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A short proof of Halin’s grid theorem

Rudolf Halin zum 70. Geburtstag

Reinhard Diestel

We give a short proof of Halin’s theorem that every thick end of a graph
contains the infinite grid.

Introduction

An end of an infinite graph G is called thick if there are infinitely many
disjoint rays (1-way infinite paths) in G all converging to that end. The infinite
grid is an obvious example: it contains infinitely many disjoint rays, which all
converge to its unique end. It is one of Halin’s most striking theorems that
this observation has a converse: whenever G has a thick end ω, it contains a
subdivision of an infinite hexagonal grid whose rays all converge to ω.

The aim of this note is to give a short proof of Halin’s theorem. We follow
Halin [ 3 ] in defining an end of a graph as an equivalence class of rays, where
two rays are equivalent if no finite set of vertices separates them.1 In these
terms, an end is thick if it contains infinitely many disjoint rays. The subrays
of a ray are its tails, and an A–B path has no inner vertices in A∪B. See [ 1 ]
for details of this or any other undefined terms used below.

Let G be the N×N grid, ie., the graph on N×N in which two vertices are
adjacent if and only if their Euclidean distance is 1. To define our standard
copy H of the hexagonal grid, we delete from G the vertex (0, 0), the vertices
(n, m) with n > m, and all edges (n, m)(n + 1, m) such that n and m have
equal parity (Fig. 1).

Thus, H consists of the vertical rays

U0 := G [ { (0, m) | 1 � m } ] and Un := G [ { (n, m) | n � m } ] (n � 1)

joined by a set of horizontal edges,

E := { (n, m)(n + 1, m) | n �≡ m (mod 2) } .

To enumerate these edges, as e1, e2, . . . say, we order them co-lexographically:
the edge (n, m)(n+1, m) precedes the edge (n′, m′)(n′ +1, m′) if m < m′, and
also if m = m′ and n < n′ (Fig. 1).

1 For locally finite graphs, this definition agrees with the usual topological notion of an
end; for graphs with infinite degrees it is more general [ 2 ].
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FIGURE 1. The hexagonal grid H

Theorem. (Halin [ 4 ], 1965)
Whenever a graph has a thick end, it has a subgraph isomorphic to a subdivision

of the hexagonal grid H whose rays all belong to that end.

Proof. Given two infinite sets P,P ′ of finite or infinite paths, let us write
P � P ′ if P ′ consists of final segments of paths in P. (Thus, if P is a set of
rays, then so is P ′.)

Let G be any graph with a thick end ω. Our task is to find disjoint rays in
ω that can serve as ‘vertical’ (subdivided) rays Un for our desired grid, and to
link these up by suitable disjoint ‘horizontal’ paths. We begin by constructing
a sequence Q0, Q1, . . . of rays (of which we shall later choose some tails Q′

n as
‘vertical rays’), together with path systems P(Qi) between the Qi and suitable
Qp(i) with p(i) < i (from which we shall later choose the ‘horizontal paths’).
We shall aim to find the Qn in ‘supply sets’ R0 � R1 � . . . of unused rays.

We start with any infinite set R0 of disjoint rays in ω; this exists by our
assumption that ω is a thick end. At step n ∈ N of the construction, we shall
choose the following:

(1) a ray Qn ∈ ω disjoint from Q0 ∪ . . .∪Qn−1;

(2) if n � 1, an integer p(n) < n;

(3) for every i with 1 � i � n, an infinite set Pn(Qi) of disjoint Qi–Qp(i)

paths, such that

(i)
⋃
Pn(Qi)∩

⋃
Pn(Qj) = ∅ for distinct i, j � n, and

(ii)
⋃
Pn(Qi)∩Qj = ∅ for distinct i, j � n with j �= p(i);

(4) an infinite set Rn+1 � Rn of rays disjoint from Q0 ∪ . . .∪Qn and from⋃
Pn(Qi) whenever 1 � i � n.

Thus, while the rays Qi and the predecessor map i �→ p(i) remain un-
changed once defined for some i, the path system Pn(Qi) between Qi and Qp(i)
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changes as n increases. More precisely, we shall have

(5) Pn(Qi) ⊆ Pn−1(Qi) whenever 1 � i < n.

Informally, we think of Pn(Qi) as our best candidate at time n for a system
of horizontal paths linking Qi to Qp(i). But, as new rays Qm with m > n get
selected, we may have to change our mind about Pn(Qi) and, again and again,
prune it to a smaller system Pm(Qi). This may leave us with an empty system
at the end of of the construction. Thus, when we later come to construct our
grid, we shall have to choose its horizontal paths between Qi and Qp(i) from
these provisional sets Pn(Qi), not from their (possibly empty) intersection over
all n.

Let n ∈ N be given. If n = 0, choose any ray from R0 as Q0, and put
R1 := R0 \ {Q0 }. Then conditions (1)–(5) hold for n = 0.

Suppose now that n � 1, and consider a ray R0
n ∈ Rn. By (4), R0

n is
disjoint from

Hn := Q0 ∪ . . .∪Qn−1 ∪
n−1⋃

i=1

Pn−1(Qi) .

By the choice of R0 and (4), we know that R0
n ∈ ω. As also Q0 ∈ ω, there

exists an infinite set P of disjoint R0
n–Hn paths. If possible, we choose P so

that
⋃
P ∩

⋃
Pn−1(Qi) = ∅ for all i � n−1. We may then further choose P so

that
⋃
P ∩Qi �= ∅ for only one i, since by (1) the Qi are disjoint for different i.

We define p(n) as this i, and put Pn(Qj) := Pn−1(Qj) for all j � n− 1.
If P cannot be chosen in this way, we may choose it so that all its vertices

in Hn lie in
⋃
Pn−1(Qi) for the same i, since by (3) the graphs

⋃
Pn−1(Qi)

are disjoint for different i. We can then find infinite disjoint subsets Pn(Qi)
of Pn−1(Qi) and P ′ of P. We continue infinitely many of the paths in P ′

along paths from Pn−1(Qi) \ Pn(Qi) to Qi or to Qp(i), to obtain an infinite
set P ′′ of disjoint R0

n–Qi or R0
n–Qp(i) paths, and define p(n) as i or as p(i)

accordingly. The paths in P ′′ then avoid
⋃
Pn(Qj) for all j � n − 1 (with

Pn(Qj) := Pn−1(Qj) for j �= i) and Qj for all j �= p(n). We rename P ′′ as P,
to simplify notation.

In either case, we have now defined Pn(Qi) for all i < n so as to satisfy (5)
for n, chosen p(n) as in (2), and found an infinite set P of disjoint R0

n–Qp(n)

paths that avoid all other Qj and all the sets Pn(Qi). All that can prevent
us from choosing R0

n as Qn and P as Pn(Qn) and Rn+1 � Rn \ {R0
n } is

condition (4): if P meets all but finitely many rays in Rn infinitely, we cannot
find an infinite set Rn+1 � Rn of rays avoiding P.

However, we may now assume the following:

Whenever R ∈ Rn and P ′ � P is an infinite set of R–Qp(n) paths,

there is a ray R′ �= R in Rn that meets P ′ infinitely.
(∗)
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For if (∗) failed, we could choose R as Qn and P ′ as Pn(Qn), and select from
every ray R′ �= R in Rn a tail avoiding P ′ to form Rn+1. This would satisfy
conditions (1)–(5) for n.

Consider the paths in P as linearly ordered by the natural order of their
starting vertices on R0

n. This induces an ordering on every P ′ � P. If P ′ is a
set of R–Qp(n) paths for some ray R, we shall call this ordering of P ′ compatible
with R if the ordering it induces on the first vertices of its paths coincides with
the natural ordering of those vertices on R.

Using assumption (∗), let us choose sequences R0
n, R1

n, . . . ∈ Rn and
P = P0 � P1 � . . . so that Pk is an infinite set of Rk

n–Qp(n) paths whose
ordering is compatible with Rk

n, for all k ∈ N. By definition of P = P0, this
holds for k = 0. For k � 1, we may use (∗) with R = Rk−1

n and P ′ = Pk−1

to find a ray R′ =: Rk
n �= Rk−1

n in Rn that meets Pk−1 infinitely, and find an
infinite set Pk � Pk−1 of Rk

n–Qp(n) paths compatible with Rk
n. We choose Rk

n

and Pk so that the first path Pk of Pk (in our ordering on Pk induced by P)
is as short as possible (Fig. 2).
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FIGURE 2. Constructing Qn from condition (∗)

This choice implies that the path P−
k+1

∈ Pk containing Pk+1 ∈ Pk+1 is
not Pk; in particular, the Pk are all disjoint. Let vk be the first vertex of Pk,
and v−k+1 the first vertex of P−

k+1. Finally, let Rk
n+1 be a tail of Rk

n that avoids
v−k+1 and the (finitely many) paths Pj with j � k. We now define

Qn := v0R
0
nv−1 P−

1 v1R
1
nv−2 P−

2 v2R
2
n . . .

Pn(Qn) := {P0, P1, P2, . . . }

Rn+1 := {Rk
n+1 | k ∈ N } .

Let us check that these definitions satisfy (1)–(5) for n. We have already
verified (2) and (5). For the disjointness requirements in (1) and (3), recall that
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Qn and Pn(Qn) consist of segments of paths in Rn and P; these are disjoint
from Qi and Pn(Qi) for all i < n by definition of P and (4) for n− 1 (together
with (5) for n). For the disjointness requirement in (4) note that Rk

n+1 does not
meet Qn or Pn(Qn) inside any path Pj with j > k, since these Pj are proper
final segments of Rk

n–Qp(n) paths in Pk. Since Rk
n+1 does not, by definition,

meet Qn or Pn(Qn) inside any path Pj with j � k, condition (4) holds for n.

It remains to use our rays Qn, path systems Pn(Qi), and supply sets Rn

of rays to construct the desired grid. By König’s infinity lemma [ 1 ], there is a
sequence n0 < n1 < n2 < . . . such that either p(ni) = ni−1 for every i � 1 or
p(ni) = n0 for every i � 1. We treat these two cases in turn.

In the first case, let us assume for notational simplicity that ni = i for all i,
ie. discard any Qn with n /∈ {n0, n1, . . . }. Then for every i � 1 and every n � i

we have an infinite set Pn(Qi) of disjoint Qi–Qi−1 paths. Our aim is to choose
tails Q′

n of our rays Qn that will correspond to the vertical rays Un ⊆ H, and
paths S1, S2, . . . between the Q′

n that will correspond to the horizontal edges
e1, e2, . . . of H. We shall find the paths S1, S2, . . . inductively, choosing the
Q′

n as needed as we go along (but also in the order of increasing n, starting
with Q′

0 := Q0). At every step of the construction, we shall have selected only
finitely many Sk and only finitely many Q′

n.
Let k and n be minimal such that Sk and Q′

n are still undefined. We
describe how to choose Sk, and Q′

n if the definition of Sk requires it. Let i be
such that ek joins Ui−1 to Ui in H. If i = n, let Q′

n be a tail of Qn that avoids
S1 ∪ . . .∪Sk−1; otherwise, Q′

i has already been defined, and so has Q′
i−1. Now

use (3)(ii) to choose Sk ∈ Pn(Qi) ‘high enough’ between Q′
i−1 and Q′

i to avoid
every other Q′

j , as well as the finitely many paths S1, . . . , Sk−1. Since every
Q′

n is chosen so as to avoid all previously defined Sk, and every Sk is chosen
so as to avoid all previously defined Q′

j (except Q′
i−1 and Q′

i), the Q′
n and Sk

are pairwise disjoint for all n, k ∈ N, except for the required incidences. Our
construction thus yields the desired subdivision of H.

It remains to treat the case that p(ni) = n0 for all i � 1. Let us rename
Qn0 as Q, and ni as i− 1 for i � 1. Then our sets Pn(Qi) consist of disjoint
Qi–Q paths. We choose rays Q′

n ⊆ Qn and paths Sk inductively as before,
except that Sk now consists of three parts: an initial segment from Pn(Qi−1),
followed by a middle segment from Q, and a final segment from Pn(Qi). Such
Sk can again be found, since at every stage of the construction only a finite
part of Q has been used. �
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3 R. Halin, Über unendliche Wege in Graphen, Math. Ann. 157 (1964), 125–137.
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