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We generalize tree-decompositions to decompositions modelled on
graphs other than trees, and study how such more general decom-
positions might be used to establish complexity hierarchies of graph
properties.

Introduction

In their work on graph minors, Robertson and Seymour begin by describing
graphs whose structure is particularly simple, graphs that look roughly like
thickened paths [ 7, 2 ]. They say that such graphs have small ‘path-width’. Of
course, not every graph looks roughly like a thickened path, but it is possible
to describe those that do not: every graph of large path-width contains a
particular such graph as a minor, a large (binary) tree.

As a natural next step, Robertson and Seymour consider the graphs that
look roughly like thickened trees, the graphs of small ‘tree-width’ [ 8; 4, 1 ]. As
before, not all graphs have small tree-width, but those that do not must all
contain a particular kind of graph of large tree-width as a minor: a large grid.

And why stop here? In the same way as above one might extend the class
of graphs described so far by including those that have small ‘grid-width’, then
continue with the minor-minimal graphs of ‘unbounded grid-width’ if those can
be determined, and so on.

Since the proof of their graph minor theorem takes a different turn for the
graphs of large tree-width—proceeding inductively up the genus of the graphs
considered, see [ 1; Ch. 12.5 ]—Robertson and Seymour have no need to pursue
this emerging hierarchy further. However, it seems worthwhile attempting to
do so. For every element of a class of graphs of ‘bounded H-width’, where H
is some previously described class of simpler graphs, will inherit some of the
properties of the graphs in H. (For example, graphs of bounded tree-width
inherit many of the algorithmic advantages of trees, their well-quasi-ordering,
and so on.) Thus, given a graph property shared by the graphs at the lower
levels of this hierarchy, it may well be worth asking how far up the hierarchy
it holds—once the hierarchy has been established.

This paper studies how to set up such hierarchies of graph properties. It
turns out that finding suitable definitions ofH-decompositions and H-width for
more general classes H than paths and trees is a more delicate problem than
might be anticipated. We suggest a number of ways in which this could be
done, but there seems to be no general rule of how best to define the concepts
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involved, once and for all. Rather, they will depend on the class of properties
to be studied, and even then may have to be fine-tuned as part of that study.

All the graphs considered in this paper are simple and finite. The notation
adopted is that of [ 1 ], where also any standard theorems referred to below can
be found.

1. Graph properties

If we wish to investigate how some graphs can be modelled on others (eg., the
former having ‘bounded width’ in terms of the latter), our primary objects
of study will not be individual graphs but classes of graphs. In this section,
we introduce such classes (to be called ‘properties’) and see how they can be
compared in terms of the graph minor relation and related orderings.

A graph property in this paper is taken to mean an infinite class of isomor-
phism types of finite graphs. Thus, every graph property we consider contains
arbitrarily large (unlabelled) graphs.

Given two graphs G1 and G2, we write G1 � G2 and call G1 a preminor�
of G2 if the vertices v ∈ G1 can be mapped to disjoint sets Xv ⊆ V (G2) sopreminor

that G2 contains an Xv–Xw edge whenever vw is an edge of G1. Note that the
sets Xv, the branch sets of this mapping, need not be connected; if they are,
then G1 is a minor of G2 and we write G1 � G2. If all the branch sets can be�
chosen with no more than k vertices, we also write G1 �k G2 and G1 �k G2,
respectively.�k, �k

Given two graph properties P1 and P2, we write P1 � P2 if for every
G1 ∈ P1 there is a G2 ∈ P2 such that G1 � G2, and similarly for �, �k and �k.
More generally if there exists a k ∈ N such that P1 �k P2 (resp. P1 �k P2), we
also write P1 �∗ P2 (resp. P1 �∗ P2) and say that the graphs in P1 are bounded�∗, �∗

(pre-)minors of those in P2. Note that, unlike �k and �k, the relations �∗
and �∗ are transitive. Finally, if every graph in P1 is a subgraph of some graph
in P2 we write P1 � P2; note that � is equivalent to �1 and to �1.�

The relations between graph properties that we shall mainly be interested
in are the three transitive relations �, �∗, �∗ and variants of these such as
compositions with topological minors. Since �∗ is a refinement (a subset) of
both � and �∗, and these are refinements of � (Fig. 1), a statement about
�∗ or � will often imply analogous statements about the other three relations,
which we shall not always mention explicitly.

�

�∗ �

�∗
↪→↪→

↪→↪→

FIGURE 1. Our four minor relations between graph properties
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Let � denote any reflexive and transitive relation between graph propertiesequivalent; ∼
(such as �, �∗, � or �∗). We shall call P1 and P2 equivalent (wrt. �) and
write P1 ∼ P2 if both P1 � P2 and P1 � P2. Then � induces a partial ordering
on the equivalence classes of graph properties thus defined. We write P1 < P2�, �∗

(ie. �, �∗, ≺, ≺∗ etc.) to express that P1 � P2 but P1 �� P2, ie. that while≺, ≺∗

P1 � P2 the two properties are not equivalent. Informally, we shall think of
P1 as lying above P2 if P1 � P2.above/below

A graph property is sparse if the average degrees of its graphs are boundedsparse

above by some constant; it is dense if its graphs have average degrees boundeddense

below by some linear function of their order. Of particular interest among the
sparse properties are those properties P such that every P ′ � P is also sparse
(or equivalently, such that P ′ := {G′ ⊆ G | G ∈ P } is sparse). These properties
can be described as follows.

Proposition 1.1. The following assertions are equivalent for graph proper-

ties P:

(i) P ′ := {G′ ⊆ G | G ∈ P } is sparse;

(ii) P has bounded arboricity;

(iii) P has bounded colouring number;

(iv) the graphs in P admit orientations with bounded out-degrees.

Proof. (i)↔(ii): This equivalence follows from Nash-Williams’s characteriza-
tion of the graphs of arboricity at most k for given k; see [ 1; Thm 3.5.4 ].

(i)→(iii) is an immediate consequence of the easy fact that the colouring
number of a graph is exactly one greater than the greatest minimum degree of
its subgraphs [ 1; Prop 5.2.2 ].

(iii)→(iv): A graph of colouring number k has a vertex enumeration in
which each vertex is preceded by fewer than k of its neighbours. The orienta-
tion from later to earlier vertices thus has out-degrees < k.

(iv)→(i): If a graph has an orientation with out-degrees at most k, it has
at most k times as many edges as vertices and hence an average degree of at
most 2k. �

Although most properties we shall consider will be sparse, a few obser-
vations about dense properties may serve to put our later investigations into
perspective. As we shall see, the complete graphs and the complete bipartite
graphs will play a special role as prototype dense properties. Let us denote
them as

K := {Kn | n ∈ N } and K2 := {Kn,n | n ∈ N }.K, K2

Not surprisingly in the context of minors, there is only one dense property
up to equivalence (with respect to any of our four relations), which lies above
all other properties:
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Proposition 1.2. If Q is any dense property, then P �∗ Q for every graph

property P. In particular, every two dense properties are equivalent.

Proof. As clearly P �∗ K, it suffices to show that K �∗ Q. We show that,
in fact, K �2 Q. Since Q is dense, there exists an ε > 0 such that every
graph G ∈ Q has at least ε|G|2 edges. The Erdős-Stone theorem therefore
implies that, given n ∈ N, every large enough graph in Q has a Kn,n subgraph.
Contracting every edge in some maximal matching in this Kn,n we obtain a
Kn minor as desired. �

For the two bounded-minor relations �∗ and �∗, Proposition 1.2 has a
pretty counterpart. Ideally, one would perhaps like to prove as its obvious
converse that only dense properties can be equivalent to K, ie. that the equi-
valence class of K is exactly the class of dense properties. But that is trivially
false: by adding enough isolated vertices to its graphs we can make any dense
property sparse while keeping it equivalent to the original property. However,
every property equivalent to a dense property (and hence to K) contains a
dense core, and thus arises from a dense property in this way:

Proposition 1.3. Under each of the relations �∗ and �∗, a property P is

equivalent to some dense property (and hence to K) if and only if K2 � P.

Proof. The ‘if’ implication is clear from Proposition 1.2. For ‘only if’, it
suffices to show that every property P �∗ K satisfies K2 � P. Let k ∈ N be
such that P �k K, and let s ∈ N be given. We know that for every r ∈ N there
is a graph G ∈ P that contains r disjoint sets of at most k vertices each and at
least one edge between every two of these sets; let us show that the subgraph
H ⊆ G induced by these sets contains Ks,s if r is large enough.

By the Erdős-Stone theorem it suffices to show that H has at least εn2

edges for n := |H|→∞ and some ε > 0 depending only on k. As r � n � kr

and H has at least
(
r
2

)
� r2/4 � n2/4k2 edges, this is indeed the case. �

Using the lower bound of crn
2− 2

r+1 for the extremal function ex (n,Kr,r)
(see [ 1, p. 152 ]), one can use Proposition 1.3 to show that properties inequiv-
alent to K can have almost linear average degrees:

Corollary 1.4. For every constant c and every ε > 0 there exists a (non-

dense) graph property P ��∗ K whose elements G all have average degrees at

least c|G|1−ε. �

By a well-known theorem of Mader [ 1 ], every property P of unbounded
average degree satisfies K � P. The above lower bound for ex (n,Kr,r) therefore
shows that K � P cannot imply K2 � P, so Proposition 1.3 does not extend
to � or to �.

On the other hand, the unbounded minor relations � and � differ from
their bounded counterparts also in a very pleasant way:
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Lemma 1.5. All strictly descending chains P1 � P2 � . . . and P1 � P2 � . . .

are finite.

Proof. We prove the lemma for the minor relation; the proof for preminors is
exactly the same. Let P1 � P2 � . . . be a strictly descending chain of graph
properties. Since P1 �� P2, there is a graph G1 ∈ P1 that is not a minor of
any graph in P2. Then G1 is not even a minor of a graph in Pi for any i � 2,
because Pi � P2. Similarly, P2 contains a graph G2 that is not a minor of any
graph in Pi with i � 3, and so on. We thus obtain a sequence G1, G2, . . . with
Gi ∈ Pi for each i and such that Gi �� Gj whenever i < j. By the Robertson-
Seymour graph minor theorem every such sequence is finite, and hence so is
our chain P1 � P2 � . . . . �

(The fact that the finite graphs are well-quasi-ordered under the preminor re-
lation follows from the graph minor theorem, but is also not difficult to show
directly.)

Theorem 3.5 below will imply that for both �∗ and �∗ there are indeed
infinite strictly descending chains. In the case of �∗, one can obtain such
chains simply by subdividing, and easily write down explicit examples: the
classes Pn := {Gi

n | i ∈ N }, for instance, where Gi
n is obtained from an i-star

by taking for each leaf a cycle of length 22ni and identifying the leaf with a
vertex on that cycle, form an infinite strictly decreasing chain as n = 1, 2, . . . .

Regarding Lemma 1.5, one may ask whether the graph properties are in
fact well-quasi-ordered by the relation �, ie. whether there are also no infinite
�-antichains of properties. This is an open problem. If the finite graphs are
better-quasi-ordered as minors (which all the experts seem to believe) then the
graph properties would likewise be better-quasi-ordered (and hence well-quasi-
ordered). Incidentally, Lemma 1.5 implies the graph minor theorem just as
easily as the other way round: if G0, G1, . . . is an infinite sequence of graphs
such that Gi �� Gj whenever i < j, then its tails {Gi, Gi+1, . . . } form an infinite
descending �-chain of graph properties.

2. Divisibility of properties

This section briefly addresses a fundamental problem concerning graph proper-
ties that will become relevant later to the hierarchies we seek to establish, but
is at this point included more for its own interest. The section may be skipped
without loss at first reading. Throughout this section, � stands for any of our�
three relations �, �∗, �∗, and similar observations hold for related relations
between graph properties.

Given a graph property P, we can obtain numerous equivalent properties
just by ‘adding junk’: for every property P ′ < P, the property P ∪ P ′ is
equivalent to P. This process is not easily reversible: if we are given P ∪P ′

as a single property, we may not readily be able to identify and discard its

5



‘inessential’ part P ′. So it seems that properties not containing such ‘junk’ are
particularly interesting representatives of their equivalence types.

To make this precise, let us call a property P lean if every property P ′ ⊆ Plean

is equivalent to P. The stars, for example, form a lean property, and so do
the paths. Note that if P is equivalent to some lean property Q, then Q can
be chosen as a subset of P. When � means �∗, for example, choose k so that
Q �k P, and for each H ∈ Q choose G = G(H) ∈ P with H �k G. Then
P ∼ Q �k PQ := {G(H) | H ∈ Q} ⊆ P (so all these properties are equivalent),
and PQ is lean: for any property P ′ ⊆ PQ the set Q′ := {H | G(H) ∈ P ′ } ⊆ Q
is infinite (like P ′) and hence equivalent to Q, so P � Q � Q′ � P ′ as desired.

So the question arises whether every graph property is equivalent to some
lean property, in which case we could take those as their standard represen-
tatives. However, this is not the case; for example, for all our three relations
the property consisting of the stars and the paths is not equivalent to any lean
property. More generally, let us call a subset P ′ of a property P small if eithersmall

P ′ is finite or P ′ < P, and let us call P divisible if it is the union of two smalldivisible

subsets. Thus, the property of stars and paths considered above is divisible,
and so is the property consisting of all the stars and the path of length five.
Lean properties, on the other hand, are indivisible.

Lemma 2.1. If P is indivisible and P � Q1 ∪Q2 (where one of the Qi may

be finite), then P � Q1 or P � Q2.

Proof. We prove the assertion for � meaning �∗; the other cases are similar.
Choose k so that P �k Q1 ∪Q2. Then we may write P as P = P1 ∪P2 where
Pi := {G ∈ P | ∃H ∈ Qi : G �k H }. As P is indivisible, the Pi cannot both
be small. So one of them satisfies P �∗ Pi �∗ Qi, as desired. �

Lemma 2.1 implies that the small subsets of any indivisible property form
a set-theoretic ideal: finite unions and subsets of small sets are again small.
Furthermore, it suggests that indivisible properties behave like primes in fac-
toring. This is not just a coincidence: when � stands for unbounded minors or
preminors, one can even use Lemma 1.5 to prove that every graph property par-
titions, uniquely up to equivalence, into a finite set of indivisible subproperties.
See [ 3 ] for details.

Moreover, unlike leanness, divisibility and indivisibility are invariant under
equivalence:

Corollary 2.2. If P is indivisible and P ∼ Q then Q is indivisible. �

By Corollary 2.2, only an indivisible property can be equivalent to a lean
property. Our general problem thus is as follows:

Problem 2.3. Is every indivisible property equivalent to some lean property?
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For unbounded minors and preminors, the indivisible properties have a
simple structual characterization [ 3 ] which implies a positive answer to Prob-
lem 2.3; in general we do not know the answer.

Perhaps surprisingly, a property that is indivisible but not lean may well
be more natural and simpler to describe than an equivalent lean property.
For example, the property of being a tree is indivisible but not lean. It is
equivalent to the ‘diagonal’ lean property T = {Tn | n ∈ N }, where Tn is the
tree of height n in which every vertex not at the nth level has degree n, but
T is less straightforward to describe. (On the other hand, pointing out the
equivalence to T is perhaps the easiest way to prove that the property of being
a tree is indivisible.)

3. General graph decompositions

Just as the concept of tree-decomposition provides a way of ‘roughly’ modelling
a given graph G on a tree T , we shall now define a more general concept of
modelling a given graph G on another graph H.

Let G,H be graphs. Consider a family D = (Gh)h∈H of induced subgraphs
of G indexed by the vertices of H. We call D an H-decomposition of G (into
the parts Gh) ifparts

(D1) every vertex of G lies in some Gh; and

(D2) given an edge e = gg′ ∈ G, either e lies in some Gh or there exists an
edge hh′ ∈ H such that g ∈ Gh and g′ ∈ Gh′ .

We shall call this decomposition D connected ifconnected
dec’n

(D3) whenever a vertex g ∈ G lies in Gh1 ∩Gh2 for some h1, h2 ∈ H, there is
a path P = h1 . . . h2 in H such that g ∈ Gh for every h ∈ P .

For vertices g ∈ G we write

Hg := H [ {h | g ∈ Gh } ] (1)Hg

and call these graphs Hg the co-parts of D.co-parts

We call wd(D) := max h∈H |Gh| the width of the decomposition D, andwidth wd

sp(D) := max v∈G|Hv| its spread . The maximum of these two numbers is thespread sp

size of the decomposition D. When H is a graph property then the H-widthsize

(resp. H-size) of G is the least width (resp. size) of an H-decomposition of G
with H ∈ H. The connected H-width (resp. -size) of G are defined analogously

connected
H-width &
H-size with respect to connected decompositions.

Let us spend a moment to see how a connected T -decomposition of G,
when T is a tree, corresponds to a traditional tree-decomposition. The con-
ditions (D1) and (D3) correspond exactly to the conditions (T1) and (T3) in
the standard definition of a tree-decomposition [ 1 ]. (D2) however is slightly
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weaker than (T2): it says that every edge of G is either accommodated in one
of the parts or reflected by an edge of H (which is not an option in (T2)).

Allowing in (D2) that edges of G may have their ends in different parts
ensures that every graph H has the trivial H-decomposition into singletons.
This relaxation of (T2) is not only natural, it is essential when H can be an
arbitrary graph: without it, a graph with an H-decomposition of width at
most k could never have more than

(
k
2

)
|H| edges, and so even the ‘H-width’ of

H itself (the least width of an H-decomposition of H) would be unbounded as
H gets large and dense. In order to avoid such anomalities we need to allow
edges as in (D2) here, even though they can be avoided when H is a tree.*

It is possible to rewrite the conditions (D1)–(D3) more elegantly (though
perhaps less accessibly) in terms of the co-parts Hg. Recall that two subgraphs
of a graph H are said to touch (in H) if they have a vertex in common ortouch

H contains an edge between them. Each of the conditions (D1)–(D3) then is
clearly equivalent to the corresponding following condition:

(C1) every Hg is non-empty;

(C2) for every edge gg′ ∈ G, the graphs Hg and Hg′ touch in H;

(C3) every Hg is connected.

Since
h ∈ Hg ⇔ g ∈ Gh , (2)

the parts Gh of a decomposition can be reobtained from their co-parts Hg, ie.
the decomposition (Gh)h∈H is uniquely identified by the family (Hg)g∈G. We
shall often use this fact in that we present a decomposition either as a family
of parts or as a family of co-parts, whichever is more convenient.

Note that, by the symmetry in (2), the Gh are in fact obtained from the
Hg exactly as those were defined from the Gh in (1): for all h ∈ H, we have
Gh = G [ { g | h ∈ Hg } ]. We do not explore this duality further here, but
remark that it includes planar duality as a special case: if G and H are dual
plane graphs then the H-decomposition of G into its face boundaries (each
associated with the vertex of H corresponding to that face) has as co-parts
the face boundaries of H associated with the vertices of G, and vice versa.
Perhaps some features of planar duality (such as flow-colouring duality) might
be extendable along these lines.

Most of this section will be needed to establish some easy technical lem-
mas about these decompositions. Their straightforward proofs are included
for completeness, but the reader is encouraged to quickly verify the assertions

* In terms of tree-width it matters little whether edges as in (D2) are allowed or not: any
connected T -decomposition D with T a tree can be turned into a traditional tree-decompo-
sition with parts {Gt ∪Gt′ | tt′ ∈ E(T ) }, whose width thus exceeds that of D by no more
than a factor of 2.
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directly and thus become better acquainted with the two sets of conditions
above.

Most importantly, decompositions and the minor relation are naturally
compatible as follows. When G and H are two graphs then, intuitively, G hav-
ing an H-decomposition of small width and spread is a way of expressing that
G is ‘not much bigger’ than H, while G � H is a way of saying that G is
smaller than H. And these two concepts of the size (or complexity) of a graph
are indeed compatible in the way such intuition suggests: if P � H then the
graphs in P have bounded connected H-width, and if P �∗ H they even have
bounded connected H-size. Quantitatively:

Lemma 3.1.

(i) G �k H if and only if G has an H-decomposition of width at most 1

and spread at most k.

(ii) G �k H if and only if G has a connected H-decomposition of width at

most 1 and spread at most k.

Proof. If G �k H then every vertex g ∈ G has a corresponding branch set
Xg ⊆ V (H). The graphs Hg := H [Xg ] satisfy (C1) and (C2), and they satisfy
(C3) if G �k H. Thus (Hg)g∈G is the family of co-parts of an H-decomposition
of G, which has width 1 since the Hg are disjoint and spread � k since |Xg| � k

for all g.
Conversely if G has an H-decomposition D = (Gh)h∈H of width at most 1

then G � H with branch sets V (Hg) (g ∈ G): these sets are non-empty by (C1),
disjoint by wd(D) � 1, connected by (C3) if D is connected. Moreover, if
gg′ ∈ E(G) then H has an Hg–Hg′ edge by (C2). Finally, if sp(D) � k then
these branch sets have size at most k. �

General decompositions may thus be viewed as a way of relaxing the minor
relation, which may prove useful also in contexts otherwise unrelated to our
purpose here.

Our next lemma shows that bounded-size decompositions define a transi-
tive relation between graph properties: if P1 has bounded P2-size and P2 has
bounded P3-size then P1 has bounded P3-size (and likewise for connected size,
width etc.).

Lemma 3.2. Let G,H,H ′ be disjoint graphs. If G has an H-decomposition of

width at most k and spread at most �, and H has an H ′-decomposition of width

at most k′ and spread at most �′, then G has an H ′-decomposition of width at

most kk′ and spread at most ��′. This latter decomposition is connected if the

other two decompositions are connected.

Proof. Let D = (Gh)h∈H be an H-decomposition of G and D′ = (Hh′)h′∈H′

an H ′-decomposition of H, both of the required width and spread. For all
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h′ ∈ H ′ put

Gh′ := G
[ ⋃

{Gh | h ∈ Hh′ }
]
.

We show that D′′ := (Gh′)h′∈H′ is an H ′-decomposition of G which is connected
if D and D′ are connected.

The key observation is that, for every vertex g ∈ G,

H ′
g = H ′

[ ⋃
{H ′

h | h ∈ Hg }
]
.

This shows at once that D′′ will have the desired spread (and, clearly, D′′ also
has the desired width). Moreover, (C1) and (C2) for D′′ follow at once from
the corresponding conditions for D and D′. Regarding (C3) for D′′, note that if
both D and D′ are connected then Hg is connected by (C3) for D, while every
H ′

h is connected by (C3) for D′. Now as H ′
h and H ′

h′ touch whenever hh′ is an
edge of Hg (by (C2) for D′), this implies that H ′

g is connected. �

Corollary 3.3.

(i) If G �� H and H has an H ′-decomposition of width at most k and

spread at most �′, then G has an H ′-decomposition of width at most k

and spread at most ��′.

(ii) If G �� H and H has a connected H ′-decomposition of width at most k

and spread at most �′, then G has a connected H ′-decomposition of

width at most k and spread at most ��′.

Proof. Immediate by Lemmas 3.1 and 3.2. �

The message of Corollary 3.3 is that H-decompositions are passed on to
minors in a canonical way, without increasing the width, and with an increase
in spread by at most the factor � that bounded the branch set size of the minor.
Indeed, it is not at all difficult to write down the H ′-decomposition (Gh′)h′∈H′

of G explicitly: Gh′ contains exactly those vertices of G whose corresponding
branch sets in H meet Hh′ , where (Hh′)h′∈H′ is the given H ′-decomposition
of H. In the special case when G ⊆ H this yields Gh′ = G∩Hh′ , as expected.

Our next lemma shows that, for instance, the average degree of a property
of bounded H-size cannot exceed the average degree of H (and its subgraphs)
by more than a constant.

Lemma 3.4. Let H be a graph property closed under taking subgraphs, and

let f : N→R be a non-decreasing function such that ||H|| � f(|H|) for all H ∈ H
and f(kn) � k2f(n) for all k, n ∈ N. Then for every property P of bounded

H-size there is a constant c such that ||G|| � c · f(|G|) for all G ∈ P.
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Proof. Let k ∈ N be such that every G ∈ P has an H-decomposition of size at
most k with H ∈ H. Deleting empty parts (and using that H is closed under
taking subgraphs) we may assume that |H| � k |G|. To estimate the number of
edges of G, let us divide them into those edges that lie within some part Gh of
this decomposition and those that do not. Every vertex g ∈ G is incident with
at most k(k−1) edges of the first type, because it has at most k−1 neighbours
in each of the at most k parts it lies in. So G has at most

(
k
2

)
|G| edges of

type 1. As every edge hh′ of H reflects at most k2 edges of G (those between
Gh and Gh′), we have at most k2||H|| edges of type 2. Since |H| � k |G|, this
gives

||G|| �
(
k

2

)
|G|+ k2f(|H|) �

(
k

2

)
|G|+ k4f(|G|)

as desired. �

Lemma 3.4 can be used to show that there are infinite sequences P0,P1, . . .

of graph properties that decrease strictly with respect to bounded preminors.
Indeed all we have to do is choose the graphs in Pn+1 as (spanning) subgraphs
of the graphs in Pn but with substantially fewer edges, and so that their own
subgraphs conform to the same upper bound on their number of edges (in
terms of their order) as the graphs in Pn+1 themselves. Then Lemma 3.4 (with
P := Pn and H the closure of Pn+1 under subgraphs) implies Pn �∗ Pn+1 as
desired. This idea is implemented in [ 6 ], where the following result is proved:

Theorem 3.5. There are infinite sequences P0,P1, . . . of graph properties such

that, for all i < j, we have Pi � Pj and Pi has unbounded Pj-size (and hence

Pi �∗ Pj and Pi �∗ Pj by Lemma 3.1).

The following observation will be crucial to the hierarchies to be studied
below. Let GRID denote the class of all n×n grids (n ∈ N).

Proposition 3.6. Every graph has connected GRID-width at most 2.

Proof. Given any graph G, let H be the |G| × |G| grid whose rows and
columns are each labelled by the vertices of G. For the vertex h ∈ H in row g

and column g′ let Gh := { g, g′ }; then Hg is the ‘cross’ in H consisting of row g

and column g. By (C1)–(C3), (Gh)h∈H is a connected H-decomposition. �

We finish this section by pointing out a connection between classical tree-
width and general decompositions. The proof assumes familiarity with some
facts and concepts of standard graph minor theory; these are all explained
in [ 1 ], and so we do not repeat them here.

Theorem 3.7. A graph property P has unbounded tree-width if and only if

K has bounded connected P-width.
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Proof. Suppose first that P has unbounded tree-width. By the Robertson-
Seymour grid theorem [ 8; 4, 1 ], this implies GRID � P. By Lemma 3.1 (ii),
therefore, the grids have connected P-width at most 1, while by Proposition 3.6
the complete graphs have connected GRID-width at most 2. By Lemma 3.2,
the complete graphs thus have connected P-width at most 2.

Conversely, assume that all the graphs in K have connected P-width at
most k ∈ N. We show that the graphs in P contain brambles of unbounded or-
der, which implies that P has unbounded tree-width. (This is the easy direction
of the ‘tree-width duality theorem’.) Let r ∈ N be given; we show that every
G ∈ P such that K = Kkr has a connected G-decomposition D = (Kg)g∈G

of width at most k contains a bramble of order at least r. Indeed, the co-
parts Gh ⊆ G (h ∈ K) of this decomposition are connected (C3) and touch
pairwise (C2), so they form a bramble B. But each vertex g ∈ G lies in at most
k co-parts, because D has width at most k. So to cover all the kr bramble sets
Gh we need at least r vertices of G, ie. B has order at least r. �

4. Hierarchies of graph properties: naive and abstract

Now that we have defined H-decompositions and (connected) H-width for
graph properties H other than the trees, let us return to our original plan
and see how the hierarchy of graph properties envisaged in the introduction
evolves. Let us begin by taking as our ‘universe’ the class C0 of all graph
properties (up to �-equivalence) ordered by �, and try to slice C0 into layers
of increasing complexity based on connected width.

We have already seen that C0 has a unique greatest element, the property
K of complete graphs. Similarly, the set

K := {Kn | n ∈ N }

of edgeless graphs lies below every other property and thus is the least element
of C0; recall that any graph property P contains unboundedly large graphs (by
definition of ‘property’) and hence satisfies K � P.

Our bottom layer D0 of C0 thus consists of the properties of bounded
connected K-width. These are readily identified: a property P has bounded
connected K-width if and only if its graphs have bounded components, ie. if
there exists a k ∈ N such that every component of a graph in P has order
at most k. Indeed, every such graph has a connected K-decomposition (with
K ∈ K) of width at most k into its components, while conversely the parts of
any connected K-decomposition of a graph must be unions of its components,
and so the order of these components will be bounded together with the order
of the parts.

Now consider the remaining class C1 := C0 � D0, the properties of un-
bounded connected K-width. By Lemma 1.5 every element of C1 lies above
some minimal element of C1, so C1 it determined by its minimal elements in
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Kuratowski-fashion. These minimal elements are the class STAR of all stars
and the class PATH of all paths:

Proposition 4.1. STAR �= PATH, and

C1 = {P ∈ C0 | STAR � P or PATH � P } .

Proof. Clearly STAR and PATH are incomparable under �, and in particular
inequivalent. The displayed characterization of C1 follows from the fact that
the graphs in C1 contain arbitrarily large components, and every large enough
connected graph contains either a star or a path of given order. �

The next layer D1 of our universe thus consists of the properties from
C1 that have bounded connected H-width for H = STAR ∪ PATH. These,
however, are precisely the properties of bounded connected PATH-width: since
stars have connected PATH-width at most 2 (put the centre in every part),
Lemma 3.2 implies that the connected PATH-width of any property is at most
twice its connected (STAR ∪ PATH)-width. But the connected PATH-width
of a property differs from its traditional path-width by at most a factor of 2
(cf. the footnote in Section 3), so D1 consists of the properties in C1 that have
bounded path-width.

This takes us back to those early results of Robertson and Seymour men-
tioned in the introduction. Let TREE denote the class of all trees.

Proposition 4.2. C2 = {P ∈ C1 | TREE � P }. �

Proposition 4.3. C3 = {P ∈ C2 | GRID � P }. �

(Here, C2 := C1 �D1, D2 := {P ∈ C2 | P has bounded connected TREE-width }
= {P ∈ C2 | P has bounded tree-width }, and C3 := C2 � D2.)

But now comes the disappointment: by Proposition 3.6, our next layer
of C0, the class D3 of properties in C3 of bounded connected GRID-width,
contains the entire rest of our universe (Fig. 2)—so our hierarchy stops at the
very point where it would go beyond those results of Robertson-Seymour!

What went wrong? Basically, our use of bounded connected H-width for
classes H other than the trees was naive (and quite counter-intuitive), in that
it allowed H-decompositions of G with |H| much bigger than |G|. For when H

is not a tree then many co-parts Hg in such a decomposition D can intersect
pairwise despite low width (as in the grid example), whereas when H is a
tree then these co-parts are subtrees of H and thus have the Helly property,
by which they can intersect pairwise only if some h ∈ H lies in all of them,
increasing the order of the corresponding part Gh and thereby the width of D.
Thus, the fact that bounding width in a tree-decomposition ensures that the
graph decomposed is ‘roughly like’ the tree along which it was decomposed has
more to do with tree structure than one might at first expect.
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FIGURE 2. The overall hierarchy based on width and
unbounded minors

Rather than try to patch up our definition of H-width, however (eg. by
disallowing |H| > |G| in an H-decomposition of G, or similar measures), let us
use the rest of this section to lay down in the abstract some minimum require-
ments for any successful hierarchy, and then review our concrete options more
systematically in Section 5.

In any hierarchy of graph properties as above, we shall have two reflexive
and transitive relations between properties. The first will be a ‘basic’ relation 	�
that expresses which properties we regard as ‘smaller’ or ‘simpler’, and which
has so far been the unbounded minor relation �. Our objects of study will not
be the graph properties themselves but their 	-equivalence classes, on which 	
defines a partial ordering; any informal use of words like ‘above’ or ‘below’ will
refer to this ordering 	. Since we consider properties only up to 	-equivalence,
our choice of 	 also will also set the ‘scale of magnification’ for our study.

Second, there will be a relation P � Q to express that the graphs in�
P have bounded decompositions in some sense over elements of Q. Since � is
intended to be well-defined also on 	-equivalence classes (our objects of study),
	-equivalence should imply �-equivalence. Moreover, we shall seek to charac-
terize classes of the form ‘all properties of bounded H-size’, or {P | P � H},
in Kuratowski-fashion by the set of 	-minimal elements of their complement,
so such classes ought to be closed down under 
. Thus, P 	 Q � H should
imply P � H, which is equivalent (consider H = Q) to asking that

P 	 Q ⇒ P � Q ,

ie. that 	 be a refinement (subset) of �. We shall refer to this requirement
by saying that 	 and � should be compatible. Similarly, we require thatcompatible

P ⊆ Q ⇒ P � Q.
Note that the compatibility of 	 and � is necessary but not sufficient

for the existence of a Kuratowski-type characterization of classes of the form
{P | P � H}: it ensures that the complement of this class is closed upwards
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under 	, but if this complement contains infinite decreasing �-chains then not
all of it need lie above its minimal elements. Compatibility does, however,
imply that � is well defined on 	-equivalence classes.

Given two classes C and C′ of graph properties, let us write C 	 C′ if forC � C′

every P ∈ C there is a Q ∈ C′ with P 	 Q. We say that C′ generates C if everygenerates

element of C lies above some element of C′. A basis of C is a subclass B of Cbasis

that generates C and satisfies B 	 C′ for every generating subclass C′ of C.
The following lemma shows that any basis of C will be unique (so that we

may speak of ‘the’ basis of C), and describes its elements:

Lemma 4.4. For every class C of graph properties the following assertions are

equivalent.

(i) C has a basis.

(ii) C has a basis that is contained in every generating subclass of C.

(iii) Every element of C lies above some minimal element.

If (i)–(iii) hold then the basis of C is unique and consists of the minimal

elements of C.

Proof. Suppose first that (iii) holds. Then the class B of minimal elements
of C generates C. Since any generating subclass C′ of C clearly contains B, it
follows that B is a basis as in (ii). Moreover if C′ is also a basis then C′ contains
no non-minimal elements of C, because C′ 	 B. Hence C′ = B, showing the
uniqueness of B as a basis of C.

The implication (ii)→(i) being trivial, it remains to prove (i)→(iii). Let B′

be any basis of C, and suppose that some P ∈ C does not lie above any minimal
element of C. Choose P ′ ∈ B′ with P ′ 	 P. Then P ′ is not minimal in C; pick
Q � P ′ from C, and choose Q′ 	 Q from B′. Now let B′′ be obtained from B′ by
deleting P ′ and any properties above it; thus B′′ = {P ′′ ∈ B′ | P ′ �	 P ′′ }. Then
B′′ still generates C (because it contains Q′ � P ′) but B′ �	 B′′, contradicting
the fact that B′ is a basis. �

Now let C0 be any fixed class of graph properties that is closed under union,C0

ie. such that for every set C′
0 ⊆ C0 the property

⋃
C′

0 is an element of C0. We
shall think of C0 as the universe of properties we wish to study—perhaps the
class of all graph properties, or just the class of all tree properties (graph prop-
erties consisting of trees only), or the class of graph properties of unbounded
tree-width etc.—and will look at C0 in terms of the posets P� = P�(C0) andP�
P� = P�(C0) that our relations 	 and � impose on it.P�

To this end, let us define recursively for all ordinals α:

Cα :=
⋂

β<α

Cβ when α is a non-zero limit;

Bα as the basis of Cα if it exists;

Bα :=
⋃

Bα;

15



Dα := {P ∈ Cα | P � Bα };
Cα+1 := Cα � Dα.

Thus, we have a strictly descending well-ordered sequence C0 ⊃ C1 ⊃ . . . of
classes of graph properties with Bα ∈ Cα � Cα+1 (note that Cα is closed under
union; induction on α), which either terminates naturally with Cα = ∅ for
some α, or comes to an emergency halt when some Cα has no basis. If it
terminates naturally with the empty class, then every graph property P ∈ C0

lies in some Dα: let β be minimal with P /∈ Cβ , note that β cannot be a limit,
and let α be such that β = α+ 1.

P1

P2
P3

P1 ∪P2

P1 ∪P2 ∪P3

Bα Bα

Bα

Bα+1 Bα+1

Bα+1

Cα+1

Dα

∃?

�-equivalence classes-equivalence classes	

FIGURE 3. Typical posets P� and P�

Induction on α shows that the classes Cα are upwards-closed in C0 under �
(and hence also under 	): if P ∈ Cα and P � Q ∈ C0 then Q ∈ Cα. Hence
the ‘layers’ Dα of our hierarchy are convex in P�: if P1,P2,P3 ∈ C0 satisfy
P1 � P2 � P3 and P1,P3 ∈ Dα then P2 ∈ Dα. In particular, both Cα and Dα

are closed in C0 under �-equivalence, ie. are unions of �-equivalence classes
in C0 (Fig. 3).

By Lemma 4.4, the properties in Bα are the minimal elements of Cα. Their
union Bα, however, lies higher in P� (unless |Bα| = 1) as soon as P ⊆ Q implies
P 	 Q (which it certainly will for all the minor-type relations we shall consider
for 	): since the elements of Bα are incomparable, the union of any two of
them lies strictly above both in P�. If the properties in Bα are indivisible (cf.
Section 2 and Proposition 4.5 below) then more generally by Lemma 2.1 the
union of any k of them lies at least k− 1 levels higher than each. If Bα is finite
(and P1,P2 	 Q imply P1 ∪ P2 	 Q, which again will always be the case),
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then Bα is the least upper bound for Bα (and hence for Dα): any property Q
such that P � Q for all P ∈ Bα clearly satisfies Bα � Q.

For every fixed universe C0 and every choice of � and �, a number of ob-
vious questions arise that cannot be answered in general. The most prominent
of these, of course, is whether every Cα has a basis. If � is well-founded in C0

then this is so by Lemma 4.4, but it may well hold in other cases too.

B0

B1

B2

B3

P

B1P ∪Q1

Q2

Q3

B2

B3

Q1

P ∪Q1∪Q2 = P ∪Q2

FIGURE 4. A pathological example for P�∗ , where P has bounded
B1-size but unbounded B2-size. Here B1 ��∗ B2, and
P ∪Q2 ∈ B3 is divisible.

Another question is whether the Bα form an increasing �-chain, ie. satisfy
Bβ � Bα (and hence Bβ < Bα) for all β < α. While it is possible to construct
artificial classes C0 where this fails—Figure 4 shows a portion of P�∗ when C0

consists of all properties of bounded diameter (with Qn denoting the trees of
height n), the additional property P = PATH, and all unions of these prop-
erties, and bases are taken with respect to �∗; see Section 5 for the definition
of �∗ and �∗—it seems to be a feature one would expect for most natural
classes C0. It would certainly have a number of natural consequences:

Proposition 4.5. Let P� be such that P2 �P1 is never finite when P1 < P2,

and P1,P2 � Q imply P1 ∪P2 � Q; for all P1,P2,Q ∈ C0. If Bβ � Bα for all

β < α, the following assertions hold for every α:

(i) Cα+1 = {P ∈ C0 | P �� Bα }.
(ii) The properties P ∈ Bα are indivisible in C0, ie. are not the union of

two properties Pi ∈ C0 with Pi � P (i = 1, 2) or the union of one such

property and a finite set.

(The point about (i) above is that while Cα+1 = {P ∈ Cα | P �� Bα } holds
by definition of Cα+1, its characterization as in (i) is no longer subject to the
recursive definition of of Cα. Thus, once a basis Bα has been determined, the
class Cα+1 and its complement

⋃
β�α Dβ in C0 can be written down explicitly.)
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Proof. (i) We apply induction on α to show that {P ∈ C0 | P �� Bα } ⊆
{P ∈ Cα | P �� Bα } = Cα+1. This is clear for α = 0, so let α > 0 and P ∈ C0

with P �� Bα be given. For every β < α we have P �� Bβ since Bβ � Bα, so
P ∈ Cβ+1 by the induction hypothesis. Hence P ∈ Cα both when α = β + 1
and when α is a limit.

(ii) By Lemma 4.4, the properties P ∈ Bα are the minimal elements of Cα.
Therefore any Pi as above lies in C0 � Cα, and hence lies in Dβi

for some
βi < α: let γ � α be minimal with Pi /∈ Cγ , note that γ cannot be a limit,
and let βi < α be such that γ = βi + 1. Then if β1 � β2 (say) we have
both P1 � Bβ1 � Bβ2 and P2 � Bβ2 . By our assumptions on � this (and
similarly |P1| < ∞) gives P1 ∪ P2 � Bβ2 , so P = P1 ∪ P2 would imply that
P /∈ Cβ2+1 ⊇ Cα, a contradiction. �

A third general question is how much we can say about the internal �-
structure of a single �-equivalence class C. For example, while it is not dif-
ficult for most choices of � and � to find �-equivalent properties that are
�-incomparable, can they both be �-minimal in C? In particular, can Bα

contain more than one element from each �-equivalence class in Cα? Is C

necessarily well-founded by � ?

5. Hierarchies of graph properties: some concrete models

Let us set out from our naive hierarchy based on � and connected width, as
described at the start of Section 4. This hierarchy failed to produce new results,
because its relation � was too coarse: we had K � GRID in terms of connected
width, and so the universe of all graph properties had no more than the four
layers shown in Figure 2. How, then, should we sharpen � to ensure that
K �� GRID?

5.1. Bounding spread

Among the many possibilities to achieve this, the most promising appears to
be to bound not only the width but also the spread of the decompositions
used: when the co-parts Hg of an H-decomposition of G are too large and H

is not tree-like, they can touch in many ways without by their connectedness
forcing any of the parts Gh to become large (which would happen if H were
a tree); hence even a complete graph can have an H-decomposition of small
connected width. So let us use G �k H to express that G has a connected�k

H-decomposition of size at most k, put P �k Q if for every G ∈ P there is an
H ∈ Q with G �k H, and write P �∗ Q when P �k Q for some k, ie. when�∗

P has bounded connected Q-size. Note that �∗ is reflexive (because every
graph G has the trivial G-decomposition into singletons), and it is transitive
by Lemma 3.2.

The following lemma gives a taste of this relation.
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Lemma 5.1. Let P �∗ Q be two graph properties.

(i) If the vertices of the graphs in Q have bounded degree then so do those

of the graphs in P.

(ii) If the paths in the graphs in Q have bounded length then so do those in

the graphs in P.

Proof. Let G ∈ P and H ∈ Q, and let (Gh)h∈H be a connected H-decompo-
sition of G of size at most k.*

(i) We assume that ∆(H) � d and show that ∆(G) is bounded in terms of
d and k. Consider a vertex g ∈ G. Every Hg′ that touches Hg contains either
one of the at most k vertices of Hg or one of its at most dk neighbours. But
each of those at most k(d+1) vertices of H lies in Hg′ for at most k different g′,
so by (C2) g has no more than k2(d+ 1) neighbours.

(ii) We assume that H contains no path of length � ∈ N and show that the
length of the paths in G is bounded in terms of k and �. Let P ⊆ G be any
path, and let H ′ be a minimal subgraph of H (not necessarily induced) such
that (Ph)h∈H′ is a connected H ′-decomposition of P , where Ph := Gh ∩ P .
Then H ′ is connected (because P is; cf. (C2) and (C3)) and has order at least
|P |/k, so as H ′ contains no path of length � it has a vertex h of degree at least
k2 + k + 1 if |P | is large enough in terms of k and �. We show that h cannot
exist, and hence that |P | is bounded as desired.

By the minimality of H ′, every neighbour h′ of h in H ′ is of one
of two types: either the edge hh′ is needed for (C3) and thus lies in
H ′

g = {h′′ ∈ H ′ | g ∈ Ph′′ } for some g ∈ P , or it is needed for (C2) and
joins H ′

g to H ′
g′ for some edge gg′ ∈ P . If h′ is of the first type, then g is

one of the at most k vertices of Ph (since h ∈ H ′
g), and h′ is one of the at

most k− 1 neighbours of h in H ′
g. So at most k(k− 1) of the neighbours of h

are of the first type. Similarly, if h′ is of the second type (but not the first),
then g is one of the at most k vertices in Ph and g′ is one of the at most two
neighbours of g on P ; thus, h has at most 2k neighbours of the second type.
(By the minimality of H ′, every edge gg′ of P gives rise to at most one edge hh′

by (C2).) Hence h has at most k(k− 1) + 2k neighbours in H ′, contradicting
the choice of h. �

However, �∗ is no longer compatible with the unbounded minor relation �.
Indeed, if F denotes the property of being a fan (a path plus a new vertex joined
to every vertex of the path), and L is the property of being a ladder (a 2× n

grid), then F � L but F ��∗ L by Lemma 5.1 (i).
So let us instead use bounded minors as our basic relation 	: from Corol-

lary 3.3 (ii) we know that P �∗ Q implies P �∗ Q, so �∗ and �∗ are indeed
compatible. We remark in passing that, conversely, even P <∗ Q does not
imply P �∗ Q: in our fan/ladder example we clearly have L ��∗ F , while

* In the proof of (i) we shall not use that the decomposition is connected.
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L �∗ F (just use the path in the fan to decompose along) but F ��∗ L, and
hence L <∗ F .

The posets P�∗ and P�∗ may be well worth studying for suitable ‘small’
universes C0: even for tree properties one can obtain non-trivial results [ 5 ]. As
regards the overall universe of all graph properties, however, this would be a
hopeless task: just as the poset P� based on connected width was too coarse to
be interesting, P�∗ is too fine. Even for trees it distinguishes properties (such
as trees of different maximum height, or with different degrees of subdivision)
that are hardly worth the effort of telling them apart. And besides, there are
infinite strictly decreasing chains in both P�∗ and P�∗ (Theorem 3.5) that
make the hierarchy complicated without adding much insight. (Figure 5 shows
some of the results from [ 5 ] on the hierarchy of tree properties based on �∗
and �∗. A comb is a graph obtained by joining a set of isolated vertices to a
given path by disjoint paths; an n-bush is a tree of height at most n, the graphs
in PATH & STAR are disjoint unions of one path and one star, and n-BUSHES
consists of disjoint unions of n-bushes.)

STAR = 1-BUSH

 = 1

PATH

STARS

PATH&STAR

COMB

BINTREE

K

B1

C1

C2

B1

n-BUSHES

-BUSHES

n-BUSH

TREE

FIGURE 5. A portion of the (�∗, �∗)-hierarchy of tree
properties

5.2. Allowing subdivisions

How could we modify �∗ and �∗ so as to get rid of at least some of the infinite
decreasing chains in P�∗ and P�∗? Since the most obviously irritating such
chains arise just by subdividing—recall the example after Lemma 1.5—the
first measure to take would be to include topological minors as special cases
of 	 and, to preserve compatibility, also of �. One might even go a step further
and also allow the converse operation, the suppression of vertices of degree 2.
Allowing this as part of 	 (and for compatibility then also of �) would indicate
that we wish to regard homeomorphic graphs as essentially the same. Allowing
the suppression of degree-2 vertices only for � would indicate that we consider
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a subdivision of a graph as ‘larger but not much’; recall that the intuition
behind P � Q was that the graphs in P should be ‘not much larger’ than those
in Q.

Note that, in order to ensure transitivity, we may have to allow mixed
sequences of the various relations we want to admit. For example, we might
define P 	 Q as “there exist properties P1, . . . ,Pk with P1 = P and Pk = Q
such that, for every i = 1, . . . , k− 1, either Pi �∗ Pi+1 or Pi �top Pi+1” (and
likewise allow sequences of �∗ and �top for �, where �top stands for topological
minors).

Allowing topological minors, or more generally homeomorphic equivalence,
as part of � will not result in K � GRID, since Lemma 5.1 (i) continues to
apply. (By contrast, allowing sequences of � and �∗ in the definition of �
does result in K � GRID, so that is not an option.) However, we do get
K � PLANAR, where PLANAR denotes the class of planar graphs: just draw
an arbitrary complete graph K with crossings (of two edges at a time), turn it
into a TK by inserting a pair of subdividing vertices at each crossing on the
two edges involved, and observe that K �top TK �2 H for the plane graph
H that arises from the drawing of K by identifying the pairs of subdividing
vertices.

Even with these relaxations, hierarchies for large universes may still show
more diversity than one will be able to survey. For example, one can construct
quite a rich universe just from properties combining trees of bounded height
(but unbounded degree) with trees of bounded degree (but unbounded height)
to larger graphs in various ways. It therefore seems desirable to look for fur-
ther ways of weakening the relation � (without making the complete graphs
equivalent to the grids).

5.3. Bounding essential spread only

Rather than bounding the order of every Hg in a connected H-decomposition
of G, one might choose to bound only the number of those vertices in each
Hg that are needed to accommodate edges of G (rather than just to make Hg

connected). Such a decomposition would then be specified as a pair (D,D) of
H-decompositions of G, where D is connected but D need not be connected,
and where D and D have families (Hg)g∈G and (Hg)g∈G of co-parts such that
Hg ⊆ Hg for all g. Let us call max (wd(D), sp(D)) the essential size of this
decomposition.

As it turns out, decompositions of bounded essential size form a special
case of the first relation � considered in (5.2) above (allowing subdivisions
only): if (D,D) is an H-decomposition of G of essential size k as above, we can
find graphs G′ and G′′ such that G �2k G′ �top G′′ �k H. Indeed, for each
g ∈ G let H ′

g be a minimal connected subgraph of Hg containing V (Hg), and
let H ′′

g be obtained from H ′
g by suppressing any vertices of degree 2. Since H ′

g

is a tree with at most k leaves, H ′′
g has no more than 2k vertices. Now let G′

be obtained from the disjoint union
⋃

g∈G H ′′
g by adding for every edge gg′ ∈ G
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an edge between a vertex h ∈ H ′′
g and a vertex h′ ∈ H ′′

g′ such that h = h′

(in H) or hh′ ∈ E(H); such h and h′ exist by (C2) for D. Contraction of the
trees H ′′

g then yields G �2k G′, and hence G �2k G′ as desired. Now let G′′

be obtained from G′ by reinserting the suppressed vertices of degree 2 (turning
each H ′′

g ⊆ G′ back into a copy of H ′
g). Then the natural map from V (G′′) to

V (H) defines an H-decomposition of G′′ of spread 1 and width wd(D) = k.
But conversely, the relation � based on bounding essential size excludes

some of the undesirable instances of the relation of ‘bounded size plus topolo-
gical minors’. For example, we saw that the complete graphs are topological
minors of graphs with bounded-size (connected) decompositions over planar
graphs. But as Theorem 5.3 (iii) will show, their essential size over planar
graphs is unbounded.

In fact, those subdivisions that can be realized by decompositions of
bounded essential size can be determined precisely:

Lemma 5.2. Let P be any graph property, and let Q be obtained from the

graphs in P by subdividing every edge at least once. Then P has bounded

essential Q-size if and only if P ′ = {G′ ⊆ G | G ∈ P } is sparse.

Proof. Note first that every subgraph of a graph in Q has average degree at
most 4, because its vertices of degree at most 2 cover all its edges. Now if P
has essential Q-size at most k, then every G′ ⊆ G ∈ P has an H-decomposition
(not necessarily connected) with H ∈ Q of size at most k. By Lemma 3.4,
therefore, the average degree of G′ is bounded in terms of k.

Conversely, assume that P ′ = {G′ ⊆ G | G ∈ P } is sparse and orient the
edges of the graphs G ∈ P as in Proposition 1.1 (iv). Thus, all their vertices
have out-degrees < k, say. For each G ∈ P, pick a subdivision H ∈ Q; we shall
define a pair (D,D) of H-decompositions of G (where D is connected) in terms
of their co-parts Hg and Hg ⊇ Hg so that wd(D) = 1 and sp(D) � k. As Hg

we take the bounded (but possibly disconnected) set consisting of g and the
farthest subdividing vertex on each of the < k edges at g that are oriented away
from g. As Hg we take the unique minimal connected subgraph of the union
of these subdivided edges that contains Hg (a subdivided star with centre g).
Then the Hg satisfy (C1) and (C2), the Hg satisfy (C3), and the width of D
and spread of D are as desired. �

5.4. Disconnected decompositions

The decompositions of (5.3) raise the question of what happens if we discard
D altogether and bound the width of D instead, ie. simply consider decompo-
sitions that are not necessarily connected.

Here is a tempting reason for doing so. In a standard tree-decomposition
(Gt)t∈T , the requirement (T3) that the co-parts Tg be connected has the effect
of curbing the potential of large spread for accommodating too many edges of
G implicitly through width. (Recall that, by the Helly property of the subtrees
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of a tree, many co-parts Tg can touch pairwise only if some t ∈ T lies in all of
them, in which case g ∈ Gt for all those g.) Might this be the only reason for
requiring (T3)? In other words, now that we have to bound spread explicitly
anyhow, could we do without the axiom (C3)?

To look at the corresponding hierarchies in more detail, let us define
P �−

∗ Q to mean that the graphs in P have (not necessarily connected) H-�−
∗

decompositions with H ∈ Q of bounded size. We may then also relax the
bounded minor relation between properties to bounded preminors without los-
ing compatibility, ie. take �∗ instead of �∗ as our basic relation 	. The
hierarchy of all graph properties then begins as follows.

Theorem 5.3. The first three layers D0, D1, D2 of the (�∗,�−
∗ )-hierarchy of

the class C0 of all graph properties are characterized as follows.

(i) B0 = {K }. The class D0 consists of the properties of bounded maximum

degree.

(ii) B1 = {STAR }. The class D1 consists of those properties in C1 in whose

graphs only boundedly many vertices have unbounded degree. (Formally:

P ∈ C1 lies in D1 if and only if (∃k)(∀G ∈ P) |{ v ∈ G : d(v) � k }| � k .)

(iii) B2 = {STARS }, where STARS is the property of being a disjoint union

of stars. The class D2 consists of those properties P ∈ C2 for which

P ′ = {G′ ⊆ G | G ∈ P } is sparse.

(The properties occuring in (iii) were characterized in Proposition 1.1.)

Proof. (i) Clearly, K is the least element in C0 under �∗. For the second
statement, consider a property P ∈ D0, ie. P �−

∗ K. Since K has bounded
degrees and Lemma 5.1 holds also for disconnected decompositions, P has
bounded degrees too. Conversely, suppose that ∆(G) < k for every G ∈ P. Let
K ∈ K be the edgeless graph on V (G), and for every g ∈ G let Kg consist of g
and its neighbours. These Kg satisfy (C1) and (C2), so (Kg)g∈G is the family
of co-parts of a K-decomposition D of G. Then sp(D) � k since |Kg| � k for
all g, and wd(D) � k because each vertex h of K lies in at most k co-parts Kg,
those with g = h or g ∈ N(h). Thus P �−

k K, ie. P ∈ D0 as required.
(ii) By (i), C1 consists of the properties of unbounded maximum degree.

Hence STAR � P for every P ∈ C1, so STAR is the least element of C1 also
under �∗. Now consider P ∈ D1. Then all the graphs in P have bounded-size
STAR-decompositions. Deleting their central parts leaves graphs that have
bounded-size K-decompositions with K ∈ K, and hence have bounded degree
by (i). Conversely, if G has at most k vertices of degree � k, then G �−

k S for
every sufficiently large star S: put all the vertices of degree � k in the central
part, and add a K-decomposition of size at most k of the rest of G as in (i),
where K is the set of leaves of S.

(iii) The proof of {B2 } = STARS is again clear from (ii). For the second
assertion, it suffices by Proposition 1.1 to prove that a property P ∈ C2 lies
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in D2 if and only if its graphs have orientations of bounded out-degree.
For the forward implication, let G be a graph with a U -decomposition D

of size k, where U is a disjoint union of stars. Consider an edge e = gg′ ∈ G.
If g and g′ lie in some common part of D, orient e arbitrarily. If not, then g

(say) lies in a part Gu such that u is a leaf of one of the stars in U , and we
orient e from g towards g′. Now consider a fixed vertex g, and let us count
the edges gg′ oriented away from g. For every such edge, either g′ lies in the
same part as g, or g lies in a leaf part and g′ lies in the unique adjacent centre
part. Since g lies in at most k parts and for each of these there are at most 2k
choices for g′, the out-degree of g is at most 2k2.

Conversely, let G be a graph with an orientation with all out-degrees less
than k. For each vertex g ∈ G take a star S(g) of order |G| with centre s(g),
and let U be the disjoint union of those stars. To define a U -decomposition
of G, let the co-part Ug for g ∈ G consist of s(g) and one leaf from every star
S(g′) such that g′ is an out-neighbour of g; let these leaves of S(g′) be chosen
distinct for different g. These Ug satisfy (C1) and (C2) as required. Clearly,
this decomposition has width 1 and spread at most k. �

Theorem 5.3 describes the complete (�∗,�−
∗ )-hierarchy of those graph

properties P that are ‘essentially’ sparse, in the sense that not only P itself
but also P ′ is sparse. What about the remaining graph properties?

Lemma 3.4 and Theorem 3.5 suggest that interesting universes for
(�∗,�−

∗ )-hierarchies of such other properties (again closed under taking sub-
graphs) would each lie within a given range of average degree d = d(n), pre-
scribed up to a multiplicative constant. Since ‘sparse’ means ‘with average
degree bounded by a constant’, Theorem 5.3 is an example of such a hierarchy
for the constant function d = 1.
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NOTE

Decomposition Duality

Reinhard Diestel

The purpose of this note is just to point out a duality aspect of graph decom-
positions that came up unexpectedly in the context of other investigations [ 1 ],
but which can be presented briefly on its own and may be of independent
interest. The duality we shall define generalizes the duality of plane graphs. It
thus raises the question whether results based on the latter (such as colouring-
flow duality) can be extended or seen in a new light when viewed from a
decomposition angle.

Let G, H be graphs. Consider a family D = (Gh)h∈H of induced subgraphs
of G indexed by the vertices of H. Let us call D an H-decomposition of G (into
the parts Gh) if

(D1) every vertex of G lies in some Gh

(D2) given an edge e = gg′ ∈ G, either e lies in some Gh or there exists an
edge hh′ ∈ H such that g ∈ Gh and g′ ∈ Gh′

and call this decomposition D connected if it also satisfies

(D3) whenever a vertex g ∈ G lies in Gh1 ∩Gh2 for some h1, h2 ∈ H, there is
a path P = h1 . . . h2 in H such that g ∈ Gh for every h ∈ P .

When H is a tree, then this kind of decomposition is closely related to standard
tree-decompositions; see [ 1 ].

For every g ∈ G define a subgraph Hg of H by setting

Hg = H [ {h | g ∈ Gh } ] , (1)

and write
D∗ := (Hg)g∈G (2)

for the family of these subgraphs. We shall call the family D∗ the dual of the
family D, and its parts Hg the co-parts of D.

It is possible to rewrite the conditions (D1)–(D3) more elegantly in terms of
these co-parts. Recall that two subgraphs of a graph H are said to touch (in H)
if they have a vertex in common or H contains an edge between them. Each of
the conditions (D1)–(D3) is easily seen to be equivalent to the corresponding
following condition:

(C1) every Hg is non-empty;

(C2) for every edge gg′ ∈ G, the graphs Hg and Hg′ touch in H;

(C3) every Hg is connected.
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The conditions (C1)–(C3) offer an alternative way to think of a given H-
decomposition of G: as a collection of subgraphs of H rather than of G. Indeed,
presenting D∗ instead of D entails no loss of information. For given any two
vertices g ∈ G and h ∈ H, clearly (1) implies that

g ∈ Gh ⇔ h ∈ Hg (3)

and hence that
Gh = G [ { g | h ∈ Hg } ] , (4)

the dual statement to (1). So the Gh can be reobtained from the Hg, and they
are obtained from them in exactly the same way as the Hg were obtained from
the Gh. Thus,

D∗∗ = D.

Now it may or may not happen that the family D∗ = (Hg)g∈G obtained
from our H-decomposition D = (Gh)h∈H is in turn a G-decomposition of H.
Let us call D invertible if this is the case. By (4), the conditions (C1)–(C3) for
when this happens translate as follows:

Proposition 1. D is invertible if and only if

(I1) every Gh is non-empty;

(I2) for every edge hh′ ∈ H, the parts Gh and Gh′ touch in G.

The dual decomposition D∗ of D will be connected if and only if

(I3) every Gh is connected. �

The ‘message’ of translating the conditions on D∗ into statements about
D in this way is that D is invertible as soon as H has no more vertices or
edges than are required for D to satisfy (D1) and (D2). Thus we can make any
H-decomposition invertible simply by deleting superfluous vertices and edges
of H. (This technique turned out to be surprisingly useful in [ 2 ].)

Given a pair of dual decompositions D and D∗ as above, one might at first
be tempted also to think of H as a dual of G, and vice versa. However, given a
graph G there is no unique H such that G has an invertible H-decomposition.

For example, every graph G �= ∅ has two trivial invertible decompositions:
the K1-decomposition into just one part G, and the G-decomposition into sin-
gletons, ie. with Gg = { g }. More generally, for every graph H that contains
G as a minor, G has the connected H-decomposition (Gh)h∈H into singletons
defined by choosing as Hg the subgraph of H induced by the branch set corre-
sponding to g. If G is even an MH, ie. obtained just by contraction without
deletion, then (I1) and (I2) hold while (I3) is void, so this decomposition is
invertible.

However, what we might ask for is a canonical way of obtaining such dual
graphs and decompositions:

2



Problem 2. For which classes C of finite graphs can we assign in a non-trivial

way to every graph G ∈ C a graph G∗ ∈ C and an invertible G∗-decomposition

D(G) of G so that G∗∗ = G and D(G∗) = D∗(G)?

Here, D∗(G) denotes the dual of the decomposition D(G). The definition of
‘non-trivial’ will have to be adjusted to need; for example, it should probably
preclude most choices of G∗ and D(G) with G∗ = G.

Abstract though this may seem, there is a well-known instance of this
kind of duality: the duality of planar graphs. Indeed, if G is a planar graph
(3-connected, say, to make its drawing unique) and G∗ is its planar dual, then
the obvious G∗-decomposition of G into its face boundaries satisfies all the
requirements of Problem 2. A special case of this problem, therefore, would
be to ask for C to extend the class of planar graphs and for G∗ and D(G) to
coincide with planar duality and face decompositions when G is planar. For
example:

Problem 3. Can the flow-colouring duality for plane graphs be extended to a

larger class based on decomposition duality?

It should be pointed out that interpreting planar duality as decomposition
duality in this way is, so far, no more than a restatement, carrying no ‘sub-
stance’. The hope, however, is that viewing this duality from a decomposition
angle might guide attempts to generalize planar duality in ways that are natural
in a decomposition context but might otherwise not be obvious.
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[2] R. Diestel & D. Kühn, Tree hierarchies, manuscripts 2000.

3


