and R is a resistive relation. Hence, the interconnection of pH systems results in a pH system.
Next we introduce the Cartesian product of pH systems, which simply means that several coexisting pH
systems are united to one pH system. In terms of Definition 2.8, it means that several pH systems are
interconnected with trivial linking ports. That is, for pH systems (D1, L£1,R1) and (Da, L2, R2) we add
artificial and trivial linking ports Flink = &ink = {0} (which do not affect the dynamic behavior) and
interconnect these systems with respect to this trivial port (Fpiink, Epiink). A coupling of this kind will be
denoted by (D1, L1, R1) X (D2, L2, R2). We further inductively define

>TL<(DZ,£Z,R,) = <n><1('Dz,£1,RZ)> X ('Dn,ﬁn,’f\’,n).

i=1 i=1

2.8. Port-Hamiltonian systems on graphs

Now we consider interconnections of pH systems, which are defined via graphs [24]. This will lead us to
the notions of Kirchhoff-Dirac structure and Kirchhoff-Lagrange manifold. Later we will show that such
interconnections correspond to the Kirchhoff laws in electrical circuits. To this end, we introduce some basic
graph theoretical notions from [9].

Definition 2.9 (Graphs and subgraphs). A directed graph is a quadruple G = (V, E, init, ter) consisting
of a vertex set V, a edge set F and two maps init, ter : E — V assigning to each edge e an initial vertex
init(e) and o terminal vertex ter(e). The edge e is said to be directed from init(e) to ter(e). G is said to be
loop-free, if init(e) # ter(e) for alle € E. Let V! CV and E' C E with

E' C E|,, :={e € E :init(e) € V' A ter(e) € V'}.

Then the triple (V', E', init|, , ter| ) 4s called a subgraph of G. If E' = E|\,, then the subgraph is called the
induced subgraph on V'. If V! =V, then the subgraph is called spanning. Additionally a proper subgraph
1s one where E' # E. G is called finite, if V and E are finite.

The notion of a path in a directed graph G = (V, E, init, ter) is quite descriptive. However, since a path
may also go through an edge in reverse direction, we define for each e € E an additional edge —e ¢ E with
init(—e) = ter(e) and ter(—e) = init(e).

Definition 2.10 (Paths, connectivity, cycles, forests and trees). Let G = (V, E,init, ter) be a di-
rected finite graph. An r-tuple e = (eq,...,e.) € (EU —E)" is called a path from v to w, if

init(ey),...,init(e,) are distinct,
ter(e;) = init(e;41) Vi€ {1,...,r — 1},

init(e;) = v A ter(e,) = w.
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A cycle is a path from v to v. Two vertices v, w are connected, if there is a path from v to w. This gives is
an equivalence relation on the vertex set. The induced subgraph on an equivalence class of connected vertices
gives a component of the graph. A graph is called connected, if there is only one component.

A subgraph K = (V, E', init|, , ter|z/) of a directed graph G = (V, E, init, ter) is called ¢ spanning forest in
G, if K does not contain any cycles and is maximal with this property, that is, K is not a proper subgraph
of a subgraph of G which does not contain any cycles. A subgraph IC is called tree, if it is a forest and
connected.

In the context of electrical circuits, finite and loop-free directed graphs are of major importance. These
allow to associate a special matrix [1, Sec. 3.2].

Definition 2.11 (Incidence matrix). Let G = (V, E, init, ter) be a finite and loop-free directed graph. Let
E={ey,...,em} and V ={vy,...,v,}. Then the incidence matrix of G is Ay € R™*™ with

1 init(ex) = vy,
ajr = —1 ter(ex) = vy,
0 otherwise.

G has k € N components if, and only if, tk Ag = n — k [1, p. 140]. This allows to remove up to k rows from
Ap such that a matrix with same rank is obtained. The choice of these to-be-deleted rows has to be done in
a special way: One has to choose a row set, which corresponds to a vertex set S that contains at most one
vertex per component to G. This deletion plays a crucial role in the following definition of a special Dirac
structure and Lagrange submanifold.

Definition 2.12 (Kirchhoff-Dirac structure, Kirchhoff-Lagrange submanifold). Assume that G =
(V, E,init, ter) is a finite and loop-free directed graph with incidence matriz Ay € R"*™. Let G,...,Gi be
the components of G and let Vy, ..., Vi, CV be the corresponding vertex sets. Let S C V such that S contains
at most one vertex form each component, that is

Vs,s’e€S, i<k: v, eVi=v=0. (2)

Let A € RU"=F)*Xm pe copstructed from Ay € R™ ™ by deleting the rows corresponding to the vertices from
S. The Kirchhoff-Dirac structure of G is

D (G) == {(j,i,d),u) e RIS x R™ x R*IS1 x R™ ‘ [é ’(ﬂ <]) + [;T _OI] <¢> = 0}. (3)

) u

Assume that S = {v1,...,v|5|} (which is - by a reordering of the vertices - no loss of generality). Then the
Kirchhoff-Lagrange submanifold of G with respect to S is

L5(G) = {0} x R*7ISI ¢ Rn=IS1 5 Rr=181, (4)

Remark 2.13. By Proposition 2.2, D%-(G) in (3) is a Dirac structure, whereas Proposition 2.5 implies that
L£3(G) in (4) is a Lagrange submanifold of R™~I5I x R*=IS1,
The concepts of Definition 2.12 allow to introduce the pH system (D%-(G), £3-(G),{0}) with dynamics

(—ga(®),i(t), ¢(t), u(t)) € DE(G),  (a(t), ¢(t)) € LZ(G). ()

Then, by the equivalence of (q(t),¢(t)) € L3(G) to q(t) = 0 and ¢(t) € R"7I19I, we see that (5) holds, if,
and only if,
qt) =0 A Ai(t) =0 A AT go(t) = —ul(t).

In particular, i(t) € ker A and u(t) € im AT. In the context of electrical circuits, this will indeed represent
Kirchhoff’s current and voltage law [18, Thm. 4.5 & Thm. 4.6]. The choice of S can be interpreted as the
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set of grounded vertices. The quantities ¢, i, ¢ and u can respectively be thought as the vertex charges, the
edge currents, the vertex potentials, and the edge voltages.

Note that (5) is indeed a pH system. However, this system is of rather pathological nature, since it does
not contain any ‘true dynamics’, as the differential variable ¢ is nulled by the Lagrange submanifold. Note
that these ‘true dynamics’ come into play later on, when we interconnect with dynamic circuit elements like
capacitances and inductances.

In the terminology of [24], D3-(G) corresponds to the Kirchhoff-Dirac structure of a graph with |S| = 0.
Moreover, a Dirac structure similar to (3) has been used in [21], with the main difference that in our present
case all nodes are considered to be ‘boundary nodes’ in the nomenclature of [21].

We briefly present an alternative (slightly less straight-forward) construction of pH systems on graphs,
namely by means of cycles instead to vertices. For a given spanning forest T of a loop-free directed graph G
with n edges, m vertices and k connected components, the minimality property yields that the incorporation
of any edge of G not belonging to T (called chord) results in a subgraph with exactly one cycle. Consequently,
the set of edges in the complement of T in G leads to a set C = {C1,...,Cm—n+k} Of cycles, the so-called
fundamental cycles (see [1, p. 148] & [9, p. 26]). We equip each fundamental cycle with the orientation of
its corresponding chord [1, p. 148] and consider the associated fundamental cycle matriz B € R(m—n+k)xm
which is defined entrywise by (cf. [1, Sec. 3.3])

1 e; € C; and the orientations agree,
bji=q —1 ¢ € C; and the orientations do not agree,

0 otherwise.

This enables us to introduce the following Dirac structure and Lagrange submanifold

D) (G) = {(so,u,m‘) ERMTMHE X R™ x R X R™ ’ {é ﬂ <5> N LBOT —OI] @ B O}’ (6)

Lc(G) = (0} x RY4%,
which form the pH system (D% (G), L% (G),{0}) with dynamics

(=g (®),i(t), u(t), ult)) € Dk (),  (¥(1),u(t)) € L5 (9), (7)

from which, analogous to Remark 2.13, one can derive that (7) is equivalent to ¢ (¢) = 0, Bu(t) = 0 and
i(t) = BT1. Sinceim B = ker AT [18, Thm. 4.4, the relations u(t) € ker B = 0 and i(t) € im BT respectively
represent Kirchhoff’s voltage and current law. The quantities ¥, u, ¢ and ¢ can respectively be thought as
the cycle fluxes, the edge voltages, the cycle currents and the edge currents.

3. Electrical circuits as port-Hamiltonian systems

Our essential idea to port-Hamiltonian modelling of electrical circuits is to extend the tuple of voltages across
and currents through the edges - in the case where we consider a vertex-based formulation of the Kirchhoff
laws - by vertex charges and potentials, and - in the case where we consider a loop-based formulation of
the Kirchhoff laws - by cycle fluxes and cycle currents, along with an accordant modelling of the graph
interconnection structure by means of the approach in the preceding section. The electrical components
are modelled by separate pH systems, and thereafter coupled with the one representing the interconnection
structure.

The circuits may be composed of two-terminal and multi-terminal components. We will speak of £;-terminal
components, with £; € N denoting the number of terminals [27]. Each ¢/;-terminal component connects ¢;
vertices of the electrical circuit through its terminals. For instance, a resistance has two terminals, whereas
a transistor has three terminals, and a transformer has four terminals. To regard an electrical circuit as a
graph (see Fig. 5), we need to replace the f;-terminal components by ¢, edges between the vertices they
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Vo

G = (V, E, init,ter)

Figure 4: Visual representation of the Dirac structure D Figure 5: Obtaining the underlying graph of the electrical
resulting from the interconnection (8). circuit.

connect, for some ¢, € N, which we call the number of ports. Such a device is also called a £,-port component.
This replacement is displayed in Fig. 5. The direction assigned to each edge is not a physical restriction
but rather a definition of the positive direction of the corresponding voltage and current [18]. The physical
properties of the electrical components will be reflected by port-Hamiltonian dynamics on these edges. The
replacement of an ¢;-terminal component by ¢,, edges between vertices, i.e., by a graph, is subject to physical
modelling. For further details on terminals, ports and their relation, we refer to [27].

To be more precise, for £, ¢y € N, an £;-terminal component on £, edges will be regarded as a pH system
(D, L,R), where D C Rrstnatly  Rrstnetly with £, = ng + ng for some ng,nr € Ng. We associate to
D a graph G = (V, E, init, ter) with |V| = ¢, and |E| = ¢, (cf. Fig. 6). The external flow and effort variables
will always represent the current through [18, Def. 3.2] and the voltage along [18, Def. 3.6] the corresponding
edges, respectively.

3.1. Electrical circuits as interconnections of port-Hamiltonian systems

Let an electrical circuit consisting of N electrical components (D, Li, Ri)ieq1,..., N}, €ach with £, ; ports, be
given, with N € N and let (Gi)icq1,...ny = (Vi, B, init;, ter;);e1,... Ny be the respective graphs resulting
from the physical modelling of the ¢, ;-port components (see Fig. 6), where we assume that the edge sets
E, ..., Ey are disjoint. We define the underlying graph of the circuit G (see Fig. 5) as

N N
G = (V, E, init, ter) := (U vi, |J Ei, init,ter) 7
i=1 =1

with init(e) = init;(e) and ter(e) = ter;(e) if e € E; for some ¢ € {1,..,N} and let V = {v1,...,0,},
E ={ey,...,en} for some n,m € N. Further, let Ag € R™*™ be the incidence matrix associated to G and
let S C V with property (2) represent the vertices grounded in the circuit. We model the dynamics of the
electrical circuits as the dynamics of the pH system

(DL, R) = (D(9), Lk (), {0}) o (X(Dmﬁiﬂ%)) , (8)

i=1

where the interconnection is performed with respect to the flow and effort spaces

i=1 i=1

N N
(J_'.Iink; glink) - <>< Rmpia >< RmPi) = (Rma Rm)

corresponding to the port variables associated to the currents and voltages of the £,-port components.
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Figure 6: Replacing an ¢¢-terminal component by a graph Figure 7: Deriving the underlying graph of a capacitance,
with £, edges. conductance, ideal diode, PN-junction diode, inductance,
resistance, or sources.
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Figure 8: Capacitance: circuit symbol Figure 9: Inductance: circuit symbol  Figure 10: Resistance/conductance: cir-

cuit symbol

3.2. Physical modelling of circuit components as port-Hamiltonian systems

We present a couple of ‘prominent’ electrical components from a port-Hamiltonian viewpoint; among them
are capacitances, inductances, resistances, diodes, transformers, transistors and sources. Note that this
list is by no means complete. In principle, our approach also allows to incorporate components which are
modelled by partial differential equations, such as transmission lines and refined models of semiconductor
devices. This involves a further generalization of pH systems on infinite-dimensional spaces and particularly
leads to the notion of Stokes-Dirac structure, see |5, 16, 17].

Throughout this section, ¢ will denote currents and u will denote voltages. An oftentimes used Dirac

structure will be, for ¢, € N,
—i
Dy, = {( u) € R*»

It can easily verified that this is indeed a Dirac structure. The variable i stands for the vector of currents,
whereas u is the vector of voltages in the component. Note that a copy of the voltage and negative of the
current vector is required, since it is later on eliminated by the interconnection according to Definition 2.8.

i,ueR%}. (9)

3.2.1. Capacitances
Let He € C*(R,R). A capacitance with ¢, ports is modelled as a pH system (D¢, L¢, R¢), where D¢ = Dy,
with Dy, as in (9), R = {0}, and
Le={(uc,qc) €R**| qc = VHe(ue)} -
The dynamics consequently read
(_%QC(t)u ZC(t)qu(t)7uC(t)) € DC> (qC(t)7uC(t)) € EC'

Here, g, represents the charge of the capacitance and the Hamiltonian H . represents the energy storage
function of the system. From this pH system, one can derive

: d
ic(t) = gac(t), wuc(t)=VHc(qe(t))
If the capacitance has two terminals, then we obtain a conventional capacitance with one port as in Fig. 7.

3.2.2. Inductances
Let H, € C'(R% R). An inductance with £, ports is modelled as a pH system (D., L., R.) with

—ug

_ iy 44

D, {( iy ) € R*»
ur

8
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Figure 11: Circuit symbol of a diode.

and
Lo={(¢r,ir) €R*| i =VH(Vr)}, Re={0}.
The dynamics are now given by

(b (t),ic(t),ic(t),us(t)) € Dp,  (Yr(t),ic(t)) € Ly,

Here, v, represents the magnetic fluz of the inductance and the Hamiltonian H, € C'(R%,R) represents
the energy storage function of the system. From this pH system, one can derive

up(t) =S (t), ic(t)=VH(o(t)).

If the inductance has two terminals, then we obtain a conventional inductance with one port as in Fig. 7.

3.2.3. Conductances and resistances
Let Rg C R x R*» be a resistive relation. Consider the pH system (Dg,Lg,Rg), where Dg = D, with
Dy, as in (9), Lg = {0}. The dynamics are specified by

If, for some accretive function g : R» — R’ (that is, ¢£g(q§g{) >0 for all pg € Rf»), Ry reads

Ry = {(—ig,ug) € R*|ig = g(ug)},
then (10) leads to ig (t) = g(ug (t)). That is, (Dg, Lg,Rg) describes a conductance with ¢, ports. On the
other hand, if for some accretive function r : Rf» — R,

RR = {(_ZR7UR) S R2ZP|UR = T(ZK)}

then (10) leads to ug () = 7(ig (t)), i.e. (Dg,Lg,Rg) models a resistance with ¢, ports.
If the conductance/resistance has two terminals, then we obtain a conventional conductance/resistance with
one port as in Fig. 10.

Remark 3.1. Resistances form a pathological case of a pH system, since the underlying Lagrange subman-
ifold is trivial (cf. Remark 2.13). Therefore, the ‘dynamics’ of the pH system are actually ‘statics’. The
same holds for the models diodes, transformers and transistors which are discussed in the sequel.

3.2.4. Ideal and PN-junction diodes
An ideal diode is modelled as a two-terminal component (Dyp, Ly, Ryp) with one port (see Fig. 7), and
dynamics

(=in(t),in(t), up(t),us(t)) € Do, (jo(t), dn(t)) € Ro,

where Dy, = Dy with D as defined in (9), L5 = {0} and
R@:{<—i@,’U/Q))ER2 ‘Z@’U/D:O/\Z@SO/\’U/DSO}
From this pH system, one can derive that

(in(t), up(t)) € ({0} x R<o) U (Rx0 x {0}) .
9
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Figure 12: Circuit symbol of a transformer. Figure 13: Deriving the underlying graph of a trans-
former.
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Figure 14: Circuit symbol of a NPN transistor. Figure 15: Deriving the underlying graph of an NPN tran-
sistor.

A PN-junction diode is modelled as a one-port component (Dyp, Ly, Rp) with Dy and Ly as for the ideal
diode, and the resistive relation is, for some constants a,b > 0, given by

Rp = {(—i@,u@) ER? |ip=a (eubo — 1)}

From the dynamics of this pH system, one can derive the characteristic equation [14, Eq. (39.46)]

wiy (1)
i@(t):a(e X —1).

The PN-junction diode serves as an approximation for an ideal diode. In a certain sense, the behavior of
a PN-junction diode indeed tends to that of the ideal diode, if b — 0.

3.2.5. Transformers

A transformer is modelled as a four-terminal component with two ports, see Fig. 13. It is described by the
pH system (Dg, Ly, Rq), where we use the Dirac structure Dy = Ds with Dy as defined in (9) and trivial
Lagrange submanifold £ = {0}. The dynamics are given by

(_iTl (t)a —lirg (t)v (31 (t)7 g (t)a U1 (t)7 Urz‘z(t), Uty (t)7 Ugg (t)) € D‘Tv
(—iq1 (1), —iqa(t), ug: (1), ugs(t)) € R,

with, for some T € R,
. . 4 . .
Re = {(_ZTlv —iqg, Uy, Urs) € RY | Tiqy = —iqs, ugy = TUTQ}-

From this pH system, one can derive Tiq(t) = —iqy(t) and uqq(t) = Tugo(t), which means that a trans-
former is a power-conserving component.

3.2.6. NPN transistors

A transistor is a component with three terminals, which are called emitter, basis and collector. We replace
this by a graph with two edges, which are respectively located are between basis and collector, and basis and
emitter, see Fig. 15. The behavior of a transistor of type NPN is often modelled by the Ebers-Moll model
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[20, Egs. (5.26) & (5.27)], which can, in a certain voltage and current range around zero, be summarized by

the equations
upE(t) ) upc(t)
ic(t) =1ig (e Vr —1) —éfSH (e Vr —1) ,

) uBE(t) uBc(t)
iE(t):ZYi(e Vr —1) —ig (e Vr —1),

for some constants ap € [%, %]7 QR € [ﬁ, %L is € [1071,10712), Vr ~ ﬁ [20, pp. 382-394|. Hereby,
ic(t), ig(t), upgr(t), upc(t) respectively denote the collector current, emitter current, basis-emitter voltage
and basis collector voltage. Note that, by the Kirchhoff laws, the basis current fulfills ig(t) = ig(t) — ic(t)
and the collector emitter voltage is given by ucg(t) = upg(t) — upc(t). We model an NPN transistor as
a ‘resistive’ two-port component (Dq, La, Rqr) on two edges, where Dy, = Dy with Dy as defined in (9),

Ly = {0} and

(11)

. . UBE . uBc
, ic=lig|leVr —1)—2leVr —1],
Ra = { lic, —ig,upc,upp) € R ' . upp ’ upe N Vo,
ip= 2 leVr —1)—igleVr —1),

where Uy C R* is a neighborhood of the origin. The dynamics of the system read
(ic(t), —ip(t), —ic(t),ip(t), upc(t), upe(t), upc(t),upr(t)) € Dag, (ic(t), —ip(t),upc(t),upe(l)) € Ra,

which implies (11), at least as long as (i¢(t), —ig(t), upc(t),upr(t)) € Uy. Note that we have provided the
collector current i¢(t) with another sign, since it is - in contrast to the emitter current and the basis-emitter
current - directed contrarily to the basis-collector current.

Note that, if we choose Uy = R*, then the relation R is not resistive, since for there may exist quadruples
(ic, —ig,upc,uBpg) € RN holds icupc — igupg > 0. However, we can show that RN is resistive for
a suitable neighborhood Uy C R* of the origin. This can be seen as follows: Since for (upc,upg) € (R\{0})2

holds
. upc . UBE
(1) 5 (1) s ()

u . upc . UBE
BE zs(eVT -1 fé—SF eVr —1
i ) upc ) UBE
T (e Ve —1 i (eVr 1

B (uBC) RUBC BE (UBC)
- . uBc . UBE :

UBE _ig (6 Ve 1) g (6 Vo _ 1) UBE

uBc QOFUBE

=:A(upc,uBE)

Namely, by using that A(-,-) has a continuous extension to R? with

. 1
_is |5y 1
R )

afp

By ap € [%7 % , QR € [W%o’ %}, we have ap - ag < 1, which leads to negative definiteness of A(0,0) =

1(A(0,0)+ A(0,0) 7). The continuity of (upc,upr) — 3(A(upc,upr) + A(upc,upg) ') implies that there
exists some neighborhood Uy C R* such that this function takes values in the cone of negative definite
matrices on Up. This consequences that, by taking this neighborhood Uy, Ry is a resistive relation.

3.2.7. Current and voltage sources
The sources of the electrical circuit represent the ports of the system, that is points at which physical
interaction of the electrical circuit with the environment happens. We may distinguish two types of sources:

11
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Figure 18: AC/DC converter circuit Figure 19: Obtaining the underlying graph of the AC/DC converter

current sources and woltage sources, see Fig. 16 and Fig. 17. The name indicates which physical variable
is controlled or influenced by the environment. This variable is also denoted as input, while the other is
denoted as output. However, this distinction is not relevant for the geometrical formulation of pH systems
(cf. [15]). We unite both classes under the term sources. These have two terminals, and, consequently,
one port (see Fig. 7). Sources are modelled as a pH system (Ds,Ls,Rg), where the Dirac structure is
Ds = D, with Dy as defined in (9), and the Lagrange submanifold and resistive relation are trivial, i.e.,
Ls=TRs={0}. The dynamics are

(—is(t),is(t), us(t), us(t)) € Ds.

Example 3.2 (AC/DC converter). We illustrate our methodology by considering an AC/DC converter,
which we model by the electrical circuit shown in Fig. 18. The AC/DC converter consists of a source
S = (Ds,Ls,Rg), a transformer T = (Dg, Ly, Re), four PN-junction diodes 5 = (D;,,L;,,Ry,) for i €
{1,...,4}, a capacitor ¢ = (D¢, L¢,Re), and a ‘sink’ 0 = (Do, Lo, Ro) (modelled like a source), which
are connected by the vertices vy, ...,v¢ as shown in Fig. 19. The circuit graph G = (V, E, init, ter) with
V ={v1,...,v6} and F = {eq, ..., €9} has two components, and we ground the nodes below the voltage source
and the capacitance, i.e., we choose S = {vy,v3}. Let A € R**Y be obtained from the incidence matrix of
G by deleting the rows corresponding to the grounded nodes. We arrive at a pH system (D, £, R) as in (8),
whose dynamics read

—i7 Ugq
—q1 . é1
B —l72 U2
q4 . . ¢4
d . —1ip1 7ZrV Up1 UIV D
dt as | > | . [ ) ¢5 ) ’ SO
tp2 0 U2 Uo
—g6 . b6
—tp3 Up3
—qc . uc
—tpg Upy
—i71 U
—-q1 o1 5
- —l12 U
q4 o in tapy
—tp1
—(s5 ) ¢5 € 'Ca . y cR.
—tp2 Up2
—qs ol :
—tp3 Up3
—qc Uc g
Dy UDy
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4. Comparison with other formulations of electrical circuits

With the attention electrical circuits attracted over the past decades, quite a bunch of ‘standard formulations’
of the dynamics have emerged. An overview of popular models in the context of DAEs is found in [19].
We compare for certain electrical circuits the dynamics of our port-Hamiltonian modelling (8) with other
equations used in the modelling of electrical circuits.

4.1. The (charge/fluz-oriented) modified nodal analysis

Let an electrical circuit consisting of conductances, inductances, capacitances and sources. Let
(Dﬂ(l 5 EK@ 3 Rﬂ(b )iG{l,...,lK}7 (DLi7 ‘CLi B} RLi )iG{l,...,lL}7
(DCi ’ ECw RCi)iE{ly--<7lC}’ (D57 ) £57‘, ) RS;)iE{L---,lS} .

be the pH systems modelling the components as derived in Section 3.1. Let £, #; be the number of ports of
the component modelled by (D%,E%,R%), and let £, ;; and £, ~; be analogously defined. Moreover, let

lg g lc
me = Z&n,ﬂ{j) my = ng,Liv me = ng,i’(iv mg = l57
=1 i=1 =1
and introduce
iR i1 ic1 is1 'R
. . . . . . . . . 1r
ZK: N y lp = : , lc= : , s = . , 1= ZC 5
ZRmR iLmL Z.CmC iSmS iS

and analogous notations for ug, u,, uc, ug, u, as well as

qc Y1 91(ug1)
qc = ) wL = ’ g(’U/R) = )
qc‘mc ’L/)LmL ng (U‘Kmx)

mc my,
He(qe) = ZHCi(QCi)v Hp(r) = ZHLi(wLi>'

Further, let G = (V, E, init, ter) be the graph induced by the electrical circuit with |V| = n and |E| = m.
Let S be the set of grounded vertices (cf. Definition 2.12), and let A € R("*~I1SDx™ he obtained from the
incidence matrix of G by deleting the rows corresponding to the vertices in S. By a suitable reordering, we
may sort into edges to the specific components, i.e.,

A=[Ag A, Ac Ag],

where the columns of Ag € R(n_lsl)xmﬂ, Ay e ROTISDxmL - g4 e ROISDXme and A e R 1SDxmg
respectively represent the edges corresponding to conductances, inductances, capacitances and sources. For
the representation of the port-Hamiltonian dynamics of the electrical circuit, first note that the Dirac
structure of the pH system

me my me mg
X Dg,,Lg, ,Rg,)x X (Dr,,Lr,sRe,) x X (D¢, LeyyRe,) x X (Ds,, L, Rs,)
=1 =1 =1 =1
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is given by

. . . . .. L 2 2
Dprod = { (_lLa —c _ZRaZR,ZL7ZC7_ZjvlﬁalLauC,uK7uKa“La”Cauﬁauﬁ) € R x R*™ |

Tr,Us GRmL, ic,UCGRmC, iR,UKERmR, 15, Ug ERmS}

and
D3(G) = { (Goig,ic,ic,is, &, ug,ur, uc,us) € R*7ISN x R™ x R*7IST 5 R™ |
I Az Ap Ac Ag| (] OTOOOO¢
0 O 0o 0 0 ig _A?F I 0 0 Of[ug
o 0 0 0 O)fic|+|-A, O I 0 Of]ur|=0
0 O 0 0 0 ic —AE 0 0 I Of|uwuc
0 O 0 o0 0 is —-Ag 0 0 0 I \ug
It follows that the Dirac structure of
N
(D(9), L% (9),{0}) 0 (X(DiaﬁiaRi)>
i=1
is given by
D= { (j, —Uy, —ic, —Z.g(, —i5,¢,iL,uC,uK,u5) S Rn—\S\ x R™ x Rn—|S| x R™ ’
00 0 0 0f][-u —A%; 0 o I offi (12a)
0 —-I 0 0 0 —ic |+ |-A, 0 0 0 0| uc|=0,,
00 0 0 O0]]|-ig —AEOIOOuK
0 0 0 0 0 —ig —Ag 0 0 0 I] \us
whereas the Lagrange submanifold and resistive relation read
L= { (q, wL,qC,q{),iL,uc) e R* 1Sl x R™L x R™c x R 151 x R™L x R™¢
q=0Ni,=VH(¢r) N uc=VHc(qc) }7 (12b)
R = {(—iﬁ,u,{) ER™R x R | ig = g(ux)}. (12¢)

The triple (D, £,R) with D, £ and R as in (12) is the port-Hamiltonian representation of a circuit with
conductances, inductances, capacitances and sources in a compact form. The dynamics of (D, £, R) read

(_%q<t)’ _%¢L<t)a _%qC(t)’ _iR(t% _iS(t)a ¢(t)a iL(t)v uC(t), ui’((t)v US(t>) €D,

(q(t)a Yr (t)a qC(t)v d)(t)a iL(t)v U‘C(t)) €L,

which is equivalent to

I 0 Ac AR Ag _(j%q(t) 0
000 0 0 O0f[-%y.t) —A%
0 =1 0 0 0| g |+]|-al
00 0 0 0 —ig (1) _AE
00 0 0 0 —ig(t) ~A]
q(t) =0, i(t)=VH(¢(?)), uc(t)=VHe(qc

(—ig (), ex (1)) € R,

0 0] [ o(t)

I 0| | ist)

0 0 uc(t) | =0,
0 I Uj(t)
= g(ug (1))



Plugging in the latter relations, we obtain

Acthac(t) + Agg(Ag ¢(t)) + Aic(t) + Agis(t

—ALO() + Gt

—AT(E) + ug(t

ALo(t) = VHe(ge(t)

ir(t) — VH(4(1)

If we additionally assume that VH, € C1(R™C,R™C), VH,; € C}(R™£,R™L) are homeomorphisms, we

can introduce the inverse functions Q. := (VH-)"! € C(R™c,R™C), ¥, := (VH,)"! € C(R™L,R™L).
Then (13) leads to g (t) = Qc(uc(t)) and . (t) = U, (ig(t)). Further decomposing

As=T[A1 Ay], us= <:jq1/) , ds = <qu/>

into edges, voltages and currents to current and voltage sources, we see that (13) leads to the so-called
charge/fluz-oriented modified nodal analysis |2, Eq. (3.21)]

) =0,
) =0,
) =0, (13)
) =0,
) =0

Acdhac(t) + Agglug (1) + Aig(t) + Arir(t) + Agig(t
—ALB(t) + Fc(t

—Apo(t) + ug(t

qe(t) — Qe(ALo(t)

Yr(t) —We(ic(t)

If we additionally assume that Q, € C(R™¢,R™C) and ¥, € C'(R™£,R™L), then we can, by denoting the
Jacobians by C(uc) = ﬁ@c(uc) and L(ip) = (ir), reformulate (MNA c/f) to obtain the modified

nodal analysis [18, Eq. (52)]
AcC(AL ()AL o(t) + Ag g(Ag &(1)) + Aric(t) + Arin(t) + Apiy(t) =
—ALH(t) + L{ic(t) Fic(t)
~Apo(t) +uyp(t)

Note that, if Hr € C?(R™C,R), H; € C?(R™L,R), then C(u,) and L(i,) are, respectively, the inverses of
the Hessians of Hy and Hy at Qc(uc) and U, (iy).

?

)

)=0
)=0
) =0, (MNA ¢/f)
)=0
)=0

)

0
0, (MNA)
0.

4.2. The (charge/fluz-oriented) modified loop analysis

We present an alternative modelling involving the pH system (D% (G), L% (G),{0}) with D% (G) and L% (G)
as in (6). That is, the loops in the underlying graph structure is now taken to model the Kirchhoff laws. First
note that the external flows and efforts variables in the pH system (D3-(G), £3-(G),{0}) in Remark 2.13 are,
respectively, the current and the voltage of the components, while the external flows and efforts variables in
(D (9), L% (G),{0}) are, respectively, the voltage and the current of the components. This means that in
order to obtain a pH system (D', L', R’) describing the circuit dynamics by performing an interconnection
of (D (G), L (G),{0}) with N € N electrical components (D;, Li, Ri)ic(1,...,N} 1€,

N
(D,’LlaRl) = (D/I((g)7£/f<(g)’{0}) o (X(D“[’“Rl)> )

i=1

we have to adjust the definition of the components by interchanging the role of the effort and flow variables,
which is possible by an argument similar to one in Remark 2.13. Given an electrical circuit consisting of
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resistances, inductances, capacitances and sources, it can, completely analogous to Section 4.1, be shown
that the dynamics of (D', L', R’) lead, under certain additional invertibility and smoothness assumptions on
the functions representing capacitances and inductances, to the modified loop analysis [18, Eq. (53)]

BrL(Bu(t))B] () + Bgr(Bg(t)) + Beuc(t) + Brug(t) + Byug(t) =0,
—Beu(t) + Cluc(t)) guc(t) =0,
—BJ o(t) +ir(t) =0.
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